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Chap’cer Il of RK Heat Engines and tlﬂermodgnamics

Ist Law of Thermodgnamics:

Fledt and Work are on the same {:ooting

N —

AQ + AW

We can convert work done to heat with great effectiveness: Think heated wire (Joule heating of resistors)

BUT: The matchstick example shows that converse is not so easgl

Con\/erting heat into useful work is only Possible ina “Lossg” fashion- we lose some heat to unwanted waste.

Work done

TH ot

Efficiency = x 100%

energy put into system

Efficiency = Qrtot = Qcotd x 100%
QHot
: Traot — Tcold
Efficiency(Carnot) = — &2

izjkfot

Heat Engine <V>

oo

x 100%

Hot Source

V\iork outpuf

Cold Bink

W = QHot N QCold

Carnot showed that this is optimal.
(Cannot beat Carnot)
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Summary: Carnot showed: Q(Cold) /Q(Hot) is at most T (Cold) /T (Hot)

In general Qis a complex obiect but T is simple (just measure it!) . Hence this is a great simplification.
& R ) ] 8 5

Examples:

Carnot’s Car: T(Hot) = Burning temp of fuel, T(Cold)= atmospheric tem (1000-20) /1000 x 100 = 98%
=P P i

Real cars SO0

Coal fueled Power Plant: T (Hot) = Coal temP, T (Cold)= river temperature;

Questions:

Whg do we lose so much, is this Preventable?

What, if angthing, went wrong with 1st law of thermodgnamics?
Is there a Piece of the story that we haver’t learnt 9et?

Converting mechanical energy to
heat energy Is easy, converse is difficult,
akhougha”owedt%ﬂstLawc%themﬂodgnamks
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Efficiency definition and Carnot cycles emerge next.
Y Y 4

ZI’]C! [ aw Oi: thermodgnamics

* |tis imPossibie for a machine to take heat from a reservoir at T, Produce
work and exhaust heat into a reservoir at same T .
o Sustems isolated from the environment will move towards equilibrium with

their surrouﬂclings.

Linked ideas/ concepts
lmpossibilitu of Perpetual motion.

Arrow or time:

Example: glass of water with ice in it will warm up in a room at normal temperatures:

(e.g. 65°F).

A Gas on one side of a chamber will fill both sides on removing Partitions.

= e, = = T P,
P TR == — e— PSS — - - — Lo =
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Other consequences: COMMENTS

Cet et e wi” not ﬂow spontaneouslg froma COH object toa First law does not

hot object. Preclucle this!

pe i , Ent kes it
4 Z Aﬂg sgstem Wh!Ch 1S ‘FY’CC O‘F ex’temal IHHUCHCCS IDCCOFHCS & FOPH e -

: - : e : rand entrance here. It
more disordered thh time. Thxs disorder can be ex[:)ressecl in &

terms of the quantitg called entropg is a measure of how
’ disordered the system
is. At T=0 Kelvin,

*3_You cannot create a heat engine which extracts heat and , ,
entropy Is zero since

converts it all to useful work. ,
all motion ceases

* 4. There is a thermal bottleneck which constrains devices (Barfing QM Ty
which convert stored energy to heat and then use the heat to Pomt i
accomplisl'r work. For a given mechanical cﬁciciencg of the
| devices, a machine which includes the conversion to heat as one
of the steps will be inlﬂerentlg less efficient than one which is

Purely mechanical.

P TR == — e— PSS —
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?

Qin ¥ THot
- High T reservoir

= —la Work output =AW
Engine *

River —— Qe = Tcold
Low T reservoir

irstj-_Law implies that
Qin & Qout = AW

Second Law says:

There is an intrinsic limit

on how good our engine can get n(Carnot) = Lot = Tcold x 100%

n < 100% &

Carnot @C]Ciciencg:
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Keg ideas to note:

o pVcurves: ideal gases and Huids

° Work done as area of P V curve
ereversible processes versus irreversible processes
. isothermal processes

. adiabatic processes

J Cgclic: process and work done in such a process
J Carnot’s cgcle and ideal engine

o Rl Pumps
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P %
\S L2 ot s

| Ideal £as laws: 3
PVia= nkBT 2
1F
; 13
/ l = ey ‘110‘ = ‘115‘ = ‘21.0‘ 3 ‘215‘ % ‘31.0\/
3 Fina
i Work done is equal to area under curve:
3 L |P| = Force/Area
2t . 1 |AV] = Area Length
; Initial
1} [P AV| = Force Length = Energy
0 .............................
0 1 D) 3 4 5 6 i) v
Vo Vi
, Vi
: Vs
- —PAV = Work done on fluid ey
e

AV = Volume change ek
1

i _Fi_rjal_
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IYT'CVCI”SilDlC VEIrsus re\/ersible changes

Reversible and Irreversible processes:

Mechanical PT'OCCSSGSI TI’ICFmOCJg namic PFOCCSSCS:

;RCV@FSIBI@ PT’OCCSS@S examples RCVCFSibIC PY’OCCSSCS examples

'Projectile with no air resistance (e.g. on moon) soclpe comPression o Rl any Point e

Particle slides without friction on a very smooth very s equilibrium.

table top, e.g. hockeg Puck Einkiecs %

) Slow exPansion of a fluid
° Newton’s laws: c.g Planetaty motion

Schroclinger equation in QM.

lrre\/ersible processes examples lrreversible processes examples

' ; Rt . p 3 3 : o Spontaneous transfer of heat from hot boclg to cold

Addmg friction and vnscosxtg make thmgs irreversible: e

: TRt - bodg: el all the mixing Problems
Effect of friction is to convert mechanical energy {® ; ;

j : 4 % o @ meltmg @ gve water at same temperature

heat energy. e.g, heatmg of a Partlcle due to friction.
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Adiabatic processes:

A process is called adiabatic under ?o”owing cases:
I we isolate a sgstem from the rest of the universe, (e.g. Dewar Hasks for gases)
’then heat CanNNat How into or out o1c the sgstem.

UHCICF COIT]PFCSSiOﬂ 58565 hea’t UP ancl under CXPBHSiOﬂ tl’lﬁg COOl.

¢ Example: Sound waves in a medium consist of expansion and rarefaction in a short time
interval. Theg travel too fast to gain heat or supplg heat to environment hence are
adiabatic.
Elastic band can be Pu”ecl many times quicklg and heats up: adiabatic since heat energy
cannot escape fast cnougl']. This may be regardccl as an irreversible adiabatic process,

irreversible since heat is Proclucecl.

For Carnot engjnes, adiabatic is taken to mean exPansion af comPression in isolation,
: hence
_the temperature of the Huid can and does change. Unlike the elastic band, this expansion

is carried out very slowlg so that the process is reversible.

— _— = = — - —— —
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lsothermal roCess:
These are processes where the temperature is maintained bg some agency, e.g. a

: heater or hot Plate that acts as a reservoir.
The energy of the system is not fixed here, heat can and does How into the fluid from

the reservoir.

5f
P 4 1
31 i
; Initial
2L
| — —
1] V
e Final initial
Y. %l‘./l 11111111111
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Ideal Heat Engine

Work done on the fluid
is the shaded area.
What about the sign”
Sign clepends upon the direction of

traversing the cgcle.

In the case illustrated here:
total work done on fluid is Positive:
We are cloing the oPPosite of a heat engine
here, it is a heat pump.
If we reverse the direction of arrows, we get

the Carnot heat engine

Adiabatic ﬁxpaﬁéiéh' or Cdﬁﬁl:')f”és'sion
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() Isothermal expanaon Fluid extracts heat from reservoir and does work on external
- bo&g AV >0 hence work done on ﬂuxcl IS negatlve R ﬂu:d works on the env:ronment)
2) Adiabatic exPansxon. continues to do work but cools down to lower Teml:) e
GEPe work on Huid at lower teml:) isotherma”g. We are comPressing the Huid
. (4) Continue to compress acliabatica”g: temperature rises back to T, so we are back to

original state.

Qr = Qcog QH = QHot

L
Fan Qa x 1y
: T :
: Qpg o< 17 i.e. Heat Absorbed
3] G oc I
I @ 1 s oS
| W=Qxg—Qr
1+ 15 :
: - w First Law
. T @ x 15 i.e. Heat Exhauste Y,

Rl

H

n = Work done (usefully)/InputHeat =
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Heat PumlozRe]Crigerator

= Heat Engjne Run backwards

Coefticient of Performance:

COP

L QHot
e L)

Outside temperaturc of room contai ning the r@crigerator

THot Hot Reservoir
Heat Pump -
Teoold Cold Reservoir

=S e ——

Warm bCCII"OOITl iﬂSiClC l"IOUSC

QHot

Work inl:)ut

Cold outside air in winter

e — P - e

W= 0wttt C) ot

QCold

Cold milk in re?rigerator

x 100%

Often COP>500% or 600%

Remarkable fact is that

W < Qyyo, 1.€. we are getting
Q. amount of heat although Putting In

onlg W bg our external agencies.

Goocl altemati\/e to sPace heaters.
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