
DiracQ Tutorial
The purpose of  this  notebook is  to  familiarize the reader  with the operation of  the DiracQ package.  This

tutorial covers both the basic and more advanced uses of the package. The use of every function in the package is not
covered  in  this  notebook.  See  the  “Glossary”  notebook  for  an  explanation  of  every  function.  For  more  in-depth
examples demonstrating the types of manipulations DiracQ can perform, see the “Examplebook” notebook.

I: Loading the Package

There  are  a  number  of  methods  to  load  this  or  any  other  Mathematica  package.  Instructions  can  be  obtained
through the Wolfram Documentation Center. The command below will load the package so long as the package .m
file is saved in the same directory as is saved the current notebook. 

In[1]:= SetDirectory�NotebookDirectory���;
Get�"DiracQ_V0.m"�;

II: List of Functions and Symbols Provided by the Package

The Functions in  the  package are  in  the  context  "DiracQ".  The command below calls  a  list  of  all  functions pro-
vided to  the  user  by the  package and the  symbols  used by the  package for  both input  and output.  The notebook
“Glossary_VX.nb” and its pdf version “Glossary_VX.pdf” contain the definitions, usage and simple examples of
the functions and symbols listed in the next output. Brief usage paragraphs can be called for any of the functions
below by clicking the function, assuming that you have already invoked DiracQ as shown above.
?DiracQ`*



DiracQ`

AddOperator FullOrganize q
AllSymbols function QCoefficient
anticommutator f† SecondaryOperators
AntiCommutator Humanize SimplifyQ
AntiCommutatorDefinition Identical StandardOrderQ
ApplyDefinition J StandardReordering
b n TakeCPart
b† NCcross TakeQPart
commutator OperatorProduct TakeSummand
Commutator Operators Vacuum
CommutatorDefinition Organize x
CommutatorRule OrganizedExpression X
CommuteParts OrganizedProduct y
Decomposition OrganizeQ z
DeleteOperator p ∆

DiracQPalette PositionQ Ε

DropQ ProductQ Σ

Evaluation PushOperatorLeft †
f PushOperatorRight �

III: Basic Use and Notation

To  use  DiracQ at  the  most  basic  level  is  quite  simple.  When  the  package  is  loaded,  the  DiracQ palette  should  load
automatically.  The  palette  utilizes  dynamic  features.  If  the  user  receives  a  warning  regarding  dynamic  features  they
should  choose  to  activate  dynamic  content.  The  palette  contains  a  list  of  the  operators  that  are  included  with  the
package. In the section titled “Active Operators” there are two windows and a list of operators with check boxes next
to them. Check the box of any operator(s) you want to use. Now that operator is active, meaning that the package will
view this symbol as having the properties of the quantum mechanical operator to which it  corresponds. The symbols
for innactive operators will not be viewed as having any special properties.
Lets try a simple example: calculating the commutator or two spin operators.

� Activate  the  Pauli  matrix  symbol  "Σ"  by  clicking  the  box  to  the  right  of  the  Σ  symbol  within  the
Operator Controls section

Commutator�Σ�i, x�, Σ�j, y��
2 � ∆�i, j� �� Σ�i, z�
Here we reproduce a familiar  result,  though at  first  glance it  may appear somewhat cryptic.  What we have shown is
more familiarly written �Σi,x, Σj,y� � 2 � ∆i,j Σi,z
where  i  and  j  represent  site  index.  However,  we  cannot  write  it  exactly  like  this  and  have  Mathematica  understand.
Therefore the notation used throughout the package is as follows :
  • Indices of operators are written as arguments (i.e. in brackets following the operators symbol)
  

Σi,x  �  Σ[i,x] ∆i, j� ∆[i,j]
  
  •  Every  operator  needs  at  least  one  argument  to  specify  site  index.  If  specifying  a  site  is  not  relevant  for  the
problem you are  doing then simply specify all  operators  with  the  same arbitrary site  index.  Some operators,  such as
Pauli Spin Matrices, need additional arguments, in this case to specify direction. See the more detailed descriptions in
this tutorial for more information on specific operators.
  

Σx � Σy � Σ[i,x]+Σ[i,y]
  
  •  NonCommutativeMultiply (written  as  **)  is  used in  place  of  Times  (*)  between objects  to  preserve the  correct
ordering.  NonCommutativeMultiply  must  be  used  by  the  user  when  input  involves  the  product  of  commutators  (q
numbers).
  

Σx Σy � Σ[i,x]**Σ[i,y]
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Now we see that our result above is actually familiar. In this example we used the Commutator function. This is one of
the many function of  the DiracQ package.  Another  commonly useful  function is  ProductQ, which allows the user  to
calculate  the  product  of  two  exressions.  This  function,  as  do  all  other  DiracQ  functions,  utilizes  the  properties  of
quantum mechanical operators. Here, we reproduce the familiar product of two Pauli spin matrices.
ProductQ�Σ�i, x�, Σ�i, x��
1

The above example can also be written using the “circle times” symbol to represent the function ProductQ. The input
below is identical to that above.
Σ�i, x� � Σ�i, x�
1

     The example below demonstrates more complex input being understood and evaluated by the Commutator func-
tion. All of the functions in the package can understand input of this complexity.

� Activate the Pauli matrix symbol "Σ" and the Fermi operator symbols f and f†

A ��
i

t�i� Σ�i, y� �� Σ�i, x� �� f�i�;
B � Σ�k, y� �� f†�k�;
Commutator�A, B�
�2�

i

�t�i� Σ�i, x� Σ�i, y� Σ�k, y�� �� f†�k� �� f�i� � t�k� Σ�k, x� Σ�k, y�2

IV: The DiracQ Palette
Essential  to  the  operation  of  the  package  is  the  DiracQPalette.  This  palette  allows  users  to  control  the

options of package functions, designate symbols as operators, and input some of the special symbols and functions
used frequently when operatoring the package. To open the palette, input the function DiracQPalette. The palette
should also open automatically when the package is first loaded. The palette utilizes dynamic features. If the user
receives a warning regarding dynamic features they should choose to activate dynamic content.

The  DiracQ  package  contains  a  collection  of  commonly  used  quantum  mechanical  operators  for  which
algebraic relations such as commutators, anticommutators, and products are known. The functions of the package
recognize certain symbols as operators and use these algebraic relations to manipulate and evaluate user input. To
avoid confusion the package requires explicit instructions from the user to view any certain symbol as an operator.
By default no symbols are viewed as operators. This prevents users from making assumptions about the status of a
symbol.

The DiracQ palette contains a section titled "Operator Controls". The purpose of this section is to control
how the functions of the package view a symbol. This section contains a list of the operators that are included for
use in the package and the symbols used to represent them. For a symbol on this list to be viewed as an operator it
must first be activated by the user. This is done by locating the desired symbol(s) in the subsection titled "Active
Operators" and checking the box to the right of the symbol(s). The symbol should now populate the list of primary
operators. Any additional secondary operators which are composites of the primary operators will be found in the
list "Secondary Operators". Once a symbol is activated that symbol will be viewed as an operator, or q number, by
all of the DiracQ functions. The symbol will also be given the special algebraic properties of the quantum mechani-
cal  operator  to  which it  corresponds.  The same symbol  when unactivated will  be  viewed as  a  c  number  with no
special  algebraic properties.  The example below demonstrates this  point.  This  example utilizes the DiracQ func-
tion Commutator, which will evaluate the commutator of two arguments, as explained by the usage paragraph for
commutator.
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? Commutator

Commutator is used to calculate the commutators of expressions
involving operators with known commutation relations. Commutator�A,B� is defined
as AB�BA. Output of these functions is ordered according to standard order.

� Activate  the  Pauli  matrix  symbol  "Σ"  by  clicking  the  box  to  the  right  of  the  Σ  symbol  within  the
Operator Controls section

Commutator�Σ�i, x�, Σ�j, y��
2 � ∆�i, j� �� Σ�i, z�
� Unactivate  the  Pauli  matrix  symbol  "Σ"  by  either  unchecking  the  corresponding  box  of  clicking  the

"Return Default Palette Settings" button
Commutator�Σ�i, x�, Σ�j, y��
0

It  will  be  assumed  from  this  point  forward  in  this  tutorial  that  the  pallet  is  set  to  default  settings  at  the
beginning of an example. Therefore, no instructions will be given to return the palette to default settings at the end
of an example. 
To return default settings click the “Return Default Palette Settings Button” near the bottom of the palette. 

The above example shows that when Σ is active it is imbued with the properties of the Pauli matrices. When Σ is
inactive  it  behaves  like  a  c  number.  All  symbols  that  are  used  to  represent  operators  have  been  exported  by  the
package. Information about the symbol can be obtained by calling the usage as shown below.
? Σ

Σ is the Pauli spin matrix. This operator requires two arguments. The first is site
index and the second is coordinate direction. An optional third argument is used to denote
different spin species. Also included are the Pauli raising and lowering operators, denoted by
ΣPlus and ΣMinus respectively. The raising and lowering operators require only one argument
corresponding to site. A second argument �optional� will be taken to represent spin species.

Notice  that  all  symbols  used  to  represent  operators  have  been  exported  by  the  DiracQ  package  and  therefore
appear in black (the color used by Mathematica to represent a symbol which has a definition). This does not mean
that  these  symbols  cannot  be  given   definition  and  used  as  would  any  other  symbol.  The  example  below shows
that we can even give Σ a numerical value provided the symbol is not activated on the palette.
Σ � 2

2
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Σ�i, x�
2�i, x�
However if Σ is activated in the palette, uncontrollable errors will arise by trying to give it an additional numerical
definition.  Therefore,  ensure  that  a  symbol  has  not  been  defined  before  it  is  used  to  represent  an  operator.  A
convenient way to clean the slate is to use the “Clear” function.
Clear�Σ�
� Activate the Pauli matrix symbol "Σ" and its standard  properties are restored.
Commutator�Σ�i, x�, Σ�j, y��
2 � ∆�i, j� �� Σ�i, z�
By activating the All Symbols button every non-numerical symbol will be viewed as an operator. Symbols other
than those used to represent operators will not have algebraic relationships such as commutator and anticommuta-
tor defined. Therefore the definitions of the commutator and the anticommutator are used.
� Activate "All Symbols"
Clear�A, B�;
Commutator�A, B�
A �� B � B �� A

     The  section of the palette titled "Function Options" (near the top) allows the user to set options that apply to
several functions. Apply Definition is an option which allows users to specify whether or not predefined algebraic
relationships between operators should be used while manipulating input. For example, the canonical commutator
of position and momentum operators is known to be equal to �  �.  By default Apply Definition is True, so if  this
commutator is encountered anywhere within an expression it will be replaced by � �. If however, Appy Definition
was False, the commutator would remain unevaluated. This is demostrated below.
� Activate the canonical position and momentum operators matrix symbol "q and p"
Commutator�q�i�, p�i��
� �

� Set Apply Definition to False
Commutator�q�i�, p�i��
commutator�q�i�, p�i��
     Decomposition is  an option which determines how commutators of  more than two operators will  be decom-
posed. Commutators of more than two operators can be decomposed into an expression involving commutators of
only two operators or anticommutators of only two operators, as shown below.

[A,BC]=[A,B] C-B[C,A]
[A,BC]={A,B} C-B{C,A}

     By  setting  Decomposition  to  Commutator  the  former  definition  will  be  used  to  decompose  commutators  of
more than two terms. By setting decomposition to AntiCommutator the latter  definition will  be used.  It  is  worth
noting that a similar rule does not also hold for anticommutators. Anticommutators of more than two operators are
decomposed into an expression involving both commutators and anticommutators. Therefore this setting will  not
effect the operators of the anticommutator function. Also, as a result of the decomposition of anticommutators it is
not always possibly to decompose large expressions entirely into anticommutators. The ability to do so is depen-
dent  on  the  number  of  operators  contained  in  each  expression.  The  example  below  demonstrates  the  use  of
Decomposition.
� Activate "All Symbols"
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� Set Apply Definition to False

� Set Decomposition to Commutator
Commutator�A, B �� C�
�B �� commutator�C, A� � commutator�A, B� �� C
� Set Decomposition to AntiCommutator
Commutator�A, B �� C�
�B �� anticommutator�C, A� � anticommutator�A, B� �� C
     The  remaining  section  of  the  palette  contains  typesetting  icons  similar  to  the  typesetting  sections  of  other
Mathematica  palettes.  This  section is  included only for  convenience and is  not  necessary to  the  operation of  the
DiracQ package.

There  are  a  few technical  points  worth  mentioning  about  using  the  palette.  Once  the  palette  is  opened  a
second palette can be called. The options settings are mirrored between palettes but the operator settings are not.
The settings used will be those that have most recently been updated. To avoid confusion keep only one copy of
the palette open at a time. 

When the palette is closed a window will open that enables the user to save the DiracQ palette notebook.
This  is  not  necessary  and  should  not  be  done.  Doing  so  will  not  save  palette  setttings  for  the  next  use  but  will
rather save the palette as a notebook in a location to be decided by the user.

V: Operators Included in the Package

There are some general properties shared by all operators. Most importantly, an operator must be called as
a function with an argument. If only the head of the operator is used, it will not be recognized. The first argument
is always taken to be the site at which the operator acts. Only one index or list of index may be used to specify site
index.

Below are explanation of the usage and properties for each individual type of operator.
� Bosonic Operators
? b

b is the bosonic annihilation operator. This operator requires one index denoting site, and a second optional
index can be used to denote spin. Also included is the bosonic number operator, represented by
nb. The argument scheme for the number operator is identical to that of the annihilation operator.

? b†

b† is the bosonic creation operator. This operator requires one index denoting site, and a second optional
index can be used to denote spin. Also included is the bosonic number operator, represented by
nb. The argument scheme for the number operator is identical to that of the creation operator.

� Fermionic Operators
? f

f is the fermionic annihilation operator. This operator requires one index denoting site, and a second optional
index can be used to denote spin. Also included is the fermionic number operator, represented by
nf. The argument scheme for the number operator is identical to that of the annihilation operator.
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? f†

f† is the fermionic creation operator. This operator requires one index denoting site, and a second optional
index can be used to denote spin. Also included is the fermionic number operator, represented
by nf. The argument scheme for the number operator is identical to that of the creation operator.

� Number Operators
? n

n is the number operator. To specify the number operator for bosons use nb and for fermions use nf.

An example demonstrating the use of the number operator is given below.
nb�i�
b†�i� �� b�i�
b†�i� �� b�i�
b†�i� �� b�i�
nf�i, up�
f†�i, up� �� f�i, up�
The basic (anti)commutators are known to DiracQ, e.g.

� Activate Fermionic Creation and Annihilation Operators “f and f†”
Commutator�f�i, up�, nf�i, up��
f�i, up�
Here the symbol “up” could be replaced by any other convenient one, say “1”. 

� Canonical Angular Momentum Operators
? J

J is the canonical angular momentum operator. This operator requires two arguments. The first is
site index and the second is coordinate direction. An optional third argument is used to denote
different species. Also included are the angular momentum raising and lowering operators,
denoted by JPlus and JMinus respectively. The raising and lowering operators accept only one
argument corresponding to site. A second �optional� argument will be taken to represent species.

Use of symbols other than x, y or z to represent coordinate direction will result in incomplete or incorrect output.

� Pauli Matrices
? Σ

Σ is the Pauli spin matrix. This operator requires two arguments. The first is site
index and the second is coordinate direction. An optional third argument is used to denote
different spin species. Also included are the Pauli raising and lowering operators, denoted by
ΣPlus and ΣMinus respectively. The raising and lowering operators require only one argument
corresponding to site. A second argument �optional� will be taken to represent spin species.

Use of symbols other than x, y or z to represent coordinate direction will result in incomplete or incorrect output.
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� Hubbard “X” operators
? X

X is the Hubbard Operator. Three arguments are required. The first argument represents site. The second argument
is taken to be the direction of the 'Ket' spin and the third argument is taken to be the direction of the 'Bra spin

The Hubbard X operator is defined below

Xi
Σ1 Σ2 � �Σ1� �Σ2 �

An example of the use of the Hubbard "X" operators is provided below.

� Activate Hubbard “X” Operators
Commutator�X�i, 1, 2�, X�j, 2, 3��
2 X�i, 1, 2� �� X�j, 2, 3� � ∆�i, j� �� X�i, 1, 3� � 2 ∆�i, j� �� X�i, 1, 2� �� X�j, 2, 3�
� Bra and Ket Vectors
? Bra

Bra�x� represents a bra vector x using Dirac notation
? Ket

Ket�x� represents a ket vector x using Dirac notation
The Bra and  Ket vectors accept one argument : the name of the vector. Using "Vacuum" as the argument leads to the
vector having the special properties of the vacuum state.
? Vacuum

Vacuum is the symbol used to represent the vacuum state. In general different operators are taken to act on
different basis and therefore Vacuum represents the direct product of the vacuum state of several different basis

The example below demonstrates the use of the Bra and Ket vectors and the Vacuum state.

� Activate Fermionic Creation and Annihilation Operators “f and f†” and Bra and Ket Vectors
f†�i� � Ket�Vacuum�
f†�i� �� Vacuum�
f�i� � Ket�Vacuum�
0

� Canonical Position and Momentum Operators
? p

p is the canonical momentum operator. This operator can be called with one argument, taken to be
site index, or two arguments. The second argument will be taken to be coordinate direction. Also
included is the 3 dimensional canonical momentum vector, represented by OverVector�p�, or p.
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? q

q is the canonical position operator. This operator can be called with one argument, taken to be
site index, or two arguments. The second argument will be taken to be coordinate direction.
Also included is the 3 dimensional canonical position vector, represented by OverVector�q�, or q.

VI: Simplifyfing and Manipulating Expressions
Many of the functions of the DiracQ package function assist users in simplifying or manipulating expressions.

These  functions  are  outlined  below.  These  functions  allow the  user  to  perform many  of  the  manipulations  normally
performed by hand.
� SimplifyQ

The most basic function for simplifying expressions is the SimplifyQ function. This function' s use is similar to the
Mathematica function Simplify, and should be used in place of Simplify when simplifying expressions while using
DiracQ. Results of DiracQ functions are most often already simplified to the greatest degree possible.
Example :

The following shows a use of SimplifyQ to simplify an expression.

a�i_� :� m Ω

2 �
q�i� � � p�i�

m Ω
;

a†�i_� :� m Ω

2 �
q�i� � � p�i�

m Ω
;

n�i_� :� a†�i� �� a�i�
SimplifyQ�n�i��
�
1

2
�
1

�
�� p�i� �� q�i� � 1

2
�
1

�
�� q�i� �� p�i� � 1

2

1

m Ω �
�� p�i� �� p�i� � 1

2

m Ω

�
�� q�i� �� q�i�

� StandardOrderQ

Another  function  which  can  be  utilized  for  simplification  is  StandardOrderQ.  StandardOrderQ  is  similar  to
SimplifyQ but will reorder operators according to a standard order. The operators will be sorted according to operator
type as well as arguments of the operators such as site index. When operators are reordered the commutation relations
of the operators are accounted for. This is sometimes helpful,  but can also make an expression more complicated, as
reordering operators can create new terms that arise out of commutators.
Example :

Using the same example as used for SimplifyQ, we can see the benefit of reordering expressions so that the operators
are in a standard order.
StandardOrderQ�n�i��
�
1

2
�
1

2

1

m Ω �
�� p�i� �� p�i� � 1

2

m Ω

�
�� q�i� �� q�i�

� CommuteParts

CommuteParts is used to "manually" reorganize the order if operators in an expression.
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? CommuteParts

CommuteParts�A,B,C� will reverse the order of the noncommuting objects specified by the lists B and C.
B and C are lists of consecutive noncommutative objects found in the expression A specified by
numerical ordering of the noncommutative objects found in A. Therefore, to permute the second
and third NCOs found in A with the fourth NCO found in A, B would be �2,3�, and C would be �4�.

� Examples :
A � Σ�1, x� �� Σ�2, x� �� Σ�1, z� �� Σ�2, z�;
In this example we will move Σ[1,z] to the left of the first two terms:
CommuteParts�A, �1, 2�, �3��
�2 � Σ�1, y� �� Σ�2, x� �� Σ�2, z� � Σ�1, z� �� Σ�1, x� �� Σ�2, x� �� Σ�2, z�
Here we move Σ[2,z] to the first slot, so we need to slide it past the first three elements:
CommuteParts�A, �1, 3�, �4��
�2 � Σ�1, x� �� Σ�1, z� �� Σ�2, y� � Σ�2, z� �� Σ�1, x� �� Σ�2, x� �� Σ�1, z�
If the commutator of the two terms that the user requests to permute is zero, the output will simply be the input with
the two requested terms permuted. However, the result is automatically resorted, so no change is observed.
CommuteParts�A, �3�, �4��
Σ�1, x� �� Σ�2, x� �� Σ�2, z� �� Σ�1, z�
� PushOperatorLeft and PushOperatorRight

Sometimes operators need to be reordered "manually", but specifying individual operators to move is time consuming
or difficult for large expressions.
PushOperatorLeft and PushOperatorRight allow the user to move one operator all the way to the right or left in the
ordering 
Example:

� In the DiracQ Palette activate Canonical Position and Momentum Operators (p and q).
In the example below, we want to move the operator p[i, z] all the way to the left in every term.

PushOperatorLeft�
�� ��2 Z �� �� q�i, y� �� q�i, y� �� p�i, z� � � ��2 Z �� �� q�i, z� �� q�i, z� �� p�i, z�, p�i, z��

2 ��2 Z �2� �� q�i, z� � � ��2 Z �� �� p�i, z� �� q�i, y� �� q�i, y� �
� ��2 Z �� �� p�i, z� �� q�i, z� �� q�i, z�

The operator p[i,z] is now pushed all the way to the left. The operation of PushOperatorRight is identical.

VII: Sums

� Basic Use
    The following is an explanation of how the Sum function is used in Mathematica. If you are familiar with using this
function, feel free to skip to the section titled “Use of Sums in the Package”.
    Sums can be written in a few ways. One is to explicitly write the Sum function, the other to use sigma sum notation.
The explanation of the Sum function given here is by no means complete; for a thorough explanation of this function
see  the  Mathematica  Documentation  Center.  The  first  argument  of  Sum is  the  expression  to  be  summed  over.  Each
successive  argument  given  is  taken  to  be  an  index  of  summation.  The  examples  below show the  correct  way to  use
Sum and some common errors.
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� Ex. (1): Basic Input
The indefinite sum over some expression can be written as follows.
Sum�a�i� � b�i�, i�
�
i

�a�i� � b�i��
Note that if the expression given does not depend on the index of summation Mathematica will automatically evaluate
the sum.
Sum�a � b, i��a � b� i
For definite sums, the minimum and maximum value of the sum are specified with the summation index in a list.
Sum�a�i� � b�i�, �i, 1, ���
�
i�1

� �a�i� � b�i��
Several indices of summation can be specified in the function
Clear�a, b, i, j�;
Sum�a�i, j� � b�i, j�, �i, 1, ��, �j, 1, ���
�
i�1

� �
j�1

� �a�i, j� � b�i, j��
� Ex. (2) : Sigma Notation
To use sigma notation first call a sigma sum function by typing the following : �sumt�.
The following should appear

�
���

�

�

The summation sigma can also be called from the DiracQ palette typesetting section or any of the other Mathematica
palettes.  Now the blank spaces can be filled as desired.  If  a  space is  not  to be used simply highlight  it  and delete it.
Below is the equivalent of the input from Ex. (1) written in sigma notation.

�
i

�a�i� � b�i��
�
i

�a�i� � b�i��
We can see the equivalence between the two forms as follows.

FullForm��
i

�a�i� � b�i���
Sum�Plus�a�i�, b�i��, i�
It is not possible to sum over several indices using one sigma function, as is conventionally done by hand. A separate
sigma must be called for each index of summation.
Incorrect:

�
i,j

a�i, j�
Correct:
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�
i

�
j

a�i, j�
�
i

�
j

a�i, j�
� Use of Sums in the Package: Definite and Indefinite Sums

     Both  definite  and  indefinite  sums are  recognized  by  the  package.  When indefinite  sums are  used  every  relevant
value is taken to lie within the bounds of the sum. This means that if an index with an undefined value is encountered
along with a summed index in a delta function, the delta function will always evaluate to one as it is assumed that the
undefined index, whatever it' s value, will lie within the bounds of the sum. This is demonstrated below. (Remember to
select the fermi operators as active on the palette).

AntiCommutator��
i

f�i�, f†�j��
1

Although the value of j and the bounds of the sum are both not specified, it is assumed the value of j lies somewhere
within the bounds of the sum and the answer evaluates to unity in the above example. Definite sums come in two types
: with bounds that are defined and with undefined bounds. For example, the bounds of the sum below are specified and
have definite values.

�
i�1

12

f�i�
f�1� � f�2� � f�3� � f�4� � f�5� � f�6� � f�7� � f�8� � f�9� � f�10� � f�11� � f�12�
The sum below, however, is definite with undefined bounds.

�
i�a

b

f�i�
�
i�a

b

f�i�
These two types of definite sums are treated differently by the package and by Mathematica as a whole. Sums with defined bounds
are evaluated immediately. Because the sum is evaluated immediately there is no difficulty evaluating expression with defined sums,
as shown below.

AntiCommutator��
i�1

12

f�i�, f†�5��
1

AntiCommutator��
i�1

12

f�i�, f†�13��
0

Sums with undefined bounds remain unevaluated. When the package recognizes that a sum has been included with
bounds that are unspecified, it does not evaluate ∆'s. This is because it is unknown in general whether a value lies
between the bounds of the sum. The example below demonstrates this.

AntiCommutator��
i�1

T

f�i�, f†�j��
�
i�1

T

∆�i, j�
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It  is  unknown whether  1  <  j  <  T,  so  the  sum remains  unevaluated.  The example  below demonstrates  an  unfortunate
consequence of this feature  inherited from the rules of  Mathematica.

AntiCommutator��
i�1

T

f�i�, f†�T � 1��
�
i�1

T

∆�i, �1 � T�
It is obvious that this expression should evaluate to one. However, because Mathematica does not recognize this, the
input remains unevaluated.�T � 1� � T

�1 � T � T

However, if T is given a value this expression will evaluate to True.
T � 7;�T � 1� � T

True

At this point then it is necessary to leave ∆'  s unevaluated or cancel them by hand when using undefined bounds in a
definite sum.

VIII: Vector or Tensor Input
The functions of the DiracQ package are capable of evaluating input in the form of tensors of any order. This

ability  is  useful  for  performing  calculations  involving  vector  operators,  such  as  the  position  and  momentum  vector
operators p and q. These operators are included in the package. An example of their use is shown below.
Calling the position and momentum vectors as input will produce their definitions.

q��i��q�i, x�, q�i, y�, q�i, z��
p��i��p�i, x�, p�i, y�, p�i, z��
The functions of the package are written to be able to accept these operators as input.

� Activate "q and p"

Commutator�q��i�, p��i��
Requesting the commutator of an array A, with another array B gives an array C

consisting of the Mathematica output C � Outer�Commutator, A, B�. For example if A
is an array of length 'a' and B is a scalar the result is an array of length 'a'.��� �, 0, 0�, �0, � �, 0�, �0, 0, � ���

The printed note informs us how the result is obtained. The package is able to perform such computations with
tensors of any order. Users are free to create any tensor using any combination of operators and are not resricted
to using a predefined vector such as p. An example using 3 rd rank tensors of Pauli Matrices is given below.

� Activate Pauli Spin Matrices "Σ"
First I define two 3 rd rank tensors using Pauli Matrices. These tensors are arbitrary.

Tensor1 � ���Σ�i, x��, �Σ�j, y���, ��Σ�j, y��, �Σ�i, z����;
Tensor2 � ���Σ�i, z��, �Σ�j, x���, ��Σ�j, x��, �Σ�i, y����;
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Using the Mathematica functions TensorRank and MatrixForm provide additional information about our tensors.
TensorRank�Tensor1�
3

MatrixForm�Tensor1�
MatrixForm�Tensor2�
� � Σ�i, x� � � Σ�j, y� �� Σ�j, y� � � Σ�i, z� � �
� � Σ�i, z� � � Σ�j, x� �� Σ�j, x� � � Σ�i, y� � �
The DiracQ functions Commutator and ProductQ are capable of performing operations involving the noncommuta-
tive objects within these tensors.
tensorcommutator � Commutator�Tensor1, Tensor2�
Requesting the commutator of an array A, with another array B gives an array C

consisting of the Mathematica output C � Outer�Commutator, A, B�. For example if A
is an array of length 'a' and B is a scalar the result is an array of length 'a'.�������2 � Σ�i, y��, �0��, ��0�, �2 � Σ�i, z�����,����2 � ∆�i, j� �� Σ�j, x��, ��2 � Σ�j, z���, ���2 � Σ�j, z��, �0�����,�����2 � ∆�i, j� �� Σ�j, x��, ��2 � Σ�j, z���, ���2 � Σ�j, z��, �0����,����0�, �2 � ∆�i, j� �� Σ�i, y���, ��2 � ∆�i, j� �� Σ�i, y��, ��2 � Σ�i, x�������

The result is made more clear using MatrixForm.
MatrixForm�tensorcommutator�

� �2 � Σ�i, y�
0

� � 0
2 � Σ�i, z� � � 2 � ∆�i, j� �� Σ�j, x�

�2 � Σ�j, z� � � �2 � Σ�j, z�
0

�
� 2 � ∆�i, j� �� Σ�j, x�

�2 � Σ�j, z� � � �2 � Σ�j, z�
0

� � 0
2 � ∆�i, j� �� Σ�i, y� � � 2 � ∆�i, j� �� Σ�i, y�

�2 � Σ�i, x� �
Using TensorRank we see we now have a tensor of rank 6
TensorRank�tensorcommutator�
6

The product of the tensors can be computed as well.
MatrixForm�Tensor1 � Tensor2�
Requesting the product of an array A, with another array B gives an array C consisting

of the Mathematica output C � Outer�ProductQ, A, B�. For example if A is an
array of length 'a' and B is a scalar the result is an array of length 'a'.

� �� Σ�i, y�
Σ�i, x� �� Σ�j, x� � � Σ�i, x� �� Σ�j, x�

� Σ�i, z� � � Σ�j, y� �� Σ�i, z�
�� Σ�j, z� � � �� Σ�j, z�

Σ�j, y� �� Σ�i, y� �� Σ�j, y� �� Σ�i, z�
�� Σ�j, z� � � �� Σ�j, z�

Σ�j, y� �� Σ�i, y� � � 1
Σ�i, z� �� Σ�j, x� � � Σ�i, z� �� Σ�j, x�

�� Σ�i, x� �
� NCCross

The function NCCross is capable of performing cross products.

Example:

As an example consider the orbital angular momentum operator L  and a further cross product with the position vector
q. Note that q and p need to be specified with an argument, arbitrarily chosen here to be i.

� Activate "q and p"
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L
�
� NCcross�q��i�, p��i���q�i, y� �� p�i, z� � q�i, z� �� p�i, y�,
�q�i, x� �� p�i, z� � q�i, z� �� p�i, x�, q�i, x� �� p�i, y� � q�i, y� �� p�i, x��

v1 � NCcross�q��i�, L
���q�i, y� �� ��q�i, y� �� p�i, x�� � q�i, z� �� ��q�i, x� �� p�i, z�� �

q�i, y� �� q�i, x� �� p�i, y� � q�i, z� �� q�i, z� �� p�i, x�,
�q�i, x� �� ��q�i, y� �� p�i, x�� � q�i, z� �� ��q�i, z� �� p�i, y�� �
q�i, x� �� q�i, x� �� p�i, y� � q�i, z� �� q�i, y� �� p�i, z�,

q�i, x� �� ��q�i, x� �� p�i, z�� � q�i, y� �� ��q�i, z� �� p�i, y�� �
q�i, x� �� q�i, z� �� p�i, x� � q�i, y� �� q�i, y� �� p�i, z��

Here  we  see  that  the  non  commutative  nature  is  redundant  in  defining
L as such, since the canonical pairs q�x� and p�x� are kept away  from each  other  already.  However,  in  the  next  cross
product, it is relevant since the canonical pairs are no longer separated. This function is used in the Runge Lenz vector
definition as an example. 
Further note: if one wants a neater answer with negative signs pulled out, we can map the DiracQ function SimplifyQ
to each component of the output.
SimplifyQ �� v1�q�i, x� �� q�i, y� �� p�i, y� � q�i, x� �� q�i, z� �� p�i, z� �

q�i, y� �� q�i, y� �� p�i, x� � q�i, z� �� q�i, z� �� p�i, x�,
�q�i, x� �� q�i, x� �� p�i, y� � q�i, x� �� q�i, y� �� p�i, x� � q�i, y� �� q�i, z� �� p�i, z� �
q�i, z� �� q�i, z� �� p�i, y�, �q�i, x� �� q�i, x� �� p�i, z� �
q�i, x� �� q�i, z� �� p�i, x� � q�i, y� �� q�i, y� �� p�i, z� � q�i, y� �� q�i, z� �� p�i, y��

IX: Adding/Deleting Operators and Defining New Commutation Relations
The DiracQ Package allows the user to augment the package by defining new operators that will be recognized by the
DiracQ functions.  The process  for  doing so is  simple  and is  explained here  using the   the  Virasoro Lie  algebra  of  2
dimensional conformal theory with a central extension.
“Operators” is the list of operators that are currently active, as explained in the usage paragraph below.
? Operators

Operators is the list of symbols that are currently being recognized as operators. The population of the list should
correspond with the operators selected using the DiracQ palette as well as any user defined operators.

Since we have no operators activated, the list should be empty, as shown below.
Operators��
The function AddOperators is used to add user defined operators. DeleteOperators will remove user defined operators.
? AddOperator

AddOperator allows users to expand the number of symbols that can be specified as noncommutative objects. The
argument of AddOperator is the symbol that represents the new operator. Algebraic relations for new operators
such as basic commutators, anticommutators, and products must be defined by the user. To define a basic
commutator for two operators's Α and Β, input CommutatorDefinition�Α,Β�:�_ , where the blank is the definition.
AntiCommutatorDefinition�Α,Β� is the equivelant function for anticommutators and OperatorProduct�Α,Β�
is the equivelant function for definition of operator products. Any number of such definitions can
be input. If a function calls a definition that has not been input by the user the output will read 'Null'.
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? DeleteOperator

DeleteOperator will remove a user defined operator from the list of possible
operators. The argument of delete operators is the symbol by which the operator represented.

This is easy, except for defining the algebraic relations of a new operator. Let' s try an example.
We will  define  a  new operator  that  is  represented  by  the  symbol   “L”.  This  operator  is  not  to  be  confused  with  the
angular  momentum  operator,  but   denotes   a  generator  of  the  Virasoro  algebra  arising  in  confromal  field  theory  as
detailed below.
AddOperator�L�
Please enter all neccessary basic commutation

and anticommutation relations. For help type ?AddOperator

L is now on our list of operators. We can check it explicitly using the command “Operators”.
Operators�L�
L  will  be  treated  as  an  operator  by  the  package.  The  package  does  not  know  any  of  the  properties  of  L,  however.
Below we evaluate a commutator of two L operators. The package uses the basic definition of a commutator.
Commutator�L�i�, L�j��
L�i� �� L�j� � L�j� �� L�i�
It is useful to define algebraic relations of our new operator, such as simplified evaluations of the commutator of two Θ operators. We
do so according to the method described in the AddOperators usage paragraph (?AddOperator). The commutator definition I use here
is from the Virasoro algebra of conformal algebra.
CommutatorDefinition�L�i_�, L�j_�� :� �i � j� L�i � j� � c � 12 ∆�i � j, 0� �i^3 � i�
Here  the  central  charge   “c”  is  a  c-number,  commuting  with  all  operators.  We  now  see  that  when  we  perform  the
commutator of two L operators the  above definition is utilized correctly:
Commutator�L�2�, L��1��
3 L�1�
Commutator�L�2�, L��2��
c

2
� 4 L�0�

We can easily show that L[0], L[1] and L[-1] form a subgroup not involing the central charge “c”. 
Commutator�L�1�, L��1��
2 L�0�
Commutator�L�1�, L�0��
L�1�
Commutator�L��1�, L�0��
�L��1�
The commutator definition can be utilized in more complicated operations as well.
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StandardOrderQ�Commutator��
i

L�i� �� L��i�, L�j���
1

6
�c j� �� L�j� � 1

6
�c j3� �� L�j� ��

i

i �� L�i� �� L��i � j� �
�
i

i �� L�i � j� �� L��i� ��
i

j �� L�i� �� L��i � j� ��
i

j �� L�i � j� �� L��i�
By default the commutator of L with an operator whose ``head’’ is not L is taken to be zero.
Commutator�L�i�, f†�i��
0

If we want to change this we must enter in a different CommutatorDefinition. Similar rules apply to AntiCommutator
and  as well.
The  processes  of  defining  anticommutation  relations  and  product  relations  are  identical  except  that  AntiCommuta-
torDefinition and OperatorProduct are used respectively.
If we no longer need L around as an operator, we can delete it through DeleteOperator
DeleteOperator�L���
We now see the list of operators without L. The output below shows that L is no longer treated as a noncommutative
operator.
Commutator�L�a�, L�b��
0

X: Special Symbols
    Special symbols and the shorthand for writing them can be found in the DiracQ palette as well as any of the Mathematica palettes.
In general special symbols are called by sandwiching some series of icons between two � keystrikes. A list of special symbols used
in this paper and their shorthand is given below.
Text�Grid���Object, Symbol, Keyboard Entry�, �Sigma, Σ, �s��, �Hbar, �, �hb��,�Dagger, †, �dg��, �Delta, ∆, �d��, �CircleProduct, "�", "�c��"�,�Subscript, "\�\�\�SubscriptBox�\��\�, \��\��\�", "��"�,�Superscipt, "\�\�\�SuperscriptBox�\��\�, \��\��\�", �6�,�"Vector Head", "\�\�\�OverscriptBox�\��\�, \��\��\�", �7 �vec���, Frame �� All��

Object Symbol Entry Keyboard
Sigma Σ �s�
Hbar � �hb�

Dagger † �dg�
Delta ∆ �d�

CircleProduct � �c��
Subscript �� ��
Superscipt �� �6

Vector Head � �7�vec�
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XI: The Kronecker ∆ and the Levi - Civita Symbol “Ε”

    The Kronecker ∆  and the Levi - Civita Symbol Ε  are useful shorthand notations. The attributes of these notational

shorthands are given in (33) and (34)

(1)

∆i,j � 1 if i � j

� 0 otherwise

(2)

Εi,j,k � 1 if �i, j, k� � �1, 2, 3�, �2, 3, 1�, or �3, 1, 2�
� �1 if �i, j, k� � �1, 3, 2�, �2, 1, 3�, �3, 2, 1�

� 0 if i � j, j � k, or k � i

Mathematica includes  the  functions KroneckerDelta  and LeviCivitaSymbol  corresponding to  these objects.  Although

these functions are useful, the package includes it's own version of these two functions. The Kronecker ∆  used in the

package is  simply represented by the symbol ∆.  This function is  almost identical  to that  of  the existing Mathematica

function. Its use is demonstrated in the examples below.
∆�1, 1�
1

∆�1, 2�
0

∆�i, j�
∆�i, j�
Note that if two symbols are used that have not yet been assigned numerical values the ∆ function is not evaluated. The

package does not “know” if i is equal to j, so it leaves the ∆ unevaluated. If it is required that each symbol is viewed as

being not identical to another symbol the option Evaluation should be set to Identical, as shown below.
? Evaluation

Evaluation is an option for the Kronecker�∆ function. If Evaluation
is set to Identical the ∆ will evaluate to zero unless both arguments are indentical.

∆�i, j, Evaluation � Identical�
0

This option is useful when using the Kronecker delta for coordinate directions, for example, as we know that x is not

equal to y.

     The package includes the function Ε for the Levi-Civita symbol. It is defined only for coordinate directions x, y, and

z. For use with symbols other than these use LeviCivitaTensor. Examples of the use of the Ε function are given below.
Ε�x, y, z�
1

Ε�z, y, x�
�1
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Ε�x, y, x�
0

XII:  Use of Times, NonCommutativeMultiply, and ProductQ

     During  the  use  of  this  package  it  is  necessary  to  use  the  Mathematica  functions  Times  (input  as  “*”  or  a  space

between terms) and NonCommutativeMultiply (“**”). The operation of these functions is not affected by the DiracQ

package.  Furthermore,  the  DiracQ package  contains  the  function  ProductQ,  used  to  multiply  two  terms.  This  means

that there are three functions used for multiplication. Determining which of the available three multiplication functions

is applicable in a certain situation is nontrivial. All of which are useful, and occasionally they can be interchanged but

in general the correct function must be used. Mathematica automatically sorts all input of the Times function. For

this  reason  we  cannot  use  Times  between  operators,  as  the  order  of  the  operators  may  be  changed  before  any  other

function can step in to preserve the order. Therefore NonCommutativeMultiply (**) must always be used between

operators. ProductQ (�) is used when simplification and application of algebraic relations is desired. NonCommuta-

tiveMultiply is a Mathematica function and will not apply proprerties known to the DiracQ package.
 The rules for using these functions can be summarized as follows :

� Use Times between two terms if the input is identical under permutation of said terms (i.e.  if  operator ordering is
unimportant or if working with commutative objects).

� Use NonCommutativeMultiply between two terms if  the input  depends on the order  of  the terms and if  the terms
contain items that are connected by only Times or NonCommutativeMultiply. 

� Use ProductQ (also invokable through � ) between two terms if the terms involve a variety of functions (Sum, Plus,
etc.) or to sort and apply definitions to the result. This is more powerful than NonCommutativeMultiply, and makes
use of the known properties of the various operators.

� Ex.  (1)  :  In  this  example,  taken  from  the  tJ  model,  I  try  to  use  Times  between  operators  and  then  apply
NonCommutativeMultiply. Notice that the order of the operators is reversed. Activate Hubbard (X) operators.
Incorrect Input:

Hamiltonian ��
j

�
k

�
Σj

�
Σk

t�j, k� X�k, Σk, 0� X�j, 0, Σj� �. Times � NonCommutativeMultiply

�
j

�
k

�
Σj

�
Σk

t�j, k� �� X�j, 0, Σj� �� X�k, Σk, 0�
Notice that the order of the X operators has been reversed in the output.

Correct Input:

Hamiltonian ��
j

�
k

�
Σj

�
Σk

t�j, k� X�k, Σk, 0� �� X�j, 0, Σj�
�
j

�
k

�
Σj

�
Σk

X�k, Σk, 0� �� X�j, 0, Σj� t�j, k�
Mathematica has sorted the resultant expression, and the operators have not been permuted.

� Ex. (2): Here we see that NonCommutativeMultiply will not apply properties that are known to the DiracQ package.
Activate Pauli Spin Matrices (Σ).
Product using NonCommutativeMultiply:
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Σ�i, x� �� Σ�i, x�
Σ�i, x� �� Σ�i, x�
Product using ProductQ (ProductQ can also be entered with the � symbol, both input styles are shown below).
ProductQ�Σ�i, x�, Σ�i, x��
1

Σ�i, x� � Σ�i, x�
1

Users should be warned that here the result of squaring the Pauli matrix is taken as unity, in the informal language of
DiracQ.  More rigorously the result  is  an identity matrix,  but  sticking to Dirac’s  informality of  expression has many
advantages, as most quantum physicists recognize.
� Ex. 3: Here we see that  it  is  not  necessary to use �  between every term in a long expression. The entire expression

will be simplified if � is used once. Multiple uses of � will significantly slow down longer computations.
Correct but redundant use of �:��Σ�1, x� � Σ�2, z�� � Σ�1, x�� � Σ�2, z�
1

More efficient Input :
Σ�1, x� �� Σ�2, z� �� Σ�1, x� � Σ�2, z�
1

Another Method using SimplifyQ :
SimplifyQ�Σ�1, x� �� Σ�2, z� �� Σ�1, x� �� Σ�2, z��
1
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