
Core Glossary
DiracQ.m

In[3]:= SetDirectory�NotebookDirectory���;
Get�"DiracQ_V0.m"�;

An alphabetical list of commands in DiracQ followed by their meaning and usage.

? DiracQ`*

DiracQ`

AddOperator Operators
AllSymbols Organize
anticommutator OrganizedExpression
AntiCommutator OrganizedProduct
AntiCommutatorDefinition OrganizeQ
ApplyDefinition p
b PositionQ
b† ProductQ
commutator PushOperatorLeft
Commutator PushOperatorRight
CommutatorDefinition q
CommutatorRule QCoefficient
CommuteParts SecondaryOperators
Decomposition SimplifyQ
DeleteOperator StandardOrderQ
DiracQPalette TakeCPart
DropQ TakeQPart
Evaluation TakeSummand
f Vacuum
FullOrganize x
function X
f† y
Humanize z
Identical ∆

J Ε

n Σ

NCcross †
OperatorProduct �

AddOperator

AddOperator allows users to expand the number of symbols that can be specified as noncommutative objects. The
argument of AddOperator is the symbol that represents the new operator. Algebraic relations for new operators such
as basic commutators, anticommutators, and products must be defined by the user. To define a basic commutator
for two non commuting operators Α and Β, input CommutatorDefinition[Α, Β] := _ , where the blank is the defini-
tion of the commutator of Α and Β. AntiCommutatorDefinition[Α, Β] is the equivalent function for anticommutators
and OperatorProduct[Α, Β] is the equivalent definition for operator products. Any number of such definitions can be
input. Inputs using undefined variables are accepted. If a definition is called that has not been input by the user, the
output will read ' Null'. The mutual consistency of different algebraic relations of a given symbol must be guaran-
teed by the user. DiracQ will use the stated properties as and when it finds an expression where it can be applied.
Thus given inconsistent rules, the results of DiracQ will also be inconsistent.

� Example
AddOperator�Θ�
Please enter all neccessary basic commutation

and anticommutation relations. For help type ?AddOperator

CommutatorDefinition�Θ�i_�, Θ�j_�� :� � Θ�i � j�;
Commutator�Θ�i�, Θ�j��
� Θ�i � j�

AllSymbols

All Symbols is an option setting which specifies that every non-numerical symbol will be viewed by every DiracQ
function as a noncommutative object. By default DiracQ treats symbols as objects that commute unless otherwise
specified. Activating All Symbols ensures that the manipulations performed by DiracQ proceed under the assump-
tion that numbers commute but other symbols do not. All Symbols is selected as an option from the DiracQ Palette
under the section "Active Operators".

� Example
In the DiracQ Palette activate All Symbols
Commutator�A �� B, C �� D�
A �� B �� C �� D � C �� D �� A �� B

anticommutator
anticommutator is the function used to specify an unknown or otherwise unevaluated anticommutator of only two
elements. (Most users can ignore this command.)

� Example
In the DiracQ Palette set Apply Definition to false and activate Fermionic Annhilation and Creation Operators (f and
f†):
AntiCommutator�f�a�, f†�b��
anticommutator�f�a�, f†�b��

2 Glossary_V0.nb

The anticommutator remains unevaluated because Apply Definition has been set to false.

AntiCommutator

AntiCommutator is used to calculate the anticommutators of expressions. AntiCommutator[A, B] is defined as AB
+ BA. AntiCommutator accepts two arguments seperated by a comma. The arguments of AntiCommutator can be
long and complex.

� Example 1

In the DiracQ Palette activate Fermionic Annhilation and Creation Operators (f and f†):
AntiCommutator�f�a�, f†�b��
∆�a, b�
� Example 2

In this example we take the anticommutator of a triple sum of destruction operators with a single creation operator.
Notice that the fixed inded “k” is equated to the three running indices “i,j,l” one after the other.

AntiCommutator�2�
i

�
j

�
l

f�i� �� f�j� �� f�l�, f†�k��
2�

i

�
j

f�i� �� f�j� � 2�
i

�
l

f�i� �� f�l� � 2�
j

�
l

f�j� �� f�l�

AntiCommutatorDefinition
AntiCommutatorDefinition is the function through which the anticommutators of symbols are defined. This func-
tion is used when adding operators through the AddOperator Function.

� Example
AddOperator�Θ�
Please enter all neccessary basic commutation

and anticommutation relations. For help type ?AddOperator

AntiCommutatorDefinition�Θ�i_�, Θ�j_�� :� ∆�i, j� Θ�j�
AntiCommutator�Θ�i�, Θ�j��
∆�i, j� �� Θ�j�

ApplyDefinition
ApplyDefinition is an option in the DiracQ Palette that specifies whether or not known properties of operators
should be applied or not. When Apply Definition is set to True properties such as commutator, anticommutators,
and products of operators will be evaluated. When Apply Definition is set to false commutators, anticommutators,
and products will remain unevaluated.

� Example
In the DiracQ Palette set Apply Definition to True and activate Bosonic Annhilation and Creation Operators (b and b†).

Glossary_V0.nb 3

Commutator�b�i�, b†�j��
∆�i, j�
Now set Apply Definition to False.
Commutator�b�i�, b†�j��
commutator�b�i�, b†�j��

b
b is the Bosonic annihilation operator. This operator requires one index denoting site, and a second optional index
can be used to denote spin or species. Also included is the Bosonic number operator, represented by nb. The
argument scheme for the number operator is identical to that of the annihilation operator. For more information on
site index see below.

� Example
In the DiracQ Palette activate Bosonic Annhilation and Creation Operators (b and b†).
The b operator obeys the canonical commutation relation for Bosons.
Commutator�b�1�, b†�1��
1

Bra
Bra[x] represents the bra vector <x| using Dirac’s notation

� Example
In the DiracQ Palette activate Fermionic Annhilation and Creation Operators (f and f†) and Bra and Ket Vectors.
Bra�A� � Bra�Vacuum� �� f�1�
Bra�Vacuum� �� f�1�
In the calculation below we use the important function ProductQ that is described more fully below. This function
uses all the non commutative properties supplied by the user and implements them to give an easily readable and
correct final result. In this calculation, the “f” fermion at site 1 that is present in Bra[A] is destroyed by f†[1] acting to
its left.
ProductQ�Bra�A�, f†�1��
Bra�Vacuum�

b†
b† is the Bosonic creation operator. This operator requires one index denoting site, and a second optional index can
be used to denote spin or species. Also included is the bosonic number operator, represented by nb. The argument
scheme for the number operator is identical to that of the annihilation operator. For more information on site index
see Site Index below. The dagger symbol is created by entering �dg� or clicking the appropriate button on the
DiracQ palette.

4 Glossary_V0.nb

� Example
In the DiracQ Palette activate Bosonic Annhilation and Creation Operators (b and b†).
The b operator obeys the canonical commutation relation for bosons.
Commutator�b�1�, b†�1��
1

commutator
commutator is the function used to specify an unknown or otherwise unevaluated commutator of only two elements.
(Most users can ignore this command.)

� Example
In the DiracQ Palette set Apply Definition to false and activate Bosonic Annhilation and Creation Operators (f and f†):
Commutator�b�i�, b†�j��
commutator�b�i�, b†�j��
The commutator remains unevaluated because Apply Definition has been set to false. If we do not set Aply Definition
is set to true, the default setting, the result we obtain would use the known commutator of Bosonic operators.
In the DiracQ Palette set Apply Definition to true:
Commutator�b�i�, b†�j��
∆�i, j�

Commutator

Commutator is used to calculate the commutators of expressions. Commutator[A, B] is defined as AB - BA.
Commutator accepts two arguments seperated by a comma. The arguments of Commutator can be long and
complex.

� Examples
� Example 1

In the DiracQ Palette activate Bosonic Annhilation and Creation Operators (b and b†):
Commutator�b�a�, b†�b��
∆�a, b�
In the example below, the c number function u[i,j] does not take part in the commutator, but its argument gets its value
from the Kronecker Delta function of the external index “k” with one of the two internal indices “i,j”.

Commutator�2�
i

�
j

u�i, j� b�i� �� b�j�, b†�k��
2�

i

u�i, k� �� b�i� � 2�
j

u�k, j� �� b�j�

CommutatorDefinition
CommutatorDefinition is the function through which the commutators of symbols are defined. This function is used
when adding operators through the AddOperator Function.

Glossary_V0.nb 5

CommutatorDefinition is the function through which the commutators of symbols are defined. This function is used
when adding operators through the AddOperator Function.

� Example
AddOperator�Θ�
Please enter all neccessary basic commutation

and anticommutation relations. For help type ?AddOperator

CommutatorDefinition�Θ�i_�, Θ�j_�� :� ∆�i, j� Θ�j�
Commutator�Θ�i�, Θ�j��
∆�i, j� �� Θ�j�

CommuteParts
CommuteParts[expr,{list1},{list2}] will reverse the order of the noncommuting objects specified by the lists list1
and list2. list1 and list2 specify lists of operators found in expr. Operators are specified by numerical ordering of the
operators found in expr. To permute the second thru fourth operators found in expr with the fifth operator found in
expr, list1 would be {2,4}, and list2 would be {5}.

� Example
In the DiracQ Palette activate Canonical Position and Momentum Operators.
The following input will permute the second thru fourth operators found in the expression with the fifth operator found
in the expression. Any nonzero commutators will be accounted for.
CommuteParts�p�i� �� p�j� �� q�i� �� q�j� �� q�k�, �2, 4�, �5��
�� �� ∆�k, j�� �� p�i� �� q�i� �� q�j� � p�i� �� q�k� �� p�j� �� q�i� �� q�j�
Only operators are counted for ordering purposes. (The assumption here is that the “All Symbols” option is not used
in the pallette- but only relevant symbols are declared to be operators). Therefore, in the example below, p[i] is
specified by {1} and q[j] by {2}.

CommuteParts�5 a�
i

p�i� �� q�j�, �1�, �2��
5�

i

a �� q�j� �� p�i� � 5 ��
i

a � ∆�i, j�

Decomposition
The panel Decomposition on the DiracQ Palette gives the user two choices, Commutator or Anticommutator. The
default setting is to decompose everything into commutators. Making a choice of decomposition allows the user to
control whether the commutators of composite symbols will be decomposed into basic commutators or anticommu-
tators, using appropriate standard rules. Not all combinations of operators can be decomposed entirely into basic
commutators or anticommutators. Changing the setting of decomposition has no effect so long as ApplyDefinition
is set to true. When ApplyDefinition is set to false, the decomposition settings make a difference in the results.

� Example
In the DiracQ Palette set Apply Definition to False and activate All Symbols:

6 Glossary_V0.nb

Commutator�a �� b, c�
a �� commutator�b, c� � commutator�c, a� �� b
Now in the DiracQ Palette set Decomposition to AntiCommutator:
Commutator�a �� b, c�
a �� anticommutator�b, c� � anticommutator�c, a� �� b

DeleteOperator

DeleteOperator will remove a user defined operator from the list of possible operators. The argument of delete
operators is the symbol by which the operator is represented.

� Example
AddOperator�Θ�
Please enter all neccessary basic commutation

and anticommutation relations. For help type ?AddOperator

Calling Operators will display all currently active operators.
Operators�Θ�
DeleteOperator�Θ���
Operators��

DiracQPalette

DiracQPalette will open the DiracQ Palette.

 Essential to the operation of the package is the DiracQPalette. This palette allows users to control the options of
package functions, designate symbols as operators, and input some of the special symbols and functions used fre-
quently when operatoring the package. To open the palette, input the function DiracQPalette. The palette should also
open automatically when the package is first loaded.

In[5]:= SetOptions�DiracQPalette, Magnification � 1.25�
A new notebook should open that is identical to the notebook shown below.

Glossary_V0.nb 7

The DiracQ package contains a collection of commonly used quantum mechanical operators for which algebraic
relations such as commutators, anticommutators, and products are known. The functions of the package recognize
certain symbols as operators and use these algebraic relations to manipulate and evaluate user input. To avoid confu-
sion the package requires explicit instructions from the user to view any certain symbol as an operator. By default no
symbols are viewed as operators. This prevents users from making assumptions about the status of a symbol.

 The DiracQ palette contains a section titled "Operator Controls". The purpose of this section is to control how the
functions of the package view a symbol. This section contains a list of the operators that are included for use in the
package and the symbols used to represent them. For a symbol on this list to be viewed as an operator it must first be
activated by the user. This is done by locating the desired symbol(s) in the subsection titled "Active Operators" and
checking the box to the right of the symbol(s). The symbol should now populate the list of primary operators. Any
additional secondary operators which are composites of the primary operators will be found in the list "Secondary
Operators". Once a symbol is activated that symbol will be viewed as an operator, or “q” number, by all of the DiracQ
functions. The symbol will also be given the special algebraic properties of the quantum mechanical operator to which
it corresponds. The same symbol when inactivated will be viewed as a “c” number with no special algebraic properties.

8 Glossary_V0.nb

DropQ
DropQ[expr,n] gives expr with the operators specified by n dropped. The specification of operators is identical to
that used by the Drop function to specify which elements of a list to drop. The operators are specified by the order
in which they appear in expr.

� Example
In the DiracQ Palette activate Canonical Position and Momentum Operators (p and q).
The notation used by DropQ is very similar to that used by the Mathematica function Drop.
? Drop

Drop�list, n� gives list with its first n elements dropped.
Drop�list, �n� gives list with its last n elements dropped.
Drop�list, �n�� gives list with its nth element dropped.
Drop�list, �m, n�� gives list with elements m through n dropped.
Drop�list, �m, n, s�� gives list with elements m through n in steps of s dropped.
Drop�list, seq1, seq2, …� gives a nested

list in which elements specified by seqi have been dropped at level i in list. �

Therefore, the input below will drop the first operator in the expression.

DropQ��� ��2 Z �� �� q�i, y� �� p�i, z� �� q�i, y�, �1��
�� ��2 Z �� �� p�i, z� �� q�i, y�
The input below will drop the first and second operators.

DropQ��� ��2 Z �� �� q�i, y� �� p�i, z� �� q�i, y�, 2�
�� ��2 Z �� �� q�i, y�
The assumption here is that the “All Symbols” option is not used in the pallette- but only relevant symbols are
declared to be operators. In case “All Symbols” are activated in the Palette, DropQ will regard the prefactors (such as��2 Z ��) in this case to be operators too and give a correspondingly different output.

Evaluation

Evaluation is an option for the Kronecker-∆ function. If Evaluation is set to Identical the ∆ will evaluate to zero
unless both arguments are indentical.

� Example
The kronecker delta function by default does not evaluate two different symbols to be zero unless it knows the symbols
to be numerically different.
∆�i, j�
∆�i, j�
i � 1;
j � 2;
∆�i, j�
Clear�i, j�;
0

When evaluation is set to identical the kronecker delta will evaluate to zero unless the symbols are identical.

Glossary_V0.nb 9

∆�i, j, Evaluation �� Identical�
0

∆�i, i, Evaluation �� Identical�
1

f
f is the Fermionic annihilation operator. This operator requires one index denoting site, and a second optional index
can be used to denote spin or species. Also included is the Fermionic number operator, represented by nf . The
argument scheme for the number operator is identical to that of the annihilation operator. For more information on
site index see Site Index below.

� Example
In the DiracQ Palette activate Fermionic Annhilation and Creation Operators (f and f†).
The f operator obeys the canonical anticommutation relation for fermions.
AntiCommutator�f�1�, f†�1��
1

FullOrganize
FullOrganize is an extension of the Organize function. FullOrganize incorporates Organize, OrganizeQ, and
OrganizedProduct into one function. Therefore FullIOrganize takes an expression, organizes it into the DiracQ
organized notation, orders the operators, and applies product rules to the list of operators. See Also: Organize,
OrganizeQ, OrganizedProduct

� Example
In the DiracQ Palette activate Fermionic Annhilation and Creation Operators (f and f†) and Bosonic Annhilation and
Creation Operators (b and b†).
The two examples below demonstrate the structure of expressions in DiracQ. The first example has no summations in
it, three c-number prefactors (5 a c) and a pair of Fermi and a pair of Bose operators. Reading from right to left, these
are arranged as shown with the q-numbers in the last bracket, the c numbers in the next bracket, the summed indices
(null in this case) in the next bracket and the numerical coefficient in the first bracket. The second example has three
summed indices and a more complicated c-number part that are pulled out in the given format. Within the q-number
bracket, there is a canonical ordering with Bosons to the left of Fermions etc. (If we do not activate the Fermion or
Boson operators in the palette, the FullOrganize function will treat f and b as c-numbers as well.)
FullOrganize�5 a c f�i� �� b�i� �� f�j� �� b�k����5, ��, �a c�, �b�i�, b�k�, f�i�, f�j����
FullOrganize��

i

�
k

�
j

5 a c u�i, j, k� f�i� �� b�i� �� f�j� �� b�k��
��5, �i, j, k�, �a c u�i, j, k��, �b�i�, b�k�, f�i�, f�j����

function
function is a label used by the Organize function to denote a function of operators that can not be decomposed
simply into polynomials. The first argument is the function, and the second argument is the operators on which the
function depends. This function is not intended to be manipulated by the user but is used in certain internal computa-
tions. The first argument of function is the function containing an operator, and the second argument are the
operators of which that functiond depends. In general DiracQ does not know the algebraic properties of non-
polynomial function of operators. The user can input algebraic properties of functions if necessary using the same
methods as inputing algebraic properties of user created operators.

10 Glossary_V0.nb

function is a label used by the Organize function to denote a function of operators that can not be decomposed
simply into polynomials. The first argument is the function, and the second argument is the operators on which the
function depends. This function is not intended to be manipulated by the user but is used in certain internal computa-
tions. The first argument of function is the function containing an operator, and the second argument are the
operators of which that functiond depends. In general DiracQ does not know the algebraic properties of non-
polynomial function of operators. The user can input algebraic properties of functions if necessary using the same
methods as inputing algebraic properties of user created operators.

� Example
In the DiracQ Palette activate Fermionic Annhilation and Creation Operators (f and f†) and Bosonic Annhilation and
Creation Operators (b and b†).
The example below shows that the power function of f†[i] below is recognized to contain an operator, and is therefore
organized as an operator using the function notation.
Organize��f†�i��
��1, ��, �1�, �function��f†�i�, �f†�i������
DiracQ does not know what the commutator of this function of f†[i] and other fermionic operators is.

Commutator��f†�i�, f�i��
Error: Unknown commutator called�

We are able to teach DiracQ how to perform this commutator by using the CommutatorDefinition function, as shown
below.
CommutatorDefinition�function�a_, �f†�i_���, f�j_�� :� a �� f�j� � f�j� �� a
Commutator��f†�i�, f�i��
�f†�i� �� f�i� � f�i� �� �f†�i�

f†
f† is the Fermionic creation operator. This operator requires one index denoting site, and a second optional index
can be used to denote spin. Also included is the Fermionic number operator, represented by nf . The argument
scheme for the number operator is identical to that of the annihilation operator. For more information on site index
see Site Index in the DiracQ Glossary. The dagger symbol is created by entering �dg� or clicking the appropriate
button on the DiracQ palette.

� Example
In the DiracQ Palette activate Fermionic Annhilation and Creation Operators (f and f†).
The f† operator obeys the canonical anticommutation relation for fermions
AntiCommutator�f�1�, f†�1��
1

Humanize
Humanize is the functional opposite of Organize. Humanize takes a nested list of terms
organized according to themethod of the package and yields output of familiarmathematical
forms. Humanize only reconizes input that is in the format of the output of theOrganize
function. Formore information on the organization systemof the package seeOrganize

Glossary_V0.nb 11

� Example
In the DiracQ Palette activate Fermionic Annhilation and Creation Operators (f and f†).

The Organize function decomposes an expression containing a variety of terms and algebraic forms and converts it
into a nested list. The Organize function is used by a majority of the DiracQ functions to convert input into a form that
can be easily manipulated.

Organize�2 a�
i

f�i� � 3 b�
j

f†�j��
��2, �i�, �a�, �f�i���, �3, �j�, �b�, �f†�j����
Humanize is used to return the nested list structure used to manipulate expressions to standard mathematical forms.
Humanize���
2�

i

a �� f�i� � 3�
j

b �� f†�j�

Identical
Identical is an option setting for the Kronecker ∆ option Evaluation.If Evaluation is set to Identical the ∆will
evaluate to zero unless both arguments are indentical. Frommore information on the Kronecker ∆ see ∆

� Example
In the DiracQ Palette activate Fermionic Annhilation and Creation Operators (f and f†).
The Kronecker ∆ will only evaluate to zero if two symbols are known to be numerically different.
∆�1, 0�
0

∆�i, j�
∆�i, j�
Clear�i, j�;
i � 1;
j � 0;
∆�i, j�
0

The option Evaluation allows users to specify that unless two symbols are identical the Kronecker ∆ should evaluate to
zero.
∆�i, j, Evaluation � Identical�
0

J
J is the canonical angular momentum operator. This operator requires at least two arguments. The first is site index
and the second is coordinate direction. An optional third argument is used to denote different species. Also
included are the angular raising and lowering operators, denoted by JPlus and JMinus respectively. The raising and
lowering operators accept only one argument corresponding to site, and if provided, a second argument taken to
represent species. For more information on site index see Site Index. The action of the angular momentum opera-
tors on standard basis states will be implemented later, for now only their commutation rules are available.

12 Glossary_V0.nb

J is the canonical angular momentum operator. This operator requires at least two arguments. The first is site index
and the second is coordinate direction. An optional third argument is used to denote different species. Also
included are the angular raising and lowering operators, denoted by JPlus and JMinus respectively. The raising and
lowering operators accept only one argument corresponding to site, and if provided, a second argument taken to
represent species. For more information on site index see Site Index. The action of the angular momentum opera-
tors on standard basis states will be implemented later, for now only their commutation rules are available.

� Example
In the DiracQ Palette activate the Canonical angular momentum operator (J).
The J operator obeys the canonical commutation relations for angular momentum operators
Commutator�J�i, x�, J�j, y��
� �� ∆�i, j�� �� J�i, z�
Commutator�J�i, z�, J�j, y��
�� �� ∆�i, j�� �� J�i, x�
The third argument will be taken to represent species. In the following example we take the commutator of two
angular momentum operators that act on different species, represented by g and h.
Commutator�J�i, x, g�, J�j, y, h��
� �� ∆�g, h� ∆�i, j�� �� J�i, z�
Using the angular momentum raising and lowering operators the first argument is taken to be site index, and the
second argument is used to denote different species.
Commutator�JPlus�i, a�, JMinus�j, b��
2 �� ∆�a, b� ∆�i, j�� �� J�i, z, a�

Ket
Ket[x] represents a ket vector |x> using Dirac notation

� Example
In the DiracQ Palette activate Fermionic Annhilation and Creation Operators (f and f†) and Bra and Ket Vectors.
Ket�A� � f†�1� �� Ket�Vacuum�
f†�1� �� Ket�Vacuum�
In the calculation below we use the important function ProductQ that is described more fully below. This function
uses all the non commutative properties supplied by the user and implements them to give an easily readable and
correct final result. In this calculation, the “f” fermion at site 1 that is present in Ket[A] is destroyed by f[1] acting to
its left.
ProductQ�f�1�, Ket�A��
Ket�Vacuum�

n
n is the number operator. To specify the number operator for bosons use nb and for fermions use nf .

� Example
In the DiracQ Palette activate Fermionic Annhilation and Creation Operators (f and f†) and Bosonic Annhilation and
Creation Operators (b and b†)

Glossary_V0.nb 13

nf�a�
f†�a� �� f�a�
nb�a�
b†�a� �� b�a�
Commutator�nb�a�, b†�a��
b†�a�

NCcross

Non Commutative cross product of two 3dimensional vectors retaining the order of the operators.

� Example

As an example consider the orbital angular momentum operator L and a further cross product with the position vector
q. Note that q and p need to be specified with an argument, arbitrarily chosen here to be i.

L
�
� NCcross�q��i�, p��i���q�i, y� �� p�i, z� � q�i, z� �� p�i, y�,
�q�i, x� �� p�i, z� � q�i, z� �� p�i, x�, q�i, x� �� p�i, y� � q�i, y� �� p�i, x��

v1 � NCcross�q��i�, L
���q�i, y� �� ��q�i, y� �� p�i, x�� � q�i, z� �� ��q�i, x� �� p�i, z�� �

q�i, y� �� q�i, x� �� p�i, y� � q�i, z� �� q�i, z� �� p�i, x�,
�q�i, x� �� ��q�i, y� �� p�i, x�� � q�i, z� �� ��q�i, z� �� p�i, y�� �
q�i, x� �� q�i, x� �� p�i, y� � q�i, z� �� q�i, y� �� p�i, z�,

q�i, x� �� ��q�i, x� �� p�i, z�� � q�i, y� �� ��q�i, z� �� p�i, y�� �
q�i, x� �� q�i, z� �� p�i, x� � q�i, y� �� q�i, y� �� p�i, z��

Here we see that the non commutative nature is redundant in defining
L as such, since the canonical pairs q�x� and p�x� are kept away from each other already. However, in the next cross
product, it is relevant since the canonical pairs are no longer separated. This function is used in the Runge Lenz vector
definition as an example.
Further note: if one wants a neater answer with negative signs pulled out, we can map the DiracQ function SimplifyQ
to each component of the output.
SimplifyQ �� v1�q�i, x� �� q�i, y� �� p�i, y� � q�i, x� �� q�i, z� �� p�i, z� �

q�i, y� �� q�i, y� �� p�i, x� � q�i, z� �� q�i, z� �� p�i, x�,
�q�i, x� �� q�i, x� �� p�i, y� � q�i, x� �� q�i, y� �� p�i, x� � q�i, y� �� q�i, z� �� p�i, z� �
q�i, z� �� q�i, z� �� p�i, y�, �q�i, x� �� q�i, x� �� p�i, z� �
q�i, x� �� q�i, z� �� p�i, x� � q�i, y� �� q�i, y� �� p�i, z� � q�i, y� �� q�i, z� �� p�i, y��

OperatorProduct
OperatorProduct is the function through which the products of symbols are defined. OperatorProduct is used only
when creating additional operators. For examples of the usage of OperatorProduct see

14 Glossary_V0.nb

� Example
AddOperator�Θ�
Please enter all neccessary basic commutation

and anticommutation relations. For help type ?AddOperator

Operators�Θ�
OperatorProduct�Θ�i_�, Θ�j_�� :� �1 � ∆�i, j�� Θ�i� ;
ProductQ�Θ�i�, Θ�j��
�∆�i, j� �� Θ�i� � Θ�i�
Any type of OperatorProduct rule or operator symbol can be used.
AddOperator�u�
Please enter all neccessary basic commutation

and anticommutation relations. For help type ?AddOperator

OperatorProduct�u�i_�, u�j_�� :� I u�i � j�
ProductQ�u�1�, u�2��
� u�3�

Operators (command)
Operators is the list of symbols that are currently being recognized as operators.

� Example
In the DiracQ Palette activate Fermionic Annhilation and Creation Operators (f and f†) and Bosonic Annhilation and
Creation Operators (b and b†).
Operators�b, b†, f, f†�

Organize
Organize is the function that enables the DiracQ package to understand and manipulate user input. Organize takes a
mathematical expression as input and yields a nested list that contains the atoms of the input ordered according to
their properties. Numbers, summed indices, c numbers, and q numbers are separated into groups. Each term of the
input separated by plus sign constitutes a separate list of items in the output. For more information see the Explana-
tion of Form Appendix in the DiracQ Writeup notebook.

� Example
In the DiracQ Palette activate Fermionic Annhilation and Creation Operators (f and f†).

Below is a diagram showing in general how input is decomposed by the organize function. # indicates any number as
recognized by mathematica, c# is a nonnumerical symbol that is not recognized as an operator, q# is any noncommuta-
tive symbol, or operator, as recognized by the DiracQ package, and index indicates a nonnumerical index over which
an expression is being summed.

Organize���� �
index

�c �� � �q ���

Glossary_V0.nb 15

Organize���� �
index

�c �� � �q ���
� ���, �index�, �c ��, �q ����

Organize���1� �
index1

�c �1� � �q �1� � ��2� �
index2

�c �2� � �q �2��
� ���1, �index1�, �c �1�, �q �1��, ��2, �index2�, �c �2�, �q �2���

Below is an example of the organize function containing Fermionic annhilation and creation operators

Organize�5�
i

a�i� f�i� � 2�
j

b�j� f†�j��
��5, �i�, �a�i��, �f�i���, �2, �j�, �b�j��, �f†�j����

OrganizedExpression
OrganizedExpression is an option of several DiracQ functions which allows a user to input a preorganized expres-
sion into a function which normally accepts standard form input. This is normally done in the interest of time
saving. To use preorganized input include the option setting OrganizedExpression -> True. This function is mainly
used within the package when one function operates within another function, but it may be of use to users who are
dealing with long calculations. See Standard OrderQ for information on the use of the StandardOrderQ function.

� Example
In the DiracQ Palette activate Fermionic Annhilation and Creation Operators (f and f†) and Bosonic Annhilation and
Creation Operators (b and b†).
SimplifyQ normally excepts standard input
A � f�i� �� b�i� �� f�j�;
B � Organize�A�;
StandardOrderQ�A�
b�i� �� f�i� �� f�j�
When organized input is used with StandardOrderQ it remains unchanged
StandardOrderQ�B���1, ��, �1�, �f�i�, b�i�, f�j����
When the OrganizedExpression option is set to True we see that the correct answer is obtained, but that in remains in
organized form.
StandardOrderQ�B, OrganizedExpression � True���1, ��, �1�, �b�i�, f�i�, f�j����
If we use the Humanize function to return it to standard form we see readily that the manipulation has been performed.
Humanize���
b�i� �� f�i� �� f�j�

16 Glossary_V0.nb

OrganizedProduct

OrganizedProduct is a function used within the package that is not relevant to most users. OranizedProduct takes
organized input and simplifies the operators by evaluating products if possible. Output is also organized.

� Example
OrganizedProduct is used inside the package in certain simplifications, but is of little use to most users who will find
Organize to achieve the goal of rewriting input operators in a systematically neater form.
OrganizedProduct�Organize��� ��2 Z �� �� q�i, y� �� q�i, y� �� p�i, z�������, ��, ��2 Z ��, �q�i, y�, q�i, y�, p�i, z����
If we drop the initial Organize above, we get errors. With Organize as shown, it simply regurgitates the input and so is
redundant- as mentioned above.

OrganizeQ

OrganizeQ is a function used within the package that is not relevant to most users.
OrganizeQ takes organized input and rearranges the operators according to a standardized
order. OrganizeQ is a subfunction of the FullOrganize function. Output is also organized.

� Example
OrganizeQ is used inside the package in certain simplifications, but is of little use to most users who will find Orga-
nize to achieve the goal of rewriting input operators in a systematically neater form.
OrganizeQ�Organize��� ��2 Z �� �� q�i, y� �� q�i, y� �� p�i, z�������, ��, ��2 Z ��, �q�i, y�, q�i, y�, p�i, z����
If we drop the initial Organize above, we get errors. With Organize as shown, it simply regurgitates the input and so is
redundant- as mentioned above.

p
p is the canonical momentum operator. This operator can be called with one argument, assumed to be the particle
number or the site index. If two arguments are given, the second argument will be taken to be coordinate direction.
Also included is the 3 dimensional canonical momentum vector, represented by OverVector[p], or p

� Example
In the DiracQ Palette activate Canonical Position and Momentum Operators (q and p).
Commutator�q�i�, p�i��
� �

Commutator�q�i, x�, p�i, x��
� �

Commutator�q�i, x�, p�i, y��
0

Glossary_V0.nb 17

p��i��p�i, x�, p�i, y�, p�i, z��
OverVector�p��i��p�i, x�, p�i, y�, p�i, z��

PositionQ

PositionQ�expr, pattern� gives a list of the positions of an operator matching pattern appear in
expr. The position given is the position of the operator relative to other operators in expr only.

� Example
In the DiracQ Palette activate Canonical Position and Momentum Operators (p and q).

The output below shows that in the first term of the expression p[i, z] is the second operator and in the second term of
the expression p[i,z] is the third operator.
PositionQ�
�� ��2 Z �� �� q�i, y� �� p�i, z� �� q�i, y� � � ��2 Z �� �� q�i, z� �� q�i, z� �� p�i, z�, p�i, z����1, 2�, �2, 3��

ProductQ
ProductQ gives the product of two expressions involving terms that are noncommutative objects. ProductQ should
be used in place of the standard Mathematica function NonCommutativeMultiply for combining expressions.
ProductQ can be called as a function with two arguments or as the CircleTimes symbol �c*� used between two
expressions. Operator product definitions will be applied by default. Settings are specified through the SetSession
function.

� Example
ProductQ is far more useful for most quantum applications than NonCommutativeMultiply. However, this does

not mean that should always be used in place of NonCommutativeMultiply. NCM is useful to seperate terms that must
not be reorganized by Mathematica' s sorting. ProductQ is useful for combining larger expressions and appyling the
product definitions of operators. The default output is ordered according to standard ordering.

A ��
i

t�i� Σ�i, y� �� Σ�i, x�;
B � Σ�k, y�;
A � B

���
i

t�i� �� Σ�i, z� �� Σ�k, y�
This function has built in useful properties such as the Pauli principle, so that the square of a destruction or creation
operator for Fermions vanishes. In the DiracQ Palette activate Fermionic Annhilation and Creation Operators (f and f†)
ProductQ�f�i�, f�i��
0

18 Glossary_V0.nb

f�i� � f�i�
0

ProductQ�f�j�, f�i��
�f�i� �� f�j�
ProductQ�u�i� f�i� �� f†�i�, v�j� f�k���u�i� v�j�� �� f�k� � �u�i� v�j�� �� nf�i� �� f�k�

In the first example a simple NonCommutativeMultiply (i.e. **) gives the same result as the ProductQ. In the last
example, the power of ProductQ is seen, it pulls apart the c-number parts and then applies all given relations to the
q-number part, giving an easy to read result.

PushOperatorLeft
PushOperatorRight[expr,pattern] will move the operator matching pattern to the left of all other operators in every
term in expr. Commutators are accounted for.

� Example
Sometimes the order of operators output by the package is not appropriate for a desired manipulation. PushOpera-
torLeft provides a powerful and convenient way to move a given operator to the left of all other operators in an
expression, while picking up the commutator terms obtained in the reordering.
In the DiracQ Palette activate Canonical Position and Momentum Operators (p and q).

PushOperatorLeft�
�� ��2 Z �� �� q�i, y� �� q�i, y� �� p�i, z� � � ��2 Z �� �� q�i, z� �� q�i, z� �� p�i, z�, p�i, z��

2 ��2 Z �2� �� q�i, z� � � ��2 Z �� �� p�i, z� �� q�i, y� �� q�i, y� �
� ��2 Z �� �� p�i, z� �� q�i, z� �� q�i, z�

Here the operator p[i,z] is located in the expression and pushed all the way to the left.

PushOperatorRight
PushOperatorRight[expr,pattern] will move the operator matching pattern to the right of all other operators in every
term in expr. Commutators are accounted for.

� Example
This is provided as an alternative to PushOperatorLeft. Sometimes the order of operators output by the package is not
correct for a desired manipulation. PushOperatorRight provides a powerful and convenient way to move a given
operator to the right of all other operators in an expression.
In the DiracQ Palette activate Canonical Position and Momentum Operators (p and q).

PushOperatorRight�
�� ��2 Z �� �� p�i, z� �� q�i, y� �� q�i, y� � � ��2 Z �� �� p�i, z� �� q�i, z� �� q�i, z�, p�i, z��
�2 ��2 Z �2� �� q�i, z� � � ��2 Z �� �� q�i, y� �� q�i, y� �� p�i, z� �
� ��2 Z �� �� q�i, z� �� q�i, z� �� p�i, z�

Glossary_V0.nb 19

Here the operator p[i,z] is pushed all the way to the right.

q
q is the canonical position operator. This operator can be called with one argument, assumed to be the particle
number or the site index. If two arguments are given, the second argument will be taken to be coordinate direction.
Also included is the 3 dimensional canonical position vector, represented by OverVector[p], or q.

� Example
In the DiracQ Palette activate Canonical Position and Momentum Operators (q and p).
Commutator�q�i�, p�i��
� �

Commutator�q�i, x�, p�i, x��
� �

Commutator�q�i, x�, p�i, y��
0

q��i��q�i, x�, q�i, y�, q�i, z��
OverVector�q��i��q�i, x�, q�i, y�, q�i, z��

QCoefficient
QCoeffficient[expression, form] is the DiracQ equivalent of the function Coefficient in Mathematica. It scans the
“expression” for terms containing a string of operators that match “form”. It returns the c-number coefficient, with
“form” being a q-number pattern. If several terms are found the output will be a sum of terms. Only exact matches
of form are found. (A series of which “form” is a subpart will not be included).

� Example
In the DiracQ Palette activate Canonical Position and Momentum Operators (q and p) and Pauli Spin Matrices (Σ).

QCoefficient will yield the coefficient of the operators requested.
QCoefficient�4 a�i� p�i� �� q�i�, p�i� �� q�i��
4 a�i�
QCoefficient can be used to scan more complicated input involving many terms as well.

Term1 �
a � b

2
�

a � b

2
Σ�1, z� �� Σ�3, z� � c � d

2
Σ�1, x� �� Σ�3, x� � c � d

2
Σ�1, y� �� Σ�3, y�;

Term2 �
a ' � b '

2
�

a ' � b '

2
Σ�2, z� �� Σ�3, z� � c ' � d '

2
Σ�2, x� �� Σ�3, x� � c ' � d '

2
Σ�2, y� �� Σ�3, y�;

20 Glossary_V0.nb

product � Term1�Term2;
Length�product�
64

We can scan product and find the coefficients of all of the terms that contain a single string of operators. For short
output this can be done manually but becomes difficult with longer output. We see here that the expression product is
quite long and contains for terms with the string of operators listed. The result of QCoefficient of q is therefore a sum
of all these coefficients.
QCoefficient�product, Σ�1, x� �� Σ�2, y� �� Σ�3, z��
1

4
� c c� �

1

4
� d c� �

1

4
� c d� �

1

4
� d d�

SecondaryOperators
SecondaryOperators of all the active composite operators, that is, all of the active operators that are combinations of
more basic operators. The default list is �nf , nb, ΣPlus, ΣMinus, JPlus, JMinus, p, q}

� Example
In the DiracQ Palette activate Canonical Position and Momentum Operators (q and p).
SecondaryOperators

�q�, p��
SimplifyQ

SimplifyQ is analogous to the existing Mathematica Simplify function for expressions that contain noncommutative
objects. All output of DiracQ function such as Commutator or ProductQ is already simplified in the manner per-
formed by this function. This function is primarily used to simplify expressions that have either never been input
into a DiracQ function or have been manipulated by the user and need to be simplified.

� Example
In the DiracQ Palette activate Canonical Position and Momentum Operators (q and p).

The following expression “term1” from a harmonic oscillator problem was generated:

term1 �

m Ω

�
�� q�i�
2

�

� 1

m Ω

�
�

�� p�i�
2

;

Performing further manipulations on this expression by hand enables us to pull out a common factor and subtracting
the original expression we form a new expression “term2” that should evaluate to zero.

Glossary_V0.nb 21

term2 � term1 �

m Ω

�
�� � p�i�

m Ω
� q�i��

2

m Ω

�
�� q�i�
2

�

� 1

m Ω

�
�

�� p�i�
2

�

m Ω

�
�� � p�i�

m Ω
� q�i��

2

This expression can be simplified using SimplifyQ since it does a full book keeping of all terms within the expression.
SimplifyQ�term2�
0

On the other hand, the standard Mathematica function “Simplify” does not simplify this function fully.
Simplify�term2�

1

2 m Ω
m Ω

m Ω

�
�� q�i� � � m Ω 1

m Ω

�
�

�� p�i� � m Ω

�
�� p�i� � m Ω q�i��

StandardOrderQ
StandardOrderQ will order the operators of an expression according to operator type, operator species, and site
index respectively. Furthermore this function will place creation operators to the left of annihiliation operators of
the same type, accounting for the commutator of the two operators.Operator product definitions are applied by
default, and can be turned off by specifying ApplyDefinition -> False.Operators are sorted in the following order :
{Bra, b†, b, f†, f, J, X, Σ, p, q, Ket}. This function can be used to partially simplify functions but is not as extensive
as the SimplifyQ function.

� Example
In the DiracQ Palette activate Canonical Position and Momentum Operators (q and p), Fermionic Creation and
Annihilation operators (f and f†), and Bosonic Creation and Annihilation operators (b and b†).
term1 � q�j� �� p�i� �� f�k� �� f†�k� �� f�j� �� b�i� �� b†�i�;
StandardOrderQ will reorder the operators in the expression above, accounting for the commutators of the two
operators.
StandardOrderQ�term1��� � ∆�j, i�� �� f�j� � f�j� �� p�i� �� q�j� ��� � ∆�j, i�� �� nb�i� �� f�j� � nb�i� �� f�j� �� p�i� �� q�j� �
2 �� � ∆�j, i�� �� f†�k� �� f�j� �� f�k� � 2 f†�k� �� f�j� �� f�k� �� p�i� �� q�j� �
2 �� � ∆�j, i�� �� nb�i� �� f†�k� �� f�j� �� f�k� � 2 nb�i� �� f†�k� �� f�j� �� f�k� �� p�i� �� q�j�

TakeCPart
TakeCPart will scan input and return the “c” number terms (numbers and other constants). The output is returned as
a list. Each entry in the list is the “c” number component of a single term found within the input expression, where
terms are taken as components seperated by addition.

22 Glossary_V0.nb

TakeCPart will scan input and return the “c” number terms (numbers and other constants). The output is returned as
a list. Each entry in the list is the “c” number component of a single term found within the input expression, where
terms are taken as components seperated by addition.

� Example
In the DiracQ Palette activate only the Canonical Position and Momentum Operators (q and p). We have deliberately
turned off the Boson operators b[i], so that they are part of the c-number answer. Turning them on as Bosons would
group them with the q-number parts in correct order.
TakeCPart will yield the C numbers of the input.
TakeCPart�5 a b�i� �� p�i� �� Θ�i� �� q�i���5 a b�i� Θ�i��
If the input expression contains terms seperated by addition then TakeCPart will yield a list of C numbers of each term
in the expression.
TakeCPart�5 a b�i� �� p�i� �� Θ�i� �� q�i� � 3 j�i� �� p�i���3 j�i�, 5 a b�i� Θ�i��

TakeQPart
TakeQPart will scan input and return the Q number parts (operators). Output is returned as a list. Each entry in the
list is the Q number component of a single term found within the input expression, where terms are taken as
components seperated by addition.

� Example
In the DiracQ Palette activate Canonical Position and Momentum Operators (q and p).

TakeQPart will yield the Q numbers of the input.
TakeQPart�5 a b�i� �� p�i� �� Θ�i� �� q�i���p�i� �� q�i��
If the input expression contains terms seperated by addition then TakeQPart will yield a list of Q numbers of each term
in the expression.
TakeQPart�5 a b�i� �� p�i� �� Θ�i� �� q�i� � 3 j�i� �� p�i���p�i�, p�i� �� q�i��

TakeSummand
TakeSummand will return the summand of an input expression of the form Sum[Summand, Index (Indices)]. Input
of other forms will yield error messages.

� Example
In the DiracQ Palette activate Canonical Position and Momentum Operators (q and p).

TakeSummand will yield only the summand of a sum.

TakeSummand�5�
i

p�i��
5 p�i�

Glossary_V0.nb 23

TakeSummand�5�
i

�
j

p�i� �� q�i� �� q�i��
5 p�i� �� q�i� �� q�i�

Vacuum
Vacuum is the symbol used to represent the vacuum state. In general different operators are taken to act on different
basis and therefore Vacuum represents the direct product of the vacuum state of several different basis.

� Example
In the DiracQ Palette activate Fermionic Creation and Annihilation operators (f and f†).

The Vacuum state can take the form of either a Bra or a Ket vector.
f�i� � Ket�Vacuum�
0

Bra�Vacuum� � f†�i�
0

Operators of any type can act on the vacuum state.

x
x is used to represent the x coordinate direction in several of the operators in the DiracQ package.

� Example
In the DiracQ Palette activate Pauli Spin Matrices (Σ), Canonical Position and Momentum Operators (q and p), and
Canonical Spin Matrices (J).
x is used by the Pauli Spin Matrices and the Canonical Spin Matrices.
Commutator�Σ�i, x�, Σ�i, y��
2 � Σ�i, z�
Commutator�J�i, x�, J�i, y��
� � �� J�i, z�
x is also used to represent coordinate direction of Position and Momentum operators.

p��i��p�i, x�, p�i, y�, p�i, z��

X
X is the Hubbard projection operator, three arguments are required for its definition. At a given site “i” the X[i,j,k]
is the projection operator |j> < k|, where the ket |j> runs over the four possibilities of electron occupation at the
given site “i”, namely |0> , |�> , |�> and |��>. These four states are assigned the “j” values j=0,1,-1, 2 respec-
tively. States with j2 � k2 � odd integer are Fermi like and with j2 � k2 � even integer are Boson like. We
strongly recommend prescribing numerical values rather than symbolic values to the two indices “j” and “k” since
the built in properties of (anti)-commutation are only valid in these cases.

24 Glossary_V0.nb

X is the Hubbard projection operator, three arguments are required for its definition. At a given site “i” the X[i,j,k]
is the projection operator |j> < k|, where the ket |j> runs over the four possibilities of electron occupation at the
given site “i”, namely |0> , |�> , |�> and |��>. These four states are assigned the “j” values j=0,1,-1, 2 respec-
tively. States with j2 � k2 � odd integer are Fermi like and with j2 � k2 � even integer are Boson like. We
strongly recommend prescribing numerical values rather than symbolic values to the two indices “j” and “k” since
the built in properties of (anti)-commutation are only valid in these cases.

� Example
In the DiracQ Palette activate Hubbard Operators (X).

The Hubbard Operator is defined as follows : Xi
j k � � j � � k �

ProductQ�X�i, a, d�, X�i, d, c��
X�i, a, c�
At a single site “i”, if required we can possibly override the recommendation of numerical values, and use symbolic
values for the state labels.
Commutator�X�i, j, k�, X�i, l, m��
�∆�j, m� �� X�i, l, k� � ∆�l, k� �� X�i, j, m�
AntiCommutator�X�i, a, d�, X�i, d, c��
∆�a, c� �� X�i, d, d� � X�i, a, c�
At different sites “i,j”, the use of numerical values is mandatory to get correct answers.
Commutator�X�i, 1, 1�, X�j, 2, 0��
0

AntiCommutator�X�i, 1, 1�, X�j, 2, 0��
2 X�i, 1, 1� �� X�j, 2, 0� � 2 ∆�i, j� �� X�i, 1, 1� �� X�j, 2, 0�
Commutator�X�i, 1, 0�, X�j, 2, �1��
2 X�i, 1, 0� �� X�j, 2, �1� � 2 ∆�i, j� �� X�i, 1, 0� �� X�j, 2, �1�
AntiCommutator�X�i, 1, 0�, X�j, 2, �1��
0

y
y is used to represent the y coordinate direction in several of the operators in the DiracQ package.

� Example
In the DiracQ Palette activate Pauli Spin Matrices (Σ), Canonical Position and Momentum Operators (q and p), and
Canonical Spin Matrices (J).
y is used by the Pauli Spin Matrices and the Canonical Spin Matrices.
Commutator�Σ�i, x�, Σ�i, y��
2 � Σ�i, z�
Commutator�J�i, x�, J�i, y��
� � �� J�i, z�
x is also used to represent coordinate direction of Position and Momentum operators.

Glossary_V0.nb 25

p��i��p�i, x�, p�i, y�, p�i, z��

z
z is used to represent the z coordinate direction in several of the operators in the DiracQ package.

� Example
In the DiracQ Palette activate Pauli Spin Matrices (Σ), Canonical Position and Momentum Operators (q and p), and
Canonical Spin Matrices (J).
z is used by the Pauli Spin Matrices and the Canonical Spin Matrices.
Commutator�Σ�i, x�, Σ�i, y��
2 � Σ�i, z�
Commutator�J�i, x�, J�i, y��
� � �� J�i, z�
x is also used to represent coordinate direction of Position and Momentum operators.

p��i��p�i, x�, p�i, y�, p�i, z��

∆

∆ is the Kronecker delta. This function accepts two arguments and is equal to one if the arguments are equal, 0 if
they are unequal, and will remain unevaluated if the arguments one or both of the arguments have not been assigned
values. This function is similar to the standard Mathematica function KroneckerDelta but is different in some ways.
If the option Evaluation is set to identical than the function will be equal to 0 unless the two arguments are identical.

� Example
In the DiracQ Palette activate Pauli Spin Matrices (Σ).
∆�1, 1�
1

∆�1, 0�
0

∆�i, j�
∆�i, j�
∆�i, j, Evaluation � Identical�
0

SimplifyQ��
i

∆�i, j� i �
j

26 Glossary_V0.nb

Ε

Ε is the Levi - Civita completely antisymmetric symbol with three arguments. In this package the Ε is only used for
coordinate directions x, y, z. Any permutation of these symbols that follows from the right hand rule will yield one,
any permutation opposite to the right hand rule yields - 1, and any argument that involves repeated symbols will
yield zero.

� Example
Ε�x, y, z�
1

Ε�x, z, y�
�1

Ε�y, x, y�
0

Σ

Σ is the Pauli spin matrix. This operator requires two arguments. The first is site index and the second is coordinate
direction. An optional third argument is used to denote different spin species. Also included are the Pauli raising
and lowering operators, denoted by ΣPlus and ΣMinus respectively. The raising and lowering operators require only
one argument corresponding to site. A second argument will be taken to represent spin species.

� Example
In the DiracQ Palette activate Pauli Spin Matrices (Σ).

The Pauli Spin Matrices obey the familiar algebraic relations.
Commutator�Σ�i, x�, Σ�i, y��
2 � Σ�i, z�
Σ�i, x� � Σ�i, x�
1

The Pauli raising and lowering operators are included as secondary operators

ΣPlus�i�
Σ�i, x� � � Σ�i, y�
ΣMinus�j�
Σ�j, x� � � Σ�j, y�
The optional third argument is used to denote different spin species, and therefore two operators of different species
will commute.
Commutator�Σ�i, x, 1�, Σ�i, y, 2��
0

Glossary_V0.nb 27

†
The dagger symbol, †, is used in the representation of creation operators. The dagger symbol is not used as a
superscript but is rather placed directly following the symbol ' f' for fermionic operators and ' b' for bosonic opera-
tors. To enter the dagger symbol find the symbol in the DiracQ palette or one of the other Mathematica palettes or
enter �dg�.

�

� is the reduced Planck' s constant. To enter � find the symbol in the DiracQ palette or one of the other Mathemat-
ica palettes or enter �hb�.

28 Glossary_V0.nb

