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Q: Can you explain in brief what you are working on these days? 

I have been working together with students, postdocs and collaborators on developing a 
new theory for describing very strong interactions between electrons-  the type that  
arise in  strongly correlated systems of quantum matter. This is called the  theory of 
Extremely Correlated Fermi Liquids, or ECFL in short. The first paper of this theory was 
written  in 2011, and we are continuing to publish refinements and extensions of this 
theory as well as benchmarking against other reliable techniques. A compilation of 
reprints can be found in the link:   http://physics.ucsc.edu/~sriram/papers/ECFL-Reprint-
Collection.pdf 

Q: What are strongly correlated systems and what is the type of interaction 
you  mention, and its characteristics?

Strongly correlated systems have been the focus of attention for several years now, 
these are systems such as cuprate superconductors, heavy Fermion systems and 
Kondo lattices, where the electrons interact very strongly. This is in contrast to 
semiconductors and metals such as Al where the interactions between electrons are 
arguably small enough to treat within perturbation theory, and hence very close to a a 
Fermi liquid (i.e. a Fermi gas with small corrections described by Landau).  The phrase 
strongly correlated is often used instead of  strongly interacting-   the latter phrase is 
more generic and is applied to other systems, such as nuclear matter and hadron 
physics.     

The novel systems are often  called Mott Hubbard systems, where one subjects 
electrons in a single (or few) narrow bands to very strong and local (i.e. short ranged) 
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Coulomb interaction between opposite spins. This situation is unlike  usual Coulomb 
interactions in metals, which are long ranged due to the 1/r nature of the electrostatic 
potential. In Mott Hubbard systems one retains only the very short distance part of the 
problem, arguing that it is dominant relative to the small bandwidth resulting from 
weakly overlapping atomic orbitals that form the band. In condensed matter physics one 
encounters the deceptively simple Hubbard model describing this physics. The Hubbard 
model has defied theorists despite much effort. The model in 1-dimension is the 
exception, here it is solvable thanks to highly specialized techniques that are specific to 
1-dimension, but the solution does not generalize to higher dimensions. 

The special feature of this interaction is that when there is only one electron per atom, 
the resulting state is an insulator- dubbed the Mott-Hubbard insulator. The resulting  
insulating state is a major surprise since it flies in the face of a naive expectation that it 
should be metallic, since the electron band is not completely filled. When one moves 
away from this density by adding or removing electrons, one ends up with a metal with 
most unusual characteristics. The ECFL theory is a specialized technique to  handle  
this metallic state. 

  

Q:  What are the physical systems described by your theory and why are they of 
interest?

The prime motivation for developing the ECFL theory is to understand the cuprate 
superconductors, other systems such as cobaltates are also of interest. As you might 
know from intense media coverage, the cuprate  high Tc superconductors have 
attracted enormous interest due to their unusual  basic physics as well as  potential 
applications in technology. As you might know, the discovery of high temperature 
superconductivity in cuprate materials in June  1986 by Bednorz and Mueller earned 
them the Nobel Prize for Physics almost immediately,  in 1987.  It was recognized very 
soon afterwards  that these materials  provide a physical realization of doped  Mott-
Hubbard systems we mentioned above. 

Q:  Are there other theories for describing these systems and in what way is your 
theory different from those?



After 1987 there was an explosion of theoretical interest in these models and systems, 
with the added ingredient that experimental results were concurrently providing a set of 
constraints. The data on  T dependent resistivity and photoemission played a central 
role in focussing theories, since these provide a  picture of the nature of electronic 
states. Indeed several ingenious theories have been put forward by  the brightest minds 
in the game. An enormous  volume  of community effort has gone into developing  novel 
and mostly numerical  techniques, such as quantum Monte-Carlo methods and 
numerical renormalization group methods. However at this stage  these are quite far 
from explaining results of simple experiments. One such experiment is the  very broad 
line shape seen in angle resolved  photoemission (ARPES), which probes the energy 
and wave vector dependence of the electronic  spectral function. Another and perhaps 
most important experiment is the nature  of  the T dependence of the resistivity, it is 
unexpectedly almost linear  in cuprate systems.

Thus  coming  up with a quantitative and analytical understanding of the resistivity and 
photoemission data over  the physically interesting range of T  has proven to be elusive. 
This is where the ECFL theory has managed to do very well. The analytical theory of 
extremely correlated Fermi liquids is a  low cost effort carried out primarily at UCSC by 
my group in the last few years. The results already obtained by us  do remarkably well 
in explaining the resistivity of cuprates in quantitative terms, and also in explaining the 
highly asymmetric spectral line shapes in photoemission.

 The ECFL theory is in fact  a program for calculations, rather than a single or few  
pieces of work- it lays out a methodology where successively better results can be 
found by working quite hard at a particular expansion. Many theories have proposed a 
radical departure from Fermi liquid theory. ECFL finds that the result of strong 
correlations is  a ``fragile'' Fermi liquid,   having a tiny magnitude of the quasiparticle 
weight, which in turn is quite sensitive to density and the hopping matrix elements. 
ECFL also finds an effective Fermi temperature that is orders of magnitude smaller than 
what observes in  weakly interacting systems.

Q: Can you explain what is the fundamental difficulty in treating these strongly 
correlated models. What is the difference from an ordinary metal such as 
aluminum? What are Fermi liquids and how do the new systems depart from it?

In Mott-Hubbard systems the main problem differentiating them  from standard metals is 
the extraordinarily large strength of Coulomb interaction, measured relative to the 
kinetic energy of electrons. This landed the community in a major problem, since no one 
knew how to handle such strong interactions. Perturbation theory in the sense of 



Feynman is the usual recipe for complicated systems, but here one has a model with 
nothing small to perturb in!  

Regarding Fermi liquids, this is a very important type of metal. In fact 
quantum many-body physics rests on the bedrock of Fermi liquid theory. The Fermi 
liquid was formulated by Landau and the Soviet school in mid 1950's,  who assumed 
weak coupling, i.e. perturbation theory can be justified. When the coupling is  large, we 
enter the strongly correlated regime, where the premise used to justify  this edifice is 
invalidated. 

We  know that the resulting state is not a simple one from experiments, since  
the nature of the resulting state is encoded in the temperature dependent transport and 
thermal coefficients. Measurements  of these objects  in the range of T around and 
below 300K tell us directly that the state is far from a simple Fermi liquid. Unlike  simple 
metals like aluminum, these correlated metals exhibit unusual transport and spectral 
signatures that are impossible to reconcile with   Landau's theory of Fermi-liquids. The 
almost T-linear temperature dependence of resistivity is a major puzzle, as are the 
broad shapes of   electronic spectral functions.

Q: Can you explain what is the novelty of your theory, and how does it manage to 
bypass perturbation theory?

 My theoretical approach eschews the Feynman-Dyson diagram method, which 
assumes weak coupling.  In its place I   adapt and build on the  functional differential 
equation  method  of  Tomonaga and Schwinger. This theory starts in the limit of  
infinitely strong local interactions, such that electrons are constrained to avoid double 
occupation in space. This constraint adds  an extra term to Fermi's anti-commutation 
algebra, rendering it non-canonical. Scaling this term with a  parameter λ varying 
between 0 and 1, I  connect the non-interacting Fermi gas limit (at λ=0) with the fully 
interacting limit  (at λ=1).  Within  this program  the method of Tomonaga and Schwinger 
is employed to arrive at an exact set of  functional differential equations.  In the  case of 
quantum  electrodynamics or  standard many-body problems, analogous  functional 
differential equations are expanded in terms of the coupling-constant,  yielding the 
Feynman-Dyson series. There the two methods were shown by Freeman  Dyson to lead 
to identical results. For the present case of non-canonical Fermions I establish an 
alternate scheme by showing that one can instead  use the interpolation parameter  λ to 
set up a new series. The resulting series has been evaluated to low orders in recent 
works of  my group, leading to very promising  results. Results relevant to recent 
experiments in the physical case of 2-dimensions   have also been found from this 
ECFL methodology for angle resolved photo-emission studies and most recently for the 
T and density dependent resistivity.  



Q: Can you say a bit more about the Feynman-Dyson method and the Tomonaga-
Schwinger methods?

In the development of the ECFL theory we learnt about the origin of quantum field-
theory and the Nobel  winning approaches of  Feynman-Tomonaga-Schwinger and 
Dyson. Historically the strong appeal of visualization ensured that Feynman's 
diagrammatic methods dominated science as described nicely by Kaiser et. al.*, to the 
detriment  of  Tomonaga-Schwinger's methods. In the strong correlation problem we find 
that the Feynman-Dyson method  fails, while the Tomonaga-Schwinger method 
succeeds.  

Q: So you are saying that for very strongly correlated Fermi systems the 
Feynman method of diagrams fails while the Tomonaga-Schwinger works?

That is essentially correct. For  Mott-Hubbard systems treated in ECFL theory, only the 
Tomonaga-Schwinger method is applicable. The reason is that a Gaussian type 
clustering property of non-interacting Fermions (the Wicks theorem)  is missing for 
extremely correlated Fermions. Their modified anticommutators make them irrevocably 
non-Gaussian!  The  beautiful Feynman diagrams are alas inapplicable, and the 
Tomonaga-Schwinger method alone survives!

 The Tomonaga-Schwinger method is not immediately applicable either. This method 
yields exact functional differential equations that  are non-linear and hence they pose a 
very difficult problem themselves. In order to solve that problem one had to create a 
systematic procedure of  expanding the exact equations in a well chosen small 
parameter. A guiding light in this forest of technical difficulties is the Luttinger-Ward 
theorem. It constrains  the Fermi surface of the resulting theory to track the simple 
Fermi surface of the non-interacting gas. We showed that this  constraint survives very 
strong correlations, if we  assume a continuity in some parameter. That same parameter 
is  used in the above  expansion.  You will see that  a considerable body of  new  
methodology had to  be developed in order  to formulate a systematic and novel 
procedure for calculations. That procedure  is at the heart of the ECFL theory.

Q: What is the qualitative difference between the Mott Hubbard systems and  QED 
treated by  Feynman-Tomonaga-Schwinger?



Well QED (quantum electrodynamics) has a complication that is unique to relativistic 
field theories, namely a divergence of almost all quantities one can calculate, due to the 
slow falloff of Greens functions at high energies. The procedure or renormalization was 
invented to deal with that, and one finally deals with renormalized masses etc, which 
are finite although the bare masses might be divergent. In a non-relativistic theories 
such as the  Mott Hubbard model, there are no infinite terms of this type. Since one has 
a theory defined on the lattice, there is automatically a lattice cutoff that prevents high 
energy divergences.

  However the Mott-Hubbard system has a major difficulty which is not present in  QED. 
In QED most interesting results are already found from 2nd or 3rd order perturbation 
theory- after performing a renormalization procedure. However for Mott-Hubbard 
systems the strength of interaction is so strong that perturbation theory has to be 
abandoned. New ways of describing interactions through  non-canonical operators are 
required, these are part and parcel of the ECFL theory.

Q: Going back to the historical context, how did Dyson find an equivalence 
between the works of Feynman-Tomonaga-Schwinger for QED?

Here are  a few paras from the entertaining article by Kaiser et. al.* 

From *D. Kaiser, K. Ito and K. Hall, Feynman diagrams in the USA, Japan and the 
Soviet Union, Social Studies of Science, 34/6 (December 2004) 879-922

At the Pocono Manor Inn that spring day in 1948, Feynman introduced his diagrams to 
serve as a bookkeeping device when wading through these complicated calculations. 
---As a step along the way, he wanted first to find a reliable way of making perturbative 
calculations – to write down the algebraic form for these terms without confusing or 
omitting elements, before worrying about how to coax the infinities into finite numbers. 
He designed his diagrams to stand in a one-to-one relation with the mathematical 
terms he aimed to calculate. 

Simple as the scheme might have appeared to Feynman himself, however, his listeners 
at the 1948 Pocono meeting had great difficulty following his energetic presentation. 
Not only did Feynman suffer frequent interruptions from the likes of Niels Bohr, 



Wolfgang Pauli, Paul Dirac, and Edward Teller, he also eschewed formal rules for 
manipulating his diagrams in favor of more casual rules of thumb, which he hoped to 
flesh out via worked examples. The interruptions prevented him from doing so, and 
Feynman managed only to further confuse his listeners. By all indications, Feynman’s 
initial presentation of his diagrams was a flop. 

A few months later, Freeman Dyson, a graduate student at Cornell (where Feynman 
was teaching and working out his new diagrammatic scheme) supplied what many 
people had found missing in Feynman’s original presentation. After working closely 
with Feynman throughout the spring of 1948, the two drove cross-country together that 
summer, on a trip that afforded Dyson the opportunity to do some sightseeing as well 
as to plumb more deeply into how Feynman’s new techniques were meant to work. After 
their long drive, the two parted company: Feynman stayed in New Mexico for a few 
weeks to do some work at Los Alamos, while Dyson made his way by bus to Ann Arbor, 
MI, for the start of the famous summer school on theoretical physics. The main speaker 
that summer was Julian Schwinger – like Feynman, one of the young guns of US 
theoretical physics – who was also then working on QED. Schwinger had worked out 
his own, non-diagrammatic methods to rid QED of its troublesome infinities, at least in 
the two-photon term – in fact, before Feynman had said a word at the Pocono meeting, 
Schwinger had delivered a virtuoso, all-day lecture on his new techniques. His arcane 
mathematical approach likewise occupied his lectures that summer in Ann Arbor. 
During the summer school session, Dyson managed to talk several times with 
Schwinger outside of the lecture hall, learning in more detail about the ins and outs of 
Schwinger’s methods. Thus by the middle of the summer of 1948, Dyson – and Dyson 
alone – had spent intense time working side-by-side with both Feynman and Schwinger, 
learning informally how each of them went about making calculations in QED. 

On the bus-ride back to the east coast after the summer school session, Dyson worked 
out two key results: first, that all of Feynman’s relations between diagram elements and 
mathematical expressions – Feynman’s sometimes vague rules of thumb – could be 
derived rigorously from the foundations of quantum field theory; and second, that 
Feynman’s and Schwinger’s very different-looking approaches were in fact 
mathematically equivalent.
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