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Preface

This volume contains a compilation of papers on the Extremely Strongly Correlated Fermi
Liquid (ECFL) theory. The theory provides a systematic framework for calculating the
properties of a fermions on a lattice, when the interaction strength is so large that standard
perturbation techniques based on Feynman diagrams, are rendered invalid. The models
solved in the ECFL theory allow the local interaction to diverge, thereby eliminating or
projecting out a finite fraction of states in the Hilbert space. This elimination turns the
usual fermions into non-canonical projected fermions. These satisfy an anti-commuting non-
canonical algebra, whereby Wick’s theorem is irretrievably lost. The theory now uses the
Schwinger-Tomonaga method of source fields to set up exact non-linear functional differential
equations for Greens functions. Solving these equations is challenging, and several innovations
are further necessary before one can find practical solutions that are testable by experiments.
This package of essential steps forms the core of the ECFL formalism.

After the initial paper in 2011, we‡ have worked on finding explicit solutions and comparing
with a few known, but rare exact solutions, found by other means. These include the d = 0
Anderson impurity model (using the numerical renormalization group), the d =∞, U =∞
Hubbard model (using the dynamical mean field theory), the 1 dimensional t-J model (using
the density matrix renormalization group), and also with high temperature series expansions.
After this extensive testing, we have recently applied the theory to the 2-dimensional t-t′-J
model, and calculated several measurables in the density range relevant to cuprate supercon-
ductors. Recent papers in 2020-21 address two central issues of cuprate superconductivity,
the quasi-linear resistivity and the mechanism of superconductivity. At this stage it appears
that a compilation of the (several) published papers from the ECFL theory providing some
additional context could be helpful. Towards that goal, this compilation contains a topic-
wise breakup of the papers, and also brief comments on each paper. Extensive hyperlinks
are provided to enable easy paper-hopping.
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I Topics (With Comments)

I.1 Basic Formalism

1. Extremely Correlated Fermi Liquids
B. S. Shastry, arXiv:1102.2858 (2011),Phys. Rev. Letts. 107, 056403 (2011). ...Page(14)

§This paper lays the foundations of the ECFL theory. A core issue in formulating a
non canonical theory is to generalize Dyson’s self energy of the canonical theory. This
requires one to identify an object Φ that can be tucked into the denominator of the
Greens function. A subtle and important requirement is that Φ must spawn a sensible
(i.e. non-growing) vertex function (upon differentiating by a bosonic source). The
vertex also defines the self energy through a closure relation. Thus a self-consistent
loop of equations is set up, to be solved by a suitable iterative procedure. An earlier
paper (Extremely Correlated Quantum Liquids, B Sriram Shastry, Phys. Rev. B 81,
045121 (2010)) discusses this issue and proposes an alternate solution. However that
solution leads inevitably to a fermi surface differing in volume from that of the free fermi
gas, thereby violating the Luttinger-Ward theorem. While this may yet be relevant vey
close to the Mott insulating state, one would like to retain the volume at lower particle
densities.

This work finds another possible route for identifying the self energy, while maintaining
continuity with the fermi gas, and thus avoiding the volume violation. Here the basic
factorization of the physical Greens function is introduced, into an auxiliary Greens
function g and a caparison function µ through G(k, ω) = g(k, ω)µ(k, ω). The two
Greens functions G and g describe the fully interacting and a related canonical theory,
with identical particle number sum-rules. This decomposition leads to a sensible self
energy for the auxiliary Greens function g(k, ω), and µ(k, ω) is a second self energy,
but now in the numerator of the physical G. An iterative scheme is proposed here
by introducing a parameter λ ∈ [0, 1] connecting the free fermi gas with the fully
interacting problem. Exact formal equations for the two self energies are given and
systematically expanded in λ to O(λ2).

The paper also contains a phenomenological model for the two self energies which
captures many features of the spectral line shapes.

2. Anatomy of the Self Energy
B. S. Shastry, arXiv:1104.2633; Phys. Rev. B 84, 165112 (2011); Phys. Rev. B 86,
079911(E) (2012). ...Page(24)

§The non-standard Greens function of the extremely correlated electrons proposed in
the paper(1), is structurally very different from the Dyson construction for canonical
fermions. This paper explores the difference, its consequences for the line shapes, and
further refines the phenomenological spectral function proposed above.

This paper also contains a discussion of the Mori formalism. It can be used to define a
Dyson-Mori self energy, if the moments of the spectral function are available from an
independent calculation.

3. Extremely Correlated Fermi Liquids: The Formalism
B. S. Shastry, arXiv:1207.6826 (2012); Phys. Rev. B 87, 125124 (2013). ...Page(43)

http://physics.ucsc.edu/~sriram/papers/paper_119.pdf
http://www.dictionary.com/browse/caparison?s=t
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§This paper introduces two shift identities for the t-J model, and the use of a second
Lagrange multiplier, required in addition to the thermodynamic chemical potential, to
fulfill the number sum-rule on the physical as well as the auxiliary Greens functions.
The paper also details a systematic procedure for computing the self energies and
vertices to high order using functional derivatives on the lower order ones.

4. Theory of extreme correlations using canonical Fermions and path integrals
B. S. Shastry, arXiv:1312.1892 (2013), Ann. Phys. 343, 164 (2014). (Erratum) 373,
717 (2016). ...Page(132)

§This paper shows the analogy between the λ expansion of the correlated electrons,
and the large spin expansion using the Dyson-Maleev representation for spins. It also
has a formulation of the theory in terms of novel λ fermions satisfying a λ dependent
(deformed) fermi algebra, and also a path integral representation in terms of canonical
fermions. This paper also simplifies the treatment using the minimal equations of
motion, discarding extra symmetrizing terms employed earlier (in the paper(1) and in
paper (3)). Later work has used only the minimal equations.

5. Diagrammatic λ series for extremely correlated Fermi liquids
E. Perepelitsky and B. S. Shastry, arXiv:1410.5174, Ann. Phys. 357, 1 (2015).

...Page(183)

§This paper contains a detailed diagrammatic expansion of the Schwinger equations
of motion in terms of the λ parameter. The rules for diagrams enable one to write
down a complete set of distinct diagrams to any order, without recourse to functional
differentiation as in the formalism paper (3). The diagrams contain a Feynman diagram
subset, extended by adding certain additional (Schwinger) diagrams.

6. Fermi Surface Volume of Interacting Systems
B. S. Shastry, arXiv:1808.00405v4; Annals of Physics 405, 155 (2019). ...Page(315)

§This work provides an alternate proof of the theorem asserting the invariance of the
Fermi surface volume at T=0 upon turning on interactions, using the novel concept of
isothermal continuity. For Fermi liquids this theorem is an important ingredient of Lan-
dau’s argument, who used adiabatic continuity. It was demonstrated in the well known
work of Luttinger and Ward, who assumed that perturbation theory is convergent. The
new proof, motivated by the results of ECFL(6), extends the theorem to arbitrarily
strong interactions, 1-d non-Fermi liquid systems, and to singlet superconductors. The
sum-rule is expressed in terms of photoemission accessible spectral functions, and its
rich T dependence is illustrated in paper(18).

I.2 ECFL- Comparisons: Numerical Renormalization Group - An-
derson Impurity Model and Dynamical Mean Field theory

7. Extremely Correlated Fermi Liquid study of the U =∞ Anderson Impurity Model
B. S. Shastry, E. Perepelitsky and A. C. Hewson, arXiv:1307.3492 [cond-mat.str-el],
Phys. Rev. B 88, 205108 (2013). ...Page(86)

§In this work the single impurity Anderson model is solved by the ECFL method, using
the λ expansion to O(λ2). For impurity density nd

<∼ 0.7 and the spectral properties



(6)

are shown to compare well with the numerically exact results from the numerical renor-
malization group method of Wilson. For higher densities nd

>∼ 0.7 good agreement is
also found provided the frequencies are scaled by a corrected quasiparticle weight Z.

8. Reversal of particle-hole scattering-rate asymmetry in Anderson impurity model
Rok Žitko, H. R. Krishnamurthy and B. Sriram Shastry, arXiv:1807.11343. Phys. Rev.
B 98, 161121 (R) (2018). ...Page(310)

§In this work, motivated by a suggestion from the strong coupling solution in paper
(7), the single impurity Anderson model is shown to have a novel separatrix in the
density-U plane, demarcating regions of weak and strong correlations. These regions
are distinguished by opposite signs of the ω3 term correction to =mΣ(ω), beyond the
leading ω2 Fermi liquid behavior.

9. Extremely correlated Fermi liquid theory meets Dynamical mean-field theory: Analyt-
ical insights into the doping-driven Mott transition
R. Žitko, D. Hansen, E. Perepelitsky, J. Mravlje, A. Georges and B. S. Shastry,
arXiv:1309.5284 (2013), Phys. Rev. B 88, 235132 (2013). ...Page(95)

§The ECFL spectral results for d =∞ atO(λ2), are compared with the exact solution of
the Hubbard model in the same limit, with varying values of density and the interaction
U . For U >∼ 2D -the bandwidth, the two theories give a similar behavior at low
frequencies, with a strong particle hole-asymmetry in the imaginary part of self energy.
This benchmarking shows that the O(λ2) ECFL theory gives spectral functions that
extend to higher energies compared to the exact results. The value of the quasiparticle
weight Z is also over-estimated for densities n >∼ 0.75, similar to the impurity model
results in paper (7). Once again, scaling the frequency by a corrected Z improves the
agreement at high densities considerably.

10. ECFL in the limit of infinite dimensions
E. Perepelitsky and B. S. Shastry, arXiv:1309.5373 (2013), Annals of Physics 338, 283-
301 (2013). ...Page(113)

The ECFL equations are analyzed in the limit of d → ∞. The resulting Dysonian
self energy, found by inverting the physical Greens function, is shown to be momentum
independent, as in the exact result. An expansion in λ is developed, giving the equations
used in the DMFT comparison paper(9).

I.3 Resistivity in d =∞
11. Low energy physics of the t-J model in d =∞ using Extremely Correlated Fermi Liquid

theory: Cutoff Second Order Equation
B. S. Shastry and E. Perepelitsky, arXiv:1605.08213. Phys. Rev. B 94, 045138 (2016).

...Page(222)

§Explores the origin and provides one convenient prescription for managing the high
energy tails that the O(λ2) equations develop in the two (distinct limits) of high T
at any density, and at high density n → 1 at low T. A cutoff procedure using a
Tukey window confines the spectrum to roughly twice the (bare) bandwidth. Further
the physical Greens function for the lower Hubbard band is required to satisfy the
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exact normalization 1− n
2

(without λ corrections as in earlier work), and argued to be
essential for getting the right quasiparticle weight. With these ingredients, the resulting
quasiparticle weight Z is close to the exact value from DMFT to fairly high n <∼ 0.9.

12. A Strange Metal from Gutzwiller correlations in infinite dimensions
Wenxin Ding, Rok Žitko, Peizhi Mai, Edward Perepelitsky and B. Sriram Shastry,
arXiv:1703.02206v2; Phys. Rev. B 96, 054114 (2017). DOI: 10.1103/PhysRevB.96.054114

...Page(256)

§The cutoff introduced in the above paper (11) is used to compute the resistivity, heat
capacity and entropy at low T, and compared against exact results from DMFT. The
different regimes of resistivity are reviewed, these include the fermi liquid, the strange
metal, the bad metal and the high T metal, with three distinct crossovers between
them. All these regimes follow from the Gutzwiller (i.e. large U) limit.

13. A Strange Metal from Gutzwiller correlations in infinite dimensions II: Transverse
Transport, Optical Response and Rise of Two Relaxation Rates
Wenxin Ding, Rok Žitko, and B. Sriram Shastry, arXiv:1705.01914; Phys. Rev B 96,
115153 (2017). ...Page(284)

§This examines the T dependence of the Hall constant and the cotangent Hall angle,
as well as the optical conductivity, using the same methods as in the paper (12) above.
A noticeable kink, i.e. change in slope of the cotangent Hall angle versus T 2 is noted
at the effective fermi liquid scale, and the transverse time scale is extracted from the
frequency dependent conductivities. Such a kink seems present in many experiments.

I.4 ECFL Solutions in d = 1 at O(λ2) and preliminary solution in
d = 2

14. Extremely Correlated Fermi Liquids: Self consistent solution of the second order theory
D. Hansen and B. S. Shastry, arXiv:1211.0594, (2012), Phys. Rev. B 87, 245101 (2013).

...Page(66)

§The first set of numerical results from the theory for the t-J model in 2-d. The equa-
tions for the self energies are truncated to O(λ2), and explicit results for electronic
densities in the highly overdoped regime of cuprates n ≤ 0.75, are found. The quasi-
particle weight is larger than expected for n >∼ 0.75, since the normalization condition
for the Greens function is different from the one later emphasized in paper(11), and
employed in recent work.

15. The t-t’-J model in one dimension using extremely correlated Fermi liquid theory and
time dependent density matrix renormalization group
Peizhi Mai, Steven R. White and B. Sriram Shastry, arXiv:1712.05396. ...Page(296)

§An application of the equations reported in the paper (11) and in paper (16) to the
case of the 1-d t-t′-J model are made and the results compared with those from the
density matrix renormalization group (DMRG). The physics of anomalous exponents,
spin-charge separation, and the (non-fermi) Tomonaga-Luttinger liquid state brought
about by quantum fluctuations in 1-d are captured by the ECFL equations, and also
the DMRG solution. The DMRG and ECFL theories yield a self energy with strong k
dependence of a similar nature.
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I.5 ECFL Solutions in d = 2 at O(λ2) and comparison with exper-
iments on Raman Scattering and electrical conductivities

16. Extremely Correlated Fermi Liquid theory of the t-J model in 2 dimensions: Low
energy properties
B Sriram Shastry and Peizhi Mai, arXiv:1703.08142, N. Jour. Phys. 20 013027 (2018).

...Page(269)

§An application of the equations reported in the paper (11), to the case of the 2-d t-J
model is made, at experimentally interesting densities .8 ≤ n ≤ .9, after adding the J
terms. The model contains the second neighbor hopping t′ as well. The quasiparticle
weight is very sensitive to the sign of t′/t, and typically very small. The effective fermi
temperature is calculated to be 2 or 3 orders of magnitude smaller than the bandwidth.
The resistivity changes from convex T 2 to linear-T , and further to concave upwards,
upon changing the sign of t′. This variation has the possibility of explaining the dif-
ference between electron doped and hole doped cuprate systems. The Hall number,
cotangent Hall angle are calculated.

17. Non-resonant Raman Scattering in Extremely Correlated Fermi Liquids
Peizhi Mai and B. Sriram Shastry, arXiv:1805.09935, Phys. Rev. B 98, 115101 (2018).

...Page(301)

§A detailed study of the non-resonant Raman scattering in a 2-d t-J model is presented,
using the ECFL equations developed in paper (16). A quartet of closely related variables
are presented, three from standard polarization geometries and the optical conductivity.
Together they reveal the role played by the model parameters, and the importance of
using correct vertices in narrow band metals.

18. Extremely correlated fermi liquid of t-J model in two dimensions
Peizhi Mai and B. Sriram Shastry, arXiv:1808.09788, Phys. Rev. B 98, 205106 (2018).

...Page(336)

§This work is a continuation of paper (16), and reports detailed calculations of the spec-
tral functions, EDC and MDC dispersion relations, Hall number and a Fermi surface
sum-rule reported in paper (6).

19. Theory of anisotropic elastoresistivity of 2-D extremely strongly correlated metals
Michael Arciniaga, Peizhi Mai and B Sriram Shastry, arXiv:1909.06471; Phys. Rev.
B101,245149 (2020). ...Page(356)

§The effect of anisotropic strain on resistivities is calculated from equations generalizing
those in paper (16) to include the effect of anisotropic strain. The elastoresistivity
tensor is calculated and predictions for the magnitude of this effect are made for cuprate
superconductors. The anisotropic response of a few other measurables (the local density
of states and optical sum-rule) are calculated.

20. Aspects of the Normal State Resistivity of Cuprate Superconductors
B. Sriram Shastry and Peizhi Mai, arXiv:1911.09119; Phys. Rev. B101,115121(2020).

...Page(373)

§The electrical resistivity of three families of single layer cuprate superconductors are
compared with the ECFL theory, as a function of temperature within a broad range of
metallic densities. An almost perfect matching with data is possible.
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I.6 Angle Resolved Photoemission Spectroscopy (ARPES) related

21. Extremely Correlated Fermi Liquid Description of Normal State ARPES in Cuprates
G.-H. Gweon, B. S. Shastry and G. D. Gu, arXiv:1104.2631 (2011), Phys. Rev. Letts.
107, 056404 (2011). ...Page(19)

§The ECFL spectral lines are compared with experiments on several cuprate materials.
The ARPES experiments done at different incident photon energies give quite different
looking spectra, this work shows that varying an elastic scattering parameter together
with the line shapes from ECFL theory fit experiments very closely. This paper observes
that a low energy kink ω ∼ 60meV present in the ECFL spectrum, is in close accord
with experimental kinks.

22. Dynamical Particle Hole Asymmetry in Cuprate Superconductors
B. S. Shastry, arXiv:1110.1032 (2011), Phys. Rev. Letts. 109, 067004 (2012). ...Page(38)

§This work emphasizes the occurrence of a distinct skew or asymmetry of ECFL spectral
lines, also seen in experiments. This implies the absence of particle hole symmetry in
the self energy at even modestly frequencies ~ω ∼ 40 meV. Further tests for establishing
this asymmetry in experiments is proposed.

23. Origin of Kinks in Energy Dispersion of Strongly Correlated Matter
Kazue Matsuyama, Edward Perepelitsky and B Sriram Shastry, arXiv:1610.08079,
Phys. Rev. B 95, 165435 (2017). ...Page(236)

§This work provides a review of the kinks in ARPES, and contrasts two competing
view points for explaining it, along with precise tests for each of them. One view
of the kinks locates some bosonic degree of freedom at the kink energy, and leads to
specific predictions for the energy dispersion of the electrons. Another view, initiated in
paper(21) and developed further in paper(2), and paper(4) ascribes these to extremely
strong correlations, and comes with another set of predictions. Considerable data is
analyzed using the theory and several testable predictions made.

I.7 High T expansion and ECFL comparison

24. Electronic spectral properties of the two-dimensional infinite-U Hubbard model
E. Khatami, D. Hansen, E. Perepelitsky, M. Rigol, B. S. Shastry, arXiv:1303.2657
[cond-mat.str-el] (2013), Phys. Rev. B 87, 161120 (R) (2013). ...Page(81)

§The 2-d U = ∞ Hubbard model electron Greens function is studied here. Several
types of (low order) moments of the Greens functions are calculated here using high
Temperature cumulant expansion. In this formalism non canonical fermions can be
treated in a straightforward but laborious fashion. The comparison with ECFL spectra
is found to be possible at low densities n <∼ 0.75, and not too low T, and several useful
results are compiled.

25. Linked-Cluster Expansion for the Green’s function of the Infinite-U Hubbard Model
E. Khatami, E. Perepelitsky, M. Rigol and B. S. Shastry, arXiv: 1310.8029 (2013),
Phys. Rev. E 89, 063301 (2014). ...Page(170)

§The high T series for the U = ∞ Hubbard model Greens function is calculated to
eighth order in t using a linked cluster expansion. The electronic spectral function,
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the thermopower and quasiparticle weight are calculated and compared to the ECFL
results. The electron Greens function is tabulated up to O(t4) in k-space, and (the
long) higher order terms up to O(t8) are available on request.

I.8 Quasi-linear resistivity and d-wave superconductivity in cuprates

26. Aspects of the normal state resistivity of cuprate superconductors,
B. Sriram Shastry and Peizhi Mai, arXiv:1911.09119; Phys. Rev. B101, 115121 (2020).
...Page(373)

§Currently available data on density and temperature dependence of resistivity of sin-
gle layer cuprates, is compared with the results of ECFL theory. Calculations are
performed to O(λ2), with only one unknown parameter for each family of compounds,
determined by the fits. Experiments on electron doped as well as hole doped materials
are contrasted successfully with this theory.

27. Extremely correlated superconductors,
B. Sriram Shastry, arXiv:2102.08395; Annals of Physics 434, 168614 (2021)....Page(384)

§Superconductivity in the t-J model is studied by generalizing the Gor‘kov equations to
include very strong correlations. Systematic equations for the superconducting instabil-
ity are formulated within the λ expansion. The leading order equation is studied using
a phenomenological spectral function for the metallic state. A superconducting phase
appears away from half filling, and persists for a range of densities. A simple formula
for the Tc is obtained, where the interplay between Mott-Hubbard localization, Cooper
pairing due to the exchange energy J, and its dependence on the band parameters are
made explicit.



(11)

II Included papers (most recent first)

• Extremely correlated superconductors,
B. Sriram Shastry , arXiv:2102.08395; Annals of Physics 434, 168614 (2021).
https://doi.org/10.1016/j.aop.2021.168614 ...Page(384)

• Aspects of the normal state resistivity of cuprate superconductors,
B. Sriram Shastry and Peizhi Mai, arXiv:1911.09119; Phys. Rev. B101, 115121 (2020).
DOI: 10.1103/PhysRevB.101.115121 ...Page(373)

• Theory of anisotropic elastoresistivity of two-dimensional extremely correlated metals,
Michael Arciniaga, Peizhi Mai and B. Sriram Shastry, arXiv:1909.06471; Phys. Rev.
B98, 205106 (2018).
DOI: 10.1103/PhysRevB.101.245149 ...Page(356)

• Extremely correlated fermi liquid of t-J model in two dimensions,
Peizhi Mai and B. Sriram Shastry, arXiv:1808.09788; Phys. Rev. B98, 205106 (2018).
DOI: 10.1103/PhysRevB.98.205106 ...Page(336)

• Fermi Surface Volume of Interacting Systems,
B. Sriram Shastry, arXiv:1808.00405v4; Annals of Physics 405 155 (2019).
DOI:https://doi.org/10.1016/j.aop.2019.03.016 ...Page(315)

• Reversal of particle-hole scattering-rate asymmetry in Anderson impurity model,
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We present the theory of an extremely correlated Fermi liquid with U ! 1. This liquid has an

underlying auxiliary Fermi liquid Green’s function that is further caparisoned by extreme correlations.

The theory leads to two parallel hierarchies of equations that permit iterative approximations in a certain

parameter. Preliminary results for the spectral functions display a broad background and a distinct T
dependent left skew. An important energy scale !ð ~k; xÞ emerges as the average inelasticity of the FL

Green’s function, and influences the photoemission spectra profoundly. A duality is identified wherein a

loss of coherence of the ECFL results from an excessively sharp FL.

DOI: 10.1103/PhysRevLett.107.056403 PACS numbers: 71.10.Fd

Introduction.—Correlated electron systems attract two
distinct approaches. An intermediate to strong coupling
approach is used when the interaction U is comparable to
the band width 2W, and has seen some success in recent
times [1]. On the other hand, Anderson [2] has argued that
myriad experiments on high Tc superconductors require a
better understanding of the t-J model physics. This model
sets U ! 1 right away, i.e., leads to extreme correlations
and involves Gutzwiller projected Fermi operators that are
non canonical. Thus Wick’s theorem is immediately lost,
and perturbative schemes encoding the Feynman Dyson
approach become useless. Since this approach is at the root
of most current many body physics text books, the task of
understanding the t-J model is not lightly undertaken.

The Schwinger approach to interacting field theories is a
powerful and attractive alternative. It is fundamentally non
perturbative, where Wick’s theorem is bypassed by dealing
with suitable inverse Greens functions. Conventional many
body theory for canonical Fermions can also be cast into
this approach, and leads to the standard results. In Ref. [3]
(henceforth referred to as paper I), the author has recently
applied the Schwinger method to the t-J model, and found
a class of solutions that are termed as extremely correlated
quantum liquids. That state is presumably realized under
suitable conditions. However it gives a Fermi surface (FS)
volume that is always distinct from that of the Fermi gas.
This is contrast to the case of Fermi liquids (FL), where the
important theorem of Luttinger and Ward (LW) [4,5] man-
dates the invariance of the FS volume under interactions.

In this Letter we propose a state of matter termed as an
extremely correlated Fermi liquid (ECFL). The ECFL
found here, represents an alternate class of solutions for
the t-J model, where the Fermi surface satisfies the Fermi
gas (i.e., LW) volume. In this work we present the essen-
tials of the formalism, and display preliminary results on
spectral functions that are suggestive of the relevance of
the ECFL state to cuprate materials. An inherent flexibility
of the Schwinger approach permits the construction of an
alternate class of solutions from the one found in paper I.

The excitations of the ECFL state may be thought of as
bare electrons undergoing a double layer of renormaliza-
tion: the FL dressing into quasiparticles that are further
caparisoned (i.e., decorated) by extreme correlations.
Formalism.—The physical projected electronic Green’s

function G satisfies an equation of motion (EOM) (I-29)
written compactly in matrix form as

ð@!i #!ÞGði; fÞ ¼ #"ði; fÞf1# #ðiÞg#V i % Gði; fÞ
# Xði; "jÞ % Gð"j; fÞ # Yði; "jÞ % Gð"j; fÞ;

(1)

where ! is the chemical potential and an implicit integra-
tion over space-time variables such as "j, written with bold
overlined letters, is implied,

Xði; jÞ ¼ #tði; jÞ½DðiÞ þDðjÞ(
þ 1

2Jði; "kÞ½DðiÞ þDð "kÞ("ði; jÞ
Yði; jÞ ¼ #tði; jÞ½1# #ðiÞ # #ðjÞ(

þ 1
2Jði; "kÞ½1# #ðiÞ # #ð "kÞ("ði; jÞ:

(2)

In the above expression [6], we used #ðiÞ ¼ Gkði; iÞ with
the k conjugation defined by ðMkÞ$1$2

¼ M "$2 "$1
$1$2, and

D$1$2
ðiÞ ¼ $1$2

"
"V "$1 "$2

i

. The added (bosonic) source term

V $1$2
i ð!iÞ is central to this approach; it is a space-time

dependent field that couples to the charge and
spin densities through a term in the action:P

i$

R%
0 d!V

$1$2
i ð!ÞX$1$2

i ð!Þ, where X$1$2
i is the spin and

density operator at site i that acts as j$1ih$2j.
An important technical problem highlighted in I is to

deal with the time dependence of the #ðiÞ term in Eq. (1)
which makes the theory noncanonical. Here we use the
decomposition into two factors [7]:

G ða; bÞ ¼ gða; "bÞ %&ð "b; bÞ; (3)

and express #ðiÞ ¼ ½gði; "jÞ %&ð"j; iÞ(k. The object g is an
auxiliary FL Green’s function and &ð "b; bÞ is an appurte-
nant (or supplementary) factor that is determined below.
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Antiperiodic boundary conditions Gð0; !fÞ ¼ #Gð%; !fÞ
and Gð!i; 0Þ ¼ #Gð!i;%Þ imply that both factors g and
& are Fourier transformed using fermionic Matsubara
frequencies. We define the inverse Green’s function
g#1ða; "bÞ % gð "b; bÞ ¼ 1"ða; bÞ, and then a vertex function
#$1$2
$3$4ðp; q; rÞ ¼ # "

"V $3$4
r

fg#1
$1$2

ðp; qÞg. Thus g, & and

g#1 are matrices in the spin space, and the vertex # has
four indices. We also define a linear operator

Lði; fÞ ¼
!
tði; "jÞ') % gð"j; fÞ # 1

2
Jði; "jÞ') % gði; fÞ

"

*
!
"

"V )
i

þ "

"V )
"j

"
; (4)

where the matrix ')$1$2
¼ $1$2. The asterisk is used

as a place holder that transmits the spin indices
(after conjugation) of the ' matrix to the source matrix
V in the functional derivative. This notation used is
illustrated in component form by % % %')$a$b

% % %"="V )
"j
¼

% % %$a$b % % %"="V "$a; "$b
"j

.

A useful chain rule for the functional derivative is noted

DðrÞGða; bÞ ¼ ') % gða; "cÞ %#)ð"c; "d; rÞ % Gð "d; bÞ

þ ') % gða; "bÞ %
!
"

"V )
r

&ð "b; bÞ
"
: (5)

Using this chain rule, we see that

Xði; "jÞ % Gð"j; fÞ + $ði; "bÞ % Gð "b; fÞ þ%ði; fÞ; (6)

where

$ði; mÞ ¼ Lði; "iÞ % g#1ð"i; mÞ
%ði; mÞ ¼ #Lði; "iÞ %&ð"i; mÞ:

(7)

Thus the two fundamental functions of this formalism $,
% are closely connected as they arise from applying
the same operator to the two factors of G. Defining
Y0ði; jÞ ¼ ½#tði; jÞ þ 1

2 Jði; "kÞ"ði; jÞ(1, and Y1ði; jÞ ¼
tði; jÞ½#ðiÞ þ #ðjÞ( # 1

2"ði; jÞJði; "kÞ½#ðiÞ þ #ð "kÞ(, also de-
note the Fermi gas Green’s function

g#1
0 ði; fÞ ¼ f#ð@!i #!Þ1#V ig"ði; fÞ # Y0ði; fÞ: (8)

Collecting everything, the exact EOM can now be written
neatly as

fg#1
0 ði; "jÞ # (Y1ði; "jÞ # ($ði; "jÞg % gð"j; "fÞ %&ð"f; fÞ
¼ "ði; fÞ½1# (#ðiÞ( þ (%ði; fÞ: (9)

We have introduced the parameter ( above, with 0,(,1,
in order to provide an adiabatic path between the Fermi gas
at ( ¼ 0 and the ECFL at ( ¼ 1, and also an iterative
scheme in powers of ( connecting the two endpoints.

We now choose the hitherto undetermined function& as

&ði; fÞ ¼ "ði; fÞ½1# (#ðiÞ( þ (%ði; fÞ; (10)

so that Eq. (9) reduces to a canonical FL type equation:

fg#1
0 ði; "jÞ#(Y1ði; "jÞ#($ði; "jÞg %gð"j;fÞ¼"ði;fÞ: (11)

Notice that the right-hand side has a pure " function as in a
canonical Fermi liquid type theory. To summarize, the
EOM Eq. (1) under the decomposition Eq. (3) leads to
Eq. (9). In turn this splits exactly into two coupled sets of
equations Eq. (7), (10), and (11) for the two factors g and
&. Note that the entire procedure is exact, we write explicit
forms of these equations below and then introduce approxi-
mate methods to solve them.
Inverting we find Dyson’s equation for the auxiliary FL

Green’s function:

g#1ði; mÞ ¼ fg#1
0 ði; mÞ # (Y1ði; mÞ # ($ði; mÞg: (12)

Taking functional derivatives of Eq. (10) and (12) with
respect to V , and comparing with Eq. (4) and (7) we
generate two parallel hierarchies of equations for g and
& that form the core of this formalism. The hierarchy for g
is essentially autonomous and drives that for &. Starting
with the Fermi gas at Oð(0Þ, an iterative process similar to
the skeleton graph expansion of LW [4] can be built up,
such that terms of Oð(nÞ arise from differentiating lower
order terms of Oð(n#1Þ. Systematic approximations may
thus be arranged to include all terms of Oð(nÞ for various
n [8]. The number of particles is given by 1

2nðiÞ ¼
gði; "iÞ&ð"i; iÞ, and with

U $1$2
$3$4ða; b; cÞ +

"&$1$2
ða; bÞ

"V $3$4
c

; (13)

the equations to solve simultaneously are Eq. (7), (12), and
(10). The density and spin density response functions
(I-F1), (I-F7) can be found from differentiating G, i.e.,
&$1$2
$3$4ðp; q; rÞ ¼ "

"V $3$4
c

fG$1$2
ðp; qÞg.

Zero source limit in Fourier space.—When we turn off
the sourceV , the various matrix function G, g, & become
spin diagonal and translation invariant so we can Fourier
transform these conveniently. We note the basic result
expressing G as a simple product of two functions in k
space:

GðkÞ ¼ gðkÞ&ðkÞ; &ðkÞ ¼ 1# (n
2
þ (%ðkÞ;

g#1ðkÞ ¼ i!k þ!# "kð1# (nÞ # ($ðkÞ;
(14)

where "k is the Fourier transform of the hopping matrix
#tði; jÞ, and an uninteresting constant term is absorbed in
! here and below.
Here, g plays the role of an underlying auxiliary FL with

a self energy$, and% acts as an extra spectral weight that
vanishes at high frequency, leaving the exact weight 1# n

2
valid for a projected electron (as in paper I) for ( ¼ 1.
Denoting

P
k ! 1

Ns%

P
i!k; ~k

with Ns sites, the particle num-

ber sum rule is
P

k&ðkÞgðkÞ ¼ n
2 , i.e.,
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n

2
¼

X

k

gðkÞ þ (
X

k

!
%ðkÞ # n

2

"
gðkÞ: (15)

In this formalism, at k- kF, x ¼ 0 that is relevant to the

LW sum rule, the RegðkÞ dominates ReGð ~k; 0Þ (since

Re%ð ~k; 0Þ is smooth through the FS). Requiring consis-
tency with the LW theorem forces us to pin any sign change

of Regð ~k; 0Þ to the free case, whereby we impose a second
level sum rule

X

k

%ðkÞgðkÞ ¼ n2

4
; and

X

k

gðkÞ ¼ n

2
: (16)

This can be viewed as a splitting of the usual number sum
rule Eq. (15) [9]. With Eðp1; p2Þ ¼ ½"p1

þ "p2
þ 1

2 Ĵð0Þ þ
1
2 Ĵðp1 # p2Þ( we find

$ðkÞ ¼
X

p

Eðk; pÞgðpÞ#ðaÞðp; kÞ;

%ðkÞ ¼
X

p

Eðk; pÞgðpÞUðaÞðp; kÞ;
(17)

and the spin labels are from paper I with the usual signifi-
cance #ðaÞ ¼ #ð2Þ ##ð3Þ ¼ 1

2#
ðsÞ # 3

2#
ðtÞ.

Next we introduce the spectral representation of various

functions Q that vanish at infinity: Qði!QÞ ¼
R1
#1 dx

)QðxÞ
i!Q#x and )QðxÞ ¼ # 1

* ImQðxþ i0þÞ, with xþ +
xþ i0þ. The Matsubara frequency !Q is fermionic
(bosonic) if Q is fermionic (bosonic). Proceeding further,
at any order in (, the two hierarchies give us coupled
equations for the spectral densities of the physical particles

)Gð ~k; xÞ as well as the underlying Fermi liquid )gð ~k; xÞ, in
terms of the two objects ) "$ð ~k; xÞ and )%ð ~k; xÞ and their
Hilbert transforms. The Lehmann representation implies

that )Gð ~k; xÞ is positive at all ~k, x. In making approxima-
tions, this important and challenging constraint must be
kept in mind.

Solution of g#1 and& to orderOð(Þ2.—We next discuss
a systematic expansion in powers of ( [8], obtained by
taking functional derivatives of Eq. (10) and (12) to gen-
erate expressions for the vertices given the Green’s func-
tions via#-# "

"V g#1 andU- "
"V &. To lowest order in

(, the bare vertex #ðaÞ ¼ #1, this term is absorbed in a
renormalization of the band dispersion to ""k in Eq. (14)
[10], and the remaining term denoted by "$ðkÞ. To this
order UðaÞ ¼ 0. Proceeding to the next non trivial order
in (, by taking the functional derivative of Eq. (10) and
(12) we find after a brief calculation:

%ðkÞ ¼ #2(
X

p;q

Eðk; pÞgðpÞgðqÞgðqþ p# kÞ;

"$ðkÞ ¼ #2(
X

p;q

Eðk; pÞ½Eðp; kÞ þ Eðqþ p# k; pÞ(

* gðpÞgðqÞgðqþ p# kÞ:

(18)

From Eq. (14) we note that these expressions Eq. (18) lead
to a calculation of g#1 and & correct up to Oð(2Þ.
Frequency dependent corrections arise only to second or-
der in (, which is analogous to the structure of the canoni-
cal many body theory within the skeleton graph expansion.
We may now set ( ¼ 1 and study the resulting theory as
the first step in exploring this formalism.
Denote fðxÞ ¼ 1

ðexp%xÞþ1 as the Fermi distribution func-

tions and "fðxÞ ¼ 1# fðxÞ, and denote the usual Fermi
factors from second order theory

W ¼ ffðuÞfðwÞ "fðvÞþfðvÞ "fðuÞ "fðwÞg"ðuþw#v#xÞ;

a function of the frequencies u, v, w, x, and

Y ¼
Z
u;v;w

W)gð ~q; wÞ)gð ~p; uÞ)gð ~qþ ~p# ~k; vÞ; (19)

a function of ~k, ~p, ~q, and x. We may then write the spectral
functions corresponding to Eq. (18)

) "$ð ~k; xÞ ¼ 2
X

~p; ~q

Eð ~k; ~pÞ½Eð ~p; ~kÞ þ Eð ~qþ ~p# ~k; ~pÞ(Y;

)%ð ~k; xÞ ¼ 2
X

~p; ~q

Eð ~k; ~pÞY: (20)

The functions appearing in Eq. (20) are familiar from
Fermi liquids [4,5], and encode the usual phase space
constraints of that theory. This leads to the low tempera-
tures behavior -maxfx2; ð*kBTÞ2g, for both objects
Im%ðk; x; TÞ and Im "$ðk; x; TÞ. The real parts of these
objects are smooth through the Fermi surface, as one
expects from the real part of the self energy in a FL, and
hence motivates the second level sum rule Eq. (16).
From Eq. (14) we write the exact expression for the

physical spectral function )G:

)Gð ~k; xÞ ¼ )gð ~k; xÞ
!#
1# n

2

$
þ 'k # x

!ð ~k; xÞ
þ +ð ~k; xÞ

"
; (21)

where 'k ¼ "̂k #!, and the important energy scale

!ð ~k; xÞ and the term + is defined as

!ð ~k; xÞ ¼ #) "$ð
~k; xÞ

)%ð ~k; xÞ
; (22)

+ð ~k; xÞ ¼ Re%ð ~k; xþÞ þ 1

!ð ~k; xÞ
Re$ð ~k; xþÞ: (23)

The sign of the energy scale ! in Eq. (22) is expected to be
positive from Eq. (20). The dimensionless term + aug-
ments the spectral weight at the Fermi level. The equations
necessary to solve the theory to Oð(2Þmay be summarized
as Eq. (14), (16), and (18) and Ref. [10] giving rise to the
spectral function Eq. (21). These require further numerical
work that is underway, it leads to spectral functions in 2
and 3 dimensions that will be published separately.
However it also provides a very interesting insight about
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the theory in high dimensions that is pursued analytically
next.

Solution in high dimensions.—In sufficiently high di-
mensions, we show next that the dimensionless term +
vanishes identically leading to a great simplification. For
sufficiently high dimensions we can ignore the momentum

dependence of Y in Eq. (19) and assume )$ð ~k; xÞ -
C$$ðxÞ, and ) "%ð ~k; xÞ - C%$ðxÞ, as functions of fre-
quency only. Here $ðxÞ extends over energy range
!c -Oð2WÞ, and C$ has dimensions of inverse energy
and is positive due to ) "$. Its Hilbert transform is called

hðxÞ + P
R
dy $ðyÞx#y . We use an analytically tractable Fermi

liquid model [11] with ! ¼ *kBT, where we set

$ðxÞ ¼ fx2 þ !2ge#C$fx2þ!2g=!c : (24)

The peak value of C$$ðxÞ is of Oð1Þ and independent of
C$ [12]. The other constant C% is dimensionless and
negative. To complete the model, we note that the real
parts are given in terms of hðxÞ as Re "$ðxþÞ ¼ C$hðxÞ and
Re%ðxþÞ ¼ C%hðxÞ. With this choice the auxiliary
spectral weight +ðk; xÞ vanishes identically in Eq. (23).
With 'ðxÞ + *C$$ðxÞ and ,ð'; xÞ + ½x# '# C$hðxÞ(
we may write )gð'; xÞ ¼ 1

*
'ðxÞ

'2ðxÞþ,2ð';xÞ and Regð'; xÞ ¼
,ð';xÞ

'2ðxÞþ,2ð';xÞ . Denoting hQð'Þi' ¼
R
d'NBð'ÞQð'Þ, where

NBð'Þ is the band density of states per spin, the chemical
potential is fixed using n

2 ¼
R1
#1 dxfðxÞh)gð'; xÞi'.

The energy parameter !ð ~k; xÞ in Eq. (22) is a constant.
We scale out a factor to define

!o ¼
n2

4
!ð ~k; xÞ ¼ #n2

4

C$
C%

: (25)

The physically observable electronic spectral function
reads

)Gð'; xÞ ¼
'ðxÞ
*

ðf1# n
2gþ ðn24 Þf

'#x
!0

gÞþ
'2ðxÞ þ ,2ð'; xÞ : (26)

Here, the condition ðfÞþ + maxð0; fÞ, is inserted in the
ECFL factor to guarantee the positivity of the spectral
function for x . ' [13]. We can determine !0 directly
from the second level sum rule Eq. (16):

!0 ¼
Z 1

#1
dxfðxÞh)gð'; xÞf'# xgi': (27)

Thus ð2=nÞ!0 is the average inelasticity jjð'# xÞjj of the
FL Green’s function over the entire occupied band. It
vanishes if )g were a pure delta function, as in a Fermi
gas, but is non zero in a Fermi liquid. The linear energy
term in Eq. (26) thus fundamentally arises to provide the
extra density to )G, compensating the spectral depletion
due to the first factor 1# n

2 [originating in the non canoni-
cal nature of the projected electrons (paper I)].

In the numerical solution of the model, we can vary the
shapes of the spectra from sharp to broad by controlling the
energy scale !0 via the parameters C$ and !0 in the FL
function $ðxÞ. For illustration we neglect the distinction
between the band energy and the renormalized ""k, choose a
flat band density of states per spin )0ð"Þ ¼ 1

2W(ðW2 # "2Þ
hence the band width is 2W. Choose C$ ¼ 1 W ¼ 104 K
[14], this gives !0 - 600 K in the cases studied. The
spectral shapes from Eq. (26) have a characteristic left
skew that is visible in Fig. 1, and also in many experimen-
tal spectra in high Tc systems. The marginal Fermi liquid
hypothesis [15] assumes a linear correction to the spectral
function, but is symmetric about the Fermi energy, i.e., of
the form j'# xj instead of the term in Eq. (26).
From Eq. (27) a fascinating duality emerges between the

FL and the ECFL [16]. When the FL is overall sharp such
that !0 is small, the ECFL is significantly broadened. This
happens since in the ECFL factor in Eq. (26), the coeffi-
cient of '# x becomes large and dominates the 1# n

2
contribution. The function !ðkÞ in Eq. (22) could vanish
at points in k space in the full theory (without the assump-
tion of k independence). At those points the ECFL spectra
would lose all coherence by this duality. A loss of coher-
ence would inevitably suggest a (false) pseudogap, if our
current viewpoint were unavailable. The linear term also
leads to a sloping term in the local density of states of the
ECFL that the STM technique would probe, although its
magnitude and sign are less reliably computed—depend-
ing as they do on the high energy scales W and !0. In
conclusion, we have presented essential ideas underlying
the theory of extremely correlated Fermi liquids. We have
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FIG. 1 (color online). The density n ¼ :85 and !0 ¼ 0:25.
From left to right )GðxÞ for energies (in units of W) ' ¼
#0:3, #0:2, #0:1, 0.,0.05 for both the FL (dashed) and the
ECFL(solid) theories. Inset in (A): provides an enlarged view of
the ' ¼ #0:1 plots after inversion, and displays the left-skew
asymmetry of the ECFL spectrum relative to the FL. Inset in (B)
shows the DC resistivity )ðTÞ within a bubble approximation as
a function of T for the FL (blue) and the ECFL (red). Because of
spectral redistribution, the ECFL reaches linear T behavior at a
lower T than the FL.
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shown that an explicit low order solution is very promising
in the context of explaining the photoemission spectra of
the cuprate materials.

Detailed numerics and comparison with experiments are
currently underway.

This work was supported by DOE under Grant
No. FG02-06ER46319.
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The normal-state single particle spectral function of the high temperature superconducting cuprates,

measured by the angle-resolved photoelectron spectroscopy (ARPES), has been considered both anoma-

lous and crucial to understand. Here, we report an unprecedented success of the new extremely correlated

Fermi liquid theory by one of us [B. S. Shastry, Phys. Rev. Lett. 107, 056403 (2011)] to describe both laser
and conventional synchrotron ARPES data (nodal cut at optimal doping) on Bi2Sr2CaCu2O8þ! and

synchrotron data on La1:85Sr0:15CuO4. It fits all data sets with the same physical parameter values, satisfies

the particle sum rule and successfully addresses two widely discussed kink anomalies in the dispersion.

DOI: 10.1103/PhysRevLett.107.056404 PACS numbers: 71.10.Ay, 74.25.Jb, 74.72.Gh, 79.60."i

Angle resolved photoelectron spectroscopy (ARPES)
was the first probe to provide a detailed view of the
anomalous nature of high temperature cuprate supercon-
ductors, discovering unexpectedly broad spectra with in-
tense and asymmetric tails that have remained an enduring
mystery for the last two decades. Conventional data taken
with high energy (* 15 eV) photons from synchrotron
light sources have recently been supplemented with laser
ARPES data [1,2] from lower energy (6 or 7 eV) sources.
The latter show considerably sharper features near the
Fermi energy. A drastic possibility to account for this
distinction is that the sudden approximation could
break down for the smaller photon energies used in laser
ARPES [3].

An important unanswered question is whether the results
of the two spectroscopies could be reconciled in a single
theoretical framework that does not abandon the sudden
approximation. More broadly, can we understand the wide
variety of observed lines shapes in a theoretical framework
with a sound microscopic basis and a single set of
parameters?

In this Letter, we confront a recent theory of extremely
correlated Fermi liquids (ECFL) proposed by Shastry [4]
with the above challenge. The new formalism is complex
and requires considerable further effort to yield numerical
results in low dimensions. In the limit of high enough
dimensions, however, a remarkably simple expression for
the Green’s function emerges; it is significantly different
from the standard Fermi-liquid Dyson form, while satisfy-
ing the usual sum rules. We use this simple version of
ECFL Green’s function in this Letter, motivated by the
attractive spectral shapes produced with very few parame-
ters [4]. In this Letter we show that already the simplest
version of the ECFL theory, with very few parameters, is
very successful in detailed fitting of a wide variety of
normal-state cuprate ARPES line shapes. Interesting
predictions are made for the higher temperature spectral
line skew.

Our focus in this Letter is on the data of optimally doped
Bi2Sr2CaCu2O8þ! (Bi2212) and La1:85Sr0:15CuO4 (LSCO)

superconductors in the normal state, taken with ~k along the
nodal direction connecting (0, 0) to ("=a, "=a). Most of
the data is taken from the published literature, while
some original data are also presented (Bi2212 data in
Figs. 4 and 5). Our sample is an optimally doped Bi2212
(Tc ¼ 91 K), grown by the floating zone method at the
Brookhaven National Laboratory (BNL), and was mea-
sured at the Stanford Synchrotron Radiation Lightsource
(SSRL) beam line 5" 4 using 25 eV photons. The reso-
lutions are 15 meV (energy) and 0.3$ (angle).
Line shape model.—The ECFL spectral function is given

as a product of an auxiliary Fermi-liquid (AFL) spectral

function AFLð ~k; !Þ and a second frequency dependent
‘‘caparison’’ factor [4,5]:

Að ~k; !Þ ¼ AFLð ~k; !Þ
!
1" n

2
þ n2

4
' # ~k "!

!0

"

þ
; (1)

where n is the number of electrons per CuO2 unit cell,

ðXÞþ ( maxðX; 0Þ, # ~k ¼ ð1" n
2Þ"ð ~kÞ, where "ð ~kÞ is the

bare one-electron band dispersion (see later). Here,

AFLð ~k; !Þ ¼ 1
" Im

1
!"# ~k""ð!Þ with

Im"ð!Þ ¼ !2 þ $2

#0
exp

!
"!2 þ $2

!2
0

"
þ %; (2)

where $ ¼ "kBT, T is the temperature, and ! is to be
understood as !" i0þ. Here, !0 is the AFL energy scale
(i.e., high ! cutoff), and #0 governs the lifetime, and, by
causality, the quasiparticle weight (i.e., the wave function
renormalization) of the AFL, ZFL ¼ ð1þ !0ffiffiffi

"
p

#0
Þ"1, as iden-

tified from Re" [6].
The ECFL energy scale !0 measures the ‘‘average

intrinsic inelasticity’’ of the AFL. It is given [4] as
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!0 ¼
Z 1

"1
d!fð!ÞhAFLð ~k; !Þð# ~k "!ÞiBZ; (3)

where h'iBZ denotes averaging over the first Brillouin zone.
The parameters that enter this description are now listed.

The ‘‘primary parameters’’ defining the ECFL fit consist of
the dispersion # ~k taken from band theory, the density n,
temperature T, and the AFL parameters !0, !0, ZFL, #0.
Of the last four parameters, only two are free parameters.
For instance, !0 and ZFL can be taken as free parameters,
and#0 and!0 can be calculated using the equation for ZFL

and Eq. (3), respectively.
The parameter % in Eq. (2) is an additional ‘‘secondary

parameter’’ [7] with respect to the ECFL theory [4]. Its
origin is in impurity scattering as argued in [8], and
additionally, in scattering with surface imperfections. Our
fits determine % ) 0:03 eV for laser ARPES and % )
0:15 eV for conventional ARPES. Greater penetration
depth in laser ARPES suggests that it should be less
sensitive to surface imperfections, thereby yielding a
smaller %. We therefore propose that this parameter
summarizes the effective sample quality in different ex-
periments. The difference in line shapes arising from these
values of % is demonstrated in Figs. 1(b) and 1(c).

Our strategy is to fix a common set of intrinsic parame-
ters for all the materials, and allow % to be determined
separately for each class of data. The most time consuming
part is the calculation of !0, the results of which are
summarized in Fig. 1(a).

In our line shape analysis (i) we first set n ¼ 0:85,
corresponding to the optimal doping. (ii) Here # ~k is taken
to be the unrenormalized band dispersion, taken from the
literature [9], and then scaled to fit the observed occupied
band width, 1.5 eV, of the Bi2212 ARPES result [10,11].
(iii) We choose ZFL ¼ 1=3, to account for the dispersion
renormalization due to the high energy kink [10,12], which
in this theory is caused by the energy scale !0 (cf. Fig. 5).
(iv) Finally, in all simulations, we include the finite energy

resolution effect and the finite angle resolution effect as a
combined Gaussian broadening (10 meV FWHM for laser
ARPES and 25 meV FWHM for conventional ARPES) in
energy [13].
Line shape fit for laser ARPES.—Figure 2 shows the fit

of the laser ARPES data with the ECFL line shape. These
fits were made using a procedure that is somewhat more
restrictive than that in the recent work of Casey and
Anderson [14,15] invoking the x-ray edge singularity ideas
of Doniach-Sunjic, Anderson-Yuval, and Nozieres-de
Dominicis [16] (CADS): we are using global, rather than
perspectrum, fit parameters. However, our fit is somewhat
less restricted than other fits shown in this Letter: here we
allow a small variation of # ~k as in Ref. [14]. We find an
excellent fit quality, at least comparable to CADS [14]. The
gray line in panel (a) shows our calculation for k > kF. Our
expectation is that, were the data for k > kF available, we
would find a reasonable fit in this k region as well [17], as
for other data sets below.
Line shape fit for conventional ARPES.—We find that

the magnitude of the parameter !0 (0.5 eV) determined
from the fit of the sharp laser data works very well also
for the conventional ARPES data [18]. Thus, all parame-
ters other than % are fixed, with one small exception in
Fig. 4(d), where a slight change in !0 produces a much
better fit over a larger energy range for LSCO.

FIG. 1 (color online). (a) !0 as a function of !0 for various
ZFL. Other primary ECFL parameter values are n ¼ 0:85, T ¼
100 K, and # ~k as described in the text. A small % value,
0.010 eV, was used for this plot, which is used as a ‘‘lookup
table’’ during the fit. (b),(c) Examples of the spectral function
calculated with different values of the effective sample quality
parameter %. See the caption of the next figure for parameter
values used. The instrumental energy broadening of 10 meV
(FWHM) is included.

FIG. 2 (color online). Laser ARPES data (symbols, Bi2212)
from Ref. [14] fit with the ECFL line shape (red lines). The free
parameters of the fit were !0 (0.5 eV), % (0.032 eV), and # ~k
(shown). Fixed parameters: n (0.85), ZFL (1=3). Derived parame-
ters: !0 (0.12 eV), #0 (0.14 eV). Other than % and # ~k, the same
parameters are used elsewhere in the Letter. In (a), the gray line
corresponds to the theoretical curve with # ~k ¼ 0:15 eV.
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Figure 3 shows our fit of the data in Ref. [19] with a
single free parameter %. The amount of the ‘‘extrinsic
background’’ in ARPES is an issue of importance
[20–22], especially when analyzing the conventional
ARPES data. Here we fit the bg subtracted data, as well
as the raw data (panel d). For subtracting the background,
we use an often-used procedure [22,23] of equating the
background to a fraction (‘‘background scaling factor’’) of
the data far beyond the Fermi surface crossing (k ¼ k10 for
this data set). The background scaling factor, 1=2 for this
figure, is determined to be the maximum value for which
the resulting intensity is not negative. As shown in the
panel (d), the ECFL fit remains good by adjusting %,
whether or not the extrinsic background is subtracted. In
contrast, we find that the CADS theory, notwithstanding its
notable successes [14,15], cannot cope with even the back-
ground subtracted data [Fig. 3(e)], giving too steep a fall
off towards the left. Likewise, the MFL fits [8,24] have
been shown to compare well with the data only after
substantial background subtraction [23,25].

Our own data on Bi2212 data, taken at Tc and well above
Tc, covering a similar temperature range as the laser data of
Fig. 2, can be fit equally well with the same background
subtraction procedure, i.e., with the background scaling
factor (1=2), as shown in Fig. 4.

We also find that the data for a lower-Tc cuprate LSCO
can be fit very well with the same intrinsic parameters.
Here, we shall discuss only the k ¼ kF data for brevity.

In this case, we determine that the background scaling
factor be 1. The subtracted background data [26,27] is
shown as the gray curve in Fig. 4(c). Given their weak
superconductivity features [26,27], these LSCO data are
taken to represent the normal-state property even if the
temperature is slightly lower than Tc. As for the Bi2212
case, the data can be fit well even without the background
subtraction, if a somewhat greater % value () 0:17 eV) is
used. It is clear, from Fig. 4(c), that the data at a tempera-
ture as low as 25 K can be fit very well with the ECFL line
shape. In addition, in working with LSCO line shapes, we
noticed a steady and rapid rise in intensity beyond "! ¼
0:25 eV, a behavior different from that of Bi2212. We
leave the full discussion of this nonuniversal behavior for
future work. However, we find it exceptional that the
current theory is able to describe the line shape of LSCO
up to very high energy, as shown in Fig. 4(d).
Kinks in the spectra.—The two independent energy

scales !0 and !0 are determined from our fit as *0:5 eV
and *0:1 eV. These are natural candidates for the two
main dispersion anomalies in the cuprates [12,28] as in
Fig. 5. Well-defined energy distribution curve (EDC: in-

tensity curve at a fixed ~k value) peaks disappear in a wide
energy from *0:3 eV to *1 eV, as observed experimen-
tally for the high energy kink [10,12]. As this feature

FIG. 3 (color online). Conventional ARPES data (Bi2212) fit
with the ECFL line shape. The data are from Ref. [19] (Tc ¼
90 K). (a) The data (symbols) and the fit (red lines) are shifted
vertically by the same amount for ease of view. (b) An example
of the raw data and the fit data is shown for k2. The background
(bg) spectrum (see text) was subtracted from each raw data, and
the resulting data, shown in (a), are then fit. (c) The fixed # ~k
parameters used for the fit. Thus, in this figure, % is the only fit
parameter (cf. Fig. 2 caption). (d) Raw data at k ¼ kF fit with a
somewhat greater % value. (e) The current fit compared with a fit
using the CADS line shape.

FIG. 4 (color online). Conventional ARPES data, including
our own (a),(b), fit with the ECFL line shape. The procedure
used to fit these data are identical with those of the previous
figure, i.e., a fit with a single free parameter %, with (d) being a
single exception. (a),(b), Optimally doped Bi2212 (Tc ¼ 91 K).
(c) Optimally doped LSCO data [26,27]. (d) A test fit up to
0.6 eV for the LSCO data with a small change to !0 for the same
data as in (c) but over a wider energy range. By changing !0

slightly from 0.50 to 0.42 eV, we see that an excellent fit up to
0.6 eV is found. The LSCO data, as far as we are aware, is fit
only by the ECFL theory, since an energy dependence rising
linearly for occupied states occurs naturally and uniquely in the
ECFL spectral function.
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already exists in AFL, it cannot be associated with !0 but
rather with !0. The (numerical) dynamical mean field
theory [29] can already account for this feature as can
the present ECFL (analytical) theory.

Turning to the low energy ARPES kink at *70 meV,
Figs. 5(c)–5(e) illustrate the observed weak dispersion
anomaly in the normal-state data (c), reproduced in the
ECFL theory (d) but not in the AFL theory (e). Here we use
a visualization method for momentum distribution curve
(MDC: intensity curve at a fixed ! value), an object
discussed primarily for low energy kinks. Thus this feature
originates from the scale !0, it causes an increased asym-
metry and the (blue) shift of the peak to high hole energy,

when the third term in the caparison factor ( n
2

4
# ~k"!
!0

) of

Eq. (1) becomes important. To our knowledge, the ECFL
theory is a unique analytical theory that has both these kink
features arising from purely electronic (extreme)
correlations.
In Fig. 5(f), we show the temperature dependence of

the dimensionless peak skew or asymmetry, defined as
ðHL" HRÞ=ðHLþ HRÞ, where HR (HL) is the half-width
at half maximum on the right (left) side of the peak. The
predicted T-dependent asymmetry, predicted even greater
for % ) 0:15 eV (synchrotron data; not shown), would be
interesting to explore in the future.
Further work is necessary to refine the picture suggested

in this Letter. For example, as"# ~k increases, the line shape
becomes somewhat too asymmetric. Work is also in
progress to apply the theory to two particle response as
seen, e.g., in optical conductivity. We have checked that the
bubble approximation (conductivity as a product of two
G’s) shows an agreement in the order of magnitude of the
frequency scale and the conductivity.
Conclusions.—We have shown that it is possible to

understand both ARPES data sets (laser or conventional)
comprehensively, with identical physical parameters. Work
going beyond the nodal cut and the optimal doping value is
in progress. The theory is very tolerant of the uncertainty in
the background subtraction for the conventional ARPES
data. Additionally, the theory satisfies the global particle
sum rule, and contains two interdependent energy scales
(!0 and!0) that correspond well to the energy scales of the
two kinks. Thus the simplest version of the ECFL theory
using a small number of parameters, provides a framework
to understand the ARPES line shape data for the normal
state of the cuprates: it works extremely well across tech-
niques, samples, and temperatures.
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The general problem of representing the Greens function G(k,z) in terms of self-energy in field theories lacking
Wick’s theorem is considered. A simple construction shows that a Dyson-like representation with a self-energy
!(k,z) is always possible, provided we start with a spectral representation for G(k,z) for finite-sized systems
and take the thermodynamic limit. The self-energy itself can then be iteratively expressed in terms of another
higher order self-energy, capturing the spirit of Mori’s formulation. We further discuss alternative and more
general forms of G(k,z) that are possible. In particular, a recent theory, by the author, of extremely correlated
Fermi liquids at density n, for Gutzwiller projected noncanonical Fermi operators, obtains a new form of the
Greens function: G(k,z) = [(1 − n

2 ) + "(k,z)]/[z − Êk − #(k,z)], with a pair of self-energies #(z) and "(z).
Its relationship with the Dyson form is explored. A simple version of the two-self-energies model was shown
recently to successfully fit several data sets of photoemission line shapes in cuprates. We provide details of the
unusual spectral line shapes that arise in this model, with the characteristic skewed shape depending upon a
single parameter. The energy distribution curve (EDC) and momentum distribution curve (MDC) line shapes are
shown to be skewed in opposite directions, and provide a testable prediction of the theory.
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I. INTRODUCTION

Our work explores the representation of the Greens function
G(k,z) of a particle in field theories without Wick’s theorem.
While Wick’s theorem for bosons and fermions automatically
gives rise to the Dyson form of self-energy, its absence for
noncanonical, i.e., general operators (other than bosons of
fermions), leads to a conundrum that is poorly understood.
This work addresses a particular type of noncanonical theory
originating from Gutzwiller projection of electrons on a lattice.

The representation of the propagator or the Greens function
in terms of its Dyson self-energy is a fundamental paradigm
of standard interacting relativistic and nonrelativistic field
theories. The structure of this representation and the generation
of approximations for the self-energy in terms of Feynman
diagrams, the vertex function, or higher order Greens functions
form the dominant part of existing literature of many-particle
physics.

In the context of extending these studies to extremely
large and singular repulsive interactions, termed extreme
correlations,1 one needs to deal with noncanonical electrons.
A standard noncanonical problem involves the Hubbard
operators2 Xa,b

j located at sites j of a lattice. These are
“graded” projection operators with label a representing
the three allowed local configurations 0, ↑ , and ↓. Among
these operators, X0σ

j and Xσ0
j are fermionic destruction- and

creation-type objects. Their Greens function is measured di-
rectly in angle-resolved photoemission experiments (ARPES)
on certain experimental systems embodying extreme correla-
tions, including the high-temperature superconductors.3

Quite recently, the author has formulated in Ref. 1, the the-
ory of an extremely correlated Fermi liquid (ECFL) state of the
t-J model, where he has found another type of representation
for the Greens function with a pair of self-energies [see Eq. (4)
below] by using the nonperturbative Schwinger approach of
source fields to depict the equations of motion. The use of
more general forms of Greens functions is not completely new,
there are examples in literature of multiple self-energies in

Refs. 4 and 5. The physics of extreme correlations treated here
is based on nonperturbative considerations without obvious
parallels in weak or intermediate coupling problems. It leads
to the two-self-energies form, Eq. (4), whose distinctive
signatures are strikingly different from those of Fermi liquids.

The technical details of the construction in Ref. 1 are
intricate and require the processing of two parallel hierarchies
for the two self-energies. A separate paper is in preparation
detailing the involved technical details and the calculation in
Ref. 1. Further background details of the notation, definitions,
and sum rules satisfied by the Greens functions for extreme
correlations, and its analyticity can be found in the earlier
publication.2 A suggestive functional form of the Greens
function, Eq. (37), emerges from Ref. 1, by making the
assumption of momentum independence of the two self-
energies, valid in high dimensions. It satisfies the number sum
rule and the total particle weight integrates to unity in each
state. In Ref. 3, Gweon, Gu, and the author have shown that
several experimental data sets on ARPES by different groups
using both the traditional synchrotron light source and a laser
light source can be reconciled very well with the line shape in
Eqs. (37) and (60). This is the first satisfactory functional form
that has been found to fit both laser and synchrotron data and
to work very well with few adjustable parameters.

Therefore a major objective of this paper is to elucidate the
detailed form of the spectral lines that emerged from the above
simple version of the ECFL theory in Ref. 1 and successfully
employed to understand experiments in Ref. 3. Our hope is that
this detailed analysis will familiarize readers with the nuances
of the new spectral function, and thereby facilitate ARPES
line-shape analysis of further experiments on high-temperature
superconductors and other materials, in a manner analogous
to that in Ref. 3.

For the above purpose, we recall that in a lattice of finite (say
small) number of sites, the state space is finite dimensional and
hence the Greens function for arbitrarily complicated objects
can be computed by numerical means, leading to rational
functions of the complex frequency z as in Eq. (5) below.
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We begin by studying this representation and see how the
Dyson representation arises; we find that the two-self-energies
representation, Eq. (4), is also quite natural from this view
point. We further study the infinite size limits where the poles
coalesce to give cuts in the complex z plane. We adopt a
phenomenological model for an underlying auxiliary Fermi
liquid (aux-FL) self-energy, enabling us to display analytic
expressions for the Greens function. We provide a detailed
perspective on the representation in Eq. (37), namely, the
location of the poles and the subtle differences from a standard
Fermi liquid.

Another result in this paper is to show that a Dyson-like
representation with a self-energy !(k,z) is always possible,
provided we start with a spectral representation. The self-
energy itself can then be iteratively expressed in terms of
another higher order self-energy. This hierarchical result is
cast in the same form as the Mori formalism. While the
Mori formalism is very abstract, and expressed in terms of
projection operators, we can go beyond it in a certain sense. By
working with standard spectral representation, we show that it
is possible to express the higher self-energy spectral functions
in terms of the lower ones, leading to an explicit hierarchy.
Our construction completely bypasses the Mori projection
operators, and should be useful in throwing light on the latter.

The plan of the paper is as follows. In Secs. II and III,
we note the spectral representation and study the Greens
function as a rational function of complex frequency z for
a finite system. In Sec. IV, we note the representation in
the limit of infinite size and introduce the high-dimensional
expression with two self-energies. The detailed structure of
the characteristic line shape as in Eq. (60) is discussed, and
its dependence on physical parameters displayed with the help
of a numerical example. An explicit example of the auxiliary
Fermi-liquid Greens function is provided, and typical values
of the parameters are argued for. In Sec. V, the line shapes
in EDC and MDC are displayed in detail, in order to bring
out the specific signatures of the theory, namely, a skew in
the spectrum arising from the caparison factor in Ref. 1 and
Eq. (37). In Sec. VI, we discuss the amusing connection with
higher order self-energies of the type that Mori’s formalism
yields, but at a much more explicit level than what is available
in the literature.

II. SPECTRAL REPRESENTATION OF THE GREENS
FUNCTION

Let us begin with the spectral representation10 of the
Matsubara Greens function at finite temperatures given by

G(k,z) =
∫

dx
ρG(k,x)
z − x

, (1)

where G is the Greens function at a fixed wave vector k,
ρG is its spectral density, and the integration range is −∞ !
x ! ∞. To simplify notation, we call the Greens function as
G(k,z), the same object was denoted by G(k,z) in Ref. 1. The
index k can be also replaced by a spatial index when dealing
with a local Greens function. The spectral function ρG(k,x) in
most problems of interest in condensed matter physics has a
compact support, so that G(k,z) has “reasonable” behavior in
the complex z plane, with an asymptotic 1/z fall off, and, apart

from a branch cut on a portion of the real line, it is analytic.
The frequency z is either fermionic or bosonic depending on
the statistics of the underlying particles. The spectral function
is given by the standard formula2,10

ρG(k,x) =
∑

α,β

|〈α|A(k)|β〉|2(pα + pβ) δ(x + εα − εβ), (2)

where A(k) is the destruction operator, pα is the Boltzmann
probability of the state α given by e−βεα/Z, and εα is the
eigenvalue of the grand Hamiltonian of the system K =
H − µN̂ . In the case of canonical particles, A(k) is the usual
Fermi or Bose destruction operator. In Ref. 1, noncanonical
Hubbard ‘X operators are considered; we will not require
any detailed information about them here except that the
anticommutator {A,A†} is not unity, but rather an object
with a known expectation value (1 − n/2), in terms of the
dimensionless particle density n.

We consider two alternate representations of the Greens
function in terms of the complex frequency z that are available
in many-body physics: (a) for canonical bosons or fermions,
the Dyson representation in terms of a single self-energy !(z)
and (b) for noncanonical particles, a novel form proposed
recently by the author with two self-energy type objects #(z)
and "(z):

G(k,z) = aG

z − Êk − !(k,z)
(Dyson) (3)

= aG + "(k,z)

z − Êk − #(k,z)
(ECFL). (4)

For canonical objects, aG = 1 and for Hubbard operators in
the ECFL we write aG = 1 − n/2. We start below from a
finite-size system, where the Greens function is a meromorphic
function expressible as the sum over isolated poles in the
complex frequency plane with given residues. In fact, it is
a rational function as well, expressible as the ratio of two
polynomials. Using simple arguments, we will see that the
above two representations in Eqs. (3) and (4) are both natural
ways of proceeding with the self-energy concept. In the limit
of a large system, the poles coalesce to give us cuts in the
complex frequency plane with specific spectral densities. In
this limit, we display the equations relating the different
spectral functions.

III. FINITE-SYSTEM GREENS FUNCTION

We drop the explicit mention of the wave vector k, and
start with the case of a finite-sized system, where we may
diagonalize the system exactly and assemble the Greens
function from the matrix elements of the operators A and the
eigenenergies as in Eq. (2). We see that ρG is a sum over say
m delta functions located at the eigenenergies Ej (assumed
distinct), so we can write the meromorphic representation

Ḡ(z) =
m∑

j=1

aj

z − Ej

. (5)
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The overbar in Ḡ(z) is to emphasize that we are dealing with
the finite-sized version of the Greens function G(z). Here,
aj and Ej constitute 2m known real parameters. The sum

m∑

j=1

aj = aG, (6)

where aG = 1 for canonical objects and we denote aG = 1 −
n/2 for the noncanonical case of ECFL. In the infinite-size
limit, we set Ḡ(z) → G(z). It is clear that for z ( {Ej }max,
we get the asymptotic behavior Ḡ → aG

z
, and therefore Ḡ is

a rational function that may be expressed as the ratio of two
polynomials in z of degrees m − 1 and m:

Ḡ(z) = aG

Pm−1(z)
Qm(z)

, Q(z) =
m∏

j=1

(z − Ej ),

P (z) =
m−1∏

r=1

(z − γr ), (7)

where the roots γr are expressible in terms of aj and Ej . We
use the convention that all polynomials Qm have the coefficient
of the leading power of z as unity, and the degree is indicated
explicitly.

We now proceed to find the self-energy type expansion
for Ḡ, and for this purpose, multiplying Eq. (5) by z and
rearranging we get the “equation of motion:’

(z − Ê)Ḡ(z) = aG + Ī (z), (8)

where we introduced a mean energy Ê:

Ê = 1
aG

∑
ajEj ,

Ī (z) =
m∑

j=1

aj (Ej − Ê)
z − Ej

, (9)

so that asymptotically at large z we get Ī (z) ∼ O(1/z2).
In standard theory, Ê plays the role of the Hartree-Fock
self-energy so that the remaining self-energy vanishes at high
frequencies.12 Motivated by the structure of the theory of
extremely correlated Fermi systems,1 we next introduce the
basic decomposition

Ī (z) = Ḡ(z)#(z) + "(z), (10)

where we have introduced two self-energy type functions #(z)
and "(z) that will be determined next. Clearly, Eq. (10) leads
immediately to the Greens function (4) (or Eq. (3), if we
set " → 0). The rationale for Eq. (10) lies in the fact that
the function Ī has the same poles as Ḡ(z). Thus it has a
representation as a ratio of two polynomials:

Ī (z) = i0
Rm−2(z)
Qm(z)

, (11)

with Rm−2 a polynomial of degree m − 2, i0 a suitable constant,
and the same polynomial Q from Eq. (7), thereby it is natural
to seek a proportionality with Ḡ itself. If we drop " and
rename # → !, then this gives the usual Dyson self-energy
!(z) determined uniquely using Eqs. (7) and (11) as

!(z) = i0

aG

Rm−2(z)
Pm−1(z)

. (12)

Expression (10) offers a more general possibility, where #(z)
and "(z) may be viewed as the quotient and remainder
obtained by dividing Ī (z) by Ḡ(z). It is straightforward to
see that "(z) and #(z) are also rational functions expressible
as ratios of two polynomials:

"(z) = ψo

Km−3(z)
Dm−1(z)

, #(z) = φo

Lm−2(z)
Dm−1(z)

, (13)

where K, L, and D are polynomials of the displayed degree.
Comparing the poles and the zeros of Ḡ in Eq. (4) with
Eqs. (12) and (7), we write down two equations:

aGPm−1 = aGDm−1 + ψoKm−3,

Qm = (z − Ē)Dm−1 − φ0Lm−2, (14)

so that we may eliminate D and write an identity,

(z − Ē)Pm−1 − Qm = ψo

aG

(z − Ē)Km−3 + φoLm−2. (15)

Here, the left-hand side is assumed known and we have two
polynomials to determine from this equation. Therefore there
are multiple solutions of this problem, and indeed setting K →
0 gives the Dyson form as a special case.

A. A simple example with two sites

The Greens function of the t-J model at density n with
J = 0 and only two sites is a trivial problem that illustrates the
two possibilities discussed above. The two quantum numbers
k = 0,π correspond to the bonding and antibonding states with
energies ek = ∓t , and a simple calculation at a given k gives
Eq. (5) as

Ḡ(k,z) = a1

z − ek

+ a2

z + ek

, (16)

where z = iωn + µ, a2 = eβµ[1 + eβ(µ−ek )]/(2Z), a1 = 1 −
n/2 − a2, and the grand partition function Z = 1 + 4e2βµ +
4eβµ cosh(βt). This can be readily expressed as

Ḡ(k,z) =
(
1 − n

2

)
+ "(k,z)

z − Ek − #(k,z)
, "(k,z) = Bk

z + Ek

,

#(k,z) = Ak

z + Ek

, (17)

where Ek is arbitrary, Ak = (E2
k − e2

k), and Bk = (1 −
n/2)(Ēk − Ek) and with the first moment of energy Ēk =
ek(a1 − a2)/(1 − n/2). As we expected, the functions ",#
thus have a single pole, as opposed to Ḡ with two poles. In
this case the dynamics is rather trivial, so that the choice of Ek

is free. If we set Ek = Ēk , the residue Bk vanishes and so the
second form collapses.

B. Summary of analysis

In summary, guided by analyticity and the pole structure of
G(k,z), we find it possible to go beyond the standard Dyson
representation. However, we end up getting more freedom
than we might have naively expected. This excess freedom is
not unnatural, since we haven’t yet discussed the microscopic
origin of these two self-energies. The theory in Ref. 1 provides
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an explicit expression for the two objects " and #, where a
common linear functional differential operator L generates
these self-energies by acting upon different “seed” functions
as in Eq. (7) of Ref. 1. The above discussion therefore provides
some intuitive understanding of the novel form of the Greens
function in Eq. (4), without actually providing an alternative
derivation to that in Ref. 1.

IV. INFINITE-SYSTEM SPECTRAL DENSITIES AND
RELATIONSHIPS

In the infinite-size limit, the various functions will be
represented in terms of spectral densities obtained from the
coalescing of the poles. Following Eq. (1), we will denote a
general function

Q(z) =
∫

dx
ρQ(x)
z − x

, (18)

where Q = !,#," in terms of its density ρQ(x). The density
is given by ρQ(x) = (− 1

π
)+m Q(x + i0+), as usual. In parallel

to the discussion of Eq. (1), the assumption of a compact
support of ρQ gives us well-behaved functions. We now turn
to the objective of relating the spectral functions in the two
representations discussed above.

A. Spectral representation for the Dyson self-energy

Let us start with Eq. (1) and the standard Dyson form
(3) where we drop the overbar and study the infinite system
function G(z). We use the symbolic identity:

1
x + i0+ = P 1

x
− iπδ(x), (19)

with real x, P denoting the principal value, and the Hilbert
transform of a function f (u) is defined by

H[f ](x) = P
∫ ∞

−∞
dy

f (y)
x − y

. (20)

We note the following standard result for completeness:

ρG(x) = aG

ρ!(x)

[πρ!(x)]2 + [x − Ê − H[ρ!](x)]2
. (21)

A more interesting inverse problem is to solve for ρ!(x) given
G(z). Toward this end, we rewrite the Dyson equation as

!(z) = z − Ê − aG

G(z)
, (22)

where the self-energy vanishes asymptotically as 1/z, provided
the constant part, if any, is absorbed in Ê. Therefore this
object can be decomposed in the fashion of Eq. (18). We
compare Eq. (22) with Eq. (18) with Q → ! and conclude
that

ρ!(x) = 1
π

+m
aG

G(x + i0+)
= aG ρG(x)

[πρG(x)]2 + [,e G(x)]2
.

(23)

The real part can be found either by taking the Hilbert
transform,

,e !(x) = H[ρ!](x), (24)
or more directly as

,e !(x) = x − Ê − ,e
aG

G(x + i0+)

= x − Ê − aG ,e G(x)
[πρG(x)]2 + [,e G(x)]2

. (25)

B. Spectral representation for the ECFL self-energies

For the ECFL Greens function in Eq. (4), we set aG =
(1 − n

2 ) and write Ê → ξ representing the single-particle
energy measured from the chemical potential. We start with
the expression:

G(ξ,z) = 1
z − ξ − #(z)

×
[(

1 − n

2

)
+ "(z)

]
, (26)

and express it in terms of the two spectral functions ρ" and
ρ#.13 We can write spectral function ρG:

ρG(ξ,x) = ρ#(x)
[πρ#(x)]2 + [x − ξ − H[ρ#](x)]2

×
[(

1 − n

2

)
+ ξ − x

0(ξ,x)
+ η(ξ,x)

]
, (27)

where 0(ξ,x) and the term η are defined as

0(ξ,x) = −ρ#(ξ,x)
ρ"(ξ,x)

, (28)

η(ξ,x) = H[ρ"](ξ,x) + 1
0(ξ,x)

H[ρ#](ξ,x). (29)

The real part of G is also easily found as

,e G(ξ,x) =
[(

1 − n
2

)
+ H[ρ"](ξ,x)

]
[x − ξ − H[ρ#](ξ,x)] − π2ρ"(ξ,x)ρ#(ξ,x)

[πρ#(ξ,x)]2 + [x − ξ − H[ρ#](ξ,x)]2
. (30)

Thus given the ECFL form of the Greens function, we can
calculate the Dyson Schwinger form of self-energy in a
straightforward way using the inversion formula, Eqs. (23)
and (24). The inverse problem of finding # and " from a
given ! or G is expected to be ill defined, as discussed above
for finite systems.

The first Fermi liquid (FL) factor in Eq. (27) has a peak
at the Fermi-liquid quasiparticle frequency EFL

k for a given ξk

given as the root of

EFL
k − ξk − H[ρ#]

(
ξk,E

FL
k

)
= 0, (31)
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however, ρG itself has a slight shift in the peak due to the
linear-x dependence in the numerator. This is analyzed in detail
in the next section for a model self-energy. At this solution
x(ξ ), Eq. (30) gives a relation:

ρ"

(
ξk,E

FL
k

)
= −ρ#

(
ξk,E

FL
k

)
× ,e G

(
ξk,E

FL
k

)
. (32)

C. High-dimensional ECFL model with !k-independent
self-energies and its Dyson representation

In this section, we illustrate the two self-energies and their
relationships in the context of the recent work on the ECFL
of Ref. 1, and in Ref. 3. Here, we study a model Greens
function, proposed in Ref. 1 for the t-J model, that should be
suitable in high enough dimensions. It is sufficiently simple
so that most calculations can be done analytically. The model
Greens function satisfies the Luttinger-Ward sum rule6 and
thereby maintains the Fermi surface of the Fermi gas, but yields
spectral functions that are qualitatively different from the
Fermi liquid. This dichotomy is possible since it corresponds
to a simple approximation within a formalism that is very far
from the standard Dyson theory, as explained in the previous
sections. Our aim in this section is to take this model Greens
function of the ECFL and to express it in terms of the Dyson
self-energy so as to provide a greater feel for the model.

Here, the two self-energies are taken to be frequency
dependent but momentum independent, and by using the
formalism of Ref. 1, they become related through 00, an
important physical parameter of the theory:

"(z) = − n2

400
#(z). (33)

The physical meaning of 00 as the mean inelasticity of the
auxiliary Fermi liquid (aux-FL) is emphasized in Ref. 1, and
follows from Eq. (56). Thus ρ" = − n2

400
ρ#, and hence we get

the simple result:11

G(ξk,z) = g(ξk,z)
[(

1 − n

2

)
− n2

400
#(z)

]
. (34)

The auxiliary Fermi liquid has a Greens function g−1(ξk,z) =
z − ξk − #(z), where ξk is the electronic energy at wave vector
k measured from the chemical potential µ, and therefore we
may write the model Greens function as

G(ξk,z) = n2

400
+

(
n2

400

)
ε0 + ξk − z

z − ξk − #(z)
, (35)

where

ε0 = 00
4
n2

(
1 − n

2

)
. (36)

With 2(x) = πρ#(x), ,e #(x + i0+) = H[ρ#](x) and
ε(ξk,x) ≡ [x − ξk − H[ρ#](x)], we can express the spectral
function and the real part of the Greens function as

ρG(ξk,x) =
(

n2

4π00

)
2(x)

22(x) + ε2(ξk,x)
(ε0 + ξk − x) ,

(37)

,e G(ξk,x) =
(

n2

400

) [
1 + ε(ξk,x)(ε0 + ξk − x)

22(x) + ε2(ξk,x)

]
. (38)

Re G

ρG ρg

x*

H1
H2

− 0.10 − 0.05 0.05 0.10

1

3

FIG. 1. (Color online) The density n = 0.85, temperature T =
600 K, 00 = 0.0786, and parameters are set I of Eq. (54). At
this rather high temperature, we can see the details of the spectral
shape clearly. The vertical line is at x∗ = E∗

kF
, this energy is the

location of the peak of the physical spectral function ρG as marked.
Its leftward (i.e., red) shift relative to the Fermi-liquid peak at the
chemical potential is clearly seen. The two horizontal lines specify
the magnitude of the ,e G(0,x) at x = 0 (H1) and x = E∗

kF
(H2). The

line H1 is at height n2/(400) and H2 is at height n2/(400)(1 − Zk/2).

The linear-frequency term in braces in Eq. (37) is termed the
caparison factor in Ref. 1 and leads to significant features of
the spectrum as discussed below. For completeness, we note
the auxiliary Fermi-liquid part of the problem as

ρg(ξk,x) = 1
π

2(x)
22(x) + ε2(ξk,x)

. (39)

In Fig. 1, we plot the above three functions for a model system
described more fully in Sec. IV F.

D. EDC or constant-wave-vector scans and energy dispersion

We first study the peak structure corresponding to fixing
0k the wave vector and hence ξk , and sweeping the energy
x. These give rise to the energy distribution curves, i.e., the
EDC’s. The aux-FL part has a peak at x = EFL

k for a given ξk , as
in standard FL theory from solving for the roots of Eq. (31). For
k ∼ kF , we find EFL

k = ξkZk with the momentum-independent
self-energy #(z), where

Zk = lim
x→EFL

k

[1 − ∂ ,e#(x)/∂x]−1. (40)

Expanding around this solution, we write

ε(ξk,x) ∼ 1
Zk

(x − Zk ξk). (41)

We will also write 2k ≡ 2(x)/x→EFL
k

at the FL quasiparticle
location, where we expect for the Fermi liquid 2k ∼ c1(k −
kF )2 + c2T

2, with suitable values as described more fully in
Sec. IV F). At this value, we have the identity ,e G(ξk,E

FL
k ) =

n2/(400) as remarked above. As a consequence, in Fig. 1 the
intersection of the line H1 and the vertical y axis also coincides
with the value of ,e G at the chemical potential. To elucidate
the line shape of the ECFL, we start with the FL solution and
perturb around it to find the corrected location of the peaks in
the full spectral function.

ρPeak
G (ξk,x) = 1

π

Z2
k 2k

Z2
k 22

k +
(
x − EFL

k

)2

n2

400
(ε0 + ξk − x).

(42)
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ξ

FIG. 2. (Color online) The density n = 0.85, T = 300 K, 00 =
0.0678, and parameters are from set I in Eq. (54). The various dimen-
sionless variables shown against EFL

k are the peak ratio from Eq. (50),
the variable uk (scaled by ten) from Eq. (44), the skew asymmetry
factor κ(ξk) from Eq. (65), and the variable Qk from Eq. (61).

Similarly, the real part is found:

,e GPeak(ξk,x) = n2

400

[

1 + Zk

(
x − EFL

k

)
(ε0 + ξk − x)

Z2
k 22

k +
(
x − EFL

k

)2

]

.

(43)

We introduce the following convenient positive variable uk:

sinh uk ≡ ε0 + ξk − EFL
k

Zk2k

, (44)

so that near the Fermi energy and at low T the small 2k ∼ T 2

drives it to a large and positive value, i.e., exp uk → 1/T 2. At
higher binding energies, uk decreases toward zero, as discussed
below. We will also define a dimensionless variable Qk below
in Eq. (61) that depends on uk only and determines the shape
of the peak. To analyze the shape at a given ξk , we introduce a
dimensionless energy variable ε through the relation

x = EFL
k + Zk2k ε, (45)

where we must require that |ε| ∼ 1 for the expansion around
the FL peak to be valid. The spectral function is expressible as

ρPeak
G (ξk,ε) = ρ∗

G(k)
[

sinh(uk) − ε

1 + ε2

]
2e−uk , (46)

,e GPeak(ξk,x) = n2

400

{
1 + Zk ε

[sinh(uk) − ε]
1 + ε2

}
. (47)

From Eq. (46) we see that at any k, the spectral function peaks
at ε∗ ≡ −e−uk with the true quasiparticle peak E∗

k corrected
from the Fermi-liquid value EFL

k (= Zk ξk) as E∗
k ≡ EFL

k −
e−ukZk2k at ε∗ = −e−uk . Simplifying, we find the EDC energy
dispersion or spectrum

E∗
k = ξk + ε0 −

√
[ε0 + (1 − Zk) ξk]2 + Z2

k2
2
k . (48)

We provide examples of this dispersion later in Fig. 5.
For a given ξk , the magnitude of the spectral function at this

peak is given by

,e G∗(k) = n2

400

(
1 − 1

2
Zk

)
,

ρ∗
G(k) = n2 Zk

8π00
euk . (49)

The magnitude of ,e G∗(k) is a little smaller than the value
n2/(400) arising at the FL solution ε = 0. In Fig. 1, this is
reflected in the line H2 that lies a little below H1.14

The peak value ρ∗
G(k) falls off with ξk 1 0, and is always

smaller relative to the peak of the aux-FL peak value ρ∗
g (k).

The ratio of the two peak values is given by

ρ∗
G(k)

ρ∗
g (k)

= n2 Zk2k

800
euk . (50)

We see below numerical examples of these functions. Figure 2
illustrates the peak ratio and other features for a typical set of
parameters.

E. MDC or constant-energy scans and energy dispersion.

It is also useful to study the momentum distribution curves
obtained by fixing the energy x and scanning the energy ξk .15 In
the model of a 0k-independent self-energy, this is a particularly
convenient strategy, and hence maximizing Eq. (37) at a fixed
x, we find the MDC energy dispersion or spectrum:

ξ ∗(x) = x − ε0 +
√

22(x) + [ε0 − ,e#(x)]2. (51)

Thus ξ ∗(x) is the peak position of ξk in constant-energy scans,
whereas E∗

k in Eq. (48) represents peak position of energy at
a fixed ξk . It is amusing to compare this with Eq. (48). Unlike
Eq. (48), this formula is valid at all energies, not just near the
chemical potential where the two agree closely. We will see
below in Fig. 5 that this function is multivalued in a range
of values of energy x leading to characteristic features of the
spectrum.

F. Numerical example of highdimensional ECFL model

In this section, we use a rectangular band with height
1/(2W ) and width 2W , and take W = 0.86 eV (i.e., 104 K) as a
typical value. In Ref. 3, a more realistic band structure is used
as described in detail there. The model for the Fermi liquid
introduced in Ref. 1 [see Eq. (24)] is given by the expression

2(x) = πρ#(x) = πC#(x2 + τ 2)e−C#(x2+τ 2)/ωc + η, (52)

with τ = πkBT . We have added a scattering width η as
in Ref. 3, in order to account for scattering by off planar
impurities. The real part of the self-energy is found from the
Hilbert transform of ρ#(x), and is given by

,e#(x) = C#π (x2 + τ 2)e−C#(x2+τ 2)/ωc

× Erfi(x/
√

ωc) − C# x
√

πωc e−C#τ 2/ωc , (53)

where Erfi(x) = 2√
π

∫ x

0 et2
dt is the imaginary error function.

A numerically small correction arising from η is dropped for
brevity.

G. Typical parameters

The same model is also used in the fit to experiments in
Ref. 3 with a slight change of notation given by writing C# →

1
π70

and ωc → ω2
0

π70
, in terms of the high- and low-frequency

cutoff frequencies ω0 and 70. We use two sets of standard
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FIG. 3. (Color online) The ECFL (top left) and the auxiliary FL spectral functions (bottom left) at density n = 0.85, T = 180 K, 00 =
0.12 eV, η = 0.12 eV, and the other parameters are from Set II in Eq. (54). Here, ξ and x are in units of eV. In the ECFL curve on left, it is seen
that the excitations near the Fermi energy become broad and dissolve into the continuum at an energy ∼−0.2 eV, and reappear as sharp modes
at a deeper binding energy. In the auxiliary FL, the excitations near the Fermi energy remain sharp and extend to lower energies than in the
ECFL curves. The contour plots of the same functions in the right panel (top ECFL and bottom auxiliary FL) give a complementary perspective
of the spectrum. The two superimposed solid lines at top right are from curves I and II of Fig. 5 and at bottom right curves III and IV of Fig. 5.

parameters;

Set I: C# = 1 eV−1, ωc = 0.25 eV or

ω0 = 0.5 eV, 70 = 0.318 eV

Set II: C# = 2.274 eV−1, ωc = 0.568 eV or

ω0 = 0.5 eV, 70 = 0.14 eV. (54)

Set I was used in Ref. 1 for schematic plots employing a simple
band density of states gB (ε) = 1

2W
8(W 2 − ε2). Set II was used

in Ref. 3 employing a more elaborate dispersion described
therein to successfully fit data on various high-temperature
superconductors at optimal doping. The value of η is displayed
in different plots. In Eq. (39), the spectral function ρg of
the aux-FL is defined. The chemical potential is fixed by the
number sum rule with ξ = ε − µ

n

2
=

∫ ∞

−∞
dx f (x)

∫
dε gB(ε) ρg(ε − µ,x), (55)

where f (x) = (1 + eβx)−1 is the Fermi function. We now write
the contributions from extreme correlations that are described

in Ref. 1. The inelastic energy scale 00 is found from the sum
rule:

00 =
∫ ∞

−∞
dx f (x)

∫
dε gB(ε) ρg(ε − µ,x) (ε − µ − x).

(56)

Thus at a given density and temperature n,T , the model has
only two parameters ωc and C# so that 00 is fixed from
Eq. (56). We study the details of the spectra next.

V. THE SPECTRAL CHARACTERISTICS OF THE
HIGH-DIMENSIONAL ECFL MODEL (37)

A. Global view of the spectral function

We display in Fig. 3 the spectral function for the ECFL
model Eq. (37) in three-dimensional (3D) plots and contour
plots. Two distinct perspectives of the spectrum are found in
the figure from the 3D and the contour plots. In both of these
plots, we see that the excitations are sharply defined only for
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FIG. 4. (Color online) The contour plots of the aux-FL (left) and the ECFL model from Fig. 3 (right) with the same parameters as in
Fig. 3 but over a smaller energy window. We superimpose the constant-wave-vector dispersion and MDC dispersion, with a value of η = 0.12
common to the contour plots. The energy scale of the feature near the chemical potential is considerably reduced in the ECFL, and the “jump”
in the EDC dispersion occurs at roughly half the corresponding energy in the aux-FL.

a certain range near the Fermi energy, and then merge into
the continuum. At higher binding energies, the spectrum again
looks quite sharp. For comparison, in Fig. 3, we also display
the aux-FL spectral function. We note that the aux-FL spectra
also become sharp at higher binding energies. This sharpening
is modeled by the Gaussian in Eq. (39), its basic origin is
the decrease in the weight of physical processes capable of
quasiparticle damping as we move toward the band bottom.
In order to look more closely at the low-energy part of the
spectrum of the aux-FL and the ECFL, we show in Fig. 4 the
contour plots of both over a smaller energy range.

We see that viewed in this rather broad sense, dispersions
of the aux-FL and the model ECFL spectra share many char-
acteristics, with somewhat different energy scales. However,
there are crucial differences that emerge when we look at the
distribution of spectral weight that arises in the ECFL, where
the caparison factor in Eq. (37) pushes weight to higher binding
energies. This is reflected most significantly in the line shapes
that we study below. Since we use the momentum-independent
self-energy for the aux-FL in this model calculation, we
obtain very detailed EDC and MDC plots below. However,
it must be borne in mind that refined calculations within the
ECFL framework must necessarily introduce some momentum
dependence, and hence several details are likely to change, in
particular the structure far from the chemical potential would
change somewhat more. Our view is that, this caveat apart, it
is very useful to take the Eq. (37) seriously since it gives a
simple framework to correlate different data.

B. Dispersion relations in EDC and MDC

In Fig. 5, the EDC dispersion relation (i.e., locus of
peaks of the spectral function at fixed ξ , found by numerical
maximization), is plotted versus ξ along with the MDC
spectrum Eq. (51). We recall that the latter expression is exact
at all ξ and x, whereas Eq. (48) is not quite exact for the EDC
dispersion. For comparison, we also show the corresponding
figures for the aux-FL spectral function in Eq. (39), with the

same parameters. The dispersion relations Eq. (48) is displayed
in the inset of Fig. 5, where it is compared with the result of
numerically maximizing the spectral function at a fixed ξ . We
see that Eq. (48) is only good for a range of energies near the
Fermi energy.

We see that both sets of spectra for the aux-FL as well as the
ECFL model exhibit similar global features, but with different
scales of energy. In both cases, the constant energy scans show
a jump discontinuity, whereas the MDC spectra show an “S”
type or re-entrant type behavior. The origin of the latter is easy
to see in the aux-FL, here a peak in −,e#(x) occurs at an
energy approximately 2ω0, so that as x decreases from zero,
ξ ∗

aux−FL = x − ,e#(x) goes back up for a certain range. In
the case of the ECFL, Eq. (51) shows that the energy scale
ε0 enters the expression when 2(x) becomes comparable to
ε0 − ,e#(x), and the net result is that the re-entrant behavior
is pushed to lower binding energies.

0.4 0.3 0.2 0.1 0.0

0.8
0.6
0.4
0.2
0.0

I
II

III

IV
ξ

−1.0 −0.8 −0.6 −0.4 −0.2 0.0
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−1.0

−0.8
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−0.4

− −
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0.2

0.0

ξ
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FIG. 5. (Color online) Energy dispersion curves in the ECFL and
the aux-FL models. Here, the parameters are from set II in Eq. (54),
with n = 0.85 and T = 180 K. With η = 0.12, curves I and II have
the peaks in constant-wave-vector and constant-energy scans of the
spectral function (37), and curves III and IV are corresponding figures
for the aux-FL in Eq. (39). The inset compares Eq. (48) (the truncated
curve) with the exact locus found by numerical maximization.
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C. The energy shift

The dispersion (48) corresponds to the ridge near the Fermi
energy in Fig. 3. At low temperature, since 2kF

∼ O(T 2), the
corrected quasiparticle energy is always less than EFL

k , so that
there is always a leftward (i.e., red) shift of the dispersion, or
from the hole (binding) energy point of view, we may say there
is a blue shift. The peak shift is given by

0Ek = E∗
k − EFL

k

= (1 − Zk)ξk + ε0 −
√

[ε0 + (1 − Zk) ξk]2 + Z2
k2

2
k ,

(57)

which is a function of both T and k. Close to the Fermi energy,
this can be written as

0Ek = −
Z2

kF
22

k

2ε0
. (58)

At the Fermi momentum, this small shift is seen in Fig. 1
where the vertical line through x∗ is displaced to the left from
the y axis. As long as k ∼ kF this shift is very small 0Ek ∼
O(T 4), but as k moves away from kF the shift (57) grows
with ξk . This departure makes the dispersion in Eq. (48) depart
significantly from the bare dispersion ξk as we move away
from kF . We see from Fig. 5 that the departure of the EDC
peaks from the Fermi liquid is somewhat less pronounced
than those of the MDC’s, the latter is operationally called
the low-energy kink. Our calculations therefore predict the
magnitude of the shift (57) in terms of the energy scale ε0 and
the Fermi-liquid parameter 2k . This energy shift is therefore
also a useful method for extracting the fundamental parameter
00 on using Eq. (36).

D. Constant-energy cuts or MDC line shapes

We display the MDC line shapes in Fig. 6. Panel (a)
shows the effect of the caparison factor [1 − n

2 + n2

400
(ξ − x)],

whereby the curves are skewed to the right, in contrast to the
EDC curves that are skewed to the left. The latter important
feature is also seen below in Fig. 7(a) and noted in Ref. 1.
Panel (b) shows the shallow peaks in the “S-like” region of the
energy dispersion seen in Fig. 5, and panel (c) shows the deep
interior region where the peaks are more symmetric.

E. Constant wave-vector cuts or EDC line shapes

The spectral function and the real part of the Greens
function are calculated from Eqs. (38) and (37). We display
the EDC line shapes in Fig. 7. Panel (a) gives an overview of
the spectral shapes for wave vectors near the Fermi surface,
displaying a left skewed peak that falls rapidly in intensity
as it broadens. This behavior is of great interest since it
captures the experimental features in high−Tc systems, as
elaborated in Ref. 3. Panel (b) shows the spectra at higher
binding energies, where a feature at lower energies begins to
disperse significantly with ξ . It is evident that these two sets
of dispersing features correspond to the two branches that are
seen in the 3D plots and contour plots of Fig. 3. The inset in
Fig. 7(b) shows the behavior of the aux-FL, where the two
features are again seen but with different rates of intensity
change.

We now turn to the task of understanding the reconstructed
Dyson self-energy that leads to the above electron spectral
functions. In Fig. 8, we show the spectral function ρG at
various values of the energy ξ at T = 300 K. The Fermi-liquid
spectra at the same values of parameters are also shown
for comparison. The Dyson self-energy ρ!(ξ,x) necessary to
produce these spectral functions is found using Eq. (23) and
is displayed in Fig. 8 at two temperatures. The object ρ!(ξ,x)
has a distinctive minimum for each ξ that shifts to the left
along with the energy ξ , which tracks the peaks in the physical
spectral function ρG(ξ,x) from Eq. (23). It also shows the
asymmetry between energies above and below the chemical
potential that we noted at ξ = 0 in Fig. 9. At the Fermi energy,
ρ!(ξ,x) is displayed in Fig. 9 over a large scale.

F. The reduced line-shape function

An interesting aspect of the ECFL model Greens function
(37) is the change in shape of the peaks as we leave the Fermi
surface, so that the quasiparticles become hard to define at
some point. This change in shape can be formulated neatly
in terms of a single dimensionless parameter Qk that we now
define and explore. We examine Eq. (46) around its peak by
writing

ε = ε∗ + cosh(uk)ε̄, (59)
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FIG. 6. (Color online) MDC line shapes at different values of energy x displayed in each curve. Here, the parameters are from set II in
Eq. (54), with n = 0.85, T = 180 K, and η = 0.12. Panel (a) corresponds to x close to the chemical potential. It is interesting to note that the
curves are skewed to the right, thus mirror imaging the leftward skew seen in the constant-ξ (EDC) scans below Fig. 7(a), in a comparable
range of energies and wave vectors. Panel (b) corresponds to the midenergy range, within the reentrant range of x from Figs. 5 or 3, with the
counterintuitive movement of the shallow peak to the right with increasing x. Panel (c) corresponds to the second set of maxima in Fig. 3 far
from the chemical potential, where the curves are quite symmetric.
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FIG. 7. (Color online) EDC line shapes at different values of energy ξ displayed in each curve. Here, the parameters are from set II in
Eq. (54), with n = 0.85, T = 180 K, and η = 0.12. Panel (a) corresponds to ξ close to the chemical potential. Note that the curves are skewed
to the left, i.e., a mirror image of the rightward skew seen in the constant-x MDC scans above Fig. 6, in a comparable range of energies and
wave vectors. Panel (b) corresponds to the higher energy range, and we see that only one broad maximum is found at a given ξ . The inset in
(b) shows the aux-FL constant-ξ scans for the same range; here, each ξ results in a pair of maxima, originating from the functional form of the
self-energy in Eq. (37).

so that ρPeak
G (ξk,ε̄) = ρ∗

G(k)γ (Qk,ε̄), with a characteristic line-
shape function γ given by

γ (Qk,ε̄) =
[

Qk(1 − ε̄)
Qk(1 − ε̄) + ε̄2

]
, (60)

with

Qk = 2
e−uk

cosh (uk)
. (61)

The parameter Qk goes to zero near the Fermi surface at low
T since uk → ∞, but at higher binding energies increases:
Qk → 2.

As we get deeper into the occupied states ξ 1 0, we find
a remarkable change in shape of the spectral functions. This
is illustrated in Fig. 10 where we plot γ of Eq. (60) after
normalizing to unit area. In order to have a well-defined
quasiparticle-type peak in ρG for ε ∼ O(1), Qk must be small
enough. This translates to the requirement of ξk being close
to the Fermi surface. By setting Q ∼ 1 as the condition for
losing a peak in the spectrum, we obtain the condition

ε0 + (1 − Zk)ξk = 1√
3
Zk2k, (62)

beyond which it is meaningless to talk of quasiparticles. This
gives ε0 as a rough characteristic scale for the disappearance
of the quasiparticle peaks.

Figure 11 illustrates the change in shape somewhat dif-
ferently by normalizing all curves to unity at the peak as in
Eq. (60). The peak at ε̄ = 0 is sharp and quite symmetric for
Q 1 1, and becomes broader and more left skewed as Qk

increases toward its maximum value of two. Attaining the
maximum value is possible, in principle, requirement being
uk = 0 or from Eq. (44):

00 = n2

4 − 2n
,e #

(
EFL

k

)
. (63)

Unless 00 is very small, this condition is hard to satisfy. If this
possibility is achieved, then there are several interesting conse-
quences. Firstly, we note that from Eq. (49), the magnitude of
the spectral function at uk = 0 becomes insensitive to disorder
and temperature, etc. Its magnitude, n2Zk/(8π00), should be

useful for finding 00. If this is approximately satisfied, then the
peak structure loses meaning and the spectrum is essentially
flat. Taking ε̄ = −1, the fall off from the peak value of unity
is 80%, and the spectrum becomes essentially featureless.

G. Skewness parameter of the spectrum

We now estimate the skewness of the spectrum. The
function (60) drops to half its peak value at two values of
ε̄L,R to the left and right of the peak given by

ε̄L,R = − 1
2Qk ∓

√
Qk + 1

4Q2
k. (64)

For small Q 1 1, the (dimensionless) width of the peak is
small, it increases with Q as discussed further below. We
define a dimensionless skew parameter in terms of the energies
ε∗,εR,L [rather than the ε̄’s that are related via Eq. (59)]:

κ(ξk) = 2ε∗ − εR − εL

ε∗ − εL

= tanh(uk) − 1 +
√

[2 − tanh(uk)]2 − 1, (65)

with the property that near the Fermi level when uk → +∞
the variable κ → 0, and we get a symmetric curve about
the maximum. On the other hand, for deeper occupation,
uk decreases in magnitude toward zero, driving κ → 0.732
and gives a curve that is increasingly biased to the left. The
asymmetry κ grows as O(T 2) at low temperatures, and it is
rather large at room temperature. As a rough estimate, the
quasiparticle peak is lost when Qk ∼ 0.5 where uk ∼ 0.98
and κ(ξk) ∼ 0.5. This loss of quasiparticle peak structure, skew
factor, and its experimental signature is studied in greater detail
in Ref. 3. See Fig. 2 for typical plot of skew parameter κ and
Q versus the hole binding energy Ek .

VI. SELF-ENERGY OF THE SELF-ENERGY AND A
MORI-TYPE PROCEDURE.

Since the construction given above generates !(z) from
G(z) given only the representation (1), we can as well repeat
the trick. Since !(z) satisfies Eq. (18) with a density ρ!(x)
that is assumed known, and is analytic in the complex z plane
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FIG. 8. (Color online) Top left panel: density n = 0.85, temperature T = 300 K, 00 = 0.0678, and other parameters are from set I in
Eq. (54). From left to right ρG(ξ,x) for energies in units of eV: ξ = −0.1, − 0.075, − 0.05, − 0.025,0,0.025,0.05. Top right panel: spectral
function ρg(ξ,x) from Eq. (39) corresponding to the same ξ as in the left panel. The difference in the line shapes becomes clear when we
examine the Dyson self-energy that produces these curves. Bottom left panel: the panel shows the spectral function at T = 300 K for the inferred
Dyson self-energy ρ!(x) from Eqs. (23), (38), and (37) for the same energies. The dashed line is the input Fermi-liquid spectral function ρ#(ω)
at the same temperature. Bottom right panel: temperature T = 150 K, 00 = 0.0642, and the identical data as in the bottom left panel.

with a 1/z fall off, it satisfies the necessary conditions for a
further decomposition. Consulting Eq. (23), we write down by
inspection:

!(z) = a!

z − Ē! − !(1)(z)
,

!(1)(z) =
∫

dx
ρ!(1) (x)
z − x

. (66)

The constants a! =
∫

dx ρ!(x) and Ē! =
∫

dx xρ!(x)/a!

are known through ρ!(x). They may in practice be conve-

ρ

ρ
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0.1

0.2

0.3

FIG. 9. (Color online) With n = 0.85 and T = 300 K,
and the other parameters from set I in Eq. (54). The spectral function
for the inferred Dyson self-energy ρ!(ξ = 0,x) using Eq. (23) and
the the input Fermi-liquid spectral function ρ#(x) over a larger energy
range. Note the distinctive asymmetry in shape of ρ! below and above
the Fermi energy.

niently determined in terms of the moments of the Greens
function7–9 in applications. The spectral function is given by

ρ!(1) (x) = a! ρ!(x)

[π2ρ!(x)]2 + [,e !(x)]2 . (67)

Comparing this representation with Eq. (21), we note the
formal similarity between ρG(x) and ρ!(1) (x). Thus for a
Fermi liquid with momentum-independent self-energy, its

FIG. 10. (Color online) The spectral shapes possible are seen by
plotting the shape function at different values of the parameter Q. In
this curve, γ is the γ (Q,ε̄) of Eq. (60) normalized to unit area in the
natural interval [−1,1] for the variable ε̄.
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FIG. 11. (Color online) The same shapes as in Fig. 10 but now γ

is normalized to unity at the peak as in Eq. (60). The sharp peaks for
small Q ! 0.25 flatten out as Q increases with a left skew asymmetry
that is characteristic of this functional dependence.

next self-energy resembles closely the spectral function ρG,
especially at the Fermi energy.

We follow up briefly on the above amusing observation, and
obtain a hierarchy of self-energies starting from an initial self-
energy given by the spectral representation, Eqs. (18) and (66).
This process parallels the continued fraction representation
of analytic functions and seems intimately related to the
formalism developed by Mori.7,8 The latter is expressed in
the language of projection operators for Liouville operators
that is less straightforward than our simple treatment.

In order to conform to the notation popular in the Mori for-
malism, we will express the variables in Laplace representation
rather than the one used above with complex frequencies. Let
us consider the thermal and temporal correlation function for
two operators A and B in Schrödinger time and its Laplace
transform:

CAB(t) =
∫ β

0
dτ 〈A(t − iτ )B(0)〉,

ĈAB(s) =
∫ ∞

0
e−st CAB(t) dt. (68)

In the standard case, we find A = B†, where the product is real
and also positive.16 We see that the Laplace-transform function
satisfies an integral representation:

ĈAB(s) =
∫ ∞

−∞
dν

ρAB(ν)
s − iν

, with a real density given by

ρAB(ν) =
∑

nm

pm − pn

εn − εm

〈n|A|m〉 〈m|B|n〉 δ(εn − εm − ν).

(69)

This object is closely connected with the correlation functions
used in Eqs. (1) and (2) by using the fluctuation-dissipation
theorem. Following Mori, we write down a relaxation function
with the normalization property Z0(0) = 1, and its Laplace
transform

Z0(t) ≡ CAB(t)
CAB(0)

, Ẑ0(s) =
∫ ∞

−∞
dν

ρ0(ν)
s − iν

. (70)

Here, the real density ρ0(ν) = 1
C(0)ρAB(ν), satisfies the nor-

malization condition
∫ ∞
−∞ dν ρ0(ν) = 1. Using the identity

1
0+ + i(u − v)

= π δ(u − v) − iP 1
u − v

,

with P denoting the principle value, an inverse relation
expressing ρ0(ν) = 1

π
,e Ẑ0(0+ + iν) follows. In order to find

a Dyson-type representation for ρ0, following Eqs. (8) and (9),
we take the “equation of motion” by multiplying Eq. (70) by
s and write

sẐ0(s) = 1 + i

∫ ∞

−∞
dν

ν ρ0(ν)
s − iν

≡ Y0(s) Ẑ0(s). (71)

The Dyson form of self-energy now emerges and we obtain

Ẑ0(s) = 1
s − iY0(s)

, with Y0(s) =
∫ ∞
−∞ dν ν ρ0(ν)

s−iν∫ ∞
−∞ dν ρ0(ν)

s−iν

. (72)

As s → ∞, the function Y0(s) tends to ω1, with a real
frequency ω1 given by

ω1 =
∫ ∞

−∞
dν ν ρ0(ν). (73)

Hence the function Y0(s) − ω1 falls off as 1/s as s → ∞.
It is analytic everywhere except on the imaginary s axis. It
therefore has a representation

Y0(s) − ω1 = i α1

∫ ∞

−∞
dν

ρ1(ν)
s − iν

, (74)

with a real density α1ρ1(ν) = 1
π
+m[Y0(0+ + iν)]. With this,

we may write

Z0(s) = 1

s − i ω1 + α1
∫

dν ρ1(ν)
s−iν

. (75)

The real number α1 is found using the convention that ρ1(ν) is
normalized to unity. We may express ρ1 solely in terms of the
lower density ρ0(ν) by using Eq. (70) as

α1ρ1(u) = ρ0(u)

π2ρ2
0 (u) + [H[ρ0](u)]2 . (76)

We determine α1 from Eq. (76) by integrating over ν and using
the unit normalization of ρ1(u). It is evident from Eq. (76) that
for the physically important case of a real and positive initial
density ρ0(ν), the derived density ρ1(ν) is also real positive.

This scheme is clearly generalizable to higher orders, and
we simply iterate the above process. The answers may be
written down by inspection as follows:

Ẑj (s) =
∫ ∞

−∞
dν

ρj (ν)
s − iν

, with normalization:
∫ ∞

−∞
dν ρj (ν) = 1. (77)

These satisfy the recursion relation

Ẑj (s) = 1

s − i ωj+1 + αj+1 Ẑj+1(s)
, (78)

where

ωj+1 =
∫ ∞

−∞
dν ν ρj (ν), (79)
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and αj+1 as well as ρj+1(ν) are defined through

αj+1 ρj+1(u) = ρj (u)
π2 ρ2

j (u) + [H[ρj ](u)]2
. (80)

Note that the numbers αj as well as ωj are real, and for all j ,
the densities ρj (ν) are positive provided the the initial density
ρo(ν) is positive. This situation arises when the initial operators
B = A†, as mentioned above.

It is clear that Eq. (76) is the precise analog of the rela-
tion (23) for the Greens function. The hierarchy of equations
consisting of Eqs. (45)–(49) constitutes an iteration scheme
that starts with the j = 0 correlation function in Eq. (70). This
is a forward hierarchy in the sense that successive densities
at level j + 1 are expressed explicitly in terms of the earlier
ones at level j . In the reverse direction, it is rather simpler
since level j is explicitly given in terms of level j + 1 by
Eq. (78). The use of this set of equations requires some a
priori knowledge of the behavior of higher order self-energies
to deduce the lower ones. Standard approximations7 consist of
either truncation of the series or making a physical assumption
such as a Gaussian behavior at some level and then working
out the lower level objects. Our object in presenting the above
procedure is merely to point out that this iterative scheme is in

essence a rather simple application of the self-energy concept
described above, with the repeated use of Eq. (23).

VII. SUMMARY AND CONCLUSIONS

A new form of the electronic Greens function, departing
widely from the Dyson form arises in the extreme correlation
theory of the t-J model. Motivated by its considerable
success in explaining ARPES data of optimally doped cuprate
superconductors,3 we have presented in this paper results on
the detailed structure of this Greens function and its spectral
function. An illustrative example is provided, complete with
numerical results, so that the novel line shape and its
dependence on parameters is revealed. We have also presented
a set of explicit results on the Mori form of the self-energy that
holds promise in several contexts.
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Motivated by the form of recent theoretical results, a quantitative test for an important dynamical

particle-hole asymmetry of the electron spectral function at low energies and long wavelengths is

proposed. The test requires the decomposition of the angle resolved photo emission intensity, after a

specific Fermi symmetrization, into odd and even parts to obtain its ratio R. A large magnitude R is

implied in recent theoretical fits at optimal doping around the chemical potential, and I propose that this

large asymmetry needs to be checked more directly and thoroughly. This processing requires a slightly

higher precision determination of the Fermi momentum relative to current availability.

DOI: 10.1103/PhysRevLett.109.067004 PACS numbers: 74.72.!h, 74.20.Mn, 74.25.Jb

Introduction.—The search for a microscopic theory of
the normal state of the cuprates is one of the main themes
in condensed matter physics for the last two decades. The
recent suggestions of describing the normal state in terms
of theories with a quantum critical point [1] have also
created wide interest in other branches of physics such as
string theory and quantum gravity [2]. An initial theoretical
objective is the derivation of the normal state low energy

long wavelength single electron spectral function !Gð ~k; !Þ
[or equivalently Að ~k; !Þ], encoding the complete set of
symmetries.

In this Letter, I discuss the behavior of !Gð ~k; !Þ under a
dynamical particle-hole transformation simultaneously in-
verting the wave vector and energy relative to the chemical
potential ! as

ð ~̂k; !Þ ! !ð ~̂k; !Þ; with ~̂k ¼ ~k! ~kF: (1)

Invariance under this transformation has often been in-
voked in analyzing angle resolved photoemission
(ARPES) data [3]. It is an emergent symmetry of the
Fermi-liquid in the sense of Ref. [4], arising when correc-
tion terms of Oð!="FÞ3 are neglected [5]. Fermi-liquids
without disorder at intermediate coupling are invariant [6]
under Eq. (1), as are most other contemporary theories of
cuprates that I am aware of.

On the other hand two recent theories, the extremely
correlated Fermi-liquid theory (ECFL) proposed by the
author in Ref. [7], and the hidden Fermi-liquid theory
proposed by Casey and Anderson (CA) in Ref. [8], yield
a spectral function that lacks invariance under Eq. (1). In
Ref. [9], a comparison between the ECFL spectral function
and a large set of data at optimal doping shows excellent
agreement and provides a useful parametrization of the
data. To quantify the asymmetry: for optimally doped
cuprates, in an energy range of %25 meV around !, the
theories and the fits of Ref. [9] (extrapolated to lower !)
yield an asymmetry ratio R [defined below Eq. (3)] be-
tween&7% and 10%. Because a large asymmetry makes a

decisive ruling on the allowed theories, we propose the
direct experimental measurement of this effect and indicate
a procedure for the same.
I first discuss a Fermi symmetrization procedure quite

distinct from the symmetrization in Refs. [3,10]. I con-

struct an object SGð ~k; !Þ [Eq. (2)] from the observed
ARPES intensity and find expressions for this in the
Fermi-liquid and the ECFL model. I further show how
the momentum dependence of the dipole transition proba-
bility and the Fermi-liquid parameter Zk can be absorbed
into the constants.

The SGð ~k; !Þ function is detailed for a simplified ver-
sion of ECFL (SECFL), providing an idealized picture of
the predicted asymmetry effect in cuprates. I further dis-
cuss a related asymmetry of the tunneling conductance in
the normal state, and also the expected angle integrated
spectrum. Within the SECFL model, where the quasipar-
ticle peaks are sharp over a large fraction of the zone, these
exhibit unusual and possibly measurable features.
Fermi symmetrization.—Our first goal is to formulate a

procedure for isolating terms in the spectral function near
the Fermi energy that are linear in wave vector and fre-

quency &"k !! (with "k ¼ ~̂k ' ~v ~kF
) found in the recent

work [7]. The ARPES intensity is given in terms of the
spectral function within the sudden approximation by the

expression Ið ~k; !Þ ¼ Mð ~kÞf!!Gð ~k; !Þ, where Mð ~kÞ is
the dipole transition probability which is expected to be

a smooth function of ~k and independent of !. It
also contains the Fermi function for occupied states f! ¼
f1þ expð#!Þg!1, a nonsymmetric function of !.
Therefore, we first formulate a Fermi symmetrized object:

S Gð ~k; !Þ ) f! !f!!Gð ~k; !Þ ¼ 1

Mð ~kÞ
!f!Ið ~k; !Þ; (2)

where !f! ¼ 1! f! ¼ f!!. We may now decompose

SGð ~k; !Þ under Eq. (1) into its antisymmetric

Sa-s
G ð ~kFj ~̂k; !Þ and symmetric Ss

Gð ~kFj
~̂k; !Þ combinations
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respectively 1
2 ½SGð ~kF þ ~̂k; !Þ + SGð ~kF ! ~̂k;!!Þ,. We will

also define the important asymmetry ratio:

RGð ~kFj ~̂k; !Þ ¼ Sa-s
G ð ~kFj ~̂k; !Þ=Ss

Gð ~kFj
~̂k; !Þ; (3)

where normalization factors cancel out, giving a dimen-
sionless function of order unity. Its magnitude can there-
fore be compared across different systems. We will quote
RG and Ss

G below for various theoretical models; Sa-s
G can

be reconstructed from Eq. (3).
Dynamical particle-hole symmetry of the Fermi-liquid

theory.—We begin by considering SG for the Fermi-liquid

theory. The spectral function of a Fermi-liquid !FL
G ð ~k; !Þ is

given in terms of a smooth background plus a quasiparticle
peak as in Eq. (4). Near the Fermi surface, we can linearize
various objects in k̂ and !. With ~v ~kF

, the Fermi velocity

vector at ~kF, the quasiparticle piece is specified by three
parameters (i) renormalization factor Z~k, with a linear

dependence Z~k ¼ Z~kF
½1þ c1ð ~̂k ' ~v ~kF

Þ,, (ii) the quasipar-

ticle energy E~k vanishing linearly at the Fermi surface

E~k ¼ m
m- ð ~̂k ' ~v ~kF

Þ with an effective mass renormalization
m
m- , and (iii) the line width $ ~k / ½E2

~k
þ ð%kBTÞ2, vanishes

symmetrically at the Fermi surface. Thus near the Fermi
surface:

!FL
G ð ~k; !Þ & !ðbgÞ

G ð ~k; !Þ þ Z~k

%

$ ~k

$2
~k
þ ð!! E~kÞ2

: (4)

For ~k close to the Fermi surface, the background part is
neglected compared to the large quasiparticle part.
Defining the quasiparticle peak part

Q ð ~̂k; !Þ ¼
Z~kF

4%cosh2ð#!=2Þ
$ ~kF

$2
~kF
þ ½!! m

m- ð ~̂k ' ~v ~kF
Þ,2

;

(5)

we write the Fermi symmetrized functions of ð ~̂k; !Þ:

fSs
GFL

;RGFL
g ¼ fQð ~̂k; !Þ; c1ð ~̂k ' ~v ~kF

Þg; (6)

where we retained only terms linear in k̂, ! beyond the

quasiparticle peak termQð ~̂k; !Þ. Observe that toOð!2Þ the
asymmetry ratio R is independent of !. The requirement
of neglecting the background is necessary, because it is
hard to make a general statement about the (k, !) depen-
dence of the background part. Therefore, the discussion
becomes sharp only in situations where the peak term
overwhelms the background part—thus, forcing us to low
temperatures. The same issue also impacts the synchrotron
data adversely compared to the laser ARPES data, if we
interpret the former to have more substantial elastic scat-
tering correction as argued in Ref. [9].

We make a few remarks next. (1) The coefficient c1
vanishes in theories where the self-energy is ! dependent

but ~k independent. To the extent that we can experimen-
tally identify a ! independent but k dependent term as in
Eq. (6), one can say that the Fermi-liquid spectrum pos-
sesses the dynamical particle-hole invariance. (2) The mo-
mentum dependence of the dipole transition probability

Mð ~kÞ, if any, can be absorbed into c1 in Eq. (6) by Taylor
expansion. This implies that the expression [Eq. (6)] is
valid for the S,R constructed from the ARPES intensities
directly [i.e., omitting the 1=M term in Eq. (2)]. The
important asymmetry ratio R gets rid of the overall scale
factors. Therefore, its magnitude is a meaningful quantita-
tive measure of the asymmetry. (3) It follows that the
frequency independence of R is also true for any theory
where the Dyson self-energy =m"ðk;!Þ is even (i.e., not
necessarily quadratic) in !, such as the marginal Fermi-
liquid [11] and also various refinements of the RPA.
Subleading corrections of the type !. T2 or !3 in
=m"ðk;!Þ [5], as well as intrinsic particle-hole asymmet-
ric density of states (DOS) terms can lead to a nontrivial
R. However, these are estimated [5,6] to be an order of
magnitude smaller than the predicted asymmetry of the
theories discussed next.
The asymmetry ratio in ECFL.—In the recent work

on the ECFL [7] !Gð ~k; !Þ is the product of a Fermi-liquid

spectral function !gð ~k; !Þ and a caparison factor

½f1! n
2gþ

"k!!

#ð ~k;!Þ þ &ð ~k; !Þ,, explicitly containing a linear

dependence on the energy !. This important term redis-
tributes the dynamical spectral weight within the lower
Hubbard band, in such a way as to preserve the Fermi
volume. In a further approximation of the formalism, a
SECFL theory emerges where we obtain explicit analytical

results. In this version, &ð ~k; !Þ is negligible and the coef-
ficient # is a constant determined by the number sum rule.
In Refs. [9,12], the SECFL was tested against data on the
high Tc cuprate Bi2Sr2CaCu2O8þ'. The test spans a sub-
stantial range of occupied energies &1 eV, with quantita-
tive fits in the 0.25 eV energy range. The remarkably close
agreement between data and theory over the broad range of
data sets appears to vindicate the form of the spectral
function. The test proposed in this Letter is somewhat
complementary, it is over a smaller energy range &2kBT,
probing the asymptotic low energy region centered around
the Fermi energy.
With the assumption of a smooth k dependence of

&ð ~k; 0Þ and #ð ~k; 0Þ in the expression for the spectral func-
tion [13] and p ¼ d0 þ ð1! n

2Þ, we obtain

S GECFL
&Q

!
pþ d1

~̂k ' ~v ~kF
þ d2!þ

ð ~̂k ' ~v ~kF
!!Þ

#ð ~kFÞ

"
:

Here the term d0 arises from Taylor expanding &ð ~kF; 0Þ
and also from the shift of the chemical potential from the
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free value, d1 from the momentum dependence of Zk and
this term can also absorb the momentum dependence of
MðkÞ, and d2 from the frequency dependence of &ðk;!Þ.
We can thus compute the symmetric and antisymmetric
parts fSs

GECFL
;RGECFL

g as

&
#
pQ;

d1
p

~̂k ' ~v ~kF
þ d2

p
!þ

ð ~̂k ' ~v ~kF
!!Þ

p#ð ~kFÞ

$
: (7)

The asymmetry ratio R therefore has a linear ! and k̂
dependence. Using the frequency dependence as the sig-
nature, one should be able to distinguish between the
results of Eqs. (6) and (7).

The SECFL model is described in detail in Ref. [12],
where we write the spectral function near the Fermi energy

!Peak
GSECFL

ð ~kF þ ~̂k; !Þ as

1

%

Z2
k$k

Z2
k$

2
k þ ð!! EFL

k Þ2
n2

4#0
f"0 þ "k !!g; (8)

where "0 ¼ #0
4
n2
ð1! n

2Þ. Here EFL
k ¼ Zk"k, in view of the

form of the self-energy %. To leading order, we can

set Zk ! ZF independent of k, and "k ¼ ~̂k ' ~v ~kF
, EFL

k ¼
ZF

~̂k ' ~v ~kF
, and set $k ¼ &þ %C%½ð%kBTÞ2 þ ðEFL

k Þ2,,
where & is the elastic broadening introduced in Ref. [9]

[distinct from &ð ~k; !Þ]. For the model Eq. (8), we can set
$k ! $kF and thus obtain the leading behavior near the
Fermi energy of fSs

GSECFL
;RGSECFL

g as

&
!%

1! n

2

&
Qð ~̂k; !Þ;

f ~̂k ' ~v ~kF
!!g

"0

"
; (9)

where Qð ~̂k; !Þ is obtained from Eq. (5) by replacing

m=m- ! ZF and $k ! $kZk. Note that, e.g., at ~̂k ¼ ~0
and any convenient !0, jRð0; !0Þj ¼ !0="0, and thus its
magnitude yields the important energy scale #0. We em-
phasize that Eq. (7) is more generally true within the ECFL
approach. We display Sa-s in Fig. 1 for a model calculation
based in the SECFL model with a flat DOS [see Ref. [12],
Sec. (IV.F)]. The values of the basic parameters in all
figures are as follows: T ¼ 180 K, !c ¼ 0:25 eV, C% ¼
1 ðeVÞ!1. Notice the distinctive increasing linear behavior

with ~̂k and a decreasing linear one with !, as in Eqs. (7)
and (9).

Single particle tunneling into the extremely correlated
state.—In the simplest model of tunneling in the t-J model,
the conductance is given in terms of the local DOS

!ðlocalÞ
G ð!Þ ¼ P

~k!Gð ~k;!Þ. Its convolution with f! and !f!
gives half the occupied n

2 , and the unoccupied (1! n)
densities, thus providing useful sum rules for tunneling
[14]. The sum rule implies asymmetry between adding
particles and holes and thus a downward sloping conduc-
tance [15,16]. Recent experiments in the overdoped regime

[17,18] display the same asymmetry, providing strong
confirmation that t-J model type extreme correlations are
operative at high hole doping levels as well, and not just
near half filling. More detailed information on the fre-
quency dependence is clearly of experimental interest.
We note that the angle integrated photo emission (AIP)
technique obtains the local DOS. f!, and provides a
complementary view to tunneling. Figure 2 presents the
results from the SECFL model for both the (local) DOS
and DOS. f! at various densities and elastic scattering
parameter &. It shows an overall decrease of the local DOS
with energy. Interestingly, the tunneling curve in the inset
(III) shows an upturn followed by a rising piece near
!& 0, and the AIP curve shows a related shallow mini-
mum at !&!0:2 eV.
To understand the unusual result, consider integrating

the spectral function in Eq. (8) over "k. As discussed in
Refs. [9,12], when the energy is less than &1 eV, the
quasiparticles become sharp and this integral can be
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FIG. 1 (color online). Top inset shows the large predicted
asymmetry Ra-s

GSECFL
versus " in the small energy range of

150 meV. Similar magnitudes are found as functions of ! at
various ". The figure shows Sa-s

GSECFL
from Eq. (9) versus " (main),

! (inset) in electron volt at various ! (main), " (inset). Arrows
indicate the direction of increasing energies. We used n ¼ 0:85,
& ¼ 0:05 eV, and #0 ¼ 0:0796 eV here.

FIG. 2 (color online). (I) The predicted AIP spectrum showing
a shallow minimum at !&!0:2 eV, and a rise as the binding
energy j!j increases. The rise is greater as the particle density n
increases (bottom to top). Inset (II) reveals the role of elastic
scattering width & (top to bottom). Inset (III) shows the local
DOS relevant to the tunneling conductance, for the same pa-
rameters as in (II) with a remarkable rising piece near zero bias.
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estimated by replacing the Fermi-liquid Lorentzian by

'ð ~̂k ' ~v ~kF
! m-

m !Þ. This yields the quasiparticle peak

contribution:

lim
!/"0

!ðlocalÞ
G;Peakð!Þ & const.

#
"0 þ

%
m-

m
! 1

&
!
$
: (10)

Because m / m-, it follows that the slope is positive and
hence the rising conductance! In the general version of
ECFL, different parts of the Fermi surface contribute ac-

cording to the weight of 1=#ð ~kFÞ. We expect the resulting
average to be less favorable to a rising term than in the
SECFL model.

Other theories.—CA in Ref. [8] provide a spectral func-
tion that may be Taylor expanded at finite T and low
enough energies as follows. With q ¼ 1! 1

4n
2 depending

on the filling n, and $k̂ ¼ AðkBTÞ þ Cv2
kF
k̂2, their expres-

sions yield:

fSs
CA;R

a-s
CAg ¼

#
Q0; cotðq%=2Þ ðvFk̂!!Þ

$0

$
; (11)

with Q0 ¼ const. sinðq%=2Þ
4%cosh2ð#!=2Þ =½$2

0 þ ð!! vFk̂Þ2,q=2.
Therefore, this work also implies a nontrivial R with a
linear !, k̂ dependence, similar in form to that in ECFL,
although with a non-Lorentzian peak factor replacing the
Q factor in Eq. (7). It is seen that the asymmetry of this
theory as well as that of the ECFL theory vanishes con-
tinuously at low particle density n ! 0. An important
characteristic energy #-ðx; TÞ, say the inverse of the slope
of the linear in ! term inR contains much physics. In the
CA theory #-ðx; TÞ / $0 vanishes at all densities x as
T ! 0, thereby defining a line of quantum critical points.
On the other hand in the ECFL calculations, the energy
#-ðx; T ! 0Þ is nonzero but much smaller than the (bare)
Fermi energy. However, it could vanish at a specific filling
xc: as #-ðxc; T ! 0Þ ! 0, thereby locating an isolated
quantum critical point.

Other contemporary theories have a different prediction
from the ECFL and CA. The popular marginal Fermi-
liquid model [11] for the spectral function has a Dyson
self-energy that is symmetric under the transformation
Eq. (1). Therefore, it leads to an! independent asymmetry
ratio at small energies, as in the usual Fermi-liquid [6]. A
similar ! independent R occurs for the RPA and its many
variants emphasizing fluctuation contributions.

Conclusions.—The program of extraction of the asym-
metry ratio from the ‘‘ideal’’ spectral weight is summarized
in Fig. 3. A window of size &2kBT in ! and vFk̂ are
highlighted in this construction. It is proposed that a care-
ful examination of the ARPES intensity along these lines
would determine the existence of dynamical particle-hole
asymmetry. This asymmetry also relates to the difference
in velocities (and amplitudes) of quasiparticles and quasi-
holes, of the type that are invoked in explaining the

peculiar sign of the Hall effect in the mixed state [19].
We thus expect it to be important in Hall and analogous
transport contexts such as thermopower. This search is
complementary, as well as a prerequisite, to the detailed
characterization of the symmetric part Ss. Specifically I
propose that the search for a nontrivial (i.e., ! linear)
asymmetry ratio R is important for identifying the correct
underlying theoretical description of the cuprates.
In order to implement the transformation Eq. (1) on the

experimental data, we need a high resolution in frequency
as well as momentum. Because the bare Fermi velocities
are high @vF & 5 eV &A, the momentum resolution becomes
critical. An error #"& 15–20 meV can lead to quite in-
correct conclusions. Thus, in order to draw unambiguous
conclusions we require #k& 0:001 ð &AÞ!1, i.e., #"&
5 meV or better, thereby posing an interesting challenge
to the experimental ARPES community.
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We present the detailed formalism of the extremely correlated Fermi liquid theory, developed for treating the
physics of the t-J model. We start from the exact Schwinger equation of motion for the Green’s function for
projected electrons, and develop a systematic expansion in a parameter λ, relating to the double occupancy. The
resulting Green’s function has a canonical part arising from an effective Hamiltonian of the auxiliary electrons,
and a caparison part playing the role of a frequency-dependent adaptive spectral weight. This adaptive weight
balances the requirement at low ω of the invariance of the Fermi volume, and at high ω of decaying as c0

iω
, with a

correlation-depleted c0 < 1. The effective Hamiltonian Heff describing the auxiliary fermions is given a natural
interpretation with an effective interaction Veff containing both the exchange Jij and the hopping parameters
tij . It is made Hermitian by adding suitable terms that ultimately vanish, in the symmetrized theory developed
in this paper. Simple but important shift invariances of the t-J model are noted with respect to translating its
parameters uniformly. These play a crucial role in constraining the form of Veff and also provide checks for further
approximations. The auxiliary and physical Green’s function satisfy two sum rules, and the Lagrange multipliers
for these are identified. A complete set of expressions for the Green’s functions to second order in λ is given,
satisfying various invariances. A systematic iterative procedure for higher order approximations is detailed. A
superconducting instability of the theory is noted at the simplest level with a high transition temperature.

DOI: 10.1103/PhysRevB.87.125124 PACS number(s): 71.10.Fd

I. INTRODUCTION

This work presents the detailed formalism of a newly devel-
oped framework for systematic calculation of the dynamical
properties of the t-J model, starting from the basic parameters
t and J of the model. A subsequent paper Ref. 1 presents
self-consistent numerical results from the initial application of
this theory, for the case of a two-dimensional square lattice
relevant to cuprate superconductors. We will refer to extreme
correlations as the limit U ! t , so that the single-occupancy
constraint is enforced. The t-J model Eq. (12) is the prime
example of such a situation. In practice this theory applies
already when U ! Zt , where Z is the coordination number
of the lattice. The theory and calculations presented are in the
extremely correlated Fermi liquid (ECFL) phase discussed in
Ref. 2. This phase is liquid like, and connects continuously
to the Fermi liquid phase of weak-coupling models such as
the Hubbard model, while accommodating the extreme local
interaction U → ∞.

The t-J model described by Eq. (12) is one of the standard
models of condensed matter physics. It has been the focus of
intense effort for the last few decades, as reviewed in Ref. 3.
Interest in the model grew particularly after its identification
by Anderson in Ref. 4, as governing many of the rich and
complex set of phenomena in high-Tc cuprate superconductors.
The origin of the exchange part of the t-J model in an inverse
expansion in the interaction U is familiar from superexchange
theory. The relation J = 4t2

U
is found starting from the Hubbard

model as in Ref. 5, so that large U leads to a small J . An
early account of the model and the various sum rules can be
found in the Ref. 5. More recently Zhang and Rice6 gave an
argument for reducing the three-band copper oxygen model to
an effective single-band model, with a t-J form. Their method,
apart from being more realistic, gives independent magnitudes
for t and J unconstrained by relations of the type inherent in
superexchange within a single-band model.

Controlled calculations within this model are beset by two
fundamental difficulties: (a) the noncanonical nature of the
single-occupancy (Gutzwiller7) projection of the electrons
that changes the canonical anticommutation relations to a
more nontrivial Hubbard (Lie) algebra and (b) the absence
of any obvious small parameter for generating a systematic
theory. The present author has recently formulated a method
in Ref. 2 and Ref. 8 that overcomes these difficulties to a
large extent. The basic idea is to approach the system starting
from the limit of low particle density n = Ne/Ns (ratio of
electron number to the number of sites), i.e., a generalized
virial expansion. The density can be increased towards half
filling systematically, as described below. Early applications to
angle-resolved photoemission (ARPES) experiments in Ref. 9
are promising, and the general structure of the solution already
leads to nontrivial and experimentally testable predictions in
Ref. 10. The present work gives the details of the method
introduced in Ref. 2, and carries out a calculation to the lowest
nontrivial order in a parameter λ described below. The main
elements involved in this framework can be summarized as
follows:

(1) The Schwinger method. Reference 2 utilizes the key
observation that the Schwinger method dispenses with Wicks
theorem, and replaces that step of canonical theory by a formal
matrix (operator) inversion. The Schwinger equation for the
Green’s function typically involves a time derivative and a
functional derivative with respect to a source potential V
(defined more fully below). It has the great advantage over
standard equations of motion in that the functional derivative
generates all required higher order Green’s functions. This is
unlike, say, the BBGKY hierarchy of quantum statistical me-
chanics, where one needs to import higher order correlations
from elsewhere. For the t-J model, Ref. 2 obtains an exact
Schwinger equation described below in Eq. (42) and Eq. (43).
For our purpose, that equation may be illustrated schematically
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by the symbolic equation
[
Ĝ−1

0 (µ) − Y1 − X
]
· G = (1− γ ), (1)

where Ĝ−1
0 [Eq. (64)] is a noninteracting Green’s function

and γ [Eq. (35)] is essentially the spatially localized but
time-dependent Green’s function itself ∼ Glocal. Further, Y1
is a Hartree-type energy and X ∼ (something) × δ

δV contains
the all-important functional derivative with respect to V [both
X,Y are defined in Eq. (43)]. The undefined “something”
lumps together constants and the interaction potential, but is
independent of G. This is a convenient launching pad provided
by Schwinger’s method, since it is exact. However, it is also
intractable as it stands. There is no obvious small parameter,
and the presence of the time-dependent γ on the right-hand
side represents the removal of states (and double occupancy)
from the canonical theory and creates a new set of problems.
We must understand and overcome these in order to create a
practical and controlled scheme for calculations. We therefore
push forward to the next set of steps.

(2) Noncanonical nature of the problem and its conse-
quences. The noncanonical nature of the problem is reflected
in the γ term on the right of Eq. (1); it is a time-dependent
Green’s function obtainable from G itself [Eq. (45)]. This γ
term contains an essential difficulty of the problem; it has a
technical origin that we first discuss, and also an important
physical aspect that we describe below.

(a) Consider first the canonical theories, such as the Hubbard
model [see Eq. (4) below], where one only has the1 term on the
right-hand side of Eq. (1). In order to get rid of the functional
derivative operator X in favor of a (multiplicative) self-energy,
one uses X ∼ (something) × δ

δV to write

X · G → %G ≡ (something) × G&G,

using
δ

δV G = G&G, (2)

following from & ≡ − δ

δV G−1,

wherein the vertex & is introduced. This gives the Schwinger-
Dyson relationship between the self-energy % and vertex:

%= (something)×G&, so that
(
Ĝ−1

0 (µ)−Y1 −%
)
G =1.

(3)

This Schwinger-Dyson construction necessarily requires that
the vertex & reduce to unity at high frequencies, i.e., should be
“asymptotically free.” In the case of the noncanonical theory
Eq. (1), a similar procedure fails. It is easily verified that the
required good behavior is lost because of the time-dependent
term γ on the right-hand side of Eq. (1), as shown in Ref. 11.
The so defined vertex grows linearly with frequency, and
invalidates the Dysonian self-energy scheme.

(b) The physical problem that is related to the noncanonical
γ term has to do with the spectral weight of the projected
electrons in a t-J model. Here basic sum rules give us insight
into the origin, as well as a resolution of this fundamental
problem. For noncanonical electrons, the high-frequency
behavior of the Green’s function is G ∼ c0

iω
with c0 = 1 − n

2 ,
rather than the familiar result for canonical electrons c0 = 1.
The depletion of c0 from unity arises from the physics of

single-occupancy projection of the (noncanonical) electrons
ĉiσ (denoted by the Hubbard operator Xσ0

i below). Consider
the relation c0 = 〈ĉiσ ĉ

†
iσ + ĉ

†
iσ ĉiσ 〉; the process 〈ĉiσ ĉ

†
iσ 〉 suffers

from the inhibiting requirement that in order to create an
electron with spin σ , the spin state σ̄ at site i must also be
unoccupied (so that a double occupancy is not created by
this process), resulting in c0 < 1. On the other hand, if the
numerator of G(iω) remains as c0 at all frequencies, then the
Fermi surface must enlarge in volume, and thereby violate
the Luttinger-Ward theorem of invariance of this volume.12

We thus arrive at an appreciation of the fundamental tension
between the conflicting requirements: at high frequency of
fixing a known coefficient c0 < 1, and at low frequency
of a numerator almost unshifted from unity, for preserving
the Fermi surface volume. A resolution is provided by the
possibility of an adaptive (or smart) spectral weight, i.e., the
numerator of the Green’s function. If a frequency-dependent
spectral weight can be found, so as to interpolate smoothly
between the high- and low-frequency requirements, then both
could be satisfied.

(c) The product ansatz: The above points suggest that the
Green’s function of the t-J model is usefully thought of as
a product of two terms in frequency space i.e., G ∼ g × µ
[Eq. (44)], where g is a canonical Green’s function and µ
the caparison factor playing the role of an adaptive (or smart)
spectral weight factor. The g term (i.e., the denominator) is
required to be a canonical object with its poles and cuts
as usual in a Fermi liquid, and defines the auxiliary Fermi
liquid in this theory. The frequency-dependent µ term (in
the numerator) plays the role of the smart spectral weight; it
reduces to the correct coefficient c0 at high frequencies while
recovering weight at lower frequencies. Thus a convolution
in time domain into two suitable time-dependent pieces could
resolve this conundrum, and motivates the product ansatz in
Eq. (44). This product ansatz is at the heart of the procedure
described here and is seen to lead to a pair of exact equations
for the two parts g and µ below in Eq. (67) and Eq. (68).

(d) The µ term is also termed the caparison factor in Ref. 2,
keeping in mind that it provides a second layer of dressing, over
and above the dressing provided by the usual Fermi-liquid-type
processes in g itself.

(3) Small parameter in theory. The t-J model is the sum of
two highly nontrivial terms, the kinetic energy projected to the
space of single occupancy, and the exchange energy. It has no
obvious small parameters making it especially difficult to deal
with. Some inspiration is gained by examining the form of the
analogous Schwinger equation for canonical theories, such
as the Hubbard model. Again omitting details, the relevant
equation can be written symbolically as

[
Ĝ−1

0 (µ) − UG − U
δ

δV

]
· G = 1, (4)

where U is the Coulomb repulsion in the Hubbard model.
Comparing with Eq. (1) suggests a simple approach to
introduce a new parameter λ. In its simplest form, we propose
to study the modified problem symbolically expressed as

[
Ĝ−1

0 (µ) − λY1 − λX
]
· G = (1− λγ ), (5)
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with 0 " λ " 1, so that this equation Eq. (5) interpolates
smoothly between the Fermi gas and the t-J model. This
appearance of the parameter parallels the way the Hubbard
parameter U enters Eq. (4). The complication of the noncanon-
ical γ term on the right is handled analogously to the Hartree
term Y1. Unlike the repulsive Hubbard case, with an infinite
interval [0,∞] for U , the parameter λ lives in a small and finite
interval [0,1]. The expectation is that low-order perturbation
expansion inλ has a reasonable chance of capturing the physics
of extreme correlations at λ = 1. We show in Appendix A that
in the atomic limit, the role of λ can be explicitly related to that
of the fraction of double occupancy (and thus also density),
so that tuning λ smoothly adjusts this fraction between its two
limits. Further in Eq. (11) below, a suggestive expression for
the fermionic operators is noted that relates λ < 1 to a soft
version of Gutzwiller projection.

(4) Effective Hamiltonian for the auxiliary fermions with
a pseudopotential. Setting aside the caparison factor µ for a
moment, we examine further the equations of motion [Eq. (22)
and Eq. (26)] for the auxiliary fermion g following from
Eq. (5) together with the product ansatz G = g × µ. We would
like to interpret these as the actual (canonical) equations
of a suitable Fermi liquid, obtainable from a Hermitian
Hamiltonian. However, we find that the equations [Eq. (22)
and Eq. (26)] as they stand do not immediately cooperate with
this task. They require a process of symmetrization described
next, where one adds extra terms that vanish when treated
exactly, and after this lead to a Hermitean theory for g. We
term the resulting equations as the symmetrized theory, as
outlined in this paper.

The theory based on Eq. (22) and Eq. (26) without
symmetrization is of course also exact, and is potentially
useful in its own right. We develop such a minimal theory
elsewhere, with the expectation that this minimal theory would
not admit a Hermitian Hamiltonian to describe the auxiliary g.
Also in an approximate treatment, e.g., through an expansion
in the parameter λ to any fixed but finite order, we would
expect the symmetrized and minimal versions of the theory to
be different, converging only when all orders are taken into
account.

Returning to the symmetrization procedure, we construct an
effective Hamiltonian Heff for canonical electrons (fiσ ,f

†
iσ ),

with the property that the (imaginary time) Heisenberg
equation of motion for canonical electrons ḟiσ = −[fiσ ,Heff]
matches exactly the Heisenberg equation of motion for
projected electrons ˙̂ciσ = −[ĉiσ ,Ht−J ], except for terms that
vanish on enforcing the single-occupancy constraint on the
auxiliary fiσ electrons. Thus we require

[fiσ ,Heff] = ([ĉiσ ,Ht−J ])(ĉ,ĉ†)→(f,f †)

+ (expressions involving f,f † that vanish

at single occupancy). (6)

We can then add these missing terms with (f,f †) → (ĉ,ĉ†) to
the Heisenberg equation of motion (EOM) for ĉ and thereby
obtain an auxiliary Fermi liquid that would be also “natural,”
i.e., have all the standard properties of a Fermi liquid.13,14 One
should therefore be able to use standard Feynman diagrams

(Ref. 13) to compute the properties of this auxiliary theory in
powers of λ, if one were so inclined.

We find it straightforward to find such an effective Hamil-
tonian Heff [Eq. (27)] as described below in Sec. II C. The
physical meaning of Heff becomes clearer with the following
remarks. The kinetic energy of the projected electrons could
also be written differently. An alternate representation, occa-
sionally used in literature, relates

ĉ
†
iσ = Xσ0

i → f
†
iσ (1 − niσ̄ ), ĉiσ = X0σ

i → fiσ (1 − niσ̄ )

(7)

with σ̄ = −σ and niσ = f
†
iσfiσ . Within this representation, the

Hilbert space continues to allow for double occupancy, i.e., is
canonical, but the various operators representing the physical
processes act only upon the singly occupied subspace, and
produce states that are likewise singly occupied. Thus we may
write the kinetic energy part as

KE = −
∑

ij

tij (1 − niσ̄ )f †
iσfjσ (1 − nj σ̄ ). (8)

Since the exchange energy
∑

ij Jij
*Si · *Sj automatically con-

serves single occupancy, we will not write it out. The kinetic
energy is thus a multi-Fermi operator and represents both
the propagation and interaction between particles. To separate
these functionalities, we introduce a parameter λ here—it will
turn out to be the same parameter as in Eq. (5)—and write

KE(λ) = −
∑

ij

tij (1 − λniσ̄ )f †
iσfjσ (1 − λnj σ̄ )

= −
∑

ij

tij f
†
iσfjσ + λ

∑

ij

tij f
†
iσfjσ (niσ̄ + nj σ̄ )

+ λ2Hd, (9)

Hd = −
∑

ij

tij f
†
iσfjσ (niσ̄nj σ̄ ), Hd → dropped. (10)

The term Hd acts on the doubly occupied subspace and is null
in the singly occupied space, and hence it may be dropped
altogether. The remaining part of the kinetic energy term
KE(λ) has the structure of a four-Fermi interaction between
the canonical fermions, and turns out to be a large part of Heff
in Eq. (27). The introduction of the parameter λ can thus be
viewed as replacing Eq. (7) by a “softer” representation of the
Gutzwiller projection:

ĉ
†
iσ → f

†
iσ (1 − λniσ̄ ), ĉiσ → fiσ (1 − λniσ̄ ). (11)

This λ representation discourages but does not completely
eliminate double occupancy. However as λ → 1, it does
become the exact projected operators Eq. (7), and further
provides a simple interpolation between standard (canonical)
fermions and the projected electrons by varying λ in the
range 0 " λ " 1. Thus Eq. (11) suggests the interpretation
of the parameter λ as the controller of the (partial) Gutzwiller
projection.

In this representation (with λ = 1), the physical electron
Green’s function Gij corresponds to the correlator −〈〈(1 −
niσ̄i

)fiσi
,f

†
jσj

(1 − niσ̄j
)〉〉, while −〈〈fiσi

,f
†
jσj

〉〉 would represent
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the auxiliary Green’s function g(i,j ). The caparison factor
µ seems hard to interpret in this language, though. The
ECFL formalism developed here presents a procedure to
splice together g and µ precisely, to yield the physical G. Its
otherwise formal structure becomes clearer upon making the
above connection; in particular Eq. (11) helps in developing
some intuition for g. For instance a physical interpretation of
the auxiliary fermions is provided by the fiσ themselves, and
thereby requiring the same number of auxiliary fermions as
the physical ones, as done below, is perfectly natural.

(5) Invariances of the effective Hamiltonian Heff and the
emergence of the second chemical potential u0. In Heff
[Eq. (27)], the hopping parameter tij is elevated to the role of an
interaction coupling, in addition to its role as a band-hopping
parameter. This feature needs attention, since we know that a
constant (k independent) shift of the band energies εk → εk +
ut , or adding an on-site interaction through Jij → Jij + δij uJ ,
is inconsequential for the t-J model, but makes a difference in
Eq. (9), and in various approximations for the t-J model. This
“pure” gauge invariance is of primary importance in this kind
of a theory, and must be addressed at the very outset to obtain a
consistent and meaningful description of the t-J model. Such
shifts could potentially lead to a change of the interaction
strengths in Heff , unless they can be explicitly eliminated in
the theory. This issue is addressed by first listing these shift
symmetries of the model in Sec. II, and then requiring the
approximation scheme to be shift invariant, at each order of λ.

Imposing the shift symmetries on Heff Eq. (27) causes
it to have a term with a Hubbard-Coulomb-like interaction
with strength u0, such that arbitrary shifts of t and J can be
absorbed into the parameter u0. Analogous to the standard
chemical potential µ, this u0 is a Lagrange multiplier of a term
in the Hamiltonian Heff . However it multiplies an interaction
term that is quartic in the canonical fermions, unlike µ that
multiplies the usual (quadratic) number operator. The chemical
potential µ and the second chemical potential u0 are jointly
determined by two sum rules Eq. (90) and Eq. (91), one for the
number of physical electrons and the other for the (identical)
number of auxiliary canonical electrons.

In this work, we obtain a set of equations for the Green’s
function. These are essentially of the same form as in our
recent earlier Letter Ref. 2, but differ in a few details due to
the usage of the idea of the effective Hamiltonian and its shift
invariances. An iterative framework is carefully established,
and calculations of the Green’s function to second order in λ
are carried out explicitly.

The outline of the paper is as follows. In Sec. II, we list
the shift symmetries of the t-J model and obtain the exact
equation satisfied by the Green’s function. We also determine
the form of the effective Hamiltonian Heff for the auxiliary
fermions, such that the Heisenberg equations for the field
operators are satisfied in a Hermitian framework. In Secs. III
and IV, we use the product ansatz for the Green’s function
to introduce and find the exact equations for the auxiliary
fermions and the caparison factor µ. In Sec. V we turn off the
time-dependent sources and write the exact momentum-space
relations between the self-energy, the caparison factor, and
the physical Green’s functions—these are the analogs of
the Schwinger-Dyson equations for this problem. Section VI

summarizes in tabular form the necessary equations needed
for the next step in the iterative process that is analogous to the
skeleton graph expansion. Section VII describes the λ expan-
sion of various objects and the precise nature of the iterative
expansion. Several detailed calculations are needed to obtain
the second-order equations, and are detailed in Appendix B.
Section VIII details the Ward identities of this theory, which
splits into two parts following the splitting of the Green’s
functions. Section IX gives the set of vertices defining the
random phase approximation for this theory and Sec. X gives
the formal results for the charge and spin susceptibilities within
RPA and its low-order expansion. Section XI concludes with
some comments including a calculation of the superconducting
transition temperature in this theory.

Appendix A gives a detailed calculation in the atomic limit.
The simple calculation here may be useful in providing the
reader some insight into the interpretation of the λ expansion
in terms of the number of doubly occupied sites. Appendix B
contains the detailed calculations of the various objects need
to compile the second-order Green’s function.

II. THE t- J MODEL AND ITS SHIFT INVARIANCE

We write the projected Fermi operators in terms of the
Hubbard X operators as usual ĉiσ → X0σ

i , ĉ
†
iσ → Xσ0

i , and
ĉ
†
iσ ′ ĉiσ → Xσ ′σ

i . We study the t-J model given by

H = −
∑

i,j,σ

tijX
σ0
i X0σ

j − µ
∑

i,σ

Xσσ
i

+ 1
2

∑

i,j

Jij

{
*Si · *Sj − 1

4
ninj

}
,

= −
∑

i,j,σ

tijX
σ0
i X0σ

j − µ
∑

i,σ

Xσσ
i

+ 1
4

∑

ij,σ

Jij

(
Xσ σ̄

i Xσ̄ σ
j − Xσσ

i Xσ̄ σ̄
j

)
. (12)

We will treat the two terms on an equal footing as far
as possible, and allow terms with i = j . The statement
of the model is invariant under a particular “pure gauge”
transformation that we next discuss. Let us first note the shift
invariance of the two parameters in H . Consider the uniform
(i.e., space independent) shifts of the basic parameters:

tij → tij − utδij , Jij → Jij + uJ δij , (13)

with independent parameters ut ,uJ . Under this transformation
the Hamiltonian shifts as

H → H +
(
ut + 1

4uJ

)
N̂, (14)

where N̂ =
∑

iσ Xσσ
i is the number operator for the electrons.

Let us note two simple theorems encoding this invariance:
Shift theorem I. A shift of either t or J can be absorbed

into suitable parameters, leaving the physics unchanged.
Shift theorem II. The two shifts of t and J cancel each

other when uJ = −4ut .
The first theorem is illustrated in the initial Hamiltonian

Eq. (12), where the shift in Eq. (14) can be absorbed in the
chemical potential µ → µ + ut + 1

4uJ . Later it serves to iden-
tify a second generalized chemical potential u0 encountered
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in the following. The second theorem is subtle as it leaves the
chemical potential µ unchanged (see Ref. 15). It provides a
measure of the equal-handed treatment of t and J . We will
find these almost trivial theorems of great use in devising and
validating various approximation schemes later.

In further work we need to add a source term via the
operator A:

A =
∫ β

0
A(τ )dτ =

∑

j,σ1,σ2

∫ β

0
dτ Vσ1σ2

j (τ )Xσ1σ2
j (τ )

+
∑

ij,σ1σ2

∫ β

0
dτ Vσ1σ2

ij (τ )Xσ10
i (τ )X0σ2

j (τ ), (15)

with the usual imaginary-time Heisenberg picture τ depen-
dence of the operators Q(τ ) = eτH Qe−τH , and the bosonic
sources Vσ1σ2

j (τ ) at every site and also Vσ1σ2
ij (τ ) for every

pair of sites, as arbitrary functions of time. We will denote
these sources in a compact notation where the site index also
carries the time argument as Vσ1σ2

i ≡ Vσ1σ2
i (τi) and Vσ1σ2

ij ≡
Vσ1σ2

ij (τi)δ(τi − τj ). For any variable we define a modified
expectation

〈〈Q(τ1,τ2,...)〉〉 = Tr[e−βH Tτ e
−A Q(τ1,τ2,..)]

Tr[e−βH Tτ (e−A)]
, (16)

with a compact notation that includes the (imaginary) time
ordering symbol Tτ and the exponential factor automatically.
With the abbreviation i ≡ (Ri,τi) for spatial *Ri and imaginary-
time (τ ) coordinates, the physical electron is described by a
Green’s function:

Gσiσf
[i,f ] = −

〈〈
X

0σi

i X
σf 0
f

〉〉
. (17)

From this, the variation can be found from functional differ-
entiation as

δ

δVσ1σ2
j (τ1)

〈〈Q(τ2)〉〉

= 〈〈Q(τ2)〉〉
〈〈
Xσ1σ2

j (τ1)
〉〉

−
〈〈
Xσ1σ2

j (τ1)Q(τ2)
〉〉
. (18)

We note the fundamental anticommutator between the destruc-
tion and creation operators:

{
X0σ1

i ,Xσ20
j

}
= δij

(
δσ1σ2 − (σ1σ2)Xσ̄1σ̄2

i

)
. (19)

A. The Heisenberg equation of motion

Let us now study the time evolution of the destruction
operator through its important commutator:
[
X

0σi

i ,H
]

= −
∑

j

tij
[
δσiσj

− (σiσj )Xσ̄i σ̄j

i

]
X

0σj

j +1
4
J0X

0σi

i
︸ ︷︷ ︸

−µX
0σi

i − 1
2

∑

j ,=i

Jij (σiσj )Xσ̄i σ̄j

j X
0σj

i . (20)

Here J0 is the zero wave vector (i.e., Jii the on-site) exchange
constant. The term in underbraces here and in the next equation
ensures that the commutator reproduces the term with Jij →
Jij + uJ δij correctly. We note that under the transformation
Eq. (14), the last term in Eq. (20) adds nothing, in view of
the ordering of the operators as written, while the term with
underbraces provides the correct transformation factor. Let us
call this commutator
[
X

0σi

i ,H
]

= −
∑

j

tijX
0σi

j +1
4
J0X

0σi

i
︸ ︷︷ ︸

−µX
0σi

i + Aiσi
, (21)

Ai,σi
=

∑

jσj

tij (σiσj )Xσ̄i σ̄j

i X
0σj

j − 1
2

∑

j ,=i

Jij (σiσj )Xσ̄i σ̄j

j X
0σj

i .

(22)

We next express the EOM for the Green’s function in terms
of A.

B. Equation of motion for G
Let us compute the time derivative of G. For this we need

the derivative

∂τi
Tτ

(
e−AX

0σi

i (τi)
)

= −Tτ
(
e−A[

X
0σi

i (τi),H
])

+ Tτ
(
e−A[

A(τi),X
0σi

i (τi)
])

,
[
A(τi),X

0σi

i (τi)
]

= Vσ1σ2
i (τi)

[
Xσ1σ2

i (τi),X
0σi

i (τi)
]
−

∑

j

Vσ1σ2
ij (τi)

{
Xσ10

i (τi),X
0σi

i (τi)
}
X0σ2

j (τi)

= −Vσiσ2
i X0σ2

i −
∑

j

Vσiσ2
ij X + j 0σ2 +

∑

j

Vσ1σ2
ij (σ1σi)X

σ̄i σ̄1
i X0σ2

j . (23)

This follows from the definition of the time ordering and Eq. (15) for A. Using this we find

∂τi
Gσiσf

[i,f ] = −δ(τi − τf )δi,f

〈〈(
δσiσf

− σiσf X
σ̄i σ̄f

i

)〉〉
+

〈〈[
X

0σi

i (τi),H
]
X

σf 0
f (τf )

〉〉

−Vσiσ2
i (τi)Gσ2σf

[i,f ] −
∑

j

Vσiσ2
ij Gσ2σf

[j,f ] −
∑

j

Vσ1σ2
ij (σ1σi)

〈〈
X

σ̄i σ̄1
i (τi)X

0σ2
j (τj )Xσf 0

f (τf )
〉〉
. (24)

To simplify notation, in such expressions for the Green’s functions [or Eq. (26) below], the sum over an index implies
a sum over the corresponding site and also an integration over the corresponding time; e.g.,

∑
j Vσ1σ2

ij f (. . . ,τj , . . .) →
∑

Rj

∫ β

0 dτjVσ1σ2
ij (τj )δ(τi − τj )f (. . . ,τj , . . .). A further bold letter summation convention is used after Eq. (41). However,

note that in expressions for operators such as Eq. (21) or Eq. (22), the sum only refers to the site index summation. We further
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use the abbreviations

δ[i,j ] = δi,j δ(τi − τj ), t[i,j ] = tij δ(τi − τj ),
(25)

J [i,j ] = Jij δ(τi − τj ) Vσaσb
r = Vσaσb

r [τr ].

In terms of these, and using Eq. (21), we find the equation of motion in terms of A:

(∂τi
− µ)Gσiσf

[i,f ] = −δ[i,f ]
〈〈
δσi ,σf

− σiσf X
σ̄i σ̄f

i

〉〉
+ t[i,j ]Gσiσf

[j,f ] − 1
4
J0Gσiσf

[i,f ] +
〈〈
Aiσi

(τi)X
σf 0
f (τf )

〉〉

−Vσiσj

i (τi) Gσjσf
[i,f ] −

∑

j

Vσiσ2
ij Gσ2σf

[j,f ] −
∑

j

Vσ1σ2
ij (σ1σi)

〈〈
X

σ̄i σ̄1
i (τi)X

0σ2
j (τj )Xσf 0

f (τf )
〉〉
. (26)

We recall from the introduction the discussion regarding suit-
ably generalizing A of Eq. (22), in order to make connection
with a Hermitian Heff , and therefore turn to this task next.

C. Effective Hamiltonian

We now construct an effective Hamiltonian of canonical
fermions that will turn out to govern the auxiliary Fermi liquid
theory. The motivation for this construction is to cast the
auxiliary fermionic part of the ECFL theory into a natural and
canonical framework, so that the equation for the g, i.e., the
auxiliary piece of the full G, is obtainable from a Hamiltonian
that is Hermitian and respects the usual Fermi symmetry of
interactions under exchange.

After some inspections we find that a suitable Hamiltonian
is provided by the expression

Heff = −
∑

ij

tij f
†
iσfjσ +

∑

i

(
1
4
J0 − µ

)
f

†
iσfiσ + λVeff,

Veff = 1
4

∑

ij

tij (σ1σ2)
[(

f
†
iσ1

f
†
iσ̄1

+ f
†
jσ1

f
†
j σ̄1

)
fiσ̄2fjσ2 + (H.c.)

]

− 1
4

∑

ij

Jij (σ1σ2)f †
iσ1

f
†
j σ̄1

fj σ̄2fiσ2

+ 1
4

∑

i

u0(σ1σ2)f †
iσ1

f
†
iσ̄1

fiσ̄2fiσ2 , (27)

with a Hermitian effective potential V
†

eff = Veff (Fig. 1), and
assume no constraint on double occupancy for these auxiliary
(canonical) fermions fiσ . The t and J parts reproduce the exact
equations of motion as shown below with certain additional

terms that vanish under the constraint of single occupancy.
The parameter λ is set to unity at the end and provides an
interpolation to the Fermi gas. The parameter u0 represent an
effective Hubbard-type interaction for these fermions, giving
a contribution u0

∑
i f

†
i↑fi↑f

†
i↓fi↓. Its magnitude is arbitrary

at the moment, since it disappears under exclusion of double
occupancy. Here it enables us to enforce the invariance in shift
theorem I, where the shift of t and J can be absorbed in u0.
It will turn out to play the role of a second chemical potential
or Lagrange multiplier, in fixing the second sum rule Eq. (91).
To illustrate this remark, note that adding a constant to t or J
as in Eq. (14) adds an on-site four-Fermi interaction term. In
order to satisfy the shift theorem I, we must compensate for
this suitably, leading to the extra on-site term with coefficient
u0, which can absorb this shift. It is also verified that the shift
theorem II is satisfied without the u0 term. We emphasize
that the u0 term is both natural and essential for the purpose
of satisfying the shift theorem I. Since the structure of the
u0 term is almost identical to that of Jij we will most often
“hide it” inside Jij , and explicitly display it at the end. Thus
unless explicitly displayed, we should read Jij → Jij − u0δij

below. For analogous terms involving the Xσσ ′

i operators as in
Eq. (22), we can include u0 in Jij without any errors, since
the u0 term always vanishes due to the properties of these
operators.

Defining symmetric Cooper pair singlet operators

P†(i,j ) =
∑

σf
†
iσf

†
j σ̄ = (f †

i↑f
†
j↓ − f

†
i↓f

†
j↑),

P†(i,i) =
∑

σf
†
iσf

†
iσ̄ = 2f

†
i↑f

†
i↓, (28)

σ2 σ2

σ1 σ1

i j
1
4
(σ1σ2)tij

σ2 σ2

σ1
σ1

i j

1
4(σ1σ2)tij

σ2 σ2

σ1 σ1

i j

−1
4(σ1σ2)Jij

FIG. 1. The pseudopotential Veff in the real-space representation, where the wavy line represents tij and the coiled line represents Jij . The
first two interaction vertices have two undisplayed symmetric partners with the exchange i ↔ j .
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σ2 σ2

σ1 σ1

p1
p2

p3p4

Weff = −δp1+p2,p3+p4 { j εj + Jp2−p3 − u0 }

FIG. 2. The pseudopotential Weff in the momentum-space repre-
sentation. The zigzag line represents Weff . Note that the momentum
transfer in the argument of J is also expressible as Jp1−p4 .

with P†(j,i) = P†(i,j ), we write

Veff = 1
4

∑

ij

tij [(P†(i,i) + P†(j,j ))P(i,j ) + (H.c.)]

− 1
4

∑

ij

JijP†
ijPij . (29)

In momentum representation the effective Hamiltonian
Eq. (27) reads

Heff =
∑

k

(
εk + 1

4
J0 − µ

)
f

†
kσfkσ

+ λ

4Ns

∑

p

(σ1σ2)Weff(p1,p2; p3,p4)

× f †
p1σ1

f
†
p2σ̄1

fp3σ̄2fp4σ2 ,

Weff(p1,p2; p3,p4) = −δp1+p2,p3+p4

{
εp1 + εp2 + εp3

+ εp4 + Jp2−p3 − u0
}

(30)

(see Fig. 2), where the momentum-independent term u0 has
been explicitly written out. In this effective Hamiltonian, the
band energies εpj

of the original model are present, both in
the band energy of the f ’s and the interaction term. Therefore
the shift Eq. (13) cannot be absorbed in the µ alone, and
u0 must also transform suitably to ensure that the effective
Hamiltonian satisfies the shift theorem I. Thus in using the
effective Hamiltonian we refine this theorem to

Shift theorem I.1. An arbitrary shift Eq. (14) of t and
J can be absorbed by shifting the chemical potential µ →
µ + ut + 1

4uJ and u0 as

u0 → u0 + 4ut + uJ . (31)

Note that the shift theorem II is manifestly satisfied: The
combination of the band energies εpj

and the exchange term Jp

in Eq. (30) guarantees that their shift adds up to uJ + 4ut → 0,
which vanishes under the conditions of this theorem.

Since the standard notation for interaction reads∑
〈ab|V |a′b′〉f †

a f
†
b fb′fa′ for a conventional two-body interac-

tion, our notation corresponds to writing Weff(p1,p2; p3,p4) =
〈p1p2|W |p4p3〉. Fermi symmetry implies the invariance
Weff(p1,p2; p3,p4) = Weff(p2,p1; p4,p3), and Hermiticity im-

plies the invariance Weff(p1,p2; p3,p4) = Weff(p3,p4; p1,p2).
For this canonical theory, we calculate the commutator:

[
fiσi

,Heff
]

= −
∑

j

tij fjσi
+

(
1
4
J0 − µ

)
fiσi

+ Âiσi
,

Âiσi
=

[
fiσi

,Veff
]
, (32)

with

Âiσi
=

∑

jσj

tij (σiσj )

×
[

f
†
iσ̄i

fiσ̄j
fjσj

+1
2
f

†
j σ̄i

fj σ̄j
fjσj

+ 1
2
f

†
j σ̄i

fiσ̄j
fiσj

︸ ︷︷ ︸

]

− 1
2

∑

j ,=i

Jij (σiσj )f †
j σ̄i

fj σ̄j
fiσj

. (33)

Let us note that Âiσ Eq. (33) differs from Aiσ in Eq. (22),
through terms (in underbraces) that vanish identically if
we impose the single-occupancy constraint on the auxiliary
electrons.

D. Equation of motion for G continued

We now return to the study of the equation of motion for
G in Eq. (26), expressed in terms of Aiσ of Eq. (22), the
commutator of the destruction operator with H. This object
yields the crucial Heisenberg equation of motion; therefore as
discussed in Eq. (6), we next look for terms that can be added
to it to make it identical to Eq. (33). Comparing Eq. (22) and
Eq. (33) we see that these differ by terms [the second and third
terms of the square bracket in Eq. (33)] that are automatically
vanishing for the Xab

i operators on using their standard rules.
Thus we can add such vanishing terms to Eq. (22) that remain
exact and also importantly preserve the Hermitian nature of
the auxiliary fermionic theory in approximate schemes. We
thus rewrite also an exact but more useful result:

Ai,σi
=

∑

ijσj

tij (σiσj )

×
[
X

σ̄i σ̄j

i X
0σj

j + 1
2
X

σ̄i σ̄j

j X
0σj

j + 1
2
X

σ̄i0
j X

0σ̄j

i X
0σj

i

]

− 1
2

∑

j ,=i

Jij (σiσj )Xσ̄i σ̄j

j X
0σj

i , (34)

so that Ai,σi
and Âi,σi

contain terms that are in one to one
correspondence. We will use Eq. (34) in in place of Eq. (22)
in Eq. (26) next.

The notation simplifies if we use the matrix notation for
the spin indices introduced in Ref. 11 and Ref. 2, e.g.,
Gσiσf

[i,f ] → [G[i,f ]]σiσf
, so that we may regard G as a 2 × 2

matrix. In short, the space-time indices are displayed but the
spin indices are hidden in the above matrix structure. We next
define γ through

γσaσb
[i] = σaσbGσ̄b σ̄a

[i−,i], or γ [i] = G(k)[i−,i], (35)

where we denote the k conjugation of any matrix M by
(M (k))σ1σ2 = Mσ̄2σ̄1σ1σ2. This conjugation corresponds to time
reversal in the spin space. Let 1 be the identity matrix in the
2 × 2 dimensional spin space.
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We employ a useful relation with an arbitrary operator Q
that follows from Eq. (16). We write

〈〈
σaσbX

σ̄a σ̄b

i (τi)Q
〉〉

=
(
γσaσb

[i] − Dσaσb
[i]

)
〈〈Q〉〉,

〈〈
σaσbX

σ̄a0
i (τ+

i )X0σ̄b

j (τi)Q
〉〉

=
(
γσaσb

[i,j ] − Dσaσb
[i,j ]

)
〈〈Q〉〉,

(36)

where we set τj → τ−
i and define

γσaσb
[i,j ] = (σaσb)Gσ̄b σ̄a

[jτ−
i ,iτi] =

〈〈
σaσbX

σ̄a0
i X

0σ̄b

j

〉〉
, (37)

γ [i,i] = γ [i], (38)

and

Dσiσj
[i] = σiσj

δ

δV σ̄i σ̄j

i (τi)
,

Dσiσj
[i,j ] = σiσj

δ

δV σ̄i σ̄j

i,j (τi)
, (39)

and D[i,i] = D[i].

In γ [i,i] and γ [i] we have equal-time objects with creation
operators to the left of destruction operators. Let us note the
rewriting of the last term in Eq. (26):

−
∑

j

Vσ1σ2
ij (σiσ1)

〈〈
X

σ̄1σ̄i

i (τi)X
0σ2
j (τj )Xσf 0

f (τf )
〉〉

= +
∑

j

Vσ1σ2
ij

(
γσiσ1 [i] − Dσiσ1 [i]

)
Gσ2σf

[j,f ]. (40)

With this preparation, using Eq. (34) we rewrite Eq. (26) as
(
∂τi

− µ + 1
4J0

)
Gσiσf

[i,f ]

= −δ[i,f ]
(
δσiσf

− γσiσf
[i]

)
− Vσiσj

i

×Gσjσf
[i,f ] − Vσiσj

i,j (τi) Gσjσf
[j,f ]

+Vσ1σ2
ij

[
γσiσ1 (i) − Dσiσ1 (i)

]
Gσ2σf

(j,f ) + t[i,j]

×
{(
1− γ [i] + D[i] − 1

2γ [j] + 1
2D[j]

)
· G[j,f ]

}
σiσf

+ t[i,j]
{(

− 1
2γ [j,i] + 1

2D[j,i]
)
· G[i,f ]

}
σiσf

+ 1
2J [i,j] {(γ [j] − D[j]) · G[i,f ]}σiσf

, (41)

where the fixed variables are in normal letters and the repeated
variables in bold letters are summed in space and integrated in
time. This may be written compactly in matrix form as

(
∂τi

− µ
)
G[i,f ]

= −δ[i,f ](1− γ [i]) − Vi · G[i,f ]

−Vi,j · G[j,f ] + (γ (i) − D[i]) · Vi,j · G[j,f ]

−X[i,j] · G[j,f ] − Y [i,j] · G[j,f ], (42)

where we used the definitions (with fixed j and summed k)

X[i,j ] = −t[i,j ]
(
D[i] + 1

2D[j ]
)

+ δ[i,j ] 1
2 (J [i,k]D[k] − t[ik]D[k,i]),

Y [i,j ] = −t[i,j ]
(
1− γ [i] − 1

2γ [j ]
)
+ 1

4J01

− δ[i,j ] 1
2 (J [i,k]γ [k] − t[i,k]γ [k,i]) . (43)

These exact equations Eq. (42) and Eq. (43) form the basis
for the remaining discussion. The coefficients in X and Y

differ slightly from the ones in Ref. 2, in view of the usage
of the effective Hermitean Hamiltonian idea in this paper.
The extra terms arise from the form of Eq. (33), and actually
vanish if we could treat either of these exactly. We will show
that this formulation leads to approximations obeying the shift
theorems I and II discussed earlier; note however that Eq. (42)
and the forms of X,Y in Eq. (43) are manifestly invariant under
these theorems.

III. DECOMPOSITION OF G INTO THE AUXILIARY
FERMION GREEN’S FUNCTION g AND THE

CAPARISON FACTOR µ

As discussed in the introduction, we next write the product
ansatz for G

G[a,b] = g[a,r] · µ[r,b], (44)

where g is the canonical auxiliary Green’s function and
µ is the caparison factor, or the adaptive spectral weight.
Since G satisfies antiperiodic boundary conditions under
τa → τa + β and τb → τb + β separately, we must Fourier-
transform both factors g and µ with fermionic frequencies
ωn = (2n + 1)πkBT . At this point µ and g are undetermined.
Let us first note in matrix notation the equal-time objects:

γ [i] = G[i−,i] → (g[i,a] · µ[a,i])(k)

= (µ[a,i])(k) · (g[i,a])(k),
(45)

γ [i,j ] = G[j−,i] → (g[j,a] · µ[a,i])(k)

= (µ[a,i])(k) · (g[j,a])(k).

We define three-point vertex functions

-σ1σ2
σ3σ4

(p,q; r) ≡ − δ

δVσ3σ4
r (τr )

{
g−1
σ1σ2

[p,q]
}
,

(46)
Uσ1σ2
σ3σ4

[a,b; c] ≡ δµσ1σ2 [a,b]
δVσ3σ4

c (τc)
,

or as an implicit matrix in the upper indices (but explicit in the
lower ones):

-σ3σ4 (p,q; r) = − δ

δVσ3σ4
r

{g−1[p,q]},

Uσ3σ4 [a,b; c] ≡ δµ[a,b]
δVσ3σ4

c

. (47)

In a similar vein, to obtain the four-point vertex functions
corresponding to the source Vrs with a pair of points r,s with
τr = τs , we define

-∗(p,q; r,s) = − δ

δV∗
r,s(τr )

{g−1[p,q]},
(48)

U∗[a,b; c,d] ≡ δµ[a,b]
δV∗

c,d (τc)
.

In some expressions involving summations, it is convenient to
think of the vertices -∗(p,q; r,s),U∗[p,q; r,s] with indepen-
dent times τr ,τs , with the constraint of equal times imposed
by multiplying by a delta function δ(τr − τs), as illustrated in
Eq. (B4).

This set of vertices- and U replaces the single vertex& of a
canonical many-body system, and we will also find equations
determining these below. Clearly in any exact treatment, the
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a

b c

d

σ1

σ2 σ3

σ4
p1

p2 p3

p4Λσ1σ2
σ3σ4

[a, b; c, d]

Λσ1σ2
σ3σ4

[p1, p2; p3; p4]

and

FIG. 3. The four-site vertex can be visual-
ized from its definition for canonical theory:
−〈〈faσ1f

†
bσ2

f †
cσ3

fdσ4 〉〉 + 〈〈faσ1f
†
bσ2

〉〉〈〈f †
cσ3

fdσ4 〉〉 = δ

δVσ3σ4
cd

gσ1σ2 (ab) =

gσ1σ
′
1
[a,a]-

σ ′
1σ

′
2

σ3σ4 [a,b; c,d]gσ ′
2σ2 [b,b]. Therefore we may visualize that

apart from the external legs, -σ1σ2
σ3σ4

[a,b; c,d] ∼ 〈faσ1f
†
bσ2

f †
cσ3

fdσ4 〉.
Note that in this convention, the labels differ by a cyclic permutation
from those in Fig. 2.

four-point vertex contains the three-point vertex by collapsing
the points:

-σ1σ2
σ3σ4

(p,q; r) = -σ1σ2
σ3σ4

(p,q; r,s → r), (49)

and similarly for U . However in any approximation scheme,
this identity would follow only if the single-occupancy
constraint at a given site i, namely 〈〈Xσ1σ2

i X
0σ3
i . . .〉〉 = 0, is sat-

isfied exactly, for all choices of the spin indices. Since typical
approximations relax this constraint, if only slightly, it is useful
to keep both sets of vertices in the theory as separate entities.
Another attractive possibility is to require the identity Eq. (49),
by making a different set of (controlled) approximations, and is
also discussed below. Figure 3 illustrates the conventions used
for the four-point vertex; the three-point vertex is obtained by
the indicated contraction.

We now use a notation where ∗ is used as a place holder, as
illustrated in component form by

· · · ξ ∗
σaσb

· · · δ

δV∗
j

= · · · σaσb · · · δ

δV σ̄a ,σ̄b

j

, (50)

with ξσaσb
= σaσb, and an implicit spin flip in the indices of

the attached derivative operator δ/δV σ̄a ,σ̄b

j .
We would like to rewrite Eq. (42) in terms of the vertex

functions. We need to express

X[i,j] · G[j,f ]

= −t[i,j]
(
D[i] + 1

2D[j]
)
· G[j,f ]

+ 1
2 (J [i,k]D[k] − t[ik]D[k,i]) · G[i,f ] (51)

in terms of the vertex functions. Differentiating Eq. (44) we
find

δ

δVσ,σ ′
r

G[a,b] = g[a,c] · -σ,σ ′(c,d; r) · G[d,b]

+ g[a,c] · Uσ,σ ′[c,b; r]. (52)

Consulting Eq. (39) for the definition of Dσ1σ2 [i] = ξσ1σ2
δ

δV σ̄1 σ̄2
i

,

where ξσ1σ2 = σ1σ2, we rewrite this as

D[r] · G[a,b] = ξ ∗ · g[a,c] · -∗(c,d; r) · G[d,b]

+ ξ ∗ · g[a,c] · U∗[c,b; r], (53)

where the spin flip in the derivatives is implied as stressed
above.

Combining Eq. (51) and Eq. (53) we define the useful linear
operator

L[i,j ] = t[i,k]ξ ∗ · g[k,j ] ·
(

δ

δV∗
i

+ 1
2

δ

δV∗
k

)

+ 1
2
t[i,k]ξ ∗ · g[i,j ] · δ

δV∗
k,i

− 1
2
J [i,k]ξ ∗ · g[i,j ] · δ

δV∗
k
. (54)

Hence we may write Eq. (51) compactly as

X[i,j] · G[j,f ] ≡ /[i,b] · G[b,f ] + 0[i,f ], (55)

where the two central objects of this theory arise from the
action of a common operator Eq. (54) on two seed objects g−1

and µ as follows:

/[i,m] ≡ L[i,c] · g−1[c,m]

= −t[i,j]ξ ∗ · g[j,c] ·
(
-∗[c,m; i] + 1

2-∗[c,m; j]
)

− 1
2 t[i,k] ξ ∗ · g[i,c] · -∗[c,m; k,i]

+ 1
2J [i,k] ξ ∗ · g[i,c] · -∗[c,m; k] (56)

and

0[i,m] ≡ −L[i,c] · µ[c,m]

= −t[i,j]ξ ∗ · g[j,c] ·
(
U∗[c,m; i] + 1

2U∗[c,m; j]
)

− 1
2 t[i,k] ξ ∗ · g[i,c] · U∗[c,m; k,i]

+ 1
2J [i,k] ξ ∗ · g[i,c] · U∗[c,m; k]. (57)

We write Eq. (43) as

Y [i,j ] = −t[i,j ] + Y1[i,j ],

Y1[i,j ] = t[i,j ]
(
γ [i] + 1

2γ [j ]
)

(58)

− δ[i,j ] 1
2 (J [i,k]γ [k] − t[i,k]γ [k,i]) .

We also need to process the object:

(γ (i) − D[i]) · Vi,j · G[j,f ]

= γ (i) · Vi,j · G[j,f ] − ξ ∗ · Vi,j · δ

δV∗
i

G[j,f ]

= γ (i) · Vi,j · G[j,f ] − ξ ∗ · Vi,j · g[j,c] · -∗[c,r; i]

· G[r,f ] − ξ ∗ · Vi,j · g[j,c] · U∗[c,f ; i]. (59)

IV. ASSEMBLING THE EQUATIONS

Let us rewrite the three relevant equations symbolically:
(1) Eq. (42) for G:

(∂τi
− µ)G = −δ(1− γ ) − Vi · G − Vi,j · G

+ (γ − Di) · Vi,j · G − X · G − Y · G. (60)
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(2) Eq. (59) for the two site source Vij :

(γ − Di) · Vi,j · G = γ (i) · Vi,j · G[j,f ] − ξ ∗ · Vi,j · g · -∗ · G
− ξ ∗ · Vi,j · g · U∗. (61)

(3) Eq. (55) the product rule:

X.G = /.G + 0. (62)

Combining these we rewrite Eq. (60) symbolically as

[∂τi
− µ + Y + Vi + (1− γ ) · Vi,j + ξ ∗ · Vi,j · g · -∗ + /]G

= −δ(1− γ ) − 0 − ξ ∗ · Vi,j · g · U∗. (63)

Defining

g−1
0 [i,f ] =

{[(
µ − ∂τi

− 1
4J0

)
1− Vi

]
δ[i,f ]

+ t[i,f ] − Vi,f (τi)δ(τi − τf )
}
, (64)

the exact EOM Eq. (42) can be written in matrix form:
{
g−1

0 [i,j] + γi · Vi,j − ξ ∗ · Vi,a · g[a,b] · -∗(b,j; i) − Y1[i,j]

−/[i,j]
}

· g[j,f] · µ[f,f ]

= δ[i,f ] (1− γ [i]) + 0[i,f ]

+ ξ ∗ · Vi,a · g[a,b] · U∗(b,f ; i). (65)

At this point, a convenient parameter λ (finally set λ → 1) is
now inserted into this equation as follows:

{
g−1

0 [i,j] + λγi · Vi,j − λξ ∗ · Vi,a · g[a,b] · -∗(b,j; i)
︸ ︷︷ ︸

− λ Y1[i,j] − λ/[i,j]} · g[j,f] · µ[f,f ]

= δ[i,f ] (1− λγ [i]) + λ 0[i,f ]

+ λξ ∗ · Vi,a · g[a,b] · U∗(b,f ; i)︸ ︷︷ ︸ . (66)

Clearly this becomes the exact equation Eq. (65) at λ = 1, and
reduces to the Fermi gas Green’s function Eq. (64) at λ = 0.
We may now split Eq. (65) exactly into a pair of equations that
are fundamental to the theory:

{
g−1

0 [i,j] + λγi · Vi,j − λξ ∗ · Vi,a · g[a,b] · -∗(b,j; i)

− λ Y1[i,j] − λ/[i,j]
}

· g[j,f ] = δ[i,f ], (67)

µ[i,f ] = δ[i,f ] (1− λγ [i]) + λ 0[i,f ]

+ λξ ∗ · Vi,a · g[a,b] · U∗(b,f ; i). (68)

We can usefully invert Eq. (67) and write

g−1[i,m] =
{
g−1

0 [i,m] + λγi · Vi,m − λξ ∗ · Vi,a · g[a,b]

·-∗(b,m; i) − λ Y1[i,m] − λ/[i,m]
}
. (69)

We see that g satisfies a canonical equation, with a delta
function of weight unity on the right, and µ soaks up the
remaining factors on the right-hand side of Eq. (66). This
decomposition is not unique; one has the obvious freedom
of respectively post-multiplying g and pre-multiplying µ by
a common function and its inverse. However, requiring g to
be canonical fixes the function to be unity. The motivation of
introducing λ in the above equations is to establish adiabatic,
or more properly parametric, continuity with the Fermi gas.16

At this stage some remarks are necessary.

(1) At λ = 1 Eq. (67) and Eq. (68) become exact equations
for the EC phase, while it has the virtue that as λ = 0 it gives a
canonical equation for g, with µ[i,j ] = 1δ[i,j ]. Procedurally,
we can calculate objects to a given order in λ iteratively, and
set λ = 1 at the end of the calculation. We thus establish and
maintain continuity with the Fermi gas in the equations of
motion.

(2) The process of introducing λ into the EOM is not unique.
For example the terms of Eq. (66) in the underbraces cancel at
i = j from the vanishing of Eq. (40). However this cancellation
is exact only at λ = 1, so we will find below that an expansion
in λ has the annoying feature of a slight violation of the
contraction of indices result Eq. (49). We will show below that
this is inconsequential to the orders in λ considered here. With
hindsight, a better strategy would be to impose the constraint
Eq. (49) to the order of the calculation. This can be achieved
if we multiply the terms in underbraces by a sufficiently high
power of λr , say with r # r0, and thereby avoid dealing with
this problem at low orders r < r0. Below we will analyze
the minimal choice r = 1, record the issues that crop up, and
make suitable approximations later. The impatient may simply
ignore the terms with underbraces.

(3) Another type of freedom is available at this stage: If
necessary, we could add an arbitrary term that varies smoothly
with λ and vanishes at both end points, e.g., ∝ λ(1 − λ), to
either side of Eq. (67) and Eq. (68). It will turn out that the first-
order term [g−1]1 calculated below does need a simple term
of this type to fulfill the Fermi surface sum rule. In general,
however, the natural and minimal choice made in Eq. (66),
without such a term, seems adequate for higher terms.

(4) We note that the shift theorems I and II are preserved
by X,Y above in Eq. (43), and this invariance survives the
introduction of λ in Eq. (66). As a result the various objects
/,0,g−1,µ satisfy these theorems individually. This property
leads to a powerful consistency check on the approximations
to each order in λ.

(5) Note that a λ expansion of γ [i] implies that the high-
frequency fall-off of G ∼ c0

iω
now occurs with a coefficient

c0 = 1 − λγ that is different from 1 − n
2 at finite orders of λ.

While it is tempting to freeze this coefficient at the exact value,
it would be inconsistent since we take its derivatives to find
0, etc. The departure of this coefficient from the exact value
becomes increasingly significant near n ∼ 1, and provides a
criterion for the validity of a given order of approximation.

V. EXPLICIT EQUATIONS AND THE ZERO-SOURCE
LIMIT IN FOURIER SPACE

When we turn off the sources, the various matrix function
G,g,µ become spin diagonal. We will also take Fourier
transforms (only) in this limit, since translation invariance in
space and time is regained when the sources vanish.

We next express / and 0 explicitly in terms of the
vertex functions. We need to take the Fourier transform of
Eq. (56) and Eq. (57). In the ECFL theory, a rotationally
invariant liquid phase is obtained by turning off the sources.
We can use the standard spin rotational symmetry analysis
illustrated here with - as in Ref. 11. We define the three
nonvanishing matrix elements as -(1) = -σσ

σσ , -(2) = -σσ
σ̄ σ̄ ,

and -(3) = -σσ̄
σ σ̄ . We also record the Nozières identity for the
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two expressions of a particle-hole singlet, -(1) − -(2) = -(3),
which provides an important check on the theory. We further
use a notation for the frequently occurring antisymmetric
combination -(a) = -(2) − -(3). Armed with these, we next
drop the matrix structure by utilizing an identity arising with
a fixed σ (such as in the expression for /σσ above):

〈σ |ξ ∗ · g · -∗|σ 〉 =
∑

σaσb

σσagσaσb
-

σbσ
σ̄ σ̄a

=
∑

σb

(
gσσb

-
σbσ
σ̄ σ̄ − gσ̄ σb

-
σbσ
σ̄σ

)

=
(
gσσ-σσ

σ̄ σ̄ − gσ̄ σ̄-σ̄σ
σ̄σ

)

= g(-(2) − -(3)) ≡ g-(a). (70)

Note that we dropped the spin index on g due to the isotropy
of the state.

We use the FT convention for the two-, three-, and four-site
objects illustrated with the examples

G[a,b] =
∑

k

eik(a−b)G(k),

-σ1σ2
σ3σ4

[a,b; c] =
∑

p1,p2

eip1(a−c)+ip2(c−b)-σ1σ2
σ3σ4

(p1,p2),

(71)
-σ1σ2

σ3σ4
[a,b; c,d] =

∑

p1+p4=p2+p3

ei(p1a−p2b−p3c+p4d)

×-σ1σ2
σ3σ4

(p1,p2; p3,p4).

The identity Eq. (49) in momentum space implies

-(p1,p2) =
∑

p3,p4

-(p1,p2; p3,p4),

(72)
U(p1,p2) =

∑

p3,p4

U(p1,p2; p3,p4).

At zero source we get the exact relations between self-
energies and vertices by Fourier-transforming Eq. (56) and
Eq. (57):

/(k) =
∑

p

(
εp + 1

2
εk + 1

2
Jk−p

)
g[p]-(a)(p,k)

+
∑

pq

1
2
εq+p−kg[p] -(a)(p,k; q + p − k,q)

=
∑

pq

(
εp + 1

2
εk + 1

2
εq+p−k + 1

2
Jk−p

)
g[p]

×-(a)(p,k; q + p − k,q),

0(k) =
∑

p

(
εp + 1

2
εk + 1

2
Jk−p

)
g[p]U (a)(p,k)

+
∑

pq

1
2
εq+p−k g[p]U (a)(p,k; q + p − k,q)

=
∑

pq

(
εp + 1

2
εk + 1

2
εq+p−k + 1

2
Jk−p

)

× g[p] U (a)(p,k; q + p − k,q). (73)

A convergence factor eiωp0+
arises from the time ordering

and is implied wherever necessary and the last line in both
equations is valid provided the identity Eq. (72) is satisfied.
Here -(a) = -(2) − -(3) and U (a) = U (2) − U (3).

With k = (*k,iωk) and ωn = π (2n + 1)kBT , the Green’s
functions at a fixed λ read

G(k) = g(k) × µ(k),

g−1[k] = iωn + µ − εk − 1
4J0 − λY1(k) − λ/(k), (74)

µ[k] = 1 − λγ + λ0(k).

The sum rule for the number of physical particles and the
auxiliary fermions is given by

∑

p

µ[p]g[p] = n

2
, (75)

∑

p

g[p] = n

2
. (76)

While the sum rule Eq. (75) clearly counts the number of
physical electrons, the origin of the sum rule Eq. (76) for g
requires some discussion taken from Ref. 2. We recall that it is
meant to enforce the Luttinger-Ward theorem of a conserved
Fermi volume for the auxiliary fermions. By so doing and
through the composition G = g × µ, it also preserves it for
the physical fermions. While µ provides us with one obvious
Lagrange multiplier to enforce one of the sum rules, the more
subtle parameter u0, introduced in Eq. (27), is required to
enforce the second sum rule Eq. (91). Explicit expressions
for γ ,Y1,/,0 can be calculated at various orders in λ as
demonstrated below.

TABLE I. Summary of defining equations. The computation of the Green’s function G = g · µ in Eq. (44) requires several intermediate
variables. The complete set of variables in this theory (first column) and their mutual and λ dependence (second column) are collected here for
convenience. The corresponding equation number in the paper is given in the last column.

Object Defining Equation Eq. No.

g−1[i,m] {g−1
0 [i,m] + λγi · Vi,m − λξ ∗ · Vi,a · g[a,b] · -∗(b,m; i) − λ Y1[i,m] − λ/[i,m]} Eq. (69)

µ[i,m] δ[i,m] (1− λγ [i]) + λ 0[i,m] + λξ ∗ · Vi,a · g[a,b] · U∗(b,m; i) Eq. (68)
Y1[i,m] t[i,m](γ [i] + 1

2γ [m]) − δ[i,m] 1
2 (J [i,k]γ [k] − t[i,k]γ [k,i]) Eq. (58)

γ [i] µ(k)[a,i] · g(k)[i,a] Eq. (45)
γ [i,m] µ(k)[a,i] · g(k)[m,a] Eq. (45)
/[i,m] −t[i,j]ξ ∗ · g[j,c] ·

(
-∗[c,m; i] + 1

2-∗[c,m; j]
)
− 1

2 t[i,k] ξ ∗ · g[i,c] · -∗[c,m; k,i] + 1
2 J [i,k] ξ ∗ · g[i,c] · -∗[c,m; k] Eq. (56)

0[i,m] −t[i,j]ξ ∗ · g[j,c] ·
(
U∗[c,m; i] + 1

2 U∗[c,m; j]
)
− 1

2 t[i,k] ξ ∗ · g[i,c] · U∗[c,m; k,i] + 1
2 J [i,k] ξ ∗ · g[i,c] · U∗[c,m; k] Eq. (57)
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TABLE II. Vertex functions. The theory requires three-point and
four-point vertices. Their nomenclature (first column) and definition
(second column) are given, along with the corresponding equation
number in the paper.

Vertex Defining Equation Eq. No.

-σaσb
σcσd

[i,m; j ] − δ

δVσcσd
j

g−1
σaσb

[i,m] Eq. (46)

-σaσb
σcσd

[i,m; j,k] − δ

δVσcσd
j,k

g−1
σaσb

[i,m] Eq. (48)

Uσaσb
σcσd

[i,m; j ] δ

δVσcσd
j

µσaσb
[i,m] Eq. (46)

Uσaσb
σcσd

[i,m; j,k] δ

δVσcσd
j,k

µσaσb
[i,m] Eq. (48)

VI. SUMMARIZING

Before proceeding to the iterative scheme, we collect all
the relevant equations for convenience in Table I. The various
vertex functions are found from relationships summarized in
Table II.

It is worthwhile to provide one nontrivial example of the
matrix notation. In component form note that /[i,m] can be
written out as

/σiσm
[i,m] = −t[i,j]σiσ1gσ1σ2 [j,c]

×
(
-

σ2σm

σ̄i σ̄1
[c,m; i] + 1

2-
σ2σm

σ̄i σ̄1
[c,m; j]

)

− 1
2 t[i,k] σiσ1gσ1σ2 [i,c]-σ2σm

σ̄i σ̄1
[c,m; k,i]

+ 1
2J [i,k] σiσ1gσ1σ2 [i,c]-σ2σm

σ̄i σ̄1
[c,m; k].

VII. λ EXPANSION AND THE ITERATIVE SCHEME

Taking functional derivatives with respect to V , we generate
a self-energy–vertex hierarchy of fermionic theory, paralleling
the standard (i.e., canonical) theory, but with greater complex-
ity due to the two kinds of vertex functions and self-energies.
We describe the λ expansion and the iterative process next. The
iterations are analogous to the skeleton diagram expansion in
standard many-body theory, where λ plays the role of the
interaction constant. Various objects are expanded in terms of
λ and g, while g itself is left intact. Potentially confusing is
the treatment of g−1, which is expanded in λ and g, ignoring
its obvious relationship as the inverse of g. This becomes
understandable when we recall that g−1 is, apart from g−1

0 ,
the Dyson self-energy of the auxiliary system, and is to
be regarded as a functional of g, as in the Luttinger-Ward
functional Ref. 17. One example of this expansion may be

TABLE IV. Iteration level step-up calculations. In proceeding
upwards in the iterative process in Eq. (84) the computed (p + 1)th-
order objects are listed in the first column, and the pth-order objects
needed are in the second column. Since g−1 and µ at a given level
suffice to determine all other objects at that level through Table III,
the iterative nature of the scheme becomes transparent.

Level (p + 1) Object Required Level p Objects

[µ[i,m]]p+1 [γ [i], 0[i,m],U[a,b; c], U[a,b; c,d]]p[
g−1[i,m]

]
p+1 [Y1[i,m],/[i,m],-[a,b; c]]p

useful. Consider γ [i,m]; we will expand it as

γ (k)[i,m] = g[m,a] · µ[a,i] = g[m,a] · ([µ[a,i]]0

+ λ(µ[a,i]]1 + λ2[µ[a,i]]2 + O(λ3)), (77)

keeping g intact, i.e., unexpanded in λ. A similar expansion
is carried out also for γ [i], leading to a correction of the
high-frequency fall of coefficient c0 as noted above.

Iterative process. We now describe the various steps of the
iteration process. First note that all variables (except g) are
expanded as

A = [A]0 + λ[A]1 + λ2[A]2 + · · · + λp[A]p + · · · . (78)

The iteration scheme can be summarized in the two following
tables. Table III lists the seed objects needed at any order and
gives the derived objects. Table IV lists the higher order objects
and the needed lower level objects for stepping up.

(I) Initialization at p = 0. The iterations require the fol-
lowing starting relations:

g−1
0 [i,m] =

{ [(
µ − ∂τi

− 1
4J0

)
1− Vi

]

× δ[i,m] + t[i,m] − Vi,m

}
, (79)

[µ[i,f ]]0 = 1δ[i,f ].

(II) Computation of derived objects at level p from Table I.
The set of equations requiring [µ[i,m]]p:

[γ [i]]p = [µ(k)[a,i]]p · g(k)[i,a],

[γ [i,m]]p = [µ(k)[a,i]]p · g(k)[m,a],
(80)

[
Uσaσb
σcσd

[i,m; j ]
]
p

=
(

δ

δVσcσd

j

)
[
µσaσb

[i,m]
]
p

,

[
Uσaσb
σcσd

[i,m; j,k]
]
p

=
(

δ

δVσcσd

j,k

)
[
µσaσb

[i,m]
]
p

,

TABLE III. Iteration level p calculations. The auxiliary inverse Green’s function g−1 and the adaptive spectral
weight µ play the role of seed objects at the pth order. By computing them to pth order in the parameter λ, we
obtain the vertex functions and the other variables listed in the second column to the same order as described in
Eqs. (80)–(83).

Seed Object Derived Objects

[µ[i,m]]p [γ [i],γ [i,m],Y1[i,m],U[a,b; c], U[a,b; c,d]]p
[U[a,b; c],U[a,b; c,d]]p [0[i,m]]p
[g−1[i,m]]p [-[a,b; c],-[a,b; c,d]]p
[-[a,b; c],-[a,b; c,d]]p [/[i,m]]p
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[Y1[i,m]]p = t[i,m]
[
γ [i] + 1

2
γ [m]

]

p

− δ[i,m]
1
2

[J [i,k]γ [k] − t[i,k]γ [k,i]]p , (81)

[0[i,m]]p

= −t[i,j]ξ ∗ · g[j,c] ·
(
U∗[c,m; i] + 1

2
U∗[c,m; j]

)

p

− 1
2
t[i,k] ξ ∗ · g[i,c] · (U∗[c,m; k,i])p

+ 1
2
J [i,k] ξ ∗ · g[i,c] · (U∗[c,m; k])p . (82)

The set of equations requiring [g−1[i,m]]p:

[
-σaσb

σcσd
[i,m; j ]

]
p

= −
(

δ

δVσcσd

j

)
[
g−1
σaσb

[i,m]
]
p

,

[
-σaσb

σcσd
[i,m; j,k]

]
p

= −
(

δ

δVσcσd

j,k

)
[
g−1
σaσb

[i,m]
]
p

,

[/[i,m]]p = −t[i,j]ξ ∗ · g[j,c] (83)

·
(
-∗[c,m; i] + 1

2
-∗[c,m; j]

)

p

− 1
2
t[i,k] ξ ∗ · g[i,c] · (-∗[c,m; k,i])p

+ 1
2
J [i,k] ξ ∗ · g[i,c] · (-∗[c,m; k])p .

(III) Level p to level (p + 1), step up equations:

[µ[i,m]]p+1 = −δ[i,m][γ [i]]p + [0[i,m]]p
+ [ξ ∗ · Vi,a · g(a,b) · U∗(b,m; i)]p,

[g−1[i,m]]p+1 = [γi · Vi,m − ξ ∗ · Vi,a · g(a,b) · -∗(b,m; i)]p
− [Y1[i,m] + /[i,m]]p. (84)

(IV) If required level is reached, exit; otherwise return to
step II.

This iterative procedure can thus be applied to obtain
equations for the Green’s functions to any desired order.
In practice the higher order terms grow very rapidly, as in
the Feynman diagram series. However, as explained in the
introduction, a low-order expansion is expected to capture
already the significant features of extreme correlations, an
important reason being that the range is finite and small; i.e.,
λ ∈ [0,1]. In this work we will be content to work to O(λ2)
where all the relevant objects can be calculated explicitly.

Second-order Green’s function. Having formulated the
iterative process, we next apply this to obtain the second-
order Green’s functions. The calculations are detailed in
Appendix B, and we directly present the first- and second-order
results here. Displaying the so far hidden u0 coefficient, we
write the complete set of equations to O(λ2) from Eq. (B51)

and Eq. (B48):

G[k] = g(k) × µ[k],

µ[k] = 1 − λ
n

2
+ λ2 n2

4
− λ2

∑

p,q

(εp + εk+q−p + εk + εq

+ Jk−p − u0)g[p]g[q]g[q + k − p] + O(λ3), (85)

g−1[k] = iωn + µ′ −
(

1 − λn + λ2 3n2

8

)
εk

+ λ
∑

q

1
2
Jk−qg[q] − λ2 [/(k)]1 + O(λ3), (86)

[/(k)]1

= −
∑

q,p

g[q]g[p]g[k + q − p]

× (εk + εp + εq + εk+q−p + Jk−p − u0)

×
{
εk + εp + εq + εk+q−p + 1

2
(Jk−p + Jp−q ) − u0

}
.

(87)

The shifted chemical potential µ′ is related to the physical
(i.e., thermodynamical) chemical potential µ and u0 through

µ′ = µ − u0
λn

2

(
1 − λn

4

)

+
[

J0
λn

4

(
1 − λn

2

)
+ 2λ

(
1 − λn

8

)∑

q

εqg[q]

]

.

(88)

In using this expansion, one must first set λ → 1.
These expressions satisfy the shift theorem I.1 and shift
theorem II, as one can verify by shifting εk and Jk by
k-independent constants, and using

∑
q g[q] = n

2 . The self-
energy from a Feynman diagram theory to second-order from
Heff in Eq. (27) matches the above expression for g−1. The
required diagrams are shown in Fig. 4 up to second order
where the zigzag line Weff is defined in Fig. 2.

Apart from a single term (the expansion of Y1 in λ), the ex-
pansion of the auxiliary Fermi liquid is largely “autonomous,”

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ σ

σ

σ

σ

σ

σ

FIG. 4. The self-energy graphs to second order from Weff and the
effective Hamiltonian Heff . These determine the / self-energy.
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i.e., proceeds without requiring the knowledge of µ, and is
represented in Feynman diagrammatic terms. The caparison
term µ has no obvious interpretation in terms of Heff , but is
easy to compute along lines similar to the ones shown here, and
the full theory splices the two factors to yield G, as described
here.

A consistent first-order, i.e., O(λ), theory for g−1 and µ
can be found after dropping all O(λ2) terms. As it stands, we
would get µ = 1 − λ n

2 to this order, and this would violate
the Fermi surface volume theorem (Ref. 12). To recover from
this, we may however set µ[k] to unity instead. Formally this
is achieved by adding λ(1 − λ) n

2 to µ[k] as discussed below
Eq. (66), since this added term vanishes at both end points
λ = 0 and λ = 1. This procedure is within the permissible
adjustments of the continuity argument, and at second order
cancels out so that the quoted second-order result is unchanged.
Further all vertices are unchanged since this is a static term. In
this way the first-order theory can also be arranged to satisfy
the Luttinger-Ward Fermi volume theorem. This theory has
a band dispersion (1 − n)εk that shrinks in width by a factor
(1 − n) as in the Gutzwiller-Brinkman-Rice theory,7,18 with
an enhanced effective mass m/m∗ = (1 − n). The second-
order result presented here provides a more interesting and
frequency-dependent correction to the Fermi gas.

In summary, the physical Green’s function is obtained from

G[k] = g[k]µ[k]. (89)

The number of the physical electrons is fixed by the first sum
rule,

n

2
=

∑

k

G[k]eiωn0+
, (90)

while the auxiliary fermion satisfies an identical sum rule,

n

2
=

∑

k

g[k]eiωn0+
. (91)

We can determine the two independent real parameters µ and
u0 in order to satisfy both these equations simultaneously, and
thus the role of u0 as a Lagrange multiplier, similar to that of
µ, is now evident. It is also clear that the shifts of t or J can be
absorbed in the two Lagrange multipliers µ and u0. It is worth
noting that the simplified ECFL model used in Ref. 2 and Ref. 9
can be obtained from Eq. (85) and Eq. (87) by throwing out
the band energies and exchange energies in the coefficients of
g(q)g(p)g(k + q − p) while retaining u0, so that the Lagrange
multiplier of that approximation 10 is related to u0.

The role of the two sum rules in fixing the number of
fermions and also the Luttinger-Ward Fermi surface is already
discussed in Ref. 2 and above. We can add to that discussion
with the help of the explicit functional forms found above. It
should be noted from Eq. (85) and Eq. (87) that the functional
derivatives

I [k,p] ≡ δ [/[k]]1

δg[p]
, J [k,p] ≡ δ [0[k]]1

δg[p]
(92)

are symmetric functions under k ↔ p. This symmetry there-
fore guarantees the existence of two Luttinger-Ward-type

functionals of the auxiliary Green’s function g,

2/[g] = −1
4

∑

k,p,q,r

W (k,q; r,p)[W (k,q; r,p)

+W (k,q; p,r)]g[k]g[p]g[q]g[r],

20[g] = 1
4

∑

k,p,q,r

W (k,q; r,p)g[k]g[p]g[q]g[r], (93)

such that the two self-energies can be found from these
functionals:

[/[k]]1 = δ2/

δg[k]
, [0[k]]1 = δ20

δg[k]
. (94)

The form of these two functionals follows to this order from
Eq. (87), and it is natural to conjecture that such functionals
exist to all orders in λ. The existence of the 2/ functional
guarantees a (FS) volume-conserving Luttinger-Ward Fermi
surface for the g electrons, and the smooth behavior of 0(k)
near this surface guarantees likewise for the physical electrons.

VIII. WARD IDENTITIES

This theory admits Ward identities involving the vertices -
and U that guarantee current conservation in a similar fashion
as Ref. 11. This is displayed with the help of sources, the
charge potential u[m] =

∑
σ Vσσ

m and an added source v[m]
coupling to the kinetic energy as

t[i,j ] → t[i,j ](1 + v[j ] − v[i]), (95)

so that v[j ] − v[i] acts as a discrete version of the Peierls phase
factor of electromagnetic coupling in tight binding systems.
We define

Dm ≡ ∂τm

δ

δu[m]
− δ

δv[m]
, (96)

so that the Ward identity expressing the conservation of
current, from Ref. 11, reads

DmG[i,f ] = (δ[i,m] − δ[f,m])G[i,f ]. (97)

This is a discrete (Takahashi type) version of the usual Ward
identity appropriate to the lattice Fermi system at hand, and
electromagnetic coupling only requires the long-wavelength
limit of this identity. We will define the (T ) vertices (summing
over σ )

-(T )(i,j ; m) = − δ

δv[m]
g−1
σσ [i,j ]|u,v→0,

(98)
U (T )(i,j ; m) = δ

δv[m]
µσσ [i,j ]|u,v→0.

It is easy to see that the bare τ vertices are given by
differentiating g−1

0 in Eq. (64) as

λ(T )(i,j ; m) = t[i,j ] (δ[i,m] − δ[j,m]) ,
(99)

λ(T )[p1,p2] = εp1 − εp2 ,

while the singlet (i.e., density) vertices are already known
from -(s) =

∑
σσ ′ -σσ

σ ′σ ′ . Note that the (T ) type vertices are
antisymmetric in i ↔ j or p1 ↔ p2.
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Taking Fourier transforms in Eq. (97) and writing G =
g × µ, we get the conservation law:

(
iωp1 − iωp2

)
(g[p1]-(s)(p1,p2)g[p2]µ[p2]

+ g[p1]U (s)(p1,p2)) − (g[p1]-(T )(p1,p2)g[p2]µ[p2]

+ g[p1]U (T )(p1,p2)) = g[p2]µ[p2] − g[p1]µ[p1].

(100)

Canceling out g[p1]g[p2] we get the Ward identity:
(
iωp1 − iωp2

)
(-(s)(p1,p2)µ[p2] + U (s)(p1,p2)g−1[p2])

− (-(T )(p1,p2)µ[p2] + U (T )(p1,p2)g−1[p2])

= g−1[p1]µ[p2] − g−1[p2]µ[p1]. (101)

With iωn → zn, we rewrite this as

Wg(p1,p2)µ[p2] + g−1[p2]Wµ(p1,p2) = 0, (102)

where we have defined the two Ward functions:

Wg(p1,p2) = (z1 − z2)-(s)(p1,p2) − -(T )(p1,p2)

+ g−1[p2] − g−1[p1],

Wµ(p1,p2) = (z1 − z2)U (s)(p1,p2) − U (T )(p1,p2)

+µ[p1] − µ[p2]. (103)

Since p1 and p2 are arbitrary, the two terms must vanish
separately giving us the pair of Ward identities:

Wg(p1,p2) = 0, (104)

Wµ(p1,p2) = 0. (105)

IX. RANDOM PHASE APPROXIMATION

Since the Green’s functions are known to O(λ2), we can
take the derivatives of Eq. (B7) and Eq. (B8) to get vertices
to this order. Here we calculate by taking the equations to
O(λ) only, but assuming δ

δV g = g-g rather than δ
δV g = gg,

thereby obtaining the analog of the RPA. Since the spin
susceptibility is also of considerable interest, we will calculate
the required vertices in the that channel as well. Summarizing
the results we write linear integral equations for the U
vertices:

U (T )[p1,p2] = −λ
∑

q

g[q]-(T )(q,q + p2 − p1)

× g[q + p2 − p1] + O(λ2),

U (s)[p1,p2] = −λ
∑

q

g[q]-(s)(q,q + p2 − p1)

× g[q + p2 − p1] + O(λ2),

U (t)[p1,p2] = λ
∑

q

g[q]-(t)(q,q + p2 − p1)

× g[q + p2 − p1] + O(λ2), (106)

and similarly for the - vertices:

-(T )[p1,p2] = (εp1 − εp2 )(1 − λn︸︷︷︸) − λ
∑

q

g[q]-(T )(q,q + p2 − p1)g[q + p2 − p1]F(q,p1,p2) + O(λ2),

-(s)[p1,p2] = 1 − λ
∑

q

g[q]-(s)(q,q + p2 − p1)g[q + p2 − p1]F(q,p1,p2) + O(λ2), (107)

-(t)[p1,p2] = 1 + λ
∑

q

g[q]-(t)(q,q + p2 − p1)g[q + p2 − p1]F(q,p1,p2) + O(λ2),

where we use the shorthand F(q,p1,p2) ≡ {εp1 + εp2 + εq +
εq+p2−p1 − u0 + 1

2 (Jp1−p2 + Jq−p1 )}. The term in underbrace
receives an O(λ) contribution from differentiating the explicit
v dependence of the transformed t[i,m] → t[i,m](1 + v[m] −
v[i]) term in Eq. (B7). It is readily shown by examining
the kernel of the integral equations that the solution for
-(T )(p1,p2) is antisymmetric under exchanging p1 ↔ p2,
while -(s)(p1,p2) and -(t)(p1,p2) are symmetric.

These vertices are shown to be compatible with Ward
identities to O(λ) if used with the first-order versions of the
Green’s functions Eq. (85) and Eq. (86),

g[p] = iωn + µ′ − (1 − λn)εk

+ λ

2

∑

q

Jk−qg[q] + O(λ2) (108)

and µ[p] = 1,

by substituting in the expressions Eq. (104) and Eq. (105), and
showing the self-consistency of this result. The details of this
verification parallel the standard proof in QED and are omitted
here. Note that µ must be chosen to be unity rather than 1 − λ n

2

as discussed in the second paragraph below Eq. (86), although
this choice is irrelevant to the verification of the Ward identity.

X. TWO-PARTICLE RESPONSE

We are interested in the pair correlations of the density
na =

∑
σ Xσσ

a and the spin density Sz
a = 1

2

∑
σ1,σ2

τ z
σ1σ2

Xσ1σ2
a ,

where τ z is the usual Pauli matrix. These can be obtained from
taking the functional derivatives of the Green’s function

ϒσ1σ2
σ3σ4

[i,j ] = δ

δVσ3σ4
j

Gσ1σ2 [i−,i], (109)

and can be conveniently found from taking a limit of the three-
site object ϒσ1σ2

σ3σ4
(p,q; r) = δ

δVσ3σ4
r

Gσ1σ2 [p,q]. With the singlet
and triplet objects denoted with a superscript α = s,t , we note
the following relationships with the standard charge and spin
susceptibilities of interest:

〈〈na(τa)nb(τb)〉〉 = n2 − 2ϒ (s)(a,b),
〈〈
Sz

a(τa)Sz
b(τb)

〉〉
= − 1

2ϒ
(t)(a,b). (110)
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Owing to the bosonic nature of the densities, we have
the symmetry ϒ (α)(b,a) = ϒ (α)(a,b) from which the Fourier
transform at Q ≡ ( *Q,i2q) satisfies the relation:

ϒ (α)(Q) = ϒ (α)(−Q). (111)

This symmetry can be used as another test of the consistency
of any approximation.

The Green’s function in Eq. (109) can be decomposed in to
g and µ as before and we find

ϒσ1σ2
σ3σ4

(a,b; r) = δ

δVσ3σ4
r

{
gσ1σa

[a,a]µσaσ2 [a,b]
}
,

=
{
g[a,b]-σ3σ4 (b,s; r)g[s,a]µ[a,q]

}
σ1σ2

+
{
g[a,b]Uσ3σ4 (b,b; r)

}
σ1σ2

, (112)

where the vertex and ϒ carry upper spin indices that are part
of the matrix product. Turning off the sources, we find the
expressions for singlet and triplet response

ϒ (α)(a,b; r) = g[a,b]-(α)(b,s)g[s,a]µ[a,b]

+ g[a,b]Uα(b,b; r),
(113)

ϒ (α)(p1,p2) = g[p1]-(α)(p1,p2)g[p2]µ[p2]

+ g[p1]U (α)(p1,p2),

where α = s,t . The definitional distinction between left and
right derivatives leads to the asymmetry in the above equations
making it necessary to test the consistency Eq. (111) term by
term.

Using the zero-source limit notation from Ref. 11,

Q(1) = Qσσ
σσ , Q(2) = Qσσ

σ̄ σ̄ , Q(3) = Qσ σ̄
σ σ̄ ,

Q(a) = Q(2) − Q(3), Q(s) = Q(1) + Q(2), (114)

Q(t) = Q(1) − Q(2) = Q(3).

The charge α = s and spin α = t susceptibilities at finite Q ≡
( *Q,i2q) are given by setting p2 → p and p1 → p + Q and
summing over p:

ϒ (α)(Q) ≡
∑

p

ϒ (α)(p,p + Q)

=
∑

p

[g[p]-(α)(p,p + Q)g[p + Q]µ[p + Q]

+ g[p]U (α)(p,p + Q)]. (115)

These are exact expression for the susceptibilities, but as usual
require a knowledge of the vertices and Green’s functions
to give practical results. We can now use the RPA vertices
calculated in Sec. IX to give the corresponding expressions.

We denote the susceptibility of the auxiliary fermions as

χ
(α)
- (Q) ≡ −

∑

q

g[q]-(α)(q,q + Q)g[q + Q], (116)

and within RPA we note that µ[p] is independent of p, and
from Eq. (106) we denote that the U vertices are functions of
the momentum difference only:

U (α)[p1,p2] = λξαχ
(α)
- (p2 − p1), (117)

where ξα is 1 for α = singlet and −1 for α = triplet. Therefore
we can sum over the p dependence of the second term and

rewrite Eq. (115) as

(ϒ (α)(Q))RPA = −Cαχ
(α)
- (Q), (118)

where Cα = (µ − ξαλ
n
2 ). It seems more appropriate to reset

µ = (1 − λ n
2 ) from unity at this level, in order to recover the

expected high-frequency behavior in the charge as well as spin
channel, so that Csinglet = (1 − λn) → 1 − n and Ctriplet = 1.
The vertices - are to be computed from Eq. (107) and form a
consistent set of equations for the two-particle response in the
sense of the usual RPA.

The integral equations must be solved numerically. How-
ever in order to display some flavor of the results, we pursue
this to the lowest order in λ by iteration, where explicit results
can be obtained. Let us define a few frequently occurring
generalized polarizability functions for convenience. We will
now reinstate Jk → Jk − u0:

χ0(Q) = −
∑

q

g[q]g[q + Q],

χ1(Q) = −
∑

q

g[q]g[q + Q]{εq + εq+Q},

χ2(Q) = 1
2

∑

r,p

g[r]g[r + Q]g[p]g[p + Q]Jp−r ,

F (p + Q,p) =
∑

r

g[r]g[r + Q]
{
εp + εp+Q + εr + εr+Q

+ 1
2

(JQ + Jp−r )
}
. (119)

Here χ0(Q) is the standard Lindhard function and is positive
in the static limit as *Q → 0, while the other functions are
generalizations thereof.

The answers are

ϒ (s)(Q) = −(1 − λn)χ0(Q) − λ
[
2χ0(Q)χ1(Q)

−
(
u0 − 1

2JQ

)
χ2

0 (Q) + χ2(Q)
]
,

ϒ (t)(Q) = −χ0(Q) + λ
[
2χ0(Q)χ1(Q)

+
( 1

2JQ − u0
)
χ2

0 (Q) + χ2(Q)
]
. (120)

It is clear that the role of u0 enhances the spin susceptibility
while decreasing the charge susceptibility. To this order we see
that the parity test Eq. (111) is satisfied by using the symmetries
of the objects in Eq. (119).

Since the Green’s function remains infinitely sharp within
the RPA, its usefulness is limited, especially in view of
the large frequency-dependent corrections with characteristic
asymmetry seen in second-order results in Refs. 2, 9, and
10. A second-order version of RPA seems most desirable,
although even without vertex corrections to second order, the
single-particle spectral results are very interesting already. It
also seems interesting to study phenomenologically the analog
of the “bubble” diagram for purposes of extracting the optical
conductivity; a scheme that reflects the width of the physical
Green’s function and satisfies the parity requirement Eq. (111)
is given by

[U(Q)]phen = − 1
1 − n/2

∑

q

G[q]G[q + Q], (121)
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although this expression is not the result a systematic expan-
sion of Eq. (115).

XI. DISCUSSION AND CONCLUSIONS

We have described above a controlled technique of dealing
with the t-J model. This extremely correlated Fermi liquid
theory is a strong-coupling approach, specifically designed
to deal with a hard many-body problem. The considerations
begin with the strong-coupling limit of the Hubbard model,
leading to the t-J model with a hard constraint of eliminated
double occupancy. The Schwinger method gives us a crucial
initial platform to deal with this problem. The ensuing exact
functional differential equations are made tractable by the
introduction of the exact product ansatz, G = g × µ, with
g a canonical Green’s function of auxiliary electrons and µ
the caparison factor. The latter, in turn, is understood as an
adaptive spectral weight balancing the requirements at the
high- and low-frequency ends of the spectrum. Both objects
are expanded in powers of a parameter λ that plays the role
of fractional double occupancy. Thus λ = 1 corresponds to
complete elimination of double occupancy whereas λ < 1
has some residual double occupancy. We thus replace the
hard constraint of complete elimination of double occupancy
by a softer one or partial removal. In order to provide a
natural description of the canonical electrons, we introduce
the effective Hamiltonian Heff , depending parametrically on
λ. In order to obey the shift theorems I and II, we find
it obligatory to (re)introduce a Hubbard-type u0 parameter
in this model. It also plays the role of a second chemical
potential as explained above. The set of steps followed, in our
starting as well as ending up with a Hubbard-type interaction,
has a slightly circular feel to it. This recipe is perhaps best
understood as a renormalization group type procedure, where
the constraint of single occupancy is enforced incrementally
and the density of doubly occupied sites is thinned out
smoothly. The infinite starting value of U in the t-J model is
pushed downward to u0, typically a fraction of the bandwidth
from our numerical studies, albeit in a more general model
Heff , and is therefore amenable to a perturbative expansion.
The form of the Heff and the important role of the shift
symmetries in validating the approximations is noteworthy.
The hopping tij is elevated to an interaction constant of the
model; this unfamiliar step is kept under check by requiring
the two important shift invariances. The Schwinger equation
Eq. (42) for G, being an exact statement of the problem,
provides us with a rigorous backdrop to the entire procedure.
Further our procedure has the advantage of being system-
atically improvable through the iterative scheme developed
here.

We can explore superconductivity at a qualitative level by
studying the pairing instabilities of the auxiliary fermions
given by Heff via its BCS gap function 1(k). In this first ap-
proximation, the physical electron order parameter 〈X↑0

k X
↓0
−k〉

is proportional to that of the auxiliary electrons 〈f †
↑ (k)f †

↓(−k)〉,
together with the single-occupancy constraint of vanishing
upon summing over the wave vector k. Within a generalized
Hartree Fock theory, retaining the self-energy correction to
first order [as in Eq. (108)] as well as the pairing field average,

Tcmax=J/(4 kB
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FIG. 5. (Color online) The transition temperature in kelvins, from
solving Eq. (122) assuming t = 3000 K and J = 900 K. The solid
line indicates the likely regime of validity of the O(λ) theory. Its
dotted extension to lower hole density is speculative and is most
likely to change with higher order corrections reflecting the nearby
Mott insulating state. The dotted red line indicates the maximum Tc

obtainable from this scheme, and is seen to depend solely upon the
magnitude of J .

we obtain an equation for the gap function 1(k):

1(k) = 1
Ns

∑

p

{
εk + εp − u0 + 1

2
Jk−p

}

×1(p)
tanhβE(p)/2

E(p)
, (122)

where E(p) =
√
12(p) + ξ 2

p , and ξp = εp(1 − n) −
1
2

∑
Jq−pnq − µ. In the computation below, we will

neglect the numerically small J term in the single-particle
energy. Other than u0 and the two single-particle energies
in Eq. (122) required for satisfying the shift theorems I
and II, this is the same equation as the one found within
the resonating valence bond theory in Refs. 4, 19, and 20.
The transition temperature for a d-wave state with a gap
function1(k) = 1d [cos(kx) − cos(ky)] is obtained by solving
Eq. (122) for the case of the nearest-neighbor square lattice
t-J model, with parameters indicated in the caption of Fig. 5.

It is straightforward to see that the Tc equation has a
maximum scale of order J/(4kB) as already noted in Ref. 19
and Ref. 20. This value is attained in this solution at a higher
particle density, or equivalently, a lower hole density, than is
warranted by the first approximation. The solid line represents
a plausible regime of validity of this scheme.

The extended s-wave order is usually described by a
gap function 1(k) = 1s,0 + 1s,1 [cos(kx) + cos(ky)]. The
constant term 1s,0 leads to a finite probability of double
occupancy, since it survives a wave vector sum. After it is
dropped as per the above discussion, the assumed (purely
extended) s-wave order is supported by the J term in the kernel
of Eq. (122), but not by the u0-dependent and single-particle
energy terms. The latter thus do not play a role in determining
Tc for either d-wave or s-wave orders despite their large
magnitude relative to J .

A detailed calculation of the gap equation is planned for the
pairing of physical particles, parallel to the O(λ2) theory of the
normal state. The finite-lifetime effects are then expected to
become relevant. Such an improvement of the pairing scheme
should yield a greater understanding of the balance between
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the different orders and a greater range of validity in density
than the schematic theory treated here.
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APPENDIX A: ATOMIC LIMIT t = J = 0

1. Double-occupancy interpretation of λ from the atomic limit

In order to understand the role of λ we study the atomic
limit t,J → 0 where this parameter can be introduced into the
physical Green’s function in the form

G[λ,iωn] =
1 − λ n

2

iωn + µ
, (A1)

and study its dependence on λ in the interval [0,1]. The
chemical potential µ can be calculated from the sum rule on
the density n of the number of particles N with n = N/Ns and
temperature T as

µ = kBT ln
(

n

2 − (1 + λ)n

)
. (A2)

Thermodynamics tells us that the entropy S can be
expressed as

S(n) = −Ns

∫ n

0
dn′ ∂µ(n′)

∂T
, (A3)

and since we know µ from Eq. (A2) we obtain with y =
(1 + λ)n

S(n,λ)
kBNs

= 1
1 + λ

{ln 4 − y ln n− (2 − y) ln (2 − y)}.

(A4)

We see that its λ derivative 1
kBNs

∂S
∂λ

= 2
(1+λ)2 [ y

2 + ln (1 − y
2 )] is

negative definite. Thus we see that the entropy at a fixed density
interpolates monotonically between the free Fermi limit and
the infinite U limits as λ ranges over its domain 0 " λ " 1.
The maximum allowed density is reduced from 2 to 2

1+λ
and

thus at λ = 1 we have a maximum of one electron per site, as
expected physically. Thus increasing λ from zero effectively
removes the available states contributing to entropy; its role
may be viewed as that of (continuous) removal of states. Thus
for the equations of motion it is somewhat analogous to the
role of Gutzwiller’s parameter g in his projection operator∏

i[1 − (1 − g)ni↑nj↓] at the wave function level.
In the atomic limit we can also calculate the entropy at a

fixed density of doubly occupied sites d = 1
Ns

∑
i ni↑ni↓ as

S(n,d)
kBNs

= −d ln d − (n − 2d) ln
(n

2
− d

)

− (1 + d − n) ln(1 + d − n). (A5)

An uncorrelated system corresponds to d = n2

4 , where the
entropy Eq. (A5) is a maximum, while d = 0 for the fully

n= .25, .5, .75, 1.
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FIG. 6. (Color online) The parameter λ is determined in terms of
the double occupancy d at various densities in the atomic limit as
described in the text. The arrow indicates increasing density n. Note
that the parameter d is scaled into the unit interval.

projected t-J model. Comparing the two expressions for
entropy Eq. (A4) and Eq. (A5), we can express λ in terms
of d at any density. We have thus demonstrated that λ is a
conjugate variable to the double-occupation density in this
limit. Their explicit relationship is illustrated in Fig. 6.

2. Expansion in λ in the atomic limit

In the atomic limit we set t → 0 and J → 0 so that Eq. (67)
and Eq. (68) become

g[i,f ] = g0[i,f ; µa],

µ[i,f ] = δ[i,f ] (1− λγ [i]) − λµbg[i,f] · µ[f,f ]. (A6)

Here we split the chemical potential into two pieces µ = µa +
λµb. Thus in this limit g is the free Fermi Green’s function
independent of λ, and µa is the free value µa → µ0, the latter
determined from the noninteracting theory in terms of the
number of particles. If we turn off the source V the Fourier
transforms can be taken as

g[iωn] = g0[iωn; µa] = 1
iωn + µ0

,

µ[iωn] =
(

1 − λ
n

2

)
− λµbg[iωn]µ[iωn], (A7)

=
1 − λ n

2

1 + λµbg[iωn]
.

Thus the physical Green’s function

G[iωn] =
1 − λ n

2

iωn + µ0 + λµb

. (A8)

We fix the chemical potentials from the number sum rule as
usual and thus

n

2
= 1

1 + e−βµ0
,

(A9)
n

2
=

(
1 − λ

n

2

) 1
1 + e−β(µ0+λµb)

.

We may then solve for µ’s in terms of the density and obtain

µ0 = kBT ln
(

n

2 − n

)
,

(A10)

λµb = kBT ln
(

2 − n

2 − (1 + λ)n

)
.
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Thus the chemical potential µ1 has a power series representa-
tion

µb =
∞∑

m=0

λmµ
(m)
b = kBT

∞∑

m=0

λm

m + 1

[
n

2 − n

]m+1

.

(A11)

We see explicitly from Eq. (A11) that the λ expansion of the
the atomic limit is an expansion in λn/(2 − n), i.e., a density
expansion as well.

APPENDIX B: THE LOW-ORDER CALCULATIONS OF
GREEN’S FUNCTIONS

1. Green’s function to O(λ)

We evaluate the complete starting point of the hierarchy.
We start with terms of O(λ0) and end with [µ]1 and [g−1]1,
which are the seeds for the O(λ) terms.

a. Seed terms and initialization

g−1
0 [i,m] =

{[(
µ − ∂τi

− 1
4J0

)
1− Vi

]

× δ[i,m] + t[i,m] − Vi,m

}
, (B1)

[µ[i,f ]]0 = 1δ[i,f ].

Derived objects:

[γ [i]]0 = g(k)[i,i],

[γ [i,m]]0 = g(k)[m,i],
(B2)[

Uσaσb
σcσd

[i,m; j ]
]

0
= 0,

[
Uσaσb
σcσd

[i,m; j,k]
]

0
= 0.

[Y1[i,m]]0 = t[i,m]
(
g(k)[i,i] + 1

2 g(k)[m,m]
)

− δ[i,m] 1
2 (J [i,j]g(k)[j,j] − t[i,j]g(k)[i,j]),

[0[i,m]]0 = 0. (B3)

[
-σaσb

σcσd
[i,m; j ]

]
0

= δσaσc
δσb,σd

δ[i,j ]δ[j,m],
[
-σaσb

σcσd
[i,m; j,k]

]
0

= δσaσc
δσb,σd

δ[i,j ]δ[m,k]δ(τj − τk). (B4)

In the four-point vertex above, we have introduced the delta
function δ(τj − τk), so that the labels i,m,j,k can be viewed
as four independent space-time variables.

Thus

[/[i,m]]0 = δ[i,m]t[i,j]g(k)[j,i] + 1
2 t[i,m]g(k)[m,m]

+ 1
2δ[i,m]t[i,j] g(k)[i,j] − 1

2J [i,m]g(k)[i,m].

(B5)

Combining the two we get

[Y1[i,m]]0 + [/[i,m]]0

= δ[i,m]t[i,j](g(k)[i,j] + g(k)[j,i])
+ t[i,m](g(k)[i,i] + g(k)[m,m]) − 1

2J [i,m]g(k)[i,m]

− δ[i,m] 1
2J [i,j]g(k)[j,j]. (B6)

b. Stepping up and final Green’s function to O(λ)

To first order in λ we collect the above results to obtain the
Green’s function

[g−1[i,m]]1 = g(k)[i,i] · Vi,m + δ[i,m]g(k)[a,i] · V (k)
i,a

+ δ[i,m] 1
2J [i,j]g(k)[j,j] + 1

2J [i,m]g(k)[i,m]

− t[i,m](g(k)[i,i] + g(k)[m,m])

− δ[i,m]t[i,j](g(k)[i,j] + g(k)[j,i]) (B7)

and the caparison factor

[µ[i,m]]1 = −g(k)[i−,i]δ[i,m]. (B8)

The FTs of these on turning off the sources are found using
g[i−,i] → n

2 as

[g−1[k]]1 = nεk − n

2
u0 + 1

2

∑

q

Jk−qg[q]

+
(

1
4
J0n + 2

∑

q

εqg[q]

)

, (B9)

[µ[k]]1 = −n

2
. (B10)

The term − n
2 u0 in Eq. (B9) arises when we reinstate J [i,j ] →

J [i,j ] − u0δ[i,j ] in Eq. (B7). Let us note that under the shift
Eq. (13), the first-order correction [g−1[k]]1 shifts by 2nut +
n
2 uJ . Therefore this term is invariant under the shift theorem II
and also the shift theorem I.1, provided u0 is simultaneously
transformed as specified in Eq. (31).

2. Green’s function to O(λ2)

a. µ derived objects

We next start with seed terms of O(λ) calculated above and
end with [µ]2 and [g−1]2:

[µ[i,m]]1 = −g(k)[i−,i]δ[i,m]. (B11)

Let us calculate the derived quantities from the above at the
same level:

[γ [i]]1 = [µ(k)[a,i]]1 · g(k)[i,a] = −g[i,i] · g(k)[i,i],

[γ [i,m]]1 = [µ(k)[a,i]]1 · g(k)[m,a] = −g[i,i] · g(k)[m,i],

[Y [i,m]]1 = −t[i,m]
(
g[i,i] · g(k)[i,i] + 1

2 g[m,m] · g(k)[m,m]
)

+ 1
2δ[i,m]

(
J [i,j]g[j,j] · g(k)[j,j]

− t[i,j]g[j,j] · g(k)[i,j]
)
. (B12)

Zero-source Fourier transforms:

([γ [0]]1)V→0 = −n2

4
,

([γ [k]]1)V→0 = −n

2
g[−k], (B13)

([Y1[k]]1)V→0 = 3n2

8
εk − n2

8
u0 +

(
n2

8
J0 + n

4

∑

q

εqg[q]
)

.

Here we reinstated J [i,j ] → J [i,j ] − u0δ[i,j ] in Eq. (B12)
to obtain the − n2

8 u0 term in Eq. (B13).
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b. µ derived vertices

Next we calculate (using lowest-order functional deriva-
tives)

[
Uσ1σ2
σ3σ4

[i,m; a]
]

1
= −δ[i,m]σ1σ2gσ̄2σ3 [i,a]gσ4σ̄1 [a,i],

[
Uσ1σ2
σ3σ4

[i,m; a]
]

1 V→0 = −δ[i,m]σ1σ2δσ̄2,σ3δσ̄4,σ1 g[i,a]g[a,i].

(B14)

At zero sources so with V → 0

[U(a)[i,m; a]]1 = −2δ[i,m] g[i,a]g[a,i],
(B15)

[U (s)[i,m; a]]1 = −δ[i,m] g[i,a]g[a,i].

The zero-source Fourier transforms are as follows:
[
Uσ1σ2
σ3σ4

[p1,p2]
]

1
= −σ1σ2δσ̄2,σ3δσ̄4,σ1

∑

q

g[q]g[q + p2 − p1],

[
U (a)[p1,p2]

]
1 = −2

∑

q

g[q]g[q + p2 − p1]. (B16)

Similarly we find for the four-index vertices
[
Uσ1σ2
σ3σ4

[i,m; a,b]
]

1

= −δ[i,m] σ1σ2δσ̄2,σ3δσ̄4,σ1 g[i,a]g[b,i] δ(τa − τb),
(B17)

[U (a)[i,m; a,b]]1 V→0

= −2δ[i,m]g[i,a]g[b,i]δ(τa − τb).

The zero-source Fourier transforms are as follows:
[
Uσ1σ2
σ3σ4

[p1,p2; p3,p4]
]

1
= − σ1σ2δσ̄2,σ3δσ̄4,σ1δp1+p4,p2+p3

× g[p3]g[p4], (B18)

[U (a)[p1,p2; p3,p4]]1 = −2δp1+p4,p2+p3 g[p3]g[p4].

c. " to O(λ)

We compute [0]1 from these:

[0(k)]1 =
∑

p

(
εp + 1

2
εk + 1

2
Jk−p

)
g[p][U (a)(p,k)]1

+
∑

pq

1
2
εq+p−k g[p][U (a)(p,k; q + p − k,q)]1

= −
∑

p,q

(εp + εk+q−p + εk + εq + Jk−p) (B19)

× g[p]g[q]g[q + k − p]

=
∑

p,q

W (k,q; q + k − p,p)g[p]g[q]g[q + k − p].

d. Stepping up: µ to O(λ2)

Stepping up, we calculate

[µ[i,m]]2 = −δ[i,m]g[i−,i]g(k)[i−,i] + [0[i,m]]1. (B20)

Hence at zero sources, the Fourier transform reads

[µ[k]]2 = n2

4
−

∑

p,q

(εp + εk+q−p + εk + εq + Jk−p)

× g[p]g[q]g[q + k − p]. (B21)

Note that [µ]2, [0]1 are invariant under all three shift
theorems. It is clear that this is a more nontrivial application
of the theorems than those in the lowest order.

e. g−1 derived objects

Let us now start with [g−1[i,m]]1 given in Eq. (B7):

[g−1[i,m]]1 =
[
g(k)[i,i] · Vi,m + δ[i,m]g(k)[a,i] · V (k)

i,a

]

+
[
δ[i,m] 1

2J [i,j]g(k)[j,j] + 1
2J [i,m]g(k)[i,m]

]

× [−t[i,m](g(k)[i,i] + g(k)[m,m])

− δ[i,m]t[i,j](g(k)[i,j] + g(k)[j,i])]. (B22)

f. Vertex functions to O(λ)

Three-point vertex:

[
-σ1σ2

σ3σ4
[i,m; a]

]
1

= −
(

δ

δVσ3σ4
a

) [
g−1
σ1σ2

[i,m]
]

1

= [(I ) + (II ) + (III )]σ1σ2
σ3σ4

, (B23)

where the terms (I ),(II ),(III ) refer to the three square
bracketed terms in Eq. (B22). For the first term we
calculate

(I )σ1σ2
σ3σ4

= −
(

δ

δVσ3σ4
a

) [
(σ1σa)gσ̄a σ̄1 [i,i]Vσaσ2

i,m

+ δ[i,m] (σ1σ2)gσ̄a σ̄1 [a,i]V σ̄2σ̄a

i,a

]
, (B24)

V→0 = 0. (B25)

For all other terms we can use a simple calculation:

X σ1σ2
σ3σ4

[p,q; r] =
(

δ

δVσ3σ4
r

)
g(k)
σ1σ2

[p,q]

= (σ1σ2)gσ̄2σ3 [p,r]gσ4σ̄1 [r,q],
(B26)

X σ1σ2
σ3σ4

[p,q; r]V→0 = (σ1σ2)δσ̄2σ3δσ̄1σ4 g[p,r]g[r,q],

X (a)[p,q; r]V→0 = 2g[p,r]g[r,q].

Therefore

(II )(a)[i,m; a] = −δ[i,m]J [i,j]g[j,a]g[a,j]
− J [i,m]g[i,a]g[a,m] (B27)

and

(III )(a)[i,m; a]

= 2[t[i,m](g[i,a]g[a,i] + g[m,a]g[a,m])

+ δ[i,m]t[i,j](g[i,a]g[a,j] + g[j,a]g[a,i])]. (B28)
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Zero-source Fourier transforms read as

(II )(a)[p1,p2] = −Jp2−p1

∑

q

g[q]g[q + p2 − p1] −
∑

q

Jp1−qg[q]g[q + p2 − p1],

(B29)
(III )(a)[p1,p2] = −2

∑

q

g[q]g[q + p2 − p1]{εp2 + εp1 + εq+p2−p1 + εq}.

Hence adding up we obtain

[
-σ1σ2

σ3σ4
[p1,p2]

]
1

= −(σ1σ2)δσ̄2σ3δσ̄1σ4

∑

p3,p4

δp1+p4,p2+p3 g[p3]g[p4]
{
εp1 + εp2 + εp3 + εp4 + 1

2

(
Jp1−p2 + Jp1−p3

)}

= 1
2

(σ1σ2)δσ̄2σ3δσ̄1σ4

∑

p3,p4

g[p3]g[p4] [W (p2,p3,p4,p1) + W (p2,p3,p1,p4)] , (B30)

[-(a)[p1,p2]]1 = −
∑

p3,p4

g[p3]g[p4][W (p2,p3,p4,p1) + W (p2,p3,p1,p4)]. (B31)

Note that rotation invariance relations imply that since [-(1)[p1,p2]]1 = 0, we must have

[-(s)[p1,p2]]1 = −[-(t)[p1,p2]]1 = 1
2

[-(a)[p1,p2]]1. (B32)

Four point vertex. The calculation proceeds similarly:

[
-σ1σ2

σ3σ4
[i,m; a,b]

]
1

= −
(

δ

δVσ3σ4
a,b

) [
g−1
σ1σ2

[i,m]
]

1 = [(IV ) + (V ) + (V I )]σ1σ2
σ3σ4

. (B33)

Here the terms (IV )–(V I ) refer to the three square bracketed terms in Eq. (B22). For the first term we calculate with implicit
τa = τb:

(IV )σ1σ2
σ3σ4

= −
(

δ

δVσ3σ4
a,b

) [
(σ1σa)gσ̄a σ̄1 [i,i]Vσaσ2

i,m + δ[i,m] (σ1σ2)gσ̄a σ̄1 [a,i]V σ̄2σ̄a

i,a

]

= −δ[i,a]δ[m,b]
[
(σ1σ3)δσ2σ4 gσ̄3σ̄1 [i,i]

]
− δ[i,a]δ[i,m]

[
(σ1σ2)δσ̄2,σ3 gσ4σ̄1 [b,i]

]
, (B34)

(IV )σ1σ2
σ3σ4 V→0 −δ[i,a]δ[m,b]δσ1σ3δσ2σ4 g[i,i] − δ[i,a]δ[i,m](σ1σ2)δσ1σ̄4δσ2σ̄3 g[b,i],

(IV )(a) = δ[i,a]δ[m,b]g[i,i] − 2δ[i,a]δ[i,m]g[b,i]︸ ︷︷ ︸ . (B35)

This term is seen result in a violation of Eq. (49) and Eq. (72) for reasons discussed there and in the second remark below
Eq. (68), and therefore is dropped below. We have carried it in the calculation, and demarcated it with the underbrace, in order
to see its (minor) contribution explicitly before dropping it.

For all other terms we can use a simple calculation:

Yσ1σ2
σ3σ4

[p,q; r,s] =
(

δ

δVσ3σ4
r,s

)
g(k)
σ1σ2

[p,q],
(B36)

Y (a)[p,q; r,s]V→0 = 2g[p,r]g[s,q]δ(τr − τs).

Therefore with implicit τa = τb:

(V )(a)[i,m; a,b] = −δ[i,m]J [i,j]g[j,a]g[b,j] − J [i,m]g[i,a]g[b,m], (B37)

(V I )(a)[i,m; a,b] = 2 [t[i,m](g[i,a]g[b,i] + g[m,a]g[b,m]) + δ[i,m]t[i,j] (g[i,a]g[b,j] + g[j,a]g[b,i])] ,

(IV )(a)[i,m; a,b] = δ[i,a]δ[m,b]g[i,i] − 2δ[i,a]δ[i,m]g[b,i], (B38)

(IV )(a)[p1,p2,p3,p4] = δp1,p3δp2,p4 g[0−] − 2δp1+p4,p2+p3 g[p4]
︸ ︷︷ ︸

,

(V )(a)[i,m; a,b] = −δ[i,m]J [i,j]g[j,a]g[b,j] − J [i,m]g[i,a]g[b,m], (B39)

(V )(a)[p1,p2,p3,p4] = −
(
Jp2−p1 + Jp1−p3

)
g[p3]g[p4]δp1+p4,p2+p3 ,

(V I )(a)[i,m; a,b] = 2 [t[i,m](g[i,a]g[b,i] + g[m,a]g[b,m]) + δ[i,m]t[i,j] (g[i,a]g[b,j] + g[j,a]g[b,i])] ,

(V I )(a)[p1,p2,p3,p4] = −2{εp2 + εp1 + εp3 + εp4}g[p3]g[p4]δp1+p4,p2+p3 . (B40)
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Hence
[
-σ1σ2

σ3σ4
[p1,p2,p3,p4]

]
1

= −(σ1σ2)δσ̄2σ3δσ̄1σ4δp1+p4,p2+p3 g[p3]g[p4]
{
εp1 + εp2 + εp3 + εp4 + 1

2

(
Jp1−p2 + Jp1−p3

)}

−δp1,p3δp2,p4δσ1σ3δσ2σ4 g[0−] − 2(σ1σ2)δσ1σ̄4δσ2σ̄3δp1+p4,p2+p3 g[p4]
︸ ︷︷ ︸

. (B41)

Thus

[-(a)[p1,p2,p3,p4]]1 = −2δp1+p4,p2+p3 g[p3]g[p4]
{
εp1 + εp2 + εp3 + εp4 + 1

2

(
Jp1−p2 + Jp1−p3

)}

+ δp1,p3δp2,p4 g[0−] − 2δp1+p4,p2+p3 g[p4]
︸ ︷︷ ︸

. (B42)

Comparing Eq. (B30) and Eq. (B42), we see that other than the term with underbraces, these vertices satisfy Eq. (49) or Eq. (72).

g. # to O(λ)

We now assemble terms:

[/(k)]1 =
∑

p

(
εp + 1

2
εk + 1

2
Jk−p

)
g[p][-(a)(p,k)]1 +

∑

pq

1
2
εq+p−kg[p][-(a)(p,k; q + p − k,q)]1. (B43)

Let us rewrite this as (k → p2,p → p1,q → p4)

[/(p2)]1 =
∑

p1

(
εp1 + 1

2
εp2 + 1

2
Jp1−p2

)
g[p1][-(a)(p1,p2)]1 +

∑

p1+p4=p2+p3

1
2
εp3 g[p1][-(a)(p1,p2; p3,p4)]1

= n

4

∑

p3

εp3 g[p3] −
∑

p1,p4

εp1+p4−p2 g[p1]g[p4]

︸ ︷︷ ︸

− 2
∑

p1+p4=p2+p3

g[p1]g[p3]g[p4]
(
εp1 + 1

2
εp2 + 1

2
Jp1−p2

) {
εp1 + εp2 + εp3 + εp4 + 1

2

(
Jp1−p2 + Jp1−p3

)}

−
∑

p1+p4=p2+p3

g[p1]g[p3]g[p4]εp3

{
εp1 + εp2 + εp3 + εp4 + 1

2

(
Jp1−p2 + Jp1−p3

)}
. (B44)

The first line with underbraces arises from the term - in Eq. (B39), or Eq. (B35) and Eq. (B42) which disobey the relation
Eq. (49) or Eq. (72). It gives a static but momentum-dependent contribution, and we will drop it as discussed below Eq. (49) and
in the second remark below Eq. (68). The rest are combined and rearranged to give

[/(p2)]1 = −
∑

p1+p4=p2+p3

g[p1]g[p3]g[p4]
(
εp1 + εp2 + εp3 + εp4 + Jp1−p2

) {
εp1 + εp2 + εp3 + εp4 + 1

2

(
Jp1−p2 + Jp1−p3

)}

= 1
2

∑

p1,p3,p4

g[p1]g[p3]g[p4]W (p2,p3; p4,p1) [W (p2,p3; p4,p1) + W (p2,p3; p1,p4)] , (B45)

where in the first line we symmetrized further in p1 ↔ p4.
We can bring this into standard notation by sending p2 → k,p1 → p,p3 → q,p4 → k + q − p:

[/(k)]1 = −
∑

q,p

g[q]g[p]g[k + q − p](εk + εp + εq + εk+q−p + Jk−p)
{
εk + εp + εq + εk+q−p + 1

2
(Jk−p + Jp−q )

}
,

[/(k)]1 = 1
2

∑

q,p

g[q]g[p]g[k + q − p]W (k,q; q + k − p,p) [W (k,q; q + k − p,p) + W (k,q; p,q + k − p)] . (B46)

h. Stepping up and final Green’s function to O(λ2)

We are now in a position to put together the second-order result for g−1 and also µ. Recall that [g−1[k]]2 = − [Y1[k] + /[k]]1,
where these variables are calculated in Eq. (B13) and Eq. (B46). Hence we can now compile the equations of the second-order
theory with sources turned off:

g−1(k) = g−1
0 (k) + λ[g−1(k)]1 + λ2[g−1(k)]2 + O(λ3), [g−1[k]]0 = iωn + µ − εk − 1

4
J0,

[g−1[k]]1 = nεk − n

2
u0 + 1

2

∑

q

Jk−qg[q] +
(

1
4
J0n + 2

∑

q

εqg[q]
)

, (B47)

[g−1[k]]2 = −3n2

8
εk + n2

8
u0 − [/(k)]1 −

(
n2

8
J0 + n

4

∑

q

εqg[q]
)

.
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We thus see that all the computed [g−1]j are invariant under
the two shift theorems. Adding up terms to O(λ2),

g−1[k] = iωn + µ′ −
(

1 − λn + λ2 3n2

8

)
εk

+ λ
∑

q

1
2
Jk−qg[q] − λ2 [/(k)]1 + O(λ3),

(B48)

µ′ = µ − u0
λn

2

(
1 − λn

4

)
+

[
J0
λn

4

(
1 − λn

2

)

+ 2λ
(

1 − λn

8

)∑

q

εqg[q]
]
,

(B49)

with [/(k)]1 defined in Eq. (B46) and a shifted chemical
potential µ′. Note that both terms in square brackets in
Eq. (B49) are independent of frequency and wave vector;
the first (T independent) term may be safely ignored since
it vanishes when we finally set J0 → 0, while the second term
involving

∑
q εqg[q] is expected to be weakly T dependent.

Similarly the caparison factor µ is found to O(λ2) as

µ[k] = 1 + λ [µ[k]]1 + λ2 [µ[k]]2 + O(λ3),

[µ[k]]1 = −n

2
, [µ[k]]2 = n2

4
+ [0[k]]1 . (B50)

Adding up terms to O(λ2) we obtain

µ[k] = 1 − λ
n

2
+ λ2 n2

4
+ λ2 [0(k)]1 + O(λ3), (B51)

along with the definition in Eq. (B19).
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We present detailed results from a recent microscopic theory of extremely correlated Fermi liquids, applied
to the t-J model in two dimensions, developed recently by Shastry [Phys. Rev. Lett. 107, 056403 (2011); Phys.
Rev. B 87, 125124 (2013)]. The second-order theory in the parameter λ, related to the density, is argued to
be quantitatively valid in the overdoped regime for 0 ! n " 0.75, with n denoting the particle density. The
calculation involves the self-consistent solution of equations for an auxiliary Fermi liquid Green’s function and
an adaptive spectral weight. We present numerical results at low as well as high T , at various low to intermediate
densities in the normal phase, using a minimal set of band parameters relevant to the cuprate superconductors.
We display the momentum space occupation function mk , energy dispersion curves locating the peaks of spectral
functions, the optical conductivity, relaxation rates for quasiparticles, and the electronic spectral functions on
an absolute scale. The line shapes have an asymmetric shape and a broad background that is also seen in
experiments, and our calculations validate approximate recent versions of the theory. The results also display the
experimentally noted high-energy kink and provide an in-depth understanding of its origin and dependence on
band parameters.

DOI: 10.1103/PhysRevB.87.245101 PACS number(s): 71.10.−w, 71.10.Fd

I. INTRODUCTION

The t-J model describes the physics of very strongly inter-
acting electrons, made especially difficult by the requirement
of (at most) single occupancy of the lattice sites. It is the
subject of many recent works in the context of the cuprate
superconductors, and also other correlated systems such as
sodium cobaltates. This problem is very hard since it precludes
the application of standard perturbative methods. This conun-
drum has motivated a new strong-coupling approach, resulting
in the theory of extremely correlated Fermi liquids (ECFLs).1,2

Previous applications of the methodology of Ref. 1 to the
cuprates has given encouraging results. These include spectral
functions that compare very well with the experimental
angle-resolved photoemission spectroscopy (ARPES) data,3–6

providing natural explanations of the “high-energy kink,” and
also the more subtle “low-energy kink” seen in experiments.
The theory also has led to interesting predictions for the
asymmetry of line shapes.6

The formalism initiated in Ref. 1 charted out an approach
to the problem of the t-J model using basic insights from
Schwinger’s powerful approach to field theory, using source
fields to write down exact functional differential equations for
the propagator. In the next crucial step, it was recognized
that complexity arising from the noncanonical nature of
the (projected) electrons can be circumvented by a product
ansatz. This involves decomposing the propagator as the
space time convolution of a canonical electron propagator,
and an adaptive spectral weight factor termed the caparison
factor satisfying coupled equations of motion. A recent work2

develops this idea in a systematic fashion, emphasizing the
role of expanding in a parameter λ (0 ! λ ! 1), related to
the particle density, or more closely to λ ∼ (1 − 4

n2 d), where
d is the double occupancy (0 ! d ! n2

4 ). It further explores
the implications of a novel set of identities for the t-J model,
termed the shift identities. These simple but crucial identities
provide an important constraint on the λ expansion. A method
for generating a systematic set of equations for the propagator

to any orders in λ is given, along with explicit equations
to second order in λ that manifestly obey the shift identity
constraints. We will refer to this theory as (I) here and prefix
equations of that paper with (I). A detailed numerical solution
of this O(λ2) ECFL propagator is the main focus of this work.
We obtained and benchmark the results of these equations
against known results, and thereby provide a solid platform for
further developments of the method, as well as a validation of
the phenomenological versions of ECFL. With the confidence
gained by the benchmarking, we further study and report the
hopping parameter sensitivity of the kink effect.

Broadly speaking, the O(λm) equations resemble the
fully self-consistent mth-order skeleton diagram expansion
of the standard Feynman-diagram-based theory, as described
in standard texts,7–9 but generalize to the case of extreme
correlations. Summarizing the arguments in Refs. 1 and 2,
a low-order theory in λ is already expected to capture features
of extreme correlations. This perhaps initially surprising
expectation arises in view of the non-Dysonian representation
of the Green’s function in terms of two self-energies " and #,
within the ECFL formalism. The self-energy # resides in the
numerator of the Green’s function, as in Eqs. (1) and (2) . It
plays the role of an adaptive spectral weight that balances
the somewhat opposing requirements of the “high-energy”
weight 1 − n

2 and the low-energy Luttinger theorem. The latter
requires a greater magnitude of the numerator than 1 − n

2 to
accommodate the particles into a Fermi surface (FS) with the
same volume as in the Fermi gas. A further tactical advantage
of this method is due to the finite range of variation of λ,
namely, 0 ! λ ! 1, that suffices to interpolate between the
Fermi gas and the extreme correlation limit. This is in contrast
to controlling the double occupancy d using a repulsive energy
U , with its range of values 0 ! U ! ∞. Experience shows
that U must be tuned to a very large value U ≫ |t | in
order to achieve the same end, thereby invalidating low-order
expansions in U . In summary, within the present formalism, a
low-order theory in λ seems well worth examining in detail;
this is our task here.
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We note that apart from a few exact solutions in one
dimension and some calculations for finite-sized systems (see
below), we are aware of no systematic analytical calculations
in higher dimensions, for the dynamics of the physically
relevant spin- 1

2 version of the t-J model, working directly in
the thermodynamic limit. An earlier body of work in Ref. 10
shares some of the objectives and features of our approach but
is technically very different. It relies on an expansion in the in-
verse number of components 1

N and is thus somewhat removed
from the physical case of interest, where N = 2. Therefore
while the importance of the t-J model was understood many
years ago, there has been little detailed comparison with the
ARPES experiments until recently.3,4 This gap is one of the
main motivations for this (and our related) work. In this paper,
we present a controlled calculation for the spectral functions
of the t-J model by solving the above O(λ2) equations. We
evaluate thermodynamical variables, the spectral functions,
ARPES line shapes, and optical conductivity of the t-J model.
The ECFL formalism and the λ expansion method provides
an in-built criterion to judge the validity of the expansion
at any order. Using this criterion we argue that our present
O(λ2) calculations are valid in the high-hole-doping limit,
known as the overdoped regime. Clearly this corresponds to
low and intermediate electron density, since the hole doping is
related to the particle density as x = 1 − n. Future work will
be aimed at higher-order calculations in λ in order to enable us
to address densities closer to optimal doping (n ∼ 0.85). The
results are compared with other approximations as well as a
few experiments. Needless to say, even in such an overdoped
regime, experimental evidence points to the important role of
strong correlations.11,12

While analytical methods beyond crude mean-field the-
ories have been in short supply, there is a valuable
body of numerical results for the t-J model from exact
diagonalization,13 high-temperature series expansions,14 vari-
ational wave functions,15–17 and finite temperature Lanczos
methods.18–21 Noteworthy are the results of Ref. 19 from
Prelovsek and co-workers, who handle the series expansion in
inverse temperature in a stochastic fashion, thereby obtaining
results down to fairly low temperatures. Owing to finite size
effects and the inherent nature of the high-T expansion, the
results from this theory, although broadly comparable to ours,
seem more grainy.

The Hubbard model for large on-site coupling U tends to
the t-J model [apart from O(t2/U ) correction terms], so the
large U studies of this model are of interest. Quantum Monte
Carlo methods, despite the difficulties associated with the sign
problem, yield some valuable insights into the spectral features
such as kinks.22 We note that the dynamical mean-field theory
(DMFT) for the Hubbard model23,24 gives a numerically exact
solution in high enough dimensions of the Hubbard model.
Although the strong coupling (i.e., U > W ) relevant to the
t-J model results is challenging, there is impressive progress
overall. A recent DMFT study25 at strong coupling obtains
detailed spectral functions that are roughly comparable to what
we find here for the t-J model.

The ECFL formalism has several advantages, since it is
essentially an analytical method with a computational aspect
that is lightweight, in comparison with other methods listed
above. The only present limitation is the density attainable with

the second-order theory. When possible, we present absolute
scale results that are encouragingly close to experimental data
with no other fitted parameters.

We finally note that the present O(λ2) results for the
location of the energy peaks has been recently tested in
Ref. 26, against an independent theory with overlapping
validity. Reference 26 studied the infinite-coupling Hubbard
model in two dimensions by using a highly efficient computer
program to generate a series expansion in hopping of the exact
Green’s function and its various moments to high order. The
locations of the dispersion peaks can be estimated from these.
These dispersion relations match quantitatively the ones found
from the present theory, with J → 0 for the densities quoted
in this paper. This suggests a high degree of reliability of the
spectral functions discussed herein.

The plan of the paper is as follows: In Sec. II, we present a
summary of the equations solved here from Sec. I. In Sec. III,
we discuss the computational strategy and explain the scheme,
using the fast Fourier transform method (FFT), so that the
spectral functions can be computed efficiently. Section IV
presents the detailed results of the calculation. Section V con-
tains a summary and concluding comments. The Supplemental
Material in Ref. 27 details the results for thermodynamics and
the wave-function renormalization Zk , and also gives further
details of the computational method employed.

II. SUMMARY OF THE O(λ2) THEORY

In the ECFL formalism developed in (I) (i.e. Ref. 2), the
physical Green’s function G can be factored in the momentum
space as

G(k) = g(k) µ(k), where (k) ≡ (k⃗,iωk). (1)

Here the caparison factor µ(k) plays the role of an adaptive
spectral weight, while g(k) is the auxiliary canonical Fermion
propagator. These objects are expanded in powers of a
parameter λ, relating to density, and finally we set λ → 1.
As shown in Eqs. (I-83), (I-84), and (I-85), the second-order
equations for the ECFL Green’s function are as follows:

µ(k) = 1 − λ
n

2
+ λ2 n2

4
+ λ2#(k), (2)

#(k) = −
∑

p,q

(εp + εk+q−p + εk + εq + Jk−p − u0)

× g(p) g(q) g(q + k − p), (3)

g−1(k) = iωn + µ′ − εk − λ2 "(k), (4)

εk =
(

1 − λ n + λ2 3n2

8

)
εk + λ

∑

q

1
2Jk−q g(q), (5)

"(k) = −
∑

q,p

g(q) g(p) g(k + q − p)

× (εk + εp + εq + εk+q−p + Jk−p − u0 )

×
{
εk + εp + εq + εk+q−p + 1

2 (Jk−p + Jp−q ) − u0
}
,

(6)

where
∑

k ≡ 1
βNs

∑
k⃗,ωn

, with Ns being the number of lattice
sites and β is inverse temperature. These expressions for the
Green’s function satisfy the “shift invariances” described in
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Ref. 2, i.e., any uniform shift in εk or Jk can be absorbed
in µ′ and u0 such that the spectral function is invariant.
These second-order equations are the lowest-order ones where
nontrivial frequency dependence arises and are the focus of
this work. Below we discuss in detail the criterion for the
quantitative validity of the present second-order expansion.

As written here, µ(k) and g(k) have acquired a variety of
static terms as well as frequency-dependent terms called #
and ", respectively. This is written with a slight change of
notation ["(k)]1 → "(k) from (I-85), and we have introduced
the effective band energy εk in Eq. (5) that gets a static
contribution from shrinking of the bare energies εk , as well
as from the exchange energy J . The role of the parameter u0
as a second chemical potential is described below. All terms
are understood to be correct up to O(λ2), and hence possess
corrections of O(λ3) that are ignored here.

The number of the physical electrons is fixed by the
number sum rule:

n

2
=

∑

k

G(k) eiωn0+
. (7)

In order for G to satisfy the Luttinger volume theorem, the
auxiliary Fermions described by g must be equal in number
and therefore satisfy a second sum rule:

n

2
=

∑

k

g(k) eiωn0+
. (8)

In contrast to canonical theories, here we have two independent
sum-rule constraints requiring two Lagrange multipliers. The
first Lagrange multiplier µ′ is a standard chemical potential
in that it sits next to the band energies εk in the denominator
of g. A second Lagrange multiplier u0 arises naturally in the
ECFL formalism, thanks to the role of the shift identities,
as shown in (I). The u0 term has a role similar to that of the
Hubbard U in the effective Hamiltonian in (I). It controls the
broadening of the spectral function through the magnitude of
" and #. Neither of these Lagrange multipliers is the physical
thermodynamic chemical potential of the grand canonical
ensemble. The physical chemical potential µphys, denoted by
µ, can be obtained as a function of µ′ and u0, as shown in
Eq. (179) of (I):

µ = µ′ + u0
λn

2

(
1 − λn

4

)

−
[
J0

λn

4

(
1 − λn

2

)
+ 2λ

(
1 − λn

8

) ∑

q

εqg(q)
]

+O(λ3). (9)

We now discuss the criterion for validity of equations
to a second order in λ. As stated above, dropping terms of
O(λ3) in Eqs. (2)–(6) limits the regime of validity of these
calculation to densities not too close to unity. To see this, note
from Eq. (2) that this theory would give a high-frequency

behavior of G ∼ c0
iω

with c0 = 1 − n
2 + n2

4 , rather than the
exact value c0 = 1 − n

2 , thus introducing an error. This slight
error in the high-frequency physics is a result of keeping
a few terms in the expansion in λ. Note, however, that the
low-frequency physics encoded by the Luttinger-Ward sum
rule is untouched by this and is exactly obeyed to each order
in λ. Thus at n ∼ 0.78 we have an error of n2

4−2n
∼ 25% in

the high-frequency spectral weight in this theory, a value
somewhat beyond where we can push this approximation.
The O(λ3) terms are expected to extend the range of this
approximation to higher particle densities.

III. COMPUTATION OF SPECTRAL FUNCTIONS

A. Definitions

Computationally, it is expedient to employ a spectral
function notation as described for example in Ref. 9. The
Matsubara frequency object G(k,iωn) is analytically continued
to the real axis and we define as follows:

ρG(k,ω) = − 1
π

Im [G(k,iωn → ω + i0+)]. (10)

This object is the spectral function, denoted in most experi-
mental literature by A(k,ω). The real part of the analytically
continued function can be obtained by a Hilbert transform

Re G(k,ω) = P.V.
∫ ∞

−∞

ρG(k,ν)
ω − ν

dν. (11)

An analogous definition is given for spectral representation
ρg(k,ν), ρ"(k,ν), ρ# (k,ν) used for g, ", #, etc., and hence,
the full set of equations above can be rewritten in terms of
these spectral functions. Since G is a product as in Eq. (1), we
note that within the O(λ2) theory

ρG(k,ω) = ρg(k,ω)
(

1 − n

2
+ n2

4
+ Re #(k,ω)

)

+ ρ# (k,ω) Re g(k,ω), (12)

so the two sum rules Eq. (7) and Eq. (8) can be written as

n

2
=

∑

k

∫
dωρg(k,ω)f (ω),

n2

4

(
1 − n

2

)
= −

∑

k

∫
dωf (ω)(ρg(k,ω) Re #(k,ω)

+ Re g(k,ω) ρ#(k,ω)), (13)

where f (ω) = [1 + exp(βω)]−1 and f (ω) = 1 − f (ω). The
auxiliary spectral function is in the usual Dysonian form,

ρg(k,ω) = ρ"(k,ω)

{ω + µ′ − εk − Re "(k,ω)}2 + (πρ")2
. (14)

Using Eqs. (1)–(6), we express the spectral functions for #
and " as

ρ"(k,ω) = 1
N2

s

∑

pq

∫
dν1dν2 ρg(p,ν1)ρg(q,ν2)ρg(p + q − k,ν1 + ν2 − ω)

× {f (ν1)f (ν2)f̄ (ν1 + ν2 − ω) + f̄ (ν1)f̄ (ν2)f (ν1 + ν2 − ω)}
× (εp + εk+q−p + εk + εq + Jk−p − u0

) {
εk + εp + εq + εk+q−p + 1

2 (Jk−p + Jk−q) − u0
}
, (15)
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ρ#(k,ω) = 1
N2

s

∑

pq

∫
dν1dν2 ρg(p,ν1)ρg(q,ν2)ρg(p + q − k,ν1 + ν2 − ω)

×{f (ν1)f (ν2)f̄ (ν1 + ν2 − ω) + f̄ (ν1)f̄ (ν2)f (ν1 + ν2 − ω)}
×(εp + εk+q−p + εk + εq + Jk−p − u0). (16)

These frequency integrals are solved by discretizing frequency
over a finite window that is wide enough to capture the finite
support of the spectral functions. In Ref. 27 we outline how
this is accomplished efficiently with FFTs and implemented in
an iterative process.

IV. RESULTS

A. Physical variables

The computational program has several parameters that
can be varied. These include the tight-binding band structure
(through hopping parameters t , t ′ etc.), the spin coupling J ,
density, and temperature. For the parameters of the model, we
focus on a minimal model with the nearest-neighbor hopping
t ∼ 3000 K and J ∼ 900 K, and all longer-range hopping
parameters are zero. These values are chosen to match the
bandwidth of the cuprates. However, at the bare level, this pro-
duces an electronlike Fermi surface near half filling, remaining
closed around the * = (0,0) point in the Brillouin zone (BZ).
This is in contrast to the ARPES reconstructed FS of, say,
BISSCO displaying a holelike surface. Nonetheless, this
minimal parameter set exhibits a variety of features in common
with the cuprates, most notably, a broad incoherent spectrum at
high negative frequency. Interestingly, we find that the distribu-
tion of incoherent weight at high frequencies is very sensitive
to the bare hopping parameters. For this reason, when we look
the high-energy features, we will explore their dependence in
the second neighbor hopping parameter t ′, also including a
fine-tuned tight-binding fit of BISSCO from Ref. 28.

B. Other parameters in the programs

The program can be implemented on lattices of various size
and spatial dimension. For a given choice of these parameters
an appropriate choice must be made for computational grid.
This includes the lattice size as well as the discretized
frequency grid. We look at converged spectral functions for
a wide variety of these parameters.

The majority of the following results were performed on
a square lattice with dimension L × L with L = 36, and
periodic boundary conditions are imposed. We therefore work
in a momentum representation with an L × L–sized k grid
of points ki,j = π

aL
(i,j ), where 1 ! i,j ! L and the lattice

parameter is a = 3.82 Å. The spectral functions have compact
support, extending to |ω| " 8 × t . We choose a frequency
range − 1

2ωc ! ω ! 1
2ωc, with ωc = 30 × t , a range that is

sufficient to capture the full range of the spectral functions.
We discretize this frequency range in Nω = 3000 bins each of
width +ω = ωc

Nω
= 0.01t = 30 K. +ω is the lowest resolvable

frequency scale in the calculation, so it is prudent to disallow

any spectral features from becoming any sharper than this
scale. Therefore we introduce the convergence factor ηmin =
+ω. It serves as a lower limit on the width of spectral
features. Thus in the Dysonian form of ρg [Eq. (14)] we set
ρ" → ρ" + η

π
.

C. Frequency independent variables

We now proceed to study the FS in this theory, starting
with the momentum occupation function mk of the Gutzwiller
projected fermions:

mk ≡ ⟨Ĉ†
kσ Ĉkσ ⟩ =

∫ ∞

−∞
ρG(k⃗,ω)f (ω)dω. (17)

A sharp drop in this function helps to locate the FS at low
T . This can be compared with the Luttinger-Ward surface,
defined by a sign change in Re G(k,0), also given in terms of
the spectral function by

Re G(k⃗,0) = P.V .

∫ ∞

−∞

ρG(k⃗,ω)dω

ω
. (18)

At T = 0 the FS in k⃗ space is traced out by Re G−1(k⃗,0) = 0,
as dictated by the Luttinger-Ward sum rule. The momentum
distribution mk is plotted in Fig. 1 at T = 130 K and T =
605 K for various densities along three principle directions of
the BZ. The Luttinger-Ward zero crossings Re G−1(k⃗,0) = 0
are depicted by dashed vertical lines. There is a close corre-
spondence between these crossings and the point where mk =
0.5, similar to that noted previously by Stephan and Horsch13

in an exact diagonalization study. Since this correspondence
is not on any rigorously firm basis, it is difficult to do more
than to list the conditions for its approximate validity. Using
high-temperature expansions for the t-J model, Singh and
Glenister14 found the FS to be that of the Fermi gas by
various criteria, and noted that the condition mkF

∼ 0.5 is only
satisfied approximately at high T . At higher temperature where
the quasi-particle (QP) near the FS have been significantly
broadened, we find that the condition mkF

∼ 0.5 is still
reliable, in agreement with Ref. 13.

In Fig. 1, a point of considerable interest is the spillover of
the occupation to the regions in k space that are unoccupied in
the Fermi gas, as noted in various variational wave-function
studies of the t-J model already.15–17 From Eq. (17) we note
that the magnitude of mk for momenta k > kF provides an
estimate of the spectral weight ρG(k,ω) at occupied energies
at low T . In early analyses of ARPES data, the significance of
this piece of information was not always realized, and often
substantial spectral weight was discarded as belonging to some
unspecified background. Only recent studies such as Ref. 3
have taken note of the significance of the background.
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FIG. 1. (Color online) The momentum distribution function mk

is plotted along three principle lines of the BZ. The left and right
figures are at 130 and 605 K, respectively. In each case the FS is the
same as in the noninteracting problem. The Luttinger-Ward crossing
Re G−1(k⃗,0) = 0 is indicated for each density by the vertical dashed
lines. For each density and each temperature the Luttinger-Ward
crossings correspond well with the condition mk = 1

2 .

D. Various excitation energies

The spectra obtained here contain sharp peaks as well as
substantial incoherent background due to extreme correlations.
The QP weight Zk is discussed in the Supplemental Material.27

To understand the effect of the many-body renormalizations, it
is fruitful to study three dispersion relations defined in Ref. 4:

εk =
(

1 − n + 3n2

8

)
εk + 1

2

∑

q

Jk−q mq,

Ek = εk − µ′ + Re "(k,Ek), (19)

E∗
k = max[ρG(k,ω) : ω].

Here εk defines the bare energy times its static renormalization,
while Ek locates the vanishing point for the real part of the
auxiliary Green’s function g, thereby defining the Luttinger-
Ward surface through a change of sign. E∗

k locates the highest
peak of the physical Green’s function G, and hence defines
QP excitations, provided they are sufficiently sharp. ARPES
experiments performed with constant k, termed the energy
distribution curves (EDCs), locate E∗

k as the peak locations;
thus EEDC(k) ↔ E∗

k . On the other hand, the momentum
distribution curves (MDCs) are obtained by fixing ω and by
scanning k. The so-obtained peak locations yield the fourth
dispersion spectrum EMDC . To obtain EMDC in practice, one

X

0.4

0

0.4

0.8
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0.2
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ω

k Re k,ω

Increasing kx

FIG. 2. (Color online) T = 130 K. The three dispersions defined
in Eq. (19) are plotted along principle directions for three different
densities. The upper insets show the bandwidth of the dispersions
as a function of the density. The bare bandwidth is 2 eV, but each
of these dispersions shrinks compared to that scale. The bandwidth
renormalization due to Re " in Eq. (19) is k dependent, and so Ek has
a different shape than ϵk . Note that Ek ∼ E∗

k near the FS. However,
E∗

k differs from Ek near the * point for each of the densities. The
lower inset shows the evolution of the real part of the denominator
of g(k,ω) with ω to illustrate the origin of the difference between Ek

and E∗
k . In the inset Ek is determined by the zero crossings of the

curves. At low k notice that a relatively flat feature develops with a
shallow minimum near ω = −0.3 eV. The minimum corresponds to
the peak E∗

k . For increasing k, the flat feature quickly disappears and
the zero crossing moves quickly upward in frequency, producing the
observed kink in Ek .

may invert the MDC peak locations through

k∗(ω) = max[ρG(k,ω) : k], EMDC(k) = Inverse of k∗(E).

(20)

It is worth mentioning that the high-energy kink (or the
waterfall) is experimentally defined as the the peeling off of
the EMDC(k) from the EEDC(k) = E∗

k spectra.29

In Fig. 2 we illustrate the density dependence of the three
dispersions in Eq. (19). The inset shows the bandwidths, W (n),
of the three dispersions as a function of the density. Note that
the bare bandwidth of ϵk is 2 eV for both cases. Near the FS
we see that Ek ≈ E∗

k , but they differ near the * point where
E∗

k and EMDC are also split off from each other, satisfying the
above operational definition of the high-energy kink. We now
discuss the origin of these splittings.

Although Ek is not directly experimentally relevant, it
plays a significant role in the theory, so we first comment
on the splitting between Ek and E∗

k near the * point. Since
Ek is defined as the root of Re g−1(k,Ek) = 0, we plot
ω + µ′ − εk − Re "(k,ω) at various k as a function of ω
in the inset of Fig. 2. A strong ω dependence of Re "(k,ω)
causes a flattening of the curves near the zero crossing between
−0.6 and −0.3 eV, and this causes the Ek to fall rapidly with
k in the main figure, Fig. 2. Just as Ek breaks away from
E∗

k , so also does EMDC , resulting in the kink. This is shown
most clearly in the left panel of Fig. 3, where the spectral
function is depicted as a color density plot with the dispersions
(Ek,E

∗
k ,EMDC) overlaid. Near the * point where k = (0,0) the

QP becomes incoherent and the bulk of its spectral weight is
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FIG. 3. (Color online) L = 60, (n,T ) = (0.75,300) K. Density
plot of A(k,ω) of the minimal model (top) and the refined model
Ref. 28 (bottom). (Here and below, red denotes high intensity and
blue denotes low intensity). Ek , E∗

k , and EMDC(k) spectra are white,
green, and black, respectively. Near kF we see that the three spectra
coincide. In the region near k = (0,0), EMDC(k) is at a significantly
higher energy scale than Ek or E∗

k , signifying the high-energy kink
(waterfall) effect. Also, the EDC peak loses weight in this regime. A
new feature arises at near k = (π,π ) resembling an inverted waterfall.

spread out to high negative frequencies. In this region EMDC

differs considerably from E∗
k and recovers the scale of the

bare dispersion ϵk . The right panel of Fig. 3 shows the spectral
function as calculated using the tight binding parameters of
BISSCO given in Ref. 28. These parameters result in a
holelike FS around the * point, unlike the minimal model
with an electronlike FS. However, we observe in Fig. 3 that
the high-energy kink occurs for both sets of parameters.

The occurrence of the high-energy kink is understandable as
a straightforward consequence of additional broad peaks in the

FIG. 4. (Color online) L = 60, (n,T ) = (0.75,300) K. (Top)
t ′/t = 0.4 is used to model electron-doped high-Tc superconductors.
The kink feature is prominent here. (Bottom) Uses t ′/t = −0.4 to
crudely model a holelike FS. In this case the kink near (0,0) is lost,
unlike in Fig. 3, correlating with a flat (bare) band dispersion.

spectral function, separated from the quasiparticle-type peaks.
In an energy range where they exist, these are particularly
effective in dominating EMDC and less prominent in EEDC ,
therefore resulting in the separation between these dispersions.

While the qualitative picture of the kinks is reasonably
clear, it is not immediately clear what accounts for the slightly
different magnitude of the scale of the high-energy kink
in Fig. 3. In Fig. 4 we show density plots of the spectral
function with t ′/t = ±0.4. The case t ′ = 0.4 × t on the left has
greater curvature at the band bottom and is identified with the
phenomenology of the electron-doped cuprates (Refs. 22,30).
The QP peaks lose most of their weight, unlike in the minimal
case. The resulting scale of the drop in the waterfall is bigger

245101-6

(71)



EXTREMELY CORRELATED FERMI LIQUIDS: SELF- . . . PHYSICAL REVIEW B 87, 245101 (2013)

than in the minimal case, and correlates well with experimental
observations in Ref. 31.

We note in Fig. 4 (right) that the case t ′/t = −0.4 has
no measurable waterfall near the * point. The background
at negative frequency is essentially featureless, and the QP
peaks maintain their spectral weight. However, at positive
frequencies, an inverted waterfall-like feature develops near
k = (π,π ). This particular parametrization is often invoked
to rectify the electronlike curvature of the minimal model
(t ′ = 0), but ends up giving a very flat band bottom at *. This
is unlike the more sophisticated band parameters in Ref. 28,
where the curvature is also holelike, and now the band regains
significant curvature at its bottom, resulting in the observed
kink.

E. Detailed spectral line shapes (EDCs)

In this section, we present detailed line shapes for the
spectral function. In an earlier work,3 we have compared the
results of the simplified ECFL formalism. These included
some phenomenological inputs, with the experimental data
at somewhat higher particle densities n ∼ 0.85, and found
remarkably good agreement with the line shapes. We are
content in this work to present the results at lower particle
densities, but from a microscopic calculation of ECFL. This
is made possible by solving the O(λ2) equations in Eq. (6)
numerically. The line shapes obtained here have a similar
general nature as the ones in Ref. 3, giving support to that work.
However, as one expects from a lower-density situation, we
find somewhat less dynamical asymmetry about zero energy.
More detailed comparison with data near optimal doping with
the microscopic ECFL theory must await the solution of the
third- or higher-order equations, where the criterion for validity
discussed above [see paragraph following Eq. (8)] is satisfied
more closely than here.

Let us first examine the local density of states (LDOS)
at n = 0.75 for both cases at low T in Fig. 5. A prominent
feature is that the main peak is much narrower than in the bare
LDOS. Furthermore, there is a long tail extending to (negative)

1. 0 0. 5 0. 0 0. 5 1. 0
0.0

0.5

1.0

1.5

2.0

ω eV

FIG. 5. (Color online) n = 0.75. The LDOS of the physical G
(auxiliary g) is in black (dotted blue), and the bare DOS is the dashed
red curve. The renormalized band displays narrowing, and a long tail
at ω < 0. The LDOS develops a second spectral peak for ω > 0 from
a strongly k-dependent feature in the self-energy.
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FIG. 6. (Color online) n = 0.75. The spectral function
ρG [= A(k,ω)] at several k points along the ⟨11⟩ direction and T . We
used Lx = 36; the insets show all positive kx’s and the main figures
display a third of the allowed kx’s. The inset in each case zooms out to
reveal the heights. The linewidth near kF is seen to be strongly effected
by rising T ; the incoherent parts have very little T dependence. The
tails exhibit a secondary broad peak near ω = −0.4 eV, giving rise
to the high-energy kink (waterfall).

frequencies, much greater than those seen in the bare LDOS.
Finally, we note that the LDOS acquires a second peak at
positive frequency. This peak arises due to some k-dependent
features in the self-energy (discussed below), resulting in
sharper QP at positive frequency.

We next discuss Fig. 6, displaying the nodal spectral
function at three different temperatures. The lines are quite
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sharp near kF but broaden out rapidly away from kF . The insets
give an idea of the change of spectral density with temperature.
Notably, there is a secondary local maximum for k near the
* point near ω = −0.4 eV. This second peak is responsible
for the waterfall discussed above and is also contained in the
models used in Refs. 3,5. As discussed above in connection
with kinks, its microscopic origin is sensitive to tight binding
parameters. It is also noteworthy that lines with k > kF , though
broader than at kF , are sharper than those with k < kF .

Finally, we note that while the self-energy is strongly k
dependent it is not anisotropic. Consequently, the EDC line
shapes look similar at different parts of the FS, at least to
O(λ2). In the regime of validity of this theory, namely, the
(hole) overdoped region, the cuprates do not display a strong
anisotropy either.

F. Optical conductivity

The optical conductivity σ (/) is computed within the
lowest approximation of (I) here by discarding the vertex
corrections and working with the auxiliary g:

Reσ (/) = 1
/

∑

k

v2
k

∫
ρg(k,ω)ρg(k,/ + ω) dω

× [f (ω) − f (/ + ω)]. (21)

The imaginary part of the conductivity can be obtained by a
Hilbert transform of the real part. In this purely t-J calculation
we must be careful how we interpret the imaginary part of σ .
A more realistic calculation should include contributions from
the upper Hubbard band and from charge-transfer processes
that are significant at high frequencies; these are discarded
in the t-J model. For our current purposes we will discuss
two kinds of relaxation rates. First we compute a momentum-
averaged rate 1/τσ extracted from the low-frequency behavior
σ (ω) using

1
τσ

= 4
π

∫ 1/τσ

0
Re σ (ω)/σ (0)dω, (22)

where the prefactor is chosen to yield the usual rate for
a Lorentzian shape. This convenient definition is designed
to be insensitive to the shape of σ (ω). Secondly, we look
at the momentum-resolved scattering lifetimes, defined as
the inverse width of the ARPES line shape at the Fermi
momentum. These scattering rates are displayed in Fig. 7. We
find that the 1/τ curves from ARPES and the conductivity have
essentially the same temperature dependence, apart from a
factor of O(1). The 1/τ rises quadratically at low temperature,
in accordance with the standard Fermi liquid (FL) picture,
crossing over to a linear dependence at a fairly low-temperature
scale.

In Fig. 8, we display the computed optical conductivity
Re σ (ω) at various T for n = 0.75, and also the phase angle
θ = tan−1( σ ′′(ω)

σ ′(ω) ) on an absolute scale. The rapid fall of the
optical conductivity at low T is rapidly filled in at low ω,
and the phase angle falls off with ω at about 4000 cm−1. At
optimum doping, the phase angle is known experimentally to
be flat in ω over a much larger range,32 and differs from the
present calculation, whose validity is confined to overdoping.
Experimental measurements in the overdoped case of the phase
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FIG. 7. (Color online) n = 0.75. The QP relaxation rate at the
FS along ⟨11⟩ obtained from ρ2(k,E∗

k ), and the rate obtained from
the optical conductivity as in Eq. (22). The T 2 behavior of an FL
is visible at low temperature, crossing over at a modest temperature
(∼150) K, partly due to the shrinking bandwidth, as seen directly in
Fig. 2. The inset shows the dc resistivity obtained from the inverse of
Eq. (21). It similarly displays a T 2 behavior crossing over to a linear
behavior, as well as a lack of saturation that persists to higher T than
shown.

angle would be useful in benchmarking theories in regimes
such as the present one. For the real part, such a comparison
is possible. In Fig. 9 we display the Re σ (ω) curves along
with optical conductivity measurements published by Puchkov
et al.12 for an overdoped thallium compound. We note that
in the overdoped regime, the computed conductivity matches
quite well with experiments (to within a factor 2 on the vertical
scale).

A further interesting aspect of the resistivity obtained from
this ECFL formalism lies in the high-temperature limit. A
lack of resistivity saturation has been observed in numerical
treatments of strongly coupled models, as in a recent DMFT
work.25 These results are in qualitative agreement with
resistivity measurements in the cuprates and other strongly
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FIG. 8. (Color online) n = 0.75, T = 60,90,130,190,280,410,

605 K. The optical conductivity is calculated on an absolute scale and
illustrates how increasing T rapidly fills up the regime 200 ! ω !
1000 cm−1. The rise of conductivity at very low ω is also inferred
from the dc resistivity displayed in Fig. 7. The phase of the complex
σ falls off rapidly beyond 4000 cm−1.
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FIG. 9. (Color online) An explicit comparison of optical con-
ductivity with measurements of Puchkov et al. from Ref. 12 with
the author’s kind permission. The data pertains to an overdoped
thallium-based cuprate with Tc = 23 K, with a density n ≈ 0.75.
We note the similarity of magnitude and variation with ω and T . It is
worth noting (to be reported elsewhere) that the vertical scale can be
brought into better agreement with an adjusted hopping, as with the
Fermi velocity.

correlated compounds. The ECFL theory leads to a similar
result and provides a simple picture for its origin in terms
of the second Lagrange multiplier u0. As discussed in the
Supplemental Material,27 both µ′ and u0 rise linearly with
T at high temperature. Due to the explicit appearance of
u0 in the expressions for " and #, the magnitude of the
self-energies also grows continuously with temperature via u0,
resulting in a monotonic broadening of the spectral function.
This broadening is insensitive to the Mott-Ioffe-Regel (MIR)
saturation expected in weakly correlated metals, and leads to
a nonsaturating resistivity at high T , as we observe in the inset
of Fig. 7.

G. Self-energies

We now display the self-energies that are involved in
calculating the spectral functions. In Fig. 10 we display ρ"

and ρ# . Both functions exhibit the ω2 behavior close to zero,
as one finds for a weakly interacting FL self-energy. Unlike
conventional FLs, the magnitude of the quadratic term is
strongly k dependent. From these functions and the associated
real parts we can construct a Dyson-Mori (D-M) self-energy,
defined through the equation

G = aG
x − 2

, (23)

where aG is the total spectral weight of the physical G and
x = ω + µ′ − εk such that

2 = x + aG
aG + #

(" − x). (24)

In Fig. 11 we plot the computed imaginary part of the D-M self-
energy, ρ2 . It exhibits a similar magnitude and k dependence at
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FIG. 10. (Color online) (n,T ) = (0.75,130) K. The spectral
functions for the two self-energies " and #, i.e., ρ" (top) and
ρ# (bottom), at several k points along the ⟨11⟩ direction. Both are
roughly quadratic and symmetric at low frequency but have a strongly
k-dependent curvature. In the plot of ρ", the minimum width η chops
off the bottom of the low-frequency minimum.

low frequency to that in ρ". However, large asymmetries begin
to appear at intermediate frequencies. It is interesting that at
positive frequency the function is considerably smaller than
at negative frequencies, a feature that has already been noted
for simplified versions of the ECFL4,5 and also in a recent
DMFT study of the Hubbard model.25 In this calculation,
however, we see an interplay between the momentum and
frequency dependencies. In particular, we see that at positive
frequency 0 < ω " 200 meV, ρ2 is strongly k dependent,
so that particlelike excitations near k = (π,π ) are long-lived
while those inside the FS suffer a large damping. This is very
different from weakly coupled or local theories such as DMFT,
where the scattering rate is determined by frequency alone. We
note that this self-energy does not differentiate between nodal
and antinodal directions, but rather, the k dependence arises
only through εk⃗ , so that the scattering rate is constant along
the FS.

The low-frequency asymmetry is usefully described as an
FL-like quadratic dependence modified by a cubic term. The
right panel of Fig. 11 shows low-frequency (|ω| ! 75 meV)
fit parameters of ρ2 as a function of k, exhibiting a marked
softening of the quadratic coefficient b. The final effect on
the relaxation rate *(k) = ρ2(k,E∗

k ), displayed in Fig. 12, is
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FIG. 11. (Color online) (n,T ) = (0.75,130) K. (Top) The spectral
function ρ2 of the Dyson-Mori self-energy 2 from Eq. (24), at several
k points along the ⟨11⟩ direction. As with ρ", ρ2 has inherited a strong
k dependence. (Bottom) k dependence of the fit parameters from
ρ2 = a + b ω2(1 + c ω) at low frequencies |ω| ! 75meV. Observe
the softening of the quadratic coefficient with increased k. The cubic
term ρ2 ∝ ω3 produces particle-hole asymmetry, as argued in Ref. 6,
and grows in magnitude with increasing k beyond kF .

1.0 0.5 0.0 0.5 1.0
0

20

40

60

80

k kF

k
m
eV

130 K
280 K
605 K

FIG. 12. (Color online) n = 0.75. The decay rate of QP near
kF along the nodal line from *k = ρ2(k,E∗

k ). The strong and
T -dependent asymmetry makes quasiparticles longer lived at k > kF .
With increased T the minimum of * moves to k > kF .

summarized by the expression

*(k) ∼ bf

(
1 −

∣∣∣∣
b′

f

bf

∣∣∣∣ (k − kF )
)

V 2
F (k − kF )2, (25)

where bf (b′
f ) is the coefficient (derivative of the coefficient)

at the Fermi momentum, and VF is the Fermi velocity. The
cubic term in k − kF is a significant correction to the leading
term from Fermi liquid theory, resulting in longer-lived quasi-
particles outside the Fermi surface, as compared to quasiholes
inside the Fermi surface. Furthermore, the T dependence of *
is stronger at k < kF . At the highest temperature shown, the
longest lived quasiparticles drift somewhat away from kF . In
Fig. 7, we also display the T dependence of the single-particle
relaxation rate *(k). This rate shows a crossover at a reduced
scale to linear in T behavior, about ∼150 K, as compared to
Tµ′ ∼ 400 K, detailed in the Supplemental Material.27

V. CONCLUDING REMARKS

In summary, we have presented the results of a systematic
low-density expansion for the t-J model using the recently
developed formalism of extremely correlated Fermi liquids,
discussed in Refs. 1 and 2. This calculation complements the
phenomenological theory in Ref. 3, where the line shapes
at optimal doping are successfully modeled, using a very
small number of parameters. Here we calculate from first
principles, assuming only the value of J and the hopping
t , and where possible, quote results on an absolute scale.
The second order in λ equations studied here, valid for
n " 0.75, are somewhat removed from the most interesting
regime of optimal doping. Nevertheless, the computed forms
of the twin self-energies found here indeed have the character
assumed in the phenomenological ECFL studies; also, the
resulting spectral functions have line shapes that are skewed
towards negative ω. This feature is ultimately a consequence
of Gutzwiller projection, as argued in Ref. 1, and captures a
striking characteristic of the experimental data.

The salient points from our study may be summarized as
follows:

(i) The momentum occupation function mk = ⟨Ĉ†
kĈk⟩ is

calculated along the nodal direction at various T and densities,
where it indicates a large spillover for k > kF . This spillover
quantifies the smooth part of spectral weight at ω < 0 for wave
vectors k > kF and is of potential use in calibrating ARPES
studies.

(ii) The spectral functions A(k,ω) at various k values and
different temperatures displays a non-Lorentzian form, with
a pronounced skew towards occupied energies ω < 0. This
results in spectra resembling those seen in most experiments
in cuprates and emerges as a natural consequence of the
Gutzwiller projection, i.e., very strong correlations.

(iii) The dispersion relations EMDC(k) and EEDC(k) are
deduced from the peaks of A(k,ω) and display considerable
band narrowing due to correlations. They further split apart
near k⃗ ∼ (0,0), i.e., the * point, resulting in a high-energy
kink, quite similar to that seen in experiments. The splitting
between these peaks is due to a prominent broad second
maximum in the spectral function, away from the quasiparticle
peak. A high sensitivity of the high-energy kink to the
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bare band parameters is found, with flatband dispersions
eliminating the kinks.

(iv) The ECFL results for the optical conductivity and
the phase angle are reported on an absolute scale, and the
real part is in quite reasonable proximity of experimental
data. Better agreement should be possible with tuning the
available band parameters, although we have not explored this
here.

(v) The resistivity is calculated as a function of T at various
densities and found to be nonsaturating in its T dependence,
analogous to the resistivity seen in experiments. The absence
of saturation is easy to understand within the ECFL formalism.
The magnitude of the self-energy grows indefinitely due to its

dependence on the second chemical potential u0 and leads to
a growing resistivity from the Kubo formula.

(vi) The single-particle decay rate !(k,T ) is reported at
various k and T . It is smaller for k > kF than for k < kF

due to a strong correction to Fermi liquid behavior, leading to
spectral lines that are narrower than for k < kF .
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THERMODYNAMICS

In Fig. (13) we display the density dependence of the
two Lagrange multipliers, µ0 and u0, as well as the phys-
ical chemical potential, µ, as defined in Eq. (9) of the
main paper. The plot illustrates a few points regarding
the nature of g and G, and their di↵erences. First, we see
that µ ⇡ µ0 in the low density limit. With increased den-
sity, u0 grows monotonically causing the development of
large asymmetric tails in the spectral background. Fur-
thermore, with the growth of both density and u0, µ
grows faster than µ0. While µ0 approaches 0, a limit ex-
pected for a half-filled FL with particle-hole symmetry, µ
approaches a limit which is comparable to the renormal-
ized bandwidth, i.e. the top of the band. This di↵erence
therefore also signals the reduction of spectral weight in
G relative to g, a symptom of the main constraint of this
theory, namely the removal of states with double occu-
pancy.

The temperature dependence of (µ0, µ, u0) is shown
below in Fig. (14) revealing the temperature scale for
the thermodynamics of the ECFL at a single density
(n = .75). At the lowest temperatures we expect that
the chemical potential goes as µ0(T ) = µ0(0) � bT 2 (to
focus on the quadratic term we subtract o↵ the T = 0 in-
tercepts in Fig. (14)). We can define a temperature scale
Tµ0 which sets the strength of the O(T 2) term according
to

Tµ0 =

s����
µ0(0)

b

����. (S.1)

where we have used the auxiliary “chemical potential”
µ0 because it is most closely related to the FL aspects
of the spectral function. Tµ0 is plotted in the inset as a
function of the density n. Note the reduction of the scale
of Tµ0 as we approach half filling. At high T (> 600K),
µ0 rises linearly with T in typical FL fashion.

We also observe in Fig. (14) that the temperature
dependence of µ comes from µ0 as well as that of u0

and hence, unlike in a simple FL, is substantially driven
by many body e↵ects even at low T. Furthermore, the
scale of the temperature variation is larger than would
be expected for weakly coupled systems. We note the
large variation of the chemical potential with tempera-
ture, �µ ⇠ 20meV on heating from 100K to 300K, and
about half this number for the change for�µ0. This large
variation should be readily measurable in ARPES, and
appears to have been overlooked in most studies so far.
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FIG. 13. T = 280K. The density dependence of the various
chemical potentials, as defined in Eq. (9) of the main pa-
per. The potentials µ0 and u0, and the net physical chemical
potential µ, dashed,dot-dashed, and solid, respectively. The
potential µ0 approaches 0 as n ! 1, i.e. half filling, while the
potential u0 rises monotonically with density. The physical
chemical potential µ becomes positive at high densities. This
is natural for a state where spectral weight has been removed
by the single occupancy constraint, so that n=1 corresponds
to a filled rather than half-filled band. The scale of µ and
u0 corresponds to the scale of the renormalized bandwidth in
the high density limit.

Unlike µ0, u0 does not follow the standard behavior of
a FL chemical potential. Whereas the low T temperature
dependence of µ0 arises from small changes in occupation
at low frequency only, u0 feels all frequencies due to its
explicit appearance in � and  . The scaling with T is
therefore di�cult to predict by a Sommerfeld type ar-
gument. Numerically, we observe linear-T behavior at
low T and at high T separated by a minima at an in-
termediate T. u0 asymptotes to a T linear behavior for
T >⇠ 650K.

QUASIPARTICLE WEIGHT

The spectra obtained here contain sharp peaks, and
also substantial background due to extreme correlations
which can be quantified after some care is taken in defin-
ing a suitable Zk. In a conventional FL the QP weight
is defined by Zk = 1

1� @⌃
@!

/(kF ,0) where ⌃ is the Dyson

self energy. This definition does not immediately work
for us as we do not have a conventional Dysonian form
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FIG. 14. µ0 and µ versus T at n = .75. An e↵ective Fermi
temperature Tµ0 , found from Eq. (S.1), is shown as a func-
tion of the density. Note that the scale of variation of the µ0,
�µ0 ⇠ 10 meV in heating from T = 100K to T = 300K,
is quite large and is potentially observable in ARPES. A
shrunken overall energy scale, seen most clearly in the re-
duction of the QP bandwidth, is ultimately responsible for
this sensitivity. The temperature dependence of u0 is shown
in each case to be non-monotonic with a minimum at finite
temperature. At high temperature u0 rises linearly with T,
similarly to µ0.

for our G. To obtain an appropriate definition for Zk we
note that the ECFL Greens function can be written in a
Dyson-Mori form

G =
aG + 

x � � =
aG

x � ⌃DM
(S.2)

where aG = 1� n
2 exactly and x = i! + µ� ✏k. However

in the present approximation aG = 1 � n
2 + n2

4 owing to
the second order in � approximation. In analogy to the
standard FL we now define

Zk =
aG

1 � @
@!⌃DM

. (S.3)

While it may be tempting to drop the factor aG from
Eq. (S.3), it represents an important piece of physics in
the larger context and therefore must be retained. To
elaborate this, note that the full spectral function of
canonical electrons, e.g. in a large U Hubbard model,
would have features at the scale of U that correspond to
the upper Hubbard band, and are thrown out in the t-J
model thereby isolating the lower Hubbard band. Thus
in a comprehensive canonical theory, the (low) value of
Zk representing a faint QP feature found with the present
definition, would be compensated by a large background
piece with net weight 1�Zk contained partly in the lower
Hubbard band, and partly in the upper Hubbard band
that lies outside the domain of the t-J model. It is
therefore Eq. (S.3) that can be compared to the values
found in experiments, and also in studies of the Hubbard
model with large U.

Alternatively, if we define the Dyson self energy ac-
cording to G = 1

x�⌃0 , the quasiparticle weight would
once again be given by the more familiar expression
Z 0

k = 1

1� @⌃0
@!

, and moreover the computed Z 0
k would be

the same as in Eq. (S.3). Including aG in the definition
of ⌃ is a convenience employed for two reasons. First, it
separates the e↵ects of high and low energy physics for-
mally. The factor aG in Eq. (S.2) represents an overall
depletion of the lower Hubbard band (due to excitations
at scale U in a Hubbard model) and the term @⌃DM

@! in
the denominator accounts for the depletion of the QP
by low frequency FL e↵ects. Secondly, introducing aG
results in a self energy ⌃DM that reaches a constant at
high frequency, unlike the Dyson form given above with
Z 0 which grows indefinitely.

Numerics are performed at finite temperature and the
T=0 value of @⌃

@! is obtained by extrapolation of the finite
T data. It is found that Zk falls quickly with density as
plotted in Fig. (15). Zk is always somewhat less then
1 � n decreasing roughly linearly with density. At the
highest densities, near the limits of this theory, it begins
to flatten. Thus, a Mott transition is absent in the O(�2)
theory.
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FIG. 15. The QP weight ZkF is plotted as a function of
density. ZkF decreases with increased density, similar to (1-
n) (which is depicted as a dotted line) but somewhat less.
The incoherent spectral contribution is therefore already ⇠ 4
times greater than the QP part at n ⇠ .7, and this ratio
appears to increase further near half filling.

FLOWCHART OF THE ITERATIVE PROCESS

Here we summarize the process by which numerical
self consistency is achieved. The self consistency loop
proceeds as follows.

1. Initialize all quantities to those of the Fermi gas:
µ0 = µ0, ⇢ = ⇢� = 0, u0 is set to a plausible
value of 2t.

2. Build ⇢g from latest instance of µ0, �.
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3. Calculate ⇢� from latest instance of ⇢g and u0. Ob-
tain the real part via Hilbert transform.

4. Calculate new µ0 using a bisection root finder.

5. Repeat steps 2-4 until µ0 and ⇢� have converged to
specified tolerance.

6. Calculate ⇢ from latest ⇢g and u0. Obtain real
part through Hilbert transform.

7. Calculate
P

k  (k)g(k) and recalculate u0 with a
root finder.

8. Return to Step 2 and repeat loop. Continue to the
next step only when u0 has converged to specified
tolerance.

9. Calculate ⇢G .

The most computationally expensive step in this loop
is the double integration for ⇢�. If computed by a direct
summation the computational time required would scale
as N2

s N2
!. Furthermore, this slow step is on the inner

most loop so it is repeated many times to find self con-
sistent values of µ and u0. This leads to unacceptably
slow convergence for any reasonable system size. Not-
ing that the summation has the form of a convolution
we can make use of FFT routines to calculate ⇢� with
linear scaling in NsN!. This allows us to reach signifi-
cantly larger systems and lower temperatures than would
be possible by a direct approach. The next bottleneck in
this flowchart is the calculation of the Hilbert transforms.
These can also be made fast through a judicious use of
FFT routines. Thus, by using this approach we obtain
a scheme which can calculate the full frequency and mo-
mentum dependence of ⇢G for lattices of substantial size,
Ns ⇠ 2000 at temperatures as low as 30K.

Is it useful to discuss the tolerances set on the Lagrange
multipliers. µ is obtained to a relative precision of 10�5.
This is significantly more accurate than is required to sat-
isfy the particle sum rule to within a tenth of a percent.
However, we find empirically that this strict convergence
criterion for µ can not be satisfied until the spectral func-
tion ⇢� is also well converged. Thus, if µ has successfully
converged to this tolerance we can be sure the ⇢� is also
well converged. The convergence criterion on u0 requires

the sum rule
P
 (k)g(k) = n2

4 (1 � n
2 ) to be satisfied to

less than 10�4. Again, this is overkill as it concerns the
particle density alone. However, u0 appears explicitly in
�̄ and  . The chosen convergence criterion is such that
the final u0 lands within .01t of the exact value. This
range is comparable to the smallest scales in our calcula-
tion, namely the frequency resolution �! and an implicit
level broadening scale ⌘ ! �!.

To exactly calculate the spectral functions, it is impor-
tant to capture the entire range of the relevant frequen-
cies. For non-interacting Fermions in 2 spatial dimen-
sions this requires a frequency window no larger than 8t.
However, the spectral functions ⇢� and ⇢ have long tails

which extend to much higher frequency even though the
renormalized QP bandwidth may be much narrower than
the bare band. Thus it is important to determine empir-
ically what range of frequency is su�cient to capture the
full support of the spectral function. As mentioned be-
fore, we employ a frequency grid which extends over the
range |!| < 15t, nearly four times the bare bandwidth,
and find that this su�ces to capture the support of all
functions that arise.

FAST FOURIER TRANSFORMS FOR
EVALUATING CONVOLUTIONS

The use of FFTs vastly reduces the time taken to com-
pute the frequency and momentum sums. Each term of
⇢� and ⇢ is a convolution of 3 g’s and has a form which
is very similar to the particle-hole bubble diagrams fa-
miliar from a second-order perturbation treatment of the
Hubbard model in U/t.

⌃(k)2nd ⇠
X

pq

G(p)G(q)G(p+q�k); ⌃(i, j) / G(i, j)2G(j, i)

(S.4)

where i = ~Ri, ⌧i is a space time point. The convolu-
tion in Fourier space is a simple product in the space
time domain and hence the real space version is advan-
tageous. This is the well-known core idea of the FFT
technique, where the time savings arise since the Fourier
transforms are performed in N log N steps rather than
N2 (here N = NsN!). The ECFL “self energies”,  
and � have the same frequency convolution structure of
⌃(k)2nd which appears only through the frequency argu-
ments of g. However, the ⇢� and ⇢ equations su↵er from
the presence of momentum-dependent decorations which
render them not technically convolutions. Nonetheless
we can use FFT routines to solve these summations. The
strategy is to break up the integral into elementary pieces
that do have the form of a convolution. We then avoid the
need to do one large integral with quadratic complexity
by doing many (⇡ 70) small FFT’s of linear complexity.

To accomplish this we define several gg correlation
functions which are similar to particle-hole bubbles.

�0(Q) =
X

q

g(q)g(q + Q); �1(Q) =
X

q

"qg(q)g(q + Q)

�2(Q) =
X

q

"q+Qg(q)g(q + Q); �3(Q) =
X

q

"2
q+Qg(q)g(q + Q)

each of which is a convolution in both frequency and mo-
mentum with a spectral function which can be calculated
by FFT in linear time.

With these correlation functions every ggg term (ex-
cept one to be discussed later) found in  and � can be
written in the form

Bggg(k) = F1(k)
X

p

F2(p)g(p)�n(p�k)F3(p�k). (S.5)
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where F1,F2, and F3 are each functions of momentum
only and their arguments are carefully matched with the
arguments of Bggg, g, and �n as they appear in the in-
tegral such that all factors fit the form of a convolution
in both momentum and frequency. In this way we can
massage every term of ⇢� into a convolution of one g and
a �n rather than three g’s as originally written. There is
one term in this problem which cannot be treated in this
way because the argument matching of Eq. (S.5) cannot
be achieved in such a simple way. This problem term
looks like

�JJ(k) =
X

pq

Jq�kJp�kg(p)g(q)g(p + q � k).

Nonetheless, this term can be treated by the FFT ap-
proach if the factor Jq�k is broken up using angle ad-
dition identities. This is accomplished without di�culty
because the locality of Jij ensures that Jk is composed
of a small number of Fourier components.

In defining the Fourier transforms, we need to extend
the frequency functions to infinity, since it is only then
that the frequency convolutions become products in the
time domain. Recall that our frequency integrals have
been discretized onto N! frequency bins which cover the
support of our spectral functions. In extending the dis-

cretized frequency summations to infinity, we follow the
standard procedure of padding the N! frequency bins
with an equal number of frequency bins with value zero.
By a simple exercise one can verify that padding finite
data in this way allows an application of the periodic
FFT in such a way that the result of the infinite trans-
form is reproduced. No such considerations are required
for the momentum sums which are by definition periodic
and discrete, making them naturally suited to treatment
by FFT.

The Hilbert transform is formally a convolution and
can therefore be solved with the advantages of the FFT
routines. Once again, however, we face the problem
that this convolution is a non-periodic frequency integral.
Furthermore, the Hilbert kernel 1

! , unlike other spectral
functions with a compact support, falls o↵ very slowly at
large frequencies so the padding trick from the g� convo-
lutions will not work well in this case. It is found that the
use of FFT’s to calculate a Hilbert transform will always
introduce some error. Fortunately, this error can be con-
trolled by increasing the length of padding used. In our
code we use a frequency padding of 8N! for the Hilbert
transforms. This relegates the error of the real parts of
the various functions to very high frequency, far beyond
the compact support of the spectral functions. The error
introduced is therefore negligible.
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A strong-coupling series expansion for the Green’s function and the extremely correlated Fermi liquid (ECFL)
theory are used to calculate the moments of the electronic spectral functions of the infinite-U Hubbard model.
Results from these two complementary methods agree very well at both low densities, where the ECFL solution
is the most accurate, and at high to intermediate temperatures, where the series converge. We find that a modified
first moment, which underestimates the contributions from the occupied states and is accessible in the series
through the time-dependent Green’s function, best describes the peak location of the spectral function in the
strongly correlated regime. This is examined by the ECFL results at low temperatures, where it is shown that the
spectral function is largely skewed towards the occupied states.

DOI: 10.1103/PhysRevB.87.161120 PACS number(s): 71.10.Fd

I. INTRODUCTION

A long-standing theme in the dynamics of strongly interact-
ing systems is the reconstruction of dynamics from the knowl-
edge of the first few moments.1 Its appeal lies in the relative
ease with which these moments can be computed, in contrast to
computing the complete dynamical correlation functions. The
method of moments works well in cases where the qualitative
features of the correlation functions are somewhat understood
by other arguments, including conservation laws in the case
of spin dynamics. In the important problem of the strong-
coupling Hubbard model, the moments are dominated by the
energy scale U ,2 the on-site repulsive Coulomb interaction,
and hence rendered useless. In contrast, for the t-J model
embodying extreme correlations, i.e., U → ∞ at the very
outset, a better prospect exists. The moments are blind to the
scale of U , since it does not occur in the Hamiltonian, and
therefore one expects them to be meaningful in determining
the broad features of the dynamics. With this in mind, we
study a simple version of the t-J model by focusing on
J = 0, which is identical to the U = ∞ Hubbard model,
thereby making more tools available for the analysis. As
we show in what follows, we have developed the capability
to compute the moments of the electron spectral function
of this model by utilizing series expansions.3,4 Experiments
using angle-resolved photoemission spectroscopy (ARPES)5–8

directly measure this spectral function, providing an added
impetus.

An independent source of information about the electronic
spectral function is the recent analytical theory of extremely
correlated Fermi liquids (ECFL). This theory has been devel-
oped in recent publications,9,10 and several results of the model
pertaining to the detailed line shapes find close agreement with
experiment.5 On the calculational front, the theory provides a
systematic methodology for computation, and the initial low
order implementation yields the single-electron spectral func-
tion for particle densities in the range 0 � n � 0.7. The line
shapes of this calculation for n � 0.5 display a characteristic
skewed shape found in the experimental curves in ARPES, as
detailed in Ref. 10. The computed spectra are available at any
temperature (high or low), and the only limitation at present

is the inability to access the regime close to half filling with
density greater than n ∼ 0.75. Given the inherent complexity
of the newly developed ECFL formalism, the possibility of
an objective cross-check using series expansions is a very
attractive one, and here we provide a comparison.

We compute and compare the moments of the t-J model
with J = 0 in two dimensions by utilizing a series expansion11

and the ECFL theory. The two techniques are largely com-
plementary. While they individually run into difficulties in
different regimes, namely, at low temperatures for the series
expansion and high densities for the ECFL, there is sufficient
overlap in densities and temperatures where both methods give
reliable results. This provides us with a unique opportunity to
test the validity of the answers. For ECFL, this provides a
stringent test of the resulting moments by comparing with the
series expansion. For the series expansion, the availability of
an analytical theory and hence, of the entire spectrum, is of
great advantage in interpreting the distinctions between three
types of moments that can be computed [see Eq. (7) below].
We find that especially at high densities, the line shape of
the spectral function is skewed towards occupied energies,
ω � 0, therefore the spectral peak (SP) location (the maximum
location in the energy distributed curves) is best estimated
by the first moment of a modified function with dominant
contribution from unoccupied states.

In the rest of this Rapid Communication, we first explain
how the series expansion and ECFL results are obtained
(Sec. II). In Sec. III, we compare the results from the two meth-
ods, and discuss our findings. A summary follows in Sec. IV.

II. PRELIMINARIES

A. Definitions of computed coefficients

We denote the imaginary-time Green’s function for the U =
∞ Hubbard model, or equivalently, the t-J model with J =
0, as G(i,τi ; j,τj ) = − 〈Tτ Ĉiσ (τi)Ĉ

†
jσ (τj )〉, where Tτ is the

time-ordering operator and 〈.〉 denotes the thermal expectation
value. We thus study the limit of extreme correlations. The
operators are Gutzwiller-projected Fermi objects and related
to the Hubbard X operators as Ĉiσ ≡ X0σ

i , etc. As usual,12

161120-11098-0121/2013/87(16)/161120(5) ©2013 American Physical Society
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this object is a function of the time difference τ ≡ τi − τj ,
and we will study its spatial Fourier transform G(k,τ ). Our
study begins with the following expansions:

G(k,τ > 0) = (−1)
∞∑

m=0

(−1)m
τm

m!
am(k), (1)

G(k,τ < 0) =
∞∑

m=0

(−1)m
τm

m!
bm(k), (2)

where the coefficients am are computed analytically as a
series in the hopping amplitude t . The series expansion can
be carried out to the fourth order by hand,13 and pushed to
the eighth order by a highly efficient computer program11

based on Metzner’s linked-cluster formalism.14 This order is
the limit achievable by currently available supercomputers.
Using antiperiodic boundary conditions, G(τ − β) = −G(τ ),
we obtain Eq. (2) from Eq. (1). Here β = 1/(kBT ) is the
inverse temperature (we set t = 1 as the unit of energy, and
kB = 1). Therefore, the main calculation focuses on Eq. (1). Its
Fourier series in Matsubara frequencies, ωn = (2n + 1)π/β,
is obtained from G(k,iωn) = ∫ β

0 eiωnτG(k,τ )dτ . The spectral
function at momentum k and for the real frequency ν is denoted
by ρG(k,ν) and determines the Green’s function through the
relation G(k,iωn) = ∫ +∞

−∞
ρG (k,ν)
iωn−ν

dν. At high frequencies ωn,
we have an expansion

G(k,iωn) =
∞∑

m=0

cm(k)

(iωn)m+1
,

involving the “symmetric” coefficient, cm(k) (see below). The
time domain Green’s function is also given in terms of the
spectral function by the important representation

G(k,τ ) =
∫ +∞

−∞
dν ρG(k,ν)e−ντ [	(−τ )f (ν) − 	(τ )f̄ (ν)],

(3)
where

f (ν) = 1

1 + eβν
and f̄ (ν) = 1

1 + e−βν
. (4)

The three sets of coefficients αm (i.e., am, bm, and cm) are easily
seen to originate from the spectral function convoluted by a
different filter function χ (ν) [respectively, f̄ (ν),f (ν),1] as

αm(k) =
∫ ∞

−∞
νmχ (ν)ρG(k,ν)dν. (5)

Using this and the identity f + f̄ = 1, we see that the
symmetric coefficients satisfy the important relation

cm(k) = am(k) + bm(k). (6)

B. Definition of moments

Equation (5) gives the power integrals of the effective
spectral function χ (ν)ρG(ν), and naturally leads to three sets of
moments at each k, εχ

m(k) = αm(k)/α0(k). Thus, the moments
can be obtained from the coefficients am,bm,cm, and contain
complementary information as we discuss below. We assign
them suggestive names

ε>
m(k) = am(k)

a0(k)
, ε<

m(k) = bm(k)

b0(k)
, ε0

m(k) = cm(k)

c0(k)
, (7)

the greater, lesser, and symmetric moments, respectively.15

The superscripts in the notations ε> and ε< signify that the
contribution to these energy moments comes predominantly
from the weight of the spectral function that lies above or below
the chemical potential, and hence the unoccupied or occupied
states. The coefficients at m = 0 have special meanings: By
computing the anticommutator of Ĉ and Ĉ†, and taking
its average we find c0(k) ≡ c0 = 1 − n

2 in this model. The
coefficient b0(k) is also the momentum distribution function,

mσ (k) = 〈Ĉ†
kσ Ĉkσ 〉 = b0(k). (8)

Using Eq. (6), we find a0(k) = 1 − n
2 − m(k).

In this work, we study only the first moments, i.e., m = 1.
We argue below that these give an estimate of the quasiparticle
spectrum for a given k. It is particularly useful to study all
three moments separately since they exhibit different behavior,
and the comparison with the spectra of ECFL gives a clearer
understanding of their differences, as we discuss below.

C. Summary of relevant ECFL results

In Ref. 10, the formalism of ECFL for general J is
implemented to second order in the variable λ, which is closely
related to the density. A self-consistent argument indicates
that the calculation in Ref. 10 is valid for densities n � 0.7.
It has no limitation on the temperature or system size, since
it is essentially an analytical theory—resembling the skeleton
graph expansion theories of standard models in structure. We
note that the ECFL assumes a specific type of Fermi liquid with
strong asymmetric corrections,9 and the reasonable similarity
to the series data, as we will see in Sec. III, suggests that this
conclusion is fairly safe, at least for high enough temperatures.
At low temperatures, there could be other instabilities that
are hard to capture with the series analysis, and the present
versions of the ECFL.

The full spectral function ρG(k,ν) is computed and its
moments (for the case of J = 0) are readily available for
comparison with those from the series expansion. Also
available in this work is the location of the SPs εSP(k),
when they exist, the momentum distribution function, etc. It
is therefore possible to compute various dispersion curves,
relating the different characteristic energies (i.e., moments) to
wave vectors, and to compare them with the true SP dispersion.
The benchmarking of these moments provides us with valuable
insight for interpreting the series data, where the SPs are not
available, but the moments are.

III. RESULTS

In Fig. 1, we plot the symmetric first moment ε0
1(k) as a

function of momentum at T = 0.77 for five different densities
n = 0.2, 0.5, 0.7, 0.8, and 0.9. We find excellent agreement
between the results from the series and the ECFL for n = 0.2
for all the momenta around the irreducible wedge of the
Brillouin zone. At higher densities up to n = 0.7 (beyond
which the ECFL results are not quoted), the agreement is
still very good, except around the zone corner, where the
disagreement grows as the density increases.18 The results for
the series are obtained from Padé approximations as the bare
results show divergent behavior at T < 1. The number of terms
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FIG. 1. (Color online) The first symmetric moment ε0
1(k) at T =

0.77 vs momentum around the irreducible wedge of the Brillouin zone
(the path is shown in the right inset). Lines are results from the series
and symbols for n � 0.7 are from ECFL calculations. Left inset:
ε0

1(k) for n = 0.2 at k = (π/2,π/2) from the ECFL (diamonds), up
to orders seven and eight of the series (labeled Series7 and Series8),
and up to the eighth order after various Padé approximations, vs
temperature on a logarithmic scale. The numbers in the subscripts of
“Padé” labels represent the order of the polynomial in the numerator
and in the denominator of the Padé ratio, respectively. “Avg.” denotes
the average between Padé{4,5} and Padé{5,4}. In the main panel, the
results for the series are either the average between Padé{4,5} and
Padé{5,4} or Padé{5,5} and Padé{5,4},16 with the “error bars” defined as
the differences between the two.17

in the series is large enough to justify the utilization of Padé
approximations in order to extend the convergence to lower
temperatures. A comparison of several of these approximations
with the ECFL results for a (low) density of n = 0.2 is shown
in the inset of Fig. 1. In that case, we see that the agreement
between the two methods extends to temperatures as low as
T = 0.3 using Padé approximations.

The greater moment ε>
1 (k) is plotted in Fig. 2(a) at the

same temperature and densities as in Fig. 1. For ε>
1 (k), the

overall agreement between the series expansions and the ECFL
results for all n � 0.7 is better than for ε0

1(k), especially
around the X point. We also note that ε>

1 (k) exhibits a more
intriguing behavior than ε0

1(k). One of the prominent features
of the former, seen in Fig. 2(a), is the significant narrowing
of the band by increasing the density. In Fig. 2(b), we plot
the bandwidth [i.e., max(ε>

1 ) − min(ε>
1 )] from the series as

a function of density at T = 1.52, 1.00, and 0.77. It appears
that the bandwidth deviates from a linear dependence on n

by decreasing the temperature, and saturates for n → 1 at a
nonzero value that decreases towards zero with decreasing
T . Close to n = 1 at T = 0.77, we find a weaker agreement
between different Padé approximations, leading to larger error
bars. The version of ECFL in Ref. 10 cannot be used to study
this effect as the high-density region n ∼ 1 is beyond its regime
of validity.

Another interesting feature of ε>
1 (k) [Fig. 2(a)] is the change

in sign of its slope near the � point as the density increases
towards unity. To better study this feature, in Fig. 2(c), we
report only the results along the nodal direction. We find
that for n � 0.7, the greater moment initially decreases as
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FIG. 2. (Color online) (a) The first greater moment ε>
1 (k) at T =

0.77 vs momentum for the same path around the irreducible wedge of
the Brillouin zone as in Fig. 1. Lines and symbols are also the same
as in Fig. 1. (b) The bandwidth of ε>

1 (k), defined as the difference
between its maximum and minimum values at momenta shown in
panel (a), vs density for T = 1.52,1.00, and 0.77. Panel (c) zooms
in the results in panel (a) for k along the nodal direction. The two
methods more or less agree with each other, within the error bars,
in this window for n � 0.7, and therefore, we show only the ECFL
results for the latter cases.

the momentum increases from zero, leading to a negative
curvature, or effective mass, at the � point. This feature
becomes more pronounced as we increase the density, or
decrease the temperature (see Fig. 3). These results hint at a
possible reconstruction of the Fermi surface, i.e., the negative
mass persisting and extending in k space so as to reach the
Fermi momentum. The appearance of such a hole pocket in
the (hole) underdoped regime, could be of interest in ARPES
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FIG. 3. (Color online) Comparison of the SP location εSP(k)
(symbols) and the three moments from ECFL at T = 0.28 and for
(a) n = 0.2, (b) n = 0.5, and (c) n = 0.7. Right panels show the
corresponding spectral functions and their products to f̄ (ω) and f (ω)
at � for the same densities shown in the left panels. Dark (light)
arrows show the values of ε0

1 (ε>
1 ). At low densities, the SP location

is estimated well by the first symmetric moment. At higher density,
the spectral function is skewed and the greater moment, which is
calculated for the spectral function after most of its weight in the
negative frequency region is cut off, provides a better estimate.
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and quantum oscillation studies. However, establishing this
firmly requires higher order terms in the series, and is therefore
difficult.

So far, we have seen that for intermediate temperatures
and at relatively small densities, the ECFL agrees extremely
well with the results of the series expansion. But, unlike the
series expansion, ECFL is not limited to high temperatures
at those densities and can be used to study the moments,
and more importantly, the real-frequency spectral functions,
at much lower temperatures. Therefore, we focus on the
ECFL results at n = 0.2, 0.5, and 0.7, and at a reduced
temperature of T = 0.28, a temperature at which the series
do not converge. In Figs. 3(a)–3(c), we plot ε0

1(k), ε>
1 (k), and

ε<
1 (k) from the ECFL, along with εSP(k), obtained from the

spectral functions, at different momenta. We find that in the
physically interesting region of low temperatures and high
densities, where correlation effects are strongest, the location
of the SP is generally better estimated by the greater moment
than by the symmetric, or the lesser one [see Fig. 3(c)].

The spectral functions shown in Figs. 3(d)–3(f) help
us understand why this is the case. There, we plot the
spectral functions ρG(k,ω), ρG(k,ω)f̄ (ω), and ρG(k,ω)f (ω),
corresponding to the three moments at k = (0,0), where the
differences between the moments are the most pronounced,
vs frequency. At n = 0.2, there exists a relatively sharp
quasiparticle peak in ρG whose location matches the first
symmetric moment (marked by a dark arrow) very well. ε>

1 (k),
on the other hand, falls slightly to the right of the quasiparticle
peak (marked by a light-colored arrow) as most of the spectral
weight in negative frequencies is cut off after multiplying ρG
by f̄ (ω) [see Eq. (5)]. Also, since there is very little spectral
weight in the positive frequency side, ε<

1 (k) is very close in
value to ε0

1(k). As the density is increased to n = 0.5, the
spectral function is skewed as a result of correlations. In
this case, at small k, there is much more spectral weight on
the left of the SP than on the right, causing the symmetric
moment to be smaller than εSP(k). This feature becomes more

significant at a higher density of n = 0.7, where almost all
of the spectral weight is in the negative frequency side. As a
result, multiplying ρG by f̄ (ω) helps in neglecting the excess
weight on the left side of the SP. Hence, ε>

1 (k), which is readily
available from the series at even higher densities, may be used
as an indicator of εSP(k) using this insight from the ECFL
spectra.

IV. SUMMARY

We employ two complementary methods, namely, a strong-
coupling series expansion and the ECFL, to calculate the
moments of the spectral functions for the infinite-U Hubbard
model. Unveiling the basic physics of the model is benefited
by the complementarity of those approaches. Furthermore,
the series expansion results provide the first independent
check of the ECFL theory, which has been self-consistently
established. At intermediate temperatures and low densities,
where the results from both methods are available, we find
very good agreement between the two. Unlike ECFL, the
series is not limited to small densities and, by increasing the
density in the series to near half filling, we find interesting
features in the dispersion of the moment with dominant
contributions from unoccupied states (the greater moment).
These include a significant narrowing of its band as well as
hints of Fermi-surface reconstruction. Unlike the series, the
ECFL is not limited to high temperatures and, by exploring
the ECFL results at lower temperatures, we find that the greater
moment better describes the location of the SP as the density
increases. This is understood based on the skewing of the
spectral functions in the negative frequency region in the
strongly correlated regime.
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series order by order exactly up to the eighth order. Nevertheless, we
find that Padé{5,5}, for which one assumes that the coefficient of the
ninth-order term in the series is zero, often results in less spurious
features than with Padé{4,5}, and therefore is used instead of the latter
for n = 0.2 and 0.9. On the other hand, since ε>

1 (k) is itself a ratio
of two polynomials, either of the above two Padé approximants is
equally valid. In this case (Fig. 2), we use the average of Padé{5,4}
and Padé{5,5} for n = 0.8 and Padé{5,4} and Padé{4,5} for the rest.

17There is no error per se in the calculation of the coefficients of terms
in the series. The so-called error bars are merely a measure of the

convergence limit for the Padé approximations at low temperatures,
where the bare results show divergent behavior. They do not
represent statistical or particular systematic errors.

18We may take the curves of ε0
1(k), or more accurately, ε>

1 (k) as
estimates of the SP dispersion εSP(k), after shifting them by a
constant chosen to pass them through zero energy at the Fermi
momentum (as in Figs. 1 and 2). The magnitudes of the shift
constants are on the scale seen in Figs. 3(d)–3(f) as the separation
between the peak locating the εSP(k) and the arrows locating the
moments.
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We apply the recently developed extremely correlated Fermi liquid (ECFL) theory to the Anderson impurity
model, in the extreme correlation limit U → ∞. We develop an expansion in a parameter λ, related to nd , the
average occupation of the localized orbital, and find analytic expressions for the Green’s functions to O(λ2). These
yield the impurity spectral function and also the self-energy �(ω) in terms of the two self-energies of the ECFL
formalism. The imaginary parts of the latter have roughly symmetric low-energy behavior (∝ω2), as predicted
by Fermi liquid theory. However, the inferred impurity self-energy �′′(ω) develops asymmetric corrections near
nd → 1, leading in turn to a strongly asymmetric impurity spectral function with a skew towards the occupied
states. Within this approximation, the Friedel sum rule is satisfied but we overestimate the quasiparticle weight z

relative to the known exact results, resulting in an overbroadening of the Kondo peak. Upon scaling the frequency
by the quasiparticle weight z, the spectrum is found to be in reasonable agreement with numerical renormalization
group results over a wide range of densities.
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I. INTRODUCTION AND MOTIVATION

The extremely correlated Fermi liquid (ECFL) theory
has been recently developed to understand the physics of
correlations in the limit of infinite U and applied to the t-J
model in Refs. 1 and 2. Here, we apply the ECFL theory to
the problem of the spin- 1

2 Anderson impurity model (AIM) at
U = ∞. The ECFL theory is based on a systematic expansion
of the formally exact Schwinger equations of motion of the
model for the (Gutzwiller) projected electrons in powers
of a parameter λ. This parameter is argued to be related
to n the density of particles in the t-J model, and in the
same spirit, to nd the average impurity level occupancy in
the Anderson model considered here. Thus, at low enough
densities of particles, the complete description of the system,
including its dynamics, is expected in quantitative terms, with
just a few terms in the λ expansion. Presently, the theory to
O(λ2) has been evaluated for the t-J model,2 and higher-order
calculations in λ valid up to higher densities could be carried
out in principle. We thus envisage systematically cranking up
the density from the dilute limit, until we hit singularities
arising from phase transitions near n ∼ 1.3 This represents a
possible road map for solving one of the hard problems of
condensed matter physics and is exciting for that reason.

We apply the ECFL theory equations to O(λ2) to the AIM
model in this work. This problem was introduced by Anderson4

in 1961, and has been a fertile ground where several fruitful
ideas and powerful techniques have been developed, and tested
against experiments in Kondo, mixed valency, and heavy-
fermion systems. These include the renormalization group
ideas, from the intuitive poor man’s scaling of Anderson5,6

to the powerful numerical renormalization group (NRG) of
Wilson,7 Krishna-murthy et al.,8 and more recent work in
Refs. 9 and 10. A comprehensive review of the AIM and
many popular techniques used to study it, such as the large-N
expansion,11,12 slave particles,13 and the Bethe ansatz,14 can
be found in Ref. 15. In the AIM, the Wilson renormalization

group method provides an essentially exact solution of the
crossover from weak to strong coupling, without any inter-
vening singularity in the coupling constant. As emphasized in
Refs. 16–18, the ground state is asymptotically a Fermi liquid
at all densities. This implies that as a function of the density
nd (at any U ), the Fermi liquid ground state evolves smoothly
without encountering any singularity, from the low-density
limit (the empty orbital limit) to the intermediate-density limit
(the mixed valent regime), and finally through to the very
high-density limit (Kondo regime). In view of the nonsingular
evolution in density, the AIM provides us with an ideal problem
to benchmark the basic ECFL ideas discussed above.

The current understanding of the AIM model from Refs. 8,
16, and 17 is that Fermi liquid ground state and its attendant
excitation spectrum are reached in the asymptotic sense, i.e.,
at low enough energies and T . Our present study of this model
is somewhat broader. We wish to understand the excitations
of the model in an enlarged region, in order to additionally
obtain an estimate of the magnitude of corrections to the
asymptotic behavior. To motivate this remark, note that the
ECFL formalism yields an asymmetry in the excitations and
the spectral functions of the t-J model for sufficiently high
densities, with a pronounced skew towards ω < 0, arising
fundamentally from Gutzwiller projection. This skew can
be interpreted as an asymmetric correction to the leading
particle-hole-symmetric excitation spectrum of that model19

[e.g., corrections to �′′(ω) ∼ {ω2 + (πkBT )2} behavior of the
Fermi liquid of the form �′′(ω) ∼ ω3]. Such corrections have
been argued to be of central importance in explaining the
anomalous line shapes in the angle-resolved photoemission
spectra of high-Tc superconductors in the normal state.19,20

Therefore, it is useful and important to understand the line
shape and self-energy asymmetry in controlled calculations
of the Anderson model with infinite U , which shares the
local Gutzwiller constraint with the t-J model on a lattice.
A necessary condition for substantial asymmetry of the type
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seen in ECFL at U = ∞ appears to be a large U , and hence
is difficult to find from a perturbative expansion in U of the
type pioneered in Ref. 16. The study of the infinite-U limit
of the AIM is therefore particularly interesting in the present
context. AIM studies of the spectral functions21–24 using NRG
have become available in recent years. We will compare our
results with some of these calculations later in this paper.

In this paper, we use the ECFL machinery2 to obtain the
exact Schwinger equation of motion for the d-electron Green’s
function and represent it in terms of two self-energies. These
are further expanded in a series in the parameter λ mentioned
above, and the equations to second order are arrived at. These
involve a second chemical potential u0 that contributes to a
shift in the location of the localized energy level, bringing it
closer to the chemical potential of the conduction electrons.
The rationale for introducing this second chemical potential
is similar to that in the t-J model; the AIM possesses a shift
invariance identified in Eq. (11). Maintaining this invariance
to different orders in λ is possible only if we introduce u0.
The second-order equations are studied numerically, and the
solution for the spectral function is compared with the NRG
results.

Since we expect some readers to be interested in the AIM
more than in the t-J model, we provide a fairly self-contained
description of the ECFL method used here for the AIM. In this
spirit, let us note that a direct interpretation of the parameter λ

as a partial projector can be found from a simple calculation of
the atomic limit, with the parameter λ thrown in. Reference 2
(Appendix A1 and especially Fig. 6) explicitly shows that the
double occupancy goes from its maximum to zero as λ varies
from 0 to 1. Further, it is useful to view the λ parameter in
an operator sense, by writing a partially projected (d-orbital)
fermion operator f̂ †

σ (λ) = (1 − λ f
†
σ̄ fσ̄ )f †

σ and its adjoint
(here σ̄ = −σ ). The operator f̂ †

σ (λ) interpolates between the
unprojected Fermi operator f †

σ at λ = 0, and the Gutzwiller
projected Hubbard operator Xσ0

i at λ = 1. The Hamiltonian
is written in terms of f̂ †

σ (λ), f̂σ (λ), and expanding in λ

gives an effective Hamiltonian that generates the auxiliary
Green’s function g below. As explained in Ref. 2, the second
(caparison) part also has an expansion in λ that follows from
the Schwinger equation and the product form Eq. (12). At
the end, we set the parameter λ → 1 in the formal equations,
and only then begin the actual computations. Therefore, the
primary use of the parameter λ is to count the relative orders of
the terms that are higher than quadratic in the Fermi operators.

Let us first present an overview of the formal equations;
the AIM model impurity Green’s function G is written in the
presence of time- and spin-dependent potentials V , i.e., the
sources of Schwinger, and their exact Schwinger equation of
motion obtained in Eqs. (3) and (5). In terms of the auxiliary
Green’s function g and the caparison function μ, we introduce
a convolution ansatz G = g · μ in Eq. (12). Two types of
vertices are introduced by taking the functional derivatives δ

δV
of g−1 and μ, and in terms of these, we find exact Schwinger
equations of motion for g and μ in Eq. (14), which are
expressed in terms of the two self-energies [Eq. (15)]. The
auxiliary Greens’s function and the physical impurity Greens’s
function satisfy the number sum rules in Eqs. (19) or (23), and
are then expanded in the parameter λ discussed above. An
important shift invariance of the AIM is noted in the equations

of motion, and a second chemical potential u0 introduced as
a second Lagrange multiplier to satisfy the two sum rules.
To second order O(λ2), explicit equations are written out in
Eqs. (30)–(33). The Friedel sum rule in this scheme is written
out in Eq. (43), and shown to be satisfied exactly at T = 0.
The numerical solution of the equations is performed through
a spectral representation of the variables g, and in Eq. (50)
the two self-energies are written out in terms of these. These
are compared with the NRG results at the same densities and
results for the spectral functions of the Green’s function and
the self-energy are compared in detail, both before and after
scaling with z, the quasiparticle weight.

II. ECFL THEORY OF ANDERSON IMPURITY MODEL

A. Model and equations for the Green’s function

We consider the Anderson impurity model in the limit U →
∞ given by the following Hamiltonian:

H =
∑

σ

εdX
σσ +

∑
kσ

εknkσ

+ 1√
	

∑
kσ

(VkX
σ0ckσ + V ∗

k c
†
kσX0σ ), (1)

where 	 is the box volume, and we have set the Fermi energy
of the conduction electrons to zero. Here, Xab = |a〉〈b| is the
Hubbard projected electron operator with |a〉 describing the
empty orbital, and the two singly occupied states a = 0,±σ .
We study the impurity Green’s function

Gσiσf
(τi,τf ) = −〈〈X0σi (τi) Xσf 0(τf )〉〉, (2)

with Tτ the imaginary-time ordering symbol, the defini-
tion for an arbitrary time-dependent operator Q: 〈〈Q〉〉 =
〈TrTτ e

−AQ〉/〈TrTτ e
−A〉, and with the Schwinger source

term A = ∫ β

0 dτ Vσ1σ2 (τ )Xσ1σ2 (τ ), involving a bosonic time-
dependent potential V . Often, we abbreviate V(τi) → Vi . As
usual, this potential is set to zero at the end of the calculation. In
this paper, expressions such as G(τi,τf ) and V are understood
as 2 × 2 matrices in spin space. We assume a constant
hybridization Vk = V0, and a (flat) band of half-width D with
constant density of states ρ(ε) = ρ0θ (D − |ε|) with ρ0 = 1

2D
.

Taking the time derivative of Eq. (2), we obtain the
Schwinger equation of motion (EOM){(

∂τi
+ εd

)
1 + Vi

}
G(τi,τf )

= −δ(τi − τf ) × [1 − γ (τi)]

− 1√
	

[1 − γ (τi) + Di] ·
∑

k

Vk G(k,τi ; τf ), (3)

where γ (τi) = G(k)(τ−
i ,τi) following Ref. 1, Eq. (35), or

more explicitly in terms of spin indices as γσiσf
(τi) =

σiσf Gσ̄f σ̄i
(τi,τ

+
i ), and with σ̄ = −σ . In the following,

we abbreviate γ (τi) → γi . Here, we introduced the mixed
Green’s function Gσiσf

(k,τi ; τf ) = −〈〈ckσi
(τi)Xσf 0(τf )〉〉, and

a functional derivative operator (Di)σiσj
= (σiσj ) δ/δV σ̄i σ̄j (τi).

In the ECFL formalism,1 Eq. (3) and similar equations are to
be understood as matrix equations in spin space. Following
the Schwinger technique, the higher-order Green’s
functions have been expressed in terms of the source
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functional derivatives of the basic ones; an example illustrates
this: σiσj 〈〈Xσ̄i σ̄j Q〉〉 = (γi − Di)〈〈Q〉〉. Proceeding further,
we take a time derivative of the mixed Green’s function to
find (

∂τi
+ εk

)
G(k,τi ; τf ) = − 1√

	
V ∗

k G(τi,τf ), (4)

so combining with Eq. (3) we find the exact EOM for the
localized electron Green’s function:{(

∂τi
+ εd

)
1 + Vi

}
G(τi,τf )

= −δ(τi − τf )(1 − γi)

− (1 − γi + Di) · �(τi − τj) · G(τj,τf ), (5)

with the convention that the time label in bold letters τj is to be
integrated over ∈ [0,β]. The conduction band enters through
the usual (V-independent) function

�(τi − τj ) = − 1

	

∑
k

|Vk|2
(
∂τi

+ εk

)−1
δ(τi − τj ), (6)

with a Fourier transform

�(iωn) = 1

	

∑
k

|Vk|2
iωn − εk

= V 2
0

∫
ρ(ε)dε

iωn − ε
. (7)

We will require below its analytic continuation iωn → ω + iη:

�(ω + iη) = �R(ω) − i�(ω); (8)

�(ω) = πV 2
0 ρ(ω); �R(ω) = �0

π
ln

|ω + D|
|ω − D| . (9)

Here, �0 = πV 2
0 ρ0. We now use the noninteracting Green’s

function

g−1
0 (τi,τf ) = −[

∂τi
+ εd + V(τi)

]
δ(τi − τf ) − �(τi,τf ),

(10)

and rewrite the fundamental equation of motion Eq. (5) as{
g−1

0 (τi,τj) + (γi − Di) · �(τi − τj)
} · G(τj,τf )

= (1 − γi)δ(τi − τf ). (11)

Let us note an important shift invariance of Eqs. (11) and (10).
If we consider a transformation �(τ ) → �(τ ) + ut × δ(τ )
with an arbitrary ut , it is possible to show that Eq. (11) is
unchanged, except for a shift of εd by −ut . The added term
ut (γi − Di)G(τi,τf ) vanishes upon using the Pauli principle
and the Gutzwiller projection applicable to operators at the
same time instant. We use this shift invariance below to
introduce a second chemical potential. In the ECFL theory,
we use a product ansatz

G(τi,τf ) = g(τi,τj) · μ(τj,τf ), (12)

where μ(τi,τj ) is the caparison factor, and we use
this in Eq. (11). It is useful to introduce two ver-
tex functions �σ1σ2

σ3σ4
(τn,τm; τi) = − δ

δVσ3σ4
i

g−1
σ1σ2

(τn,τm) and

Uσ1σ2
σ3σ4

(τn,τm; τi) = δ

δVσ3σ4
i

μσ1σ2 (τn,τm) as usual, and suppress-

ing the time indices, we note δ
δV · g = g · � · g. We now use

the chain rule and Eq. (12) to write D� · G = D� · g · μ =
ξ ∗� · g · �∗ · g · μ + ξ ∗� · g · U∗, with the matrix ξσσ ′ =
σσ ′. The ∗ symbol from Ref. 1 is illustrated in component form
by an example: . . . ξ ∗

σaσb
. . . δ/δV∗ = . . . σaσb . . . δ/δV σ̄a σ̄b , or

in terms of the vertex functions . . . ξ ∗
σaσb

. . . �σ ′σ ′′
∗ . . . =

. . . σaσb . . . �σ ′σ ′′
σ̄a σ̄b

. . ., with the upper indices of � governed
by the rules of the matrix multiplication. Following Ref. 1 we
define the linear operator L(i,j ) = ξ ∗�(i,j) · g(j,j ) · δ

δV∗
i

. We
can now collect these definitions to rewrite D� · G = ξ ∗� ·
g · �∗ · g · μ + ξ ∗� · g · U∗ = � · g · μ + �, and define the
two self-energies:

�(i,j ) = −L(i,r) · g−1(r,j ) = ξ ∗�(i,j) · g(j,k) · �∗(k,j ; i);

�(i,j ) = L(i,r) · μ(r,j ) = ξ ∗�(i,j) · g(j,k) · U∗(k,j ; i).

(13)

Summarizing, we may rewrite the exact EOM Eq. (11)
symbolically:{

g−1
0 + γ� − �

} · g · μ = (1 − γ )δ + �. (14)

This equation is split into two parts by requiring g to be
canonical:

g−1 = {
g−1

0 + γ� − �
}

and μ = (1 − γ )δ + �, (15)

bringing it into the standard form in the ECFL theory.1 Using
Eq. (13), we note that the formal solutions of Eq. (15) are
g−1 = (1 − L)−1 · (g−1

0 + γ�) and μ = (1 − L)−1 · (1 − γ )δ.
We introduce the resolvent kernel L using the identity
(1 − L)−1 = 1 + L where L = (1 − L)−1 · L. In terms of the
resolvent, we see that

� = L · (−g−1
0 − γ�

)
and � = −L · γ δ. (16)

Therefore, distributing the action of L over the two terms, we
can rewrite

� = χ + ��, (17)
with

χ = L · (−g−1
0

)
. (18)

Therefore, the self-energy � breaks up into two parts, as in
Eq. (17). Note that in Eq. (16), the expressions γ� and γ δ

involve multiplication at equal times, whereas in Eq. (17),
�� implies a convolution in time. The two Green’s functions
satisfy the pair of sum rules

g(τ,τ+) = nd

2
; G(τ,τ+) = nd

2
, (19)

where nd is the number of electrons on the d orbital nd =∑
σ 〈Xσσ 〉.
In the context of the t-J model in Ref. 2, the sum rule

for g is necessary to satisfy the Luttinger-Ward theorem.
If we use the representation f̂ †

σ (λ) = (1 − λf
†
σ̄ fσ̄ )f †

σ for the
correlated electrons, this constraint is understandable as the
constraint on the number of “uncorrelated” fermions 〈f †

σ fσ 〉,
which must agree with the number of physical (correlated)
electrons 〈f̂ †

σ f̂σ 〉. Similarly, in the present case, this constraint
is needed to fulfill the Friedel sum rule. We also remark that
the self-energy �, unlike its counterpart �, is dimensionless,
and thus interpreted as an adaptive spectral weight.2

B. Zero source limit

Upon turning off the sources, all objects become functions
of only τi − τf and may therefore be Fourier transformed
to Matsubara frequency space. By Fourier transforming
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Eqs. (12), (15), and (17) and using γ → nd

2 we obtain the
following expressions in frequency space:

G(iωn) = g(iωn) · μ(iωn),

μ(iωn) = 1 − nd

2
+ �(iωn), (20)

g−1(iωn) = iωn − εd − �(iωn)μ(iωn) − χ (iωn).

Alternately, this result can be rewritten in terms of the Dyson-
Mori self-energy representation as

G(iωn) = 1 − nd

2

iωn − εd − (
1 − nd

2

)
�(iωn) − �DM(iωn)

(21)

and

�DM(iωn) + εd − iωn

= 1 − nd

2

1 − nd

2 + �(iωn)
[χ (iωn) + εd − iωn] . (22)

The sum rules (19) are∑
iωn

G(iωn)eiωnη = nd

2
;

∑
iωn

g(iωn)eiωnη = nd

2
. (23)

These are satisfied at a fixed nd using two Lagrange multipli-
ers: the localized state energy εd and the second chemical
potential u0 introduced in Eq. (25). We observe that the
usual Dysonian self-energy �AM(iωn) defined through the
usual Dyson equation (valid for finite U ) G−1 = iωn − εd −
�(iωn) − �AM(iωn) in the infinite-U limit can be obtained
from

�AM(iωn) = 2

2 − nd

�DM(iωn) + nd

2 − nd

(εd − iωn). (24)

The unlimited growth with ωn makes this self-energy some-
what inconvenient to deal with, and therefore motivated the
introduction of the Dyson-Mori object, which is better behaved
in this regard. After analytic continuation iωn → ω + i0+,
the imaginary part of �AM is well behaved and finite as
ω → ∞. It is obtained from the NRG method and compared
with the relevant ECFL functions after scaling by 1 − nd

2 as in
Eq. (24). We notice that the density nd appears explicitly in the
expressions for the Green’s functions, and must therefore be
calculated self-consistently from Eq. (23). This feature is quite
natural in the present approach since Eq. (3) for the Green’s
function contains γ and therefore nd explicitly.

C. Introducing λ and u0 into the equations

Summarizing the work so far: Eqs. (15)–(17) follow from
Eq. (11) upon using the product ansatz (12), and are exact
equations. In order to get concrete results, we proceed by in-
troducing two parameters into the equations. (i) The parameter
λ ∈ [0,1] multiplies certain terms shown in Eq. (25), allowing
a density-type expansion, and continuously connects the
uncorrelated Fermi system λ = 0 to the extremely correlated
case λ = 1. (ii) The second parameter u0 is introduced as
shown in Eq. (25). It is the second chemical potential used
to enforce the shift identities of the exact equation (11).

Equation (11) now becomes{
g−1

0 + λ(γ − D)

(
� − u0

2
δ

)}
· G = (1 − λγ )δ. (25)

As a consequence, in Eq. (14) to Eq. (18) we set γ → λγ ,
� → λ�, and � → λ�, or χ → λχ . Second, in Eq. (14) to
Eq. (18) we set �(τi,τf ) → �(τi,τf ) − u0

2 δ(τi − τf ). Note
that there is no shift of Eq. (10) implied in Eq. (25).

We write Eq. (15) with λ inserted explicitly and the
understanding that �(τi,τf ) has been shifted as25

g−1(τi,τf ) = g−1
0 (τi,τf ) + λγ (τi)�(τi,τf ) − λ �(τi,τf ),

μ(τi,τf ) = δ(τi − τf )[1 − λγ (τi)] + λ �(τi,τf ), (26)

where the two self-energies are given in terms of the vertex
functions as

�(τi,τf ) = ξ ∗�(τi,τj) · g(τj,τk) · �∗(τk,τf ; τi),
(27)

�(τi,τf ) = ξ ∗�(τi,τj) · g(τj,τk) · U∗(τk,τf ; τi).

On switching off the sources, these expressions can be spin
resolved and expressed as � = �g�(a) and � = �g U (a),
with the same time labels as above, and with the usual spin
decomposition �(a) = �σσ

σ̄ σ̄ − �σσ̄
σ σ̄ .

D. λ expansion

We note that we can obtain the equations of motion for
the Anderson model from the equations of motion for the t-J
model by making the following substitutions and replacing all
space-time variables with just time26:

t[i,f ] → −�(τi,τf ); εk → �(iωk),
(28)

J → 0, μ → −εd .

The λ expansion for the Anderson model is therefore analogous
to the one for the t-J model in Ref. 2 and the large-d
t-J model in Ref. 26, and can be obtained from them by
making the substitutions in Eq. (28) and changing all frequency
momentum four-vectors to just frequency. For completeness,
Appendix A provides a brief derivation (in time domain) of
the following equations. Denoting

aG = 1 − λ
nd

2
+ λ2 n2

d

4
, (29)

and the frequently occurring object

R = g(iωp)g(iωq)g(iωp + iωq − iωn),

we obtain to O(λ2) the expressions

G(iωn) = g(iωn)μ(iωn), μ(iωn) = aG + λ�(iωn), (30)

g−1(iωn) = iωn − ε′
d −

(
�(iωn) − u0

2

)
μ(iωn) − λχ (iωn),

(31)

χ (iωn) = −λ
∑
p,q

[2�(iωp) − u0]

×
[
�(iωp + iωq − iωn) − u0

2

]
R, (32)

�(iωn) = −λ
∑
p,q

[2�(iωp) − u0]R. (33)
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The energy ε′
d is given by collecting the static terms in � as

ε′
d = εd + u0

(
λ

nd

2
− λ2 n2

d

8

)
+ u0

2
aG

− λ
∑
iωp

�(iωp)g(iωp). (34)

The shift theorem is satisfied by all the terms separately since
we have taken care to form expressions of the type � − u0

2 . As
discussed in Ref. 2, the shift theorems mandate the introduction
of u0, and its availability, in addition to εd , enables us to fix
the pair of sum rules (19). As explained, we must set λ → 1
before using these expressions.

Within the O(λ2) theory, the total spectral weight of the
Green’s function is aG rather than the exact value 1 − nd

2 . This
is understood as the incomplete projection to single occupancy
leading to an excess in the total number of states available to
the system. In order to ensure that �DM(ω) retain the feature of
being finite as ω → ∞, it must be slightly redefined (to �̂DM)
in the O(λ2) theory:

G(ω) = aG
ω − ε′′

d − aG�(ω) − �̂DM(ω)
, (35)

where

ε′′
d ≡ ε′

d − u0

2
aG . (36)

Using Eqs. (30) and (31), we can relate �̂DM(ω) to χ (ω) and
�(ω):

�̂DM(ω) + ε′
d − ω = aG

aG + �(ω)
[χ (ω) + ε′

d − ω]. (37)

Since �(ω),χ (ω) → 0 as ω → ∞, we see explicitly that
�̂DM(ω) remains finite in this limit. Just as in the case
of Im �DM(ω), Im �̂DM(ω) is related to Im �AM(ω) by
a multiplicative constant (1 − nd

2 and aG , respectively), and
therefore their spectra are identical apart from this multiplica-
tive constant. Comparing Eqs. (21) and (35), we see that the
latter is obtained from the former with the substitutions

�DM(ω) → �̂DM(ω); εd → ε′′
d ; 1 − nd

2
→ aG . (38)

Keeping these substitutions in mind, we will now only use
�DM(ω) from the exact theory, with the understanding that the
same expressions hold for �̂DM(ω) in the O(λ2) theory as long
as the substitutions in Eq. (38) are made.

E. Friedel sum rule at T = 0

At T = 0, the Friedel sum rule27–29 plays an important role
in the AIM, parallel to that of the Luttinger-Ward volume
theorem in Fermi liquids. In Ref. 29, the original form of the
Friedel sum rule is written in terms of ησ (ω), the phase shift
of the conduction electron with spin σ at energy ω:

ησ (ω) = 1

2i
ln

[
Gσ (ω + i0+)G−1

σ (ω − i0+)
]
, (39)

where the logarithm is chosen with a branch cut along the
positive real axis, so that 0 � η � π . The Friedel sum rule is
then written as

ησ (ω = 0) = πnd

2
. (40)

This theorem is proven for the AIM at finite U (Ref. 29) by
adapting the argument of Luttinger and Ward30 with an implicit
assumption of a nonsingular evolution in U from 0. We assume
that the Friedel sum rule also holds in the extreme correlation
limit U → ∞. Using the Dyson-Mori representation (21) to
compute the phase shift in Eq. (39), we may rewrite this as

nd = 1 − 2

π
tan−1

[
εd + Re �DM(0)

�0
(
1 − nd

2

)
]

, (41)

with εd + Re �DM(0) > 0, in the physical case of 0 � nd � 1.
It is easily seen32 that this form is equivalent to the standard
statement of the Friedel sum rule15

ρG(0) = 1

π�0
sin2

(
πnd

2

)
. (42)

Within the approximation of the λ expansion, the Friedel sum
rule implies a relationship between the values of the two self-
energies at zero frequency:

nd = 1 − 2

π
tan−1

[
ε′
d − u0

2 μ(0) + χ (0)

�0μ(0)

]
. (43)

This can be obtained by using the substitutions from Eq. (38)
in Eq. (41), and using Eqs. (37), (36), and (30).

We can also record a result for the auxiliary density of
states ρg(ω = 0), analogous to Eq. (42) here. It follows from
Eq. (47), with the Fermi liquid type assumption of vanishing
of ρ�(0) at T = 0, and reads as

ρg(0) = 1

π�0μ(0)
sin2

(
πnd

2

)
. (44)

We check the validity of the Friedel sum rule within the λ

expansion in both the forms (42) and (43). In doing so, we
are thus testing if the strategy of the two ECFL sum rules
[Eq. (23)] enforces the Friedel sum rule, in a situation that is
essentially different from that in finite-U theories so that the
central result of Luttinger and Ward30 is not applicable in any
obvious way.

F. Computation of spectral function

In computing the spectral function, we follow the approach
taken in Ref. 2, in which the spectral function is calculated
for the O(λ2) ECFL theory of the t-J model. Our calculation
is made simpler due to the absence of any spatial degrees
of freedom, but more complicated by the presence of the
frequency-dependent factor �(iωn). We define the various
spectral functions and the relationships between them. These
expressions are analogous to those in Sec. III A of Ref. 2:

Q(iωn) =
∫ ∞

−∞
dν

ρQ(ν)

iωn − ν
, (45)

where Q can stand for any object such as G, g, χ , �DM, or �.
Therefore, after analytic continuation iωn → ω + i0+,

ρQ(ω) ≡ − Im

π
Q(ω + i0+) and Re Q(ω) = H[ρQ](ω),

(46)

where for any real density ρQ(ω) the Hilbert transform is
denoted as H[ρQ](ω) = P

∫ ∞
−∞ dν

ρQ(ν)
ω−ν

. From Eq. (33), we

205108-5

(90)



SHASTRY, PEREPELITSKY, AND HEWSON PHYSICAL REVIEW B 88, 205108 (2013)

TABLE I. The bare impurity level εd as well as the quasiparticle
weight z are displayed for the ECFL and the NRG calculations for
all values of the density. Additionally, the theoretical value for the
Friedel sum rule as well as the ECFL deviation from it are displayed.

nd ρG,ECFL(0) εd,ECFL εd,NRG zECFL zNRG

0.35 8.69 + 1.8% −0.003 −0.003 0.753 0.697
0.441 13.0 + 1.1% −0.010 −0.009 0.661 0.567
0.536 17.7 + 0.73% −0.015 −0.015 0.559 0.416
0.6 20.8 + 0.41% −0.019 −0.018 0.489 0.312
0.7 25.3 + 0.62% −0.024 −0.024 0.388 0.169
0.777 28.1 + 0.26% −0.031 −0.029 0.314 0.081
0.834 29.7 + 0.20 % −0.037 −0.035 0.265 0.035

find that

ρG(ω) = ρg(ω)[aG + Re �(ω)] + ρ�(ω)Re g(ω). (47)

With f (ω) = 1
1+eβω and f̄ (ω) = 1 − f (ω), the two sum

rules (23) read as∫ ∞

−∞
f (ω)ρg(ω)dω = nd

2
,

∫ ∞

−∞
f (ω)ρG(ω)dω = nd

2
. (48)

We also note ρ�(ω) = �(ω)
π

. It is useful to define a mixed
(composite) density

ρM (x) = ρg(x)

(
�R(x) − u0

2

)
+ ρ�(x)Re g(x), (49)

so that we can integrate (or sum) the internal frequencies
in Eq. (33) efficiently (see Appendix B), and write the two
relevant complex self-energies (with ω ≡ ω + i0+) as

�(ω) = −2λ

∫
u,v,w

ρM (u)ρg(v)ρg(w)

ω − u − v + w

× [f (u)f (v)f̄ (w) + f̄ (u)f̄ (v)f (w)],

4 2 0 2 4

5

10

15

20

25

30
ρG

ω
z 0

nd .536

4 2 0 2 4

5

10

15

20

25

30
ρG

ω

0

nd .536

FIG. 2. (Color online) The spectral density for the physical
Green’s function for the density of nd = 0.536. For the plot on the
left, both the ECFL and NRG curves are plotted versus ω

�0z
. Since

ECFL has a larger z value, the absolute scale of the ω axis differs for
the two curves. For the plot on the right, both ECFL and NRG are
plotted versus ω

�0
and hence the ECFL peak is too wide.

χ (ω) = −2λ

∫
u,v,w

ρM (u)ρg(v)ρM (w)

ω − u − v + w

× [f (u)f (v)f̄ (w) + f̄ (u)f̄ (v)f (w)]. (50)

In these expressions, u,v,w are understood to be real variables,
and using Eq. (46) we can extract the real and imaginary parts
of � and χ in terms of the spectral functions.

III. RESULTS

The following explicit results were obtained after setting
λ = 1 in the equations noted above. We calculated the spectral
functions ρG, ρ� , ρχ , and ρ� using the values D = 1,
�0 = 0.01, and T = 0. The zero-temperature limit is easily
achieved in the ECFL theory by setting all of the Fermi
functions to step functions. We expect that the spectral function
calculated within the ECFL O(λ2) theory will be accurate
through a density of approximately nd = 0.6, or perhaps at
best nd ∼ 0.7. As discussed in Refs. 1 and 2, this is the main
limitation of the low-order λ results: the theory begins to have
substantial corrections as we increase nd towards unity. The
source of this error estimate is the high-frequency behavior

4 2 0 2 4
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15
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25

30
ρG

ω
z 0

nd .35

4 2 0 2 4
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15
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25

30
ρG

ω
z 0

nd .441

4 2 0 2 4

5
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15

20

25

30
ρG

ω
z 0

nd .6

4 2 0 2 4

5
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30
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ω
z 0
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5
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30
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ω
z 0

nd .777
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5
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30
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ω
z 0

nd .834

FIG. 1. (Color online) The spectral density for the physical Green’s function versus ω

�0z
for densities of nd = 0.35,0.441,

0.6,0.7,0.777,0.834. The red curve is the ECFL calculation, while the blue curve is the NRG calculation.
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2 1 0 1 2
0.0000

0.0005

0.0010

0.0015

ω

0

ρ
χ

Decreasing n

FIG. 3. (Color online) The spectral function for χ for densities
of nd = 0.834,0.777,0.7,0.6,0.536,0.441,0.35.

within the λ expansion of the Green’s function (33) G ∼ aG
iω

;

this deviates from the known exact behavior G ∼ 1−nd/2
iω

. The
error grows with increasing density, but we expect to have
reasonable results even at nd = 0.7.

In Table I, we show the results for the spectral function
at zero energy in terms of the percentage deviation from the
Friedel sum rule (42), demonstrating that the ECFL satisfies
the Friedel sum rule to a high degree of accuracy. We specify
the occupation number nd and show the values of the energy
level εd and quasiparticle weight z calculated within the ECFL
and NRG calculations. The values of εd are in good agreement
between the two calculations, while there is a discrepancy in
z which becomes more pronounced at higher densities. While
the error in the scale of z as nd → 1 is expected from the low
order in λ aspect of the theory, we should keep in mind that the
shape of the spectral function, and also the imaginary part of
the self-energy, is another matter altogether. We display below
these objects after scaling the frequency with z: this captures
the shape of the spectra and isolates the discrepancy to a single
number, namely, the magnitude of z. The admittedly nontrivial
problem of the magnitude of z must await a more satisfactory
resolution involving the treatment of higher-order terms in λ.

2 1 0 1 2

0.06

0.05

0.04

0.03

0.02

0.01

0.00

Decreasing n

ω

0

ρ

FIG. 4. (Color online) The spectral function for � for densities
of nd = 0.834,0.777,0.7,0.6,0.536,0.441,0.35.

4 2 0 2 4
0.000

0.001

0.002

0.003

0.004

z 0

Decreasing n

ω

ρ

FIG. 5. (Color online) The spectral function for the
Dyson-Mori self-energy for densities of nd = 0.834,0.777,0.7,

0.6,0.536,0.441,0.35. The curvature of the quadratic minimum
becomes larger with increasing density.

In Fig. 1 we display the spectral functions at the indicated
densities, indicating a smooth evolution with density. The
Kondo or Abrikosov-Suhl resonance at positive frequencies
becomes sharper as we increase density and moves closer
to ω = 0. If the raw ECFL and NRG spectral functions are
compared (as in right panel of Fig. 2 for nd = 0.536), one finds
that the peak in the ECFL spectral function is too broad. This
overbroadening becomes worse at larger densities and better
at lower densities. However, it can be understood well in terms
of the elevated value of z for ECFL at higher densities. Hence,
before doing the comparison, as in Fig. 1, we first rescale the
ω axis for both the ECFL and NRG spectral functions by the
appropriate z (as in the left panel of Fig. 2 for nd = 0.536
and in Fig. 1 for the other densities). They are then found to
be in good agreement up to surprisingly high values of nd ,
suggesting that the ECFL theory captures the shape (but not
the scale) of the spectral functions and their asymmetry in a
very natural fashion. We also found good agreement with the
NRG spectral functions in Ref. 24. The ECFL spectral function
ρG is constructed out of the two spectral functions ρχ and ρ�

that are shown at various densities in Figs. 3 and 4, exhibiting
Fermi liquid type quadratic frequency dependence at low ω.

In Fig. 5 we present the density evolution of the spectral
function for the Dyson-Mori self-energy [see Eq. (22)]. This
exhibits a remarkable similarity to the analogous spectral
density for the t-J model in the limit of high dimensions33

and the Hubbard model at large U .34

IV. CONCLUSION

In this work, we have applied the ECFL formalism at the
simplest level, using the O(λ2) equations, to the Anderson
impurity model with U → ∞. In this formalism, the two
self-energies of the ECFL theory � and χ are calculated using
a skeleton expansion in the auxiliary Green’s function g. This is
analogous to the skeleton expansion for the Dyson self-energy
�, in standard Feynman-Dyson perturbation theory applicable
to the case of finite U . These two self-energies determine g as
well as the physical G, leading to a self-consistent solution. We
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obtained the equations to second order and solved them nu-
merically at T = 0. We found that at low enough ω, the ECFL
self-energies have symmetric spectra of the type predicted
by Fermi liquid theory (see Figs. 3 and 4). Combining them
through the ECFL functional form (22) generates a nontrivial
self-energy with an asymmetric spectrum displayed in Fig. 5.
It therefore appears that functional form (22) has the potential
to generate realistic and nontrivial spectral densities, starting
with rather simple components. The availability of convenient
and natural analytical expressions is seen to provide a distinct
advantage of the ECFL formalism. Formally exact techniques
such as the NRG involve steps that are not automatically
endowed with these, but rather rely on analytic continuation
or other equivalent techniques.

The physical spectral function for the impurity site is ob-
tained from the above pair of ECFL self-energies, and displays
a Kondo or Abrikosov-Suhl resonance. This feature becomes
more narrow and the spectrum becomes more skewed towards
the occupied side of the peak with increasing density. However,
the computed quasiparticle z in the present calculation is
considerably larger than the exact value z ∝ e−1/2(1−nd ), as
nd → 1,31 i.e. into the Kondo regime. This large z makes it
impossible for the O(λ2) version of ECFL presented here to
address the Kondo regime nd → 1. It results in the the masking
of a small (and broad) peak at ω ∼ εd , found in our NRG
spectral functions, as we approach the Kondo limit. Both real
and imaginary parts of the computed �DM(ω) are larger than
their NRG counterparts in that regime, thereby precluding a
peak.

To place this result in context, we observe that the same level
of approximation of ECFL, applied to the lattice problem of
the d → ∞, U → ∞ Hubbard model in Ref. 33 (see Fig. 12),
does show a lower Hubbard band peak in the spectral function.
This difference presumably arises from the robust value of
z ∼ (1 − n) in the lattice model, arising from Gutzwiller
physics; it is much larger than the exponentially small value
z ∝ e−1/2(1−nd ) in the AIM. Therefore, the fractional error
made by the O(λ2) ECFL calculation is smaller in the lattice
model compared to the AIM.

The location of the peak is set by εd + �DM(0) [Eq. (21)].
Using Eq. (41), we can see that this quantity must decrease with
increasing density. This is consistent with the expectation that
the location of the peak will approach ω = 0 as nd → 1. This
can also be understood from the need to have more spectral
weight when ω � 0, to yield a higher value of nd . We found
that the ECFL spectrum satisfies the Friedel sum rule [Eq. (42)]
to a high degree of accuracy, and that ECFL yields values of
εd in good agreement with the NRG values at all densities (see
Table I).

As mentioned above, the ECFL calculation to O(λ2) over-
estimates the value of the quasiparticle weight z as compared
with the NRG and the exact asymptotic result z ∝ e−1/2(1−nd )

as nd → 1,31 the difference becoming more significant with
increasing density. This also leads to an overbroadening of
the peak in the ECFL spectrum at higher densities. This is
consistent with the fact that the λ expansion of the ECFL is
a low-density expansion and the current calculation has only
been carried out to O(λ2). Nevertheless, after rescaling the ω

axis for both the ECFL and NRG spectra by their respective
values of z, we find good quantitative agreement between the

two as in Fig. 1. In Fig. 2, we illustrate the comparison between
scaled and unscaled spectral functions at a typical density. We
find similarly good agreement with the NRG calculation from
Ref. 24. This implies that the ECFL theory has the correct
shape of the spectra built into it quite naturally.

Finally, we note that the computed spectral functions exhibit
a remarkable similarity to the analogous spectral density for the
t-J model in the limit of high dimensions33 and the Hubbard
model at large U .34
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APPENDIX A: CALCULATING THE SELF-ENERGIES
IN THE O(λ2) THEORY

The calculation follows the procedure given in Ref. 2. A
few comments are provided to make the connections explicit:
the zeroth-order vertices are common to Ref. 2 [Eqs. (B3) and
(B14)] and the first-order U is common to Eq. (B15). The first-
order vertex [�]1 can be found parallel to Eqs. (B23)–(B28)
in Ref. 2 from differentiating

[g−1(i,f )]1 = �(i,f )g(k)(i,i) + δ(i,f )�(i,a)g(k)(a,f ),

(A1)

as

[�(a)(i,m; j )]1 = −2�(i,m)g(i,j ) · g(j,i)

− 2δ(i,m)�(i,k)g(k,j ) · g(j,i). (A2)

Here, the bold labels are integrated over. From this we
construct, the time-domain self-energies

�(i,f ) = −2λ�(i,k)g(k,f ) · g(i,f ) · g(f,i) (A3)

and

�(i,f ) = −δ(i,f )�(ik)g(ki)

− 2λ�(ij)g(jk) · �(kf )g(ki) · g(ik)

− 2λ�(ij)g(jf ) · �(f k)g(ki) · g(if ). (A4)

After shifting �(i,f ) → �(i,f ) − u0
2 δ(i,f ) and Fourier trans-

forming these, we obtain Eqs. (33) and (34). These expressions
for the self-energies are correct to O(λ) and lead to expression
for g−1 and μ which are correct to O(λ2). χ can be extracted
from � as indicated in the text.

APPENDIX B: FREQUENCY SUMMATIONS

An efficient method to perform the frequency sums is to
work with the time-domain formulas (A3) and (A4) until the
final step where Fourier transforms are taken. We note the
representation for the Green’s function

g(τ ) =
∫

x

ρg(x)e−τx[θ (−τ )f (x) − θ (τ )f̄ (x)], (B1)

so that we can easily compound any pair that arises by dropping
the cross products θ (τ )θ (−τ ) and using θ (τ )2 = θ (τ ). An
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example illustrates this procedure:

g(τ )g(−τ ) = −
∫

x,y

ρg(x)ρg(y)e−τ (x−y)

× [θ (−τ )f (x)f̄ (y) + θ (τ )f̄ (x)f (y)]. (B2)

We also need to deal with the convolution of pairs of functions

X(τ ) =
∫ β

−β

dτ̄ g(τ̄ )

[
�(τ − τ̄ ) − u0

2
δ(τ − τ̄ )

]

=
∫

x

ρM (x)e−τx[θ (−τ )f (x) − θ (τ )f̄ (x)], (B3)

where the density ρM (x) is defined in Eq. (49). This
equation in turn is easiest to prove by transforming into
a product in the Matsubara frequency space, simplify-
ing using partial fractions, and then transforming back
to time domain. We next note that Eqs. (A3) and (A4)
imply

�(τ ) = −2λX(τ )g(τ )g(−τ ),
(B4)

χ (τ ) = −2λX(τ )X(−τ )g(τ ),

so that taking Fourier transforms is simplest if we first multiply
out as in Eq. (B2), leading to Eq. (50).
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We consider a doped Mott insulator in the large dimensionality limit within both the recently developed
extremely correlated Fermi liquid (ECFL) theory and the dynamical mean-field theory (DMFT). We show that
the general structure of the ECFL sheds light on the rich frequency dependence of the DMFT self-energy. Using
the leading Fermi liquid form of the two key auxiliary functions introduced in the ECFL theory, we obtain
an analytical ansatz, which provides a good quantitative description of the DMFT self-energy down to hole
doping level δ ! 0.2. In particular, the deviation from Fermi liquid behavior and the corresponding particle-hole
asymmetry developing at a low-energy scale are well reproduced by this ansatz. The DMFT being exact at
large dimensionality, our study also provides a benchmark of the ECFL in this limit. We find that the main
features of the self-energy and spectral line shape are well reproduced by the ECFL calculations in the O(λ2)
minimal scheme, for not too low doping level δ ! 0.3. The DMFT calculations reported here are performed
using a state-of-the-art numerical renormalization-group impurity solver, which yields accurate results down to
an unprecedentedly small doping level δ " 0.001.

DOI: 10.1103/PhysRevB.88.235132 PACS number(s): 71.10.Ay, 71.10.Fd, 71.30.+h

I. INTRODUCTION

Strong electronic correlations constitute one of the major
challenges in condensed-matter physics and continue to inspire
new theoretical approaches. In search for novel functionalities,
new materials are being synthesized on a regular basis,
giving the field a steady impetus. Significant progress in the
understanding of electronic correlations has been achieved
from the dynamical mean-field theory (DMFT), in which the
self-energy is assumed to be momentum independent (see
Ref. 1 for a review). This theory becomes exact in the limit of
infinite dimensionality.

The situation in low dimensions has further challenges
relating to the k dependence of the self-energy, and thus
new methods for strongly correlated electrons continue to be
developed. One promising approach is Shastry’s extremely
correlated Fermi liquid theory (ECFL), developed in a recent
series of papers.2–5 This theory starts from the infinite-U
limit and is based on the Schwinger equation of motion for
Gutzwiller projected electrons, these noncanonical objects
requiring special attention. The theory leads to a set of
analytical expressions that are in principle exact. So far,
solutions of the second-order expansion of these expressions
in a partial projection parameter λ are available. They can be
obtained for any lattice by an iterative process analogous to the
skeleton diagram method. The ECFL theory expressions have
been successfully applied to account for the angle resolved
photoemission spectroscopy (ARPES) line shapes of cuprate
superconductors6,7 in the normal state.

In this work, we perform a comparative study of these
two methods. We use as a test bed the single-band doped
Hubbard model at strong coupling U , in the limit of large

dimensionality. This limit leads to simplifications in the ECFL
theory, which we introduce here (the details of the formalism
are provided elsewhere8). The comparison focuses on the
frequency dependence of the self-energy and single-particle
spectral line shapes, and their evolution as the Mott insulator is
approached by reducing the doping level δ [defined in Eq. (5)].

The first outcome of the present work is that, by looking
at the DMFT results within an ECFL perspective, we are able
to obtain new analytical insights into the DMFT description
of the doping-driven Mott transition. Within the DMFT, the
single-particle self-energy #(ω) displays a rich and complex
frequency dependence. This has been known for some time
(see, e.g., Ref. 9 for a recent study), but is further investigated
in the present work down to unprecedentedly low doping levels
δ " 0.001 using a state-of-the-art numerical renormalization
group (NRG) solution of the DMFT equations. Local Fermi
liquid behavior Im# ∝ ω2 + (πT )2 is obeyed only below a
very low energy scale. Above this energy scale, a marked
particle-hole asymmetry develops, a feature that is beyond
the Fermi liquid theory. Furthermore, the strong suppression
of spectral weight in the intermediate range of energies
separating the quasiparticle peak from the lower Hubbard band
corresponds to a marked quasipole in the self-energy.

We show that all of these features can be well reproduced
by constructing an analytical ansatz for the one-particle self-
energy, which is directly motivated by the ECFL construction.
The ECFL introduces two key quantities, & and χ , which
play the role of auxiliary self-energies in the Schwinger
construction. The proposed analytical ansatz is obtained by
retaining only the dominant Fermi liquid terms in the low-
frequency expansion of these auxiliary quantities. This is
found to provide a satisfactory fit of the DMFT results for
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doping levels δ ! 0.2. Hence, quite remarkably, the marked
deviations from Fermi liquid behavior, and the particle-hole
asymmetry in the physical single-particle self-energy, can be
accounted for by an underlying Fermi liquid form of the ECFL
auxiliary quantities. For very large U , and especially for very
small doping levels, additional structures appear in the DMFT
results, which are not present in this simplest ECFL ansatz, and
presumably require additional terms beyond the Fermi liquid
ones in the auxiliary functions & and χ .

Another synergistic outcome of our study is that, because
the DMFT provides an exact solution in the limit of large
dimensionality, it can be used to benchmark the ECFL in this
limit. We present here quantitative results obtained within
the minimal scheme implementation of the ECFL in high
dimensions,8 giving rise to an expansion to order λ2 in the
projection parameter λ. We find that the main features of the
self-energy and the spectral line shape are well reproduced
by the O(λ2) ECFL calculations, on a semiquantitative level,
for not too low doping δ ! 0.3. Improvement will require
further developments of the ECFL approach. Since the DMFT
is able to handle any finite U , while the ECFL construction
is motivated by the very large U limit, this comparison also
sheds light on the adiabatic connection between the regime of
moderate and extreme correlations.

We emphasize that ECFL can be used on two different
levels. On one level, it provides a functional form for the
physical Green’s function and the corresponding self-energy
in terms of the auxiliary ECFL self-energies &(ω) and χ (ω).
By assuming the simplest Fermi liquid form for these two
self-energies over a certain frequency range centered around
ω = 0, we successfully fit the physical self-energy obtained
through DMFT in this frequency range for δ ! 0.2. This is
remarkable since the frequency range used is substantially
larger than the characteristic frequency at which the physical
self-energy begins to deviate from Fermi liquid behavior, and
even encompasses the quasipole in the physical self-energy
at negative frequencies. This phenomenological approach to
ECFL is the one used in the first five sections of the paper, and
the results of this fit are displayed in Figs. 8, 9, and 10. On the
second level, ECFL provides a microscopic theory by which
one can obtain concrete results for & and χ via an expansion
in the projection parameter λ. In the remainder of the paper,
the results obtained from the O(λ2) theory are benchmarked
against the results obtained from DMFT, which are exact in the
limit of infinite dimensions. In the long run, further combined
use of the ECFL and the DMFT approaches could lead to
a better understanding of the momentum dependence of the
self-energy that becomes important in lower dimensions.

The paper is organized as follows. After defining the model
in Sec. II, the general structure of the ECFL formalism is
reviewed in Sec. III. In Sec. IV, we present detailed DMFT
results for the hole-doped Hubbard model using high-precision
Wilson’s NRG as a solver. In Sec. V, the DMFT self-energies
are interpreted in light of the ECFL-motivated analytical
expressions. The second part of the paper is devoted to the
O(λ2) ECFL minimal implementation. The basic equations
and their simplification in infinite dimensions are established
in Sec. VI, and in Sec. VII a quantitative comparison is made
to the DMFT results.

II. MODEL

We study the Hubbard model defined by the Hamiltonian

H =
∑

kσ

εkc
†
kσ ckσ + U

∑

i

ni↑ni↓, (1)

where εk is the bare band dispersion relation obtained by
Fourier transforming the hopping matrix. In this study we
consider a doped Hubbard model with nearest-neighbor
hopping on a Bethe lattice, with semicircular density of states:

ρ0(ε) = 2
πD2

√
D2 − ε2, (2)

where D is the half bandwidth, and thus any sum over the band
energy can be converted to an integral as:

1
N

∑

k

A(εk) →
∫ D

−D

dε ρ0(ε)A(ε). (3)

We note that the Fermi energy εF satisfies

sin−1
(
εF

D

)
+

(
εF

D

)√

1 −
(
εF

D

)2

= −π

2
(1 − n), (4)

and vanishes near n ∼ 1 as εF = −π
4 (1 − n) D. The hole dop-

ing level δ is related to the particle density n (n = N/Nsites) as:

δ = 1 − n. (5)

We will use ρQ(ω) as a shorthand notation for the spectral
function associated with any relevant quantity Q(iωn)
(Green’s function, self-energy):

ρQ(ω) = − 1
π

Im[Q(ω + i0+)]. (6)

III. ECFL: GENERAL FRAMEWORK

A. ECFL formalism

The ECFL methodology has been discussed extensively in
recent literature;2,3 here we highlight only the aspects that
are of relevance to this work. ECFL deals with Gutzwiller-
projected states obtained in the limit of U → ∞, with
the no-double-occupancy constraint built into the electron
operators, leading to the well-known t-J model. This results
in a noncanonical theory, where familiar Feynman diagram
methods fail due to the absence of Wick’s theorem. The ECFL
formalism is an exact alternative to the Feynman diagram
technique. Instead it works with the Schwinger equations of
motion for the projected electrons. It provides results for the
electronic Green’s functions that describe the physics of the
low-energy sector in the problem, namely the dynamics of
the quasiparticle (QP) states near the Fermi energy and of the
lower Hubbard band (LHB).

For our purposes, we need to express the ECFL theory in
the large-dimensionality limit. The related technical problems
outlined in Ref. 10 (paragraph 3) have been recently solved8

by analyzing the infinite-dimensional limit of the Schwinger
equations of motion in the ECFL.11

The exact mapping of the momentum-independent self-
energy of the infinite-dimensional Hubbard model onto that
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of a self-consistent Anderson impurity model12 provides a
roadmap for a suitable formulation of the ECFL equations in
this limit.

In the simplest version of the ECFL theory,13 the physical
(i.e., projected) electronic Green’s function is expressed as a
product of an auxiliary Green’s function g(k) and a caparison
term denoted in the present work as µ̃(k). Thus,

G(k) = µ̃(k) × g(k), (7)

where k ≡ (+k,iωk) and ωk is a fermionic Matsubara frequency.
Here g(k) is a Fermi liquidlike Green’s function

g−1(k) = iωk + µ −
(

1 − n

2

)
εk − +(k), (8)

and µ is the chemical potential. The factor µ̃(k) (here
distinguished from the chemical potential µ by the tilde), plays
the role of an adaptive spectral weight, and is given by

µ̃(k) = 1 − n

2
+ &(k), (9)

with &(k) vanishing at infinite frequency. The functions +(k)
and &(k) are the twin self-energies in the theory, and are
exactly defined as the appropriate functional derivatives of g−1

and µ̃ respectively.2,3 The term µ̃(k) is termed the caparison
(i.e., dressing) factor, since it provides a second layer of
renormalization to the propagator g, which is already dressed
by +. Both Green’s functions satisfy an identical number sum
rule

∑
k,ωk

G(k) = n
2 =

∑
k,ωk

g(k); this enables us to satisfy
the Luttinger-Ward volume theorem.

In the large-d limit, a further simplification can be
established:8 & is independent of +k and + is decomposable
into two +k-independent functions,

&(k) = &(iωk), (10)

+(k) = χ (iωk) + εk&(iωk), (11)

i.e., the two frequency-dependent (but +k-independent) func-
tions χ and & determine the Green’s function.

The single-electron physical (Dyson) self-energy # is
defined from the single-electron Green’s function G in the
usual manner, as (using the analytic continuation iωk →
ω + iη, η = 0+):

G(k,ω + iη) = 1
ω + iη + µ − εk − #(ω + iη)

. (12)

Within the large-dimensional ECFL, the Dyson self-energy #
can be related to & and χ as follows:

#(ω + iη) − µ − ω = χ (ω + iη) − µ − ω

1 − n
2 + &(ω + iη)

. (13)

We see that the Dyson self-energy is manifestly momentum
independent in this limit. Note also that, as seen from (13),
its real part grows linearly with ω as ω → ∞. This is a
consequence14 of the Gutzwiller projection in the U → ∞
limit. At finite U , this behavior is regularized at high-enough
frequency and # goes to a constant.

For a concrete implementation, the ECFL formalism al-
lows for a perturbative expansion in a projection parameter
λ ∈ [0,1], ultimately identified with the double-occupancy

density.3 The theory to O(λ2) is expected to be quantitatively
accurate for densities up to n " 0.7.15 We postpone the
description of these equations to Sec. VI, but note an important
general insight gained from examining and evaluating such an
expansion2,3,15; the two self-energies χ and & have simple
Fermi liquid functional forms, with a dissipative part that is
quadratic in ω, at sufficiently low energies (see Fig. 11 in
Sec. VI). This insight is used in the following to obtain a
low-energy expansion for the Green’s function.

B. Low-frequency expansion of self-energies
and Green’s functions

In this section we derive the low-frequency behavior of
the Green’s function and self-energy within the ECFL. We
obtain an analytical expression, which will be used to interpret
and fit the DMFT results in Sec. V. We show in particular
how a characteristic particle-hole asymmetry in the Dyson
self-energy is generated even when the expansion of Imχ and
Im& is limited to the particle-hole symmetric lowest-order
Fermi liquid terms.

Indeed, as mentioned above, the first few terms of a
systematic λ expansion of the ECFL equations indicate that the
self-energies & and χ are very similar functions and resemble
the self-energy of a Fermi liquid at low enough T ,ω, with
suitable scale constants.

For low ω and low T , up to a low-frequency cutoff scale
-c, so that |ω| # -c - D, we define (with kB = 1)

R(ω,T ) ≡ π [ω2 + (πT )2], (14)

and write a Fermi liquidlike expansion for the complex ECFL
self-energies:

&(ω) ∼ &0 + c& ω + i

γ&

R(ω,T ) + &rem(ω), (15)

χ (ω) ∼ χ0 − cχ ω − i

-χ

R(ω,T ) + χrem(ω), (16)

where

c& = 2
-c

γ&

and cχ = 2
-c

-χ

. (17)

-χ and γ& are parameters that determine the curvatures of
the two imaginary parts, with -χ having the dimensions
of energy, while γ& has the dimensions of the square of
energy. Consequently, c& has the dimensions of an inverse
energy, while cχ is dimensionless. The terms &rem(ω) and
χrem(ω) in Eq. (15) represent the remainders containing the
leading corrections to the Fermi liquid behavior, of the type
O(ω2) for the real part and O(ω3) for the imaginary parts
of these functions. In the initial analysis below, we simply
ignore these terms. They can be readily incorporated to find
a systematic improvement of the fits, and lead to further
corrections to the low-frequency behavior of the imaginary
part of the Dyson self-energy beyond the terms considered
here. Note that in Eq. (17) the constants c& and cχ also
receive contributions from higher terms beyond the quadratic.
Hence these approximate relations become exact if we retain
the imaginary terms only to quadratic order, i.e., assuming
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ρ& ≡ −R(ω,T )
πγ&

and ρχ ≡ R(ω,T )
π-χ

. In general, however, c& and
cχ can be considered as additional free parameters.

Some further remarks about this expansion are called for.
(i) Expressions (15) and (16) are of the standard Fermi

liquid type (symmetric in ω for the imaginary parts). Nonethe-
less, when processed through the ECFL formalism, they lead to
important contributions to the imaginary part of the Dysonian
self-energy which are antisymmetric in ω. Revealing the origin
of this important asymmetry is one of the main strengths of
the ECFL analysis.

(ii) We shall find that as we approach half filling, -χ and
γ& turn out to be similar functions of the electron density, in
view of their parallel role in the two self-energies within the λ
expansion. In the analysis below, we will find that as n → 1, it
is consistent to choose -χ ,γ& ∼ δ, where δ = 1 − n, so that
the Mott insulating limit is reached smoothly.

(iii) The energy scale -c, which determines the range of
frequencies where the quadratic behavior of Im & and Im χ
applies, is itself a function of the density. It shrinks linearly
with δ as n → 1, and therefore c& and cχ are finite as n → 1.
We should note that these are leading-order assumptions in δ.

Thus we find at low T ,ω:

G(k,ω + iη)

∼
α0 + c& ω + i

γ&
R

ω(1 + cχ ) + µ + i
-χ

R − εk{α0 + c& ω + i
γ&

R}
,

(18)

where we have introduced

α0 ≡ 1 − n

2
+ &0, (19)

and χ0 has been absorbed into the chemical potential µ. The
entire momentum dependence is contained in εk . At T = 0
and ω = 0 we must require G−1(kF ,0) = 0, so we need to set

µ = α0 εF . (20)

At low ω + iη and a fixed +k, we can write a useful
expression

G−1 ∼ −εk +
ω(1 + cχ ) + α0 εF + i

-χ
R

α0 + c& ω + i
γ&

R
(21)

and therefore

#(ω + iη) ∼ α0 εF + ω −
ω(1 + cχ ) + α0 εF + i

-χ
R

α0 + c& ω + i
γ&

R
.

(22)
Note that we adjusted the self-energy so that Re #(0) =
µ − εF , thereby placing the zero-energy pole at the Fermi mo-
mentum. We now extract the wave-function renormalization
factor Z from Z−1 = ∂

∂ω
G−1(k,ω)|ω=0 as

Z = α0

1 + cχ − εF c&
. (23)

Using the above expansion we find the spectral function
ρG(k,ω) [or equivalently A(k,ω), as denoted in the experimen-
tal literature], at low ω and k ∼ kF

A(k,ω) ∼
(

α0
2

π-#

) R
(
1 − ω

1

)

{(1 + cχ − c& εk)ω − α0(εk − εF )}2 +
{
α0

2R2/-2
#

} , (24)

where

-# ≡ α0
-χγ&

γ& − εF-χ

, (25)

1 ≡ α0
2 γ&-χ

-#{(1 + cχ )-χ − c&γ&}
. (26)

In terms of the wave-function renormalization factor Z,

A(k,ω)∼
(

Z2

π-#

) R
(
1 − ω

1

)

{ω − Z(εk − εF )}2 +
{
Z2R2/-2

#

} . (27)

We thus obtain the following final form for the low-energy expression of the Dysonian self-energy:

Im#(ω) ∼ − R
-#

1 − ω
1

{1 + ω c&/α0}2 + R2/(α0γ&)2
,

Re#(ω) ∼ α0εF + ω

− {εF + ω(1 + cχ )/α0}(1 + ωc& /α0) + R2/(α0
2-χγ&)

{1 + ω c&/α0}2 + R2/(α0γ&)2
, (28)

where we recall that R(ω,T ) is defined in Eq. (14). These
expressions, and in particular that of Im#, are among the key

results of the present paper, and will be used below in order to
fit and interpret the DMFT data.
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If we take the &rem and χrem terms in Eq. (15) and Eq. (16)
into account, then Eq. (28) receives higher-order polynomial
corrections in ω in both the numerator and denominator. Let
us also note that Eq. (27) is of the form of a phenomenological
version of the ECFL theory that has been recently tested against
experimental data with considerable success, in some cases
after adding a constant times (εk − εF ) in the numerator.2,6,7

C. Low-doping limit n → 1

At T = 0 and near half filling we get εF = −π
4 δD from

Eq. (4). Further, from the single assumption that&0 = − n
2 near

half filling,16 we find that the self-energy and wave function
renormalization factor scale correctly with δ as δ → 0. This
assumption gives α0 = δ, and a scaling of various energy
scales with δ. In particular, we find from the equations that
-χ ∼ γ& ∼ -c ∼ δ. This, together with Eq. (17), leads to
c& ∼ O(1) and cχ ∼ O(1). This is consistent with the scaling
behavior described in remarks (ii) and (iii) in the previous
section. Keeping the dominant terms in Eqs. (23), (25), and
(26), we find that

Z = α0

1 + cχ
, (29)

-# = α0 -χ , (30)

1 = α0 γ&

{(1 + cχ )-χ − c&γ&}
. (31)

Near half filling (δ → 0), we define

Z = δ Z, (32)

-# = δ2 -#, (33)

1 ≡ δ 1. (34)

All objects with an overline, such as Q, are determined
to be finite as δ → 0. Eq. (32) is expected on general
grounds near the insulating limit: to leading order G−1(k,ω) =
εF − εk + ω

Z
+ O(ω2), and therefore the propagating solutions

correspond to quasiparticles with an energy dispersion Z(εk −
εF ) that shrinks to zero at the insulating point n = 1. We find
here that this occurs as a linear function of δ. Eq. (33), together
with Eq. (28), implies that at small ω ∼ O(δ), the imaginary
part of the self-energy has a finite value. Further combined
with a cutoff -c ∼ O(δ), it gives Re # ∼ ω − 2ω -c

-#
, which

is then consistent with the linear vanishing of Z in Eq. (32).
Equation (34) shows that the particle-hole asymmetry in the
spectral function increases as we approach half filling. Finally,
we see that the spectral density Im# becomes a scaling
function of ω/δ at low doping levels.

IV. DOPED MOTT INSULATOR: SINGLE-SITE DMFT

The dynamical mean-field theory1 is based on the fact17

that in the limit of a large number of dimensions d the
self-energy becomes a momentum-independent local quantity,
#(k,ω) → #(ω). This implies that the bulk problem for

d → ∞ coincides with the problem of an interacting impurity
embedded in an appropriate noninteracting bath.12 DMFT
formulates a practical prescription for finding this effective
impurity problem and the self-consistency equation. For the
Hubbard model, the corresponding impurity problem is the
single-impurity Anderson model, which can be efficiently
solved with the numerical-renormalization group (NRG)
method.18–22

A. NRG method

The NRG calculations have been performed with the dis-
cretization parameter 2 = 2 using the discretization scheme
with reduced systematic artifacts described in Ref. 22. Further-
more, the twist averaging over Nz = 8 different discretization
meshes has been used to reduce the oscillatory NRG discretiza-
tion artifacts.23 The truncation cutoff in the NRG was set
in the energy space at 10ωN (here ωN is the characteristic
energy at the N th NRG step); such results are well converged
with respect to the truncation. The U(1) charge conservation
and SU(2) spin rotational invariance symmetries have been
used explicitly. The raw spectral data (weighted δ peaks)
were collected in bins on a logarithmic mesh with 1000
bins per frequency decade, then the broadening scheme from
Ref. 24 with α = 0.2 has been used to obtain the continuous
representation of the spectral functions. To calculate the
self-energy #, we have used the procedure25 based on the
following exact relation from equations of motion:

#σ (z) = 〈〈[dσ ,Hint]; d†
σ 〉〉z

〈〈dσ ; d†
σ 〉〉z

= U 〈〈nσ̄dσ ; d†
σ 〉〉z

〈〈dσ ; d†
σ 〉〉z

. (35)

Here dσ is the impurity annihilation operator, while Hint is
the interaction part of the Hamiltonian. The two correlators in
this expression were computed using the full-density-matrix
NRG algorithm.24,26 To accelerate the convergence of the
DMFT self-consistency loop, the Broyden mixing algorithm
has been used.27 This technique is particularly important to
ensure the convergence at small doping as the Mott transition is
approached. The Broyden solver has been used both to control
the chemical potential to obtain the desired band filling and to
apply the DMFT self-consistency equations.27

When performing the calculations in the large-U limit, it
is important to note that the upper Hubbard band (UHB) is
outside the NRG discretization energy window. The correlator
Fσ (z) = 〈〈nσ̄dσ ; d†

σ 〉〉z receives a contribution

FUHB(z) = wUHB

z − (εd + U )
−→
U→∞

wUHB

−U
(36)

from the UHB, where wUHB is the total weight of the upper
Hubbard band, which in the U → ∞ limit is equal to n/2. The
correlator F (z) in Eq. (35) is multiplied by a factor U , thus
the UHB contribution to the numerator in the U → ∞ limit
is equal to −wUHB. It is crucial to correct the raw numerical
results by making this subtraction when the UHB is outside the
discretization window, otherwise the causality is very strongly
violated. [No such subtraction is necessary for the correlator
Gσ (z) = 〈〈dσ ; d†

σ 〉〉z, because the UHB only makes an O(1/U )
contribution to the denominator.]
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An analysis of the convergence of the NRG results with
respect to the variation of various parameters in the method is
presented in Appendix B.

B. DMFT results

1. Scaling of quasiparticle weight Z vs doping level δ

In this work, we only consider paramagnetic solutions. At
low temperatures, the DMFT equations, depending on the
strength of the interaction U and the doping δ, give either
an insulating or a metallic Fermi liquid state. The key quantity
characterizing the metallic state is the quasiparticle residue

Z =
(

1 − ∂Re#(ω)
∂ω

∣∣∣∣
ω=0

)−1

. (37)

At δ = 0 (half-filled system), a metallic solution is found for
U < Uc (this critical value of U is often denoted Uc2 in the
DMFT literature—the spinodal of the metallic solution1—
and will be denoted Uc here for simplicity). For U > Uc, the
DMFT equations only have a unique insulating solution. At
Uc/D = 2.918, a Mott metal-insulator transition takes place,
with characteristics similar to the Brinkman-Rice picture28 in
that the quasiparticle weight Z vanishes continuously and the
quasiparticle effective mass diverges.

Away from half filling, i.e., for any δ 0= 0, the solution
is always metallic (Z > 0); the Mott insulator (Z = 0) only
exists exactly at half filling (for U > Uc1, the spinodal of the
insulator).1 As δ → 0 for U > Uc, Z diminishes and vanishes
at δ = 0. This doping-driven Mott transition is illustrated in
Fig. 1. In Figs. 1(a)–1(d) we plot the results of Z vs δ for a set
of values of U . It is seen that, when considered over a broad
doping range δ " 0.5 [Figs. 1(a) and 1(b)], the overall doping
dependence of Z is fairly linear at intermediate values of U/D,
while at strong coupling (large U/D) a marked curvature
is seen (approximately fit by a power-law with exponent
close to 1.4).

A plot of Z/δ vs δ focusing on the low-doping region
[Figs. 1(c) and 1(d)] reveals, however, that the asymptotic
low-δ behavior is actually linear, Z ∝ δ (except close to the
multicritical point U = Uc,δ = 0 where sizable corrections
are found). This is indeed the behavior expected within the
Gutzwiller approach28–30: Figures 1(c)–1(d) thus confirm that
DMFT obeys this mean-field behavior. The prefactor of this
linear dependence is also decreasing with U in reasonable
agreement with the Gutzwiller estimate30 ∼(1 − Uc/U )−1/2.
Note that the results displayed here extend previous studies
to much lower doping levels (δ " 0.001) than previously
reported in the literature, due to the improvements in the NRG
methodology.

2. Self-energy and spectral function: overview
of the main structures

We now address the properties of the self-energy #(ω) and
one-particle spectral function in more detail.

An overview plot in Fig. 2(a) shows the main features
in the local spectral function A(ω) and in the imaginary
part of #(ω) in a broad frequency range. Im# has two
very pronounced and sharp resonances (quasipoles). These
resonances are responsible for the suppression of the spectral

weight in A(ω) between the QP peak and the LHB and UHB,
respectively. They are correspondingly positioned close to the
minima of A(ω). In contrast to the half-filled case, where
these resonances are symmetrically positioned on each side
of ω = 0 at a scale31 ∝ ±

√
Z, their locations in the doped

case are no longer symmetric and will be discussed below. In
addition, there are two broad humps in Im# in the frequency
ranges associated with the two Hubbard bands. As U increases
towards very large values at fixed doping, the UHB moves to
higher frequencies, while the LHB and QP band gradually
converge to their high-U asymptotic form. This convergence
is, however, rather slow and the spectra start to very closely
agree with the asymptotic ones only for U on the order of
100D.

In Fig. 2(b) we plot a closeup on the low-energy structures,
i.e., the QP band and its vicinity. We notice that the Fermi
liquid quadratic behavior of Im# is limited to a very narrow
frequency interval, much smaller than the width of the QP
peak itself. We also see (Fig. 2 and Fig. 5) that at low doping
level, Im# develops a marked particle-hole asymmetry. These
deviations to Fermi liquid behavior are discussed below in a
more quantitative manner.

One of the goals of this work is to provide an analytical
account of the complex frequency dependence of the self-
energy that we just summarized. It should be kept in mind
that the ECFL theory that we are going to use for this purpose
works with the U = ∞ model, which begins by throwing out
the UHB altogether and deals only with the LHB. Thus the
comparison carried out later in this paper refers only to
the LHB and QP sector (no double occupancies), containing
the interesting low-energy physics of the problem.

3. Dynamical particle-hole asymmetry

The local spectral function and self-energy are displayed on
Fig. 3 for U = ∞, at two different doping levels (a small and
large one, for comparison). An immediately apparent feature
of these plots is the large asymmetry between holelike (ω < 0)
and particlelike (ω > 0) excitations.

Indeed, for ω < 0, |Im#| increases rapidly from ω = 0
in order to connect with the negative-energy quasipole. The
detailed form of this increase is somewhat different depending
on the doping level. At large doping it is approximately
parabolic, in continuity with the low-ω FL ∼ ω2 dependence.
In contrast, at small doping, the low-ω parabolic dependence
evolves into a more linearlike increase at higher frequency.
The local spectral function also displays an almost complete
suppression of the spectral weight between the QP peak and
the LHB at low doping level, while this suppression is only
modest at higher doping.

In contrast, for ω > 0, |Im#| rapidly flattens out after
its initial FL increase. It has a plateaulike behavior with
a broad maximum at large and intermediate doping level
(the maximum is sharper at smaller doping). Overall, |Im#|
remains much smaller at ω > 0 than at ω < 0.

This asymmetry also reflects into the QP peak in the local
spectral function A(ω), i.e., the local ρG(ω), which has a very
asymmetric line shape. The decrease from its ω = 0 value
A(0) is much faster on the ω < 0 side, in accordance with the
large |Im#|. The detailed form of the line shape on the more
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FIG. 1. (Color online) Doping-driven Mott transition within the DMFT: approach to the Mott insulating state for U > Uc = 2.918D with
decreasing doping δ. Top panels: doping dependence of Z for a range of δ on a lin-lin (a) and on a log-log (b) plot. The dashed line is a fit to a
power-law function Z = δα with α = 1.39. Bottom panels: Z/δ vs δ(c), and Z/δ vs δ on a log-log plot (d).

extended ω > 0 side is different at lower and higher doping
levels, with a convex and concave shape, respectively.

Finally, the particle-hole asymmetry has a very distinctive
signature in the momentum-resolved spectra A(ε,ω), which
are displayed in Fig. 4. It is seen there that the dispersion
of the QP peak deviates from its low-energy form ωQP =
Z(ε − εF ) much more rapidly on the ω > 0 side, where a
stronger dispersion closer to that of the bare band is rapidly
found. This is mostly due to the distinct behavior of the real
part Re# for positive and negative frequencies (shown later
in Fig. 6). This finding, which is also supported by the ECFL
results as discussed below, is one of the main predictions of
our work. It calls for the development of momentum-resolved
spectroscopies for unoccupied states (the dark side that is not
directly accessible to ARPES). The physical significance of
this dark side has also been recently pointed out in cluster-
DMFT studies of the two-dimensional Hubbard model.32

4. ω/Z scaling

Close to the Mott transition, all low-frequency properties
are expected to scale with Z, i.e., be described by scaling
functions1,33,34 of ω/Z. This is indeed the case, as demon-
strated in Fig. 5 in which good data collapse is obtained in the
lowest frequency range when plotted vs. ω/Z. However, we
also clearly observe that the scaling is limited to the asymptotic
region of very small frequencies.

On Figs. 5(b) and 5(c), one can compare the evolution of
the shape of the local spectral function, discussed above, as

a function of the doping level. One sees that the QP peak
becomes increasingly asymmetric at very low doping. We also
observe that the LHB has some internal structure, quite similar
to that observed at half filling as the correlation-driven Mott
transition is approached from the metallic side.22,35–37

In Fig. 6, the real and imaginary part of the self-energy are
plotted against ω/δD. The different panels cover different
frequency ranges. While a better collapse of the different
curves at very low frequency was obtained above when using
ω/ZD as a scaling variable, it is seen from the plots in
a broader frequency range that the overall structures of the
self-energy obey rather good scaling properties with respect
to ω/δD. For example, the sharp peak (quasipole) structure
at ω < 0 in Im# is seen to be located at a frequency
proportional to doping level (ωpeak ! −0.7δD). This peak in
Im# is associated with the suppression of the spectral weight
between the QP peak and the LHB in the spectral function.
Correspondingly, it is associated with a resonancelike structure
in Re#.

5. Deviation from the low-frequency Fermi liquid behavior

From Figs. 6(b), (c) (for Re#) and 6(e), (f) (for Im#), one
can visualize the low-frequency deviations from Fermi liquid
behavior. The latter is indicated by the dashed straight and
parabolic lines on this figure: Re# − Re#(0) = ω(1 − 1/Z)
and Im# ∝ −(ω/Z)2.

When visualized on an intermediate frequency scale
[Figs. 6(b) and 6(e)] it is seen that deviation from the FL
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FIG. 2. (Color online) (a) Overview plot showing the full struc-
ture of spectra on high-frequency scales (lower Hubbard band,
quasiparticle band, upper Hubbard band) at finite U = 4D. We show
the DMFT local spectral function (top panel) and the imaginary part
of the self-energy (bottom panel). (b) Closeup on the quasiparticle
band at low frequencies.

behavior is more apparent on the ω > 0 side, in accordance
with the particle-hole asymmetry discussed above and as
pointed out in previous studies.9,38 Re# deviates from linearity
and flattens upwards for ω > 0, resulting in the bending of the
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FIG. 3. Local spectral function and the imaginary part of the
self-energy for large doping δ = 0.2 (left) and small doping δ = 0.005
(right), for U = ∞.

FIG. 4. (Color online) Intensity plots of the momentum (εk-)
resolved spectral function A(ε,ω) for U = ∞ at four different doping
levels, plotted as a function of ε/D and ω/ZD. The plain line locates
the solution of the QP pole equation ω + µ − Re#(ω) − ε = 0
(neglecting Im#). By definition of the QP excitations, this line has
slope unity (cf. dashed line) at low-ω when plotted in this manner
since ωQP = Z(ε − εF ) (i.e., v4

F = ZvF ) within the DMFT.

dispersion of ω > 0 quasiparticles towards the noninteracting
bare dispersion, displayed above on Fig. 4. Accordingly, the
deviations from parabolic behavior in Im#(ω) are much more
pronounced on the positive frequency side.

Zooming further on the low-frequency range [Figs. 6(c) and
6(f)] allows one to locate more quantitatively the deviation
from the FL behavior. At U = ∞, it is seen to occur at ω4

FL !
0.1 ZD, which is of order 0.025δD to 0.05δD depending on δ.
In agreement with previous studies9 at finite U , the scale below
which FL is found to apply is seen to be a very low one. It is
one order of magnitude smaller than the Brinkman-Rice scale
≈δD, which corresponds to scaling the bare bandwidth by the
(inverse) of the effective mass. When converted to a tempera-
ture scale, the Brinkman-Rice scale roughly corresponds to the
temperature at which QP excitations disappear altogether (and
the resistivity approaches the Mott-Ioffe-Regel limit),9 but it
should not be identified with the much lower scale associated
with deviations from FL behavior.

The low-frequency zooms in Figs. 6(c) and 6(f) actually
reveal that the deviations from FL behavior are seen both on
the ω < 0 and ω > 0 side, at similar scales ±ω4

FL. This scale
corresponds to a low-energy kink in Re#. The corresponding
low-energy kink in the QP dispersion39–41 is actually visible
upon close examination of Fig. 4.

As seen on Figs. 5(b) and 5(c), the full collapse of the data is
limited to very low frequencies. Two kinds of deviations from
the universal behavior can be recognized. On the negative
frequency side, at moderate doping the deviations occur at the
onset of the Hubbard band as the quasiparticle peak is not
clearly separated from the LHB. On the positive frequency
side, the different curves deviate from each other also in the
small doping limit. Comparing the two lowest dopings, for
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FIG. 5. (Color online) (a) Imaginary part of the self-energy #

versus the rescaled frequencyω/Z for U = ∞. (b), (c) Corresponding
local spectral functions. Note that when plotted vs ω/Z, the peak
related to the onset of the LHB moves to the left with diminishing
δ, as seen in (b). The results for finite U are qualitatively very
similar. The arrows indicate the direction of the increasing value of δ.
(d) Quasiparticle weight as a function of Z.

instance, reveals the excess of the spectral weight for the
lower doping curve. This suggests that the quasiparticle peak is
not fully characterized by the renormalization factor Z alone:
the quasiparticle peak weight Wq.p. and Z are not necessarily
simply proportional. This question is best addressed at very
low doping, when the quasiparticle peak is well separated
from the LHB. We can then extract Wq.p. by integrating the
spectral function between the two local minima in A(ω). The
results are plotted in Fig. 5(d). We find that at low δ, Wq.p.

and Z are related by a power-law Wq.p. = Zγ , with γ close
to one, but not exactly 1. More specifically, γ is found to be
U dependent: γ = 1.017 for U = 3, γ = 1.039 for U = 4,
γ = 1.049 for U = 10, and γ = 1.067 for U = ∞.

6. Charge compressibility: absence of phase separation

For some types of the (noninteracting) conduction-band
density of states, there can be phase separation near half
filling.42 We verify that this is not the case for the Bethe
lattice by plotting the band filling n as a function of the
chemical potential µ in Fig. 7(a) for U = ∞. The dependence
is monotonous, thus all solutions are physically stable with
positive charge compressibility κ = ∂n/∂µ. We also plot the
quasiparticle residue Z as a function of the chemical potential
µ [Fig. 7(b)]. The charge compressibility κ as a function of
the band filling [Fig. 7(c)] has a maximum near quarter filling.
For smaller n, the decrease is due to the particular form of
the non-interacting DOS (semicircular function). For larger
n, κ drops to zero as the Mott transition is approached. The
asymptotic behavior is a power law δβ with β ≈ 1/5.

V. DOPED MOTT INSULATOR: AN ECFL PERSPECTIVE
ON THE DMFT

In this section we make use of the general structure of
the self-energy resulting from the ECFL in order to interpret,
fit, and better understand the complex frequency dependence
of the DMFT self-energies. The emphasis will be on the
intermediate frequency range, which encompasses both the
vicinity of ω = 0 and of the quasipole (sharp peak) in Im#
on the negative frequency side at ωpeak ! −0.7δD. We focus
on intermediate doping levels, which turns out to be the range
where the ECFL applies best, rather than on very low doping.
For these reasons, we can use as a scaling variable:

x ≡ ω/δ (38)

A. ECFL line shapes: main features

The low-frequency ECFL analysis from Sec. II gives a sim-
ple expression, Eq. (28), for Im# at T = 0. Using the overline
convention of Eqs. (32), (33), and (34) to denote variables that
remain finite as δ → 0, e.g., P = P/δ, we rewrite Eq. (28) as

Im# = − x2

-1

1 − x/11

(1 + x/12)2 + x4/-
2
2

. (39)

This ansatz function is determined by two variables with the
meaning of curvature -1,2 that are simply related to -# and
γ& , respectively, and by two parameters, which adjust the
asymmetry 11,2 that are related to 1 and cψ .

The numerator of the expression describes a parabolic
dependence, with a cubic correction term. This ansatz function
has a peak (quasipole) at frequency x = −12 for a finite
-2, turning into a true pole when -2 → ∞. The low-
frequency asymmetry of the self-energy, important for the
low-temperature thermoelectric properties, arises through a
combination of the terms present in the numerator and
denominator. Expanded to cubic order in frequency, the ansatz
gives

Im# = −x2/-1[1 − (1/11 + 2/12)x]. (40)
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FIG. 6. (Color online) Real and imaginary parts of the DMFT self-energy #(ω) for a range of doping for U = ∞, as a function of ω/δD

(left and center) or as a function of ω/ZD (right). The arrows indicate the direction of the increasing value of δ. The linear (for real parts) and
parabolic (for imaginary parts) are performed in the frequency range [−0.05 : 0.05]δD. In (f), the data is vertically offset for clarity.

The ansatz function and its evolution as the parameters are
varied is illustrated in Fig. 8.

Summarizing, the ansatz function Eq. (39) contains a
parabolic dependence, multiplied by a function with a sharp
peak at negative frequencies; therefore, it can be expected to
describe the coarse structure found in the DMFT very well
already at this order including only the Fermi liquid structure
of the underlying functions & and χ .

B. ECFL fits of the DMFT self-energy

The DMFT results for U = ∞ self-energy for a range of
doping levels are presented in Fig. 9 together with fits to
Eq. (39). At large doping, the ansatz function describes the
DMFT data remarkably well: the low-frequency dependence
and the main shape of the self-energy are fully reproduced.

At smaller doping, the quasipole at negative frequencies
becomes very sharp and Im# in DMFT develops a nipplelike
structure at low-frequency, with semilinear frequency depen-
dence at negative frequencies. These two features (quasipole
and nipple) cannot be simultaneously well described by
the simplest ECFL ansatz function in a broad frequency
range. Given that the ansatz has a structure that already
contains the pole, the fits in a broad frequency window are
more meaningful. The DMFT data can still be described
successfully, but terms beyond the lowest-order Fermi liquid
form in & and χ need to be retained. Work along these lines

to reproduce the precise shape and to analyze its physical
contents should be possible.

The evolution with doping of the fitting parameters is
shown in Fig. 10. The first observation is that the fitting
parameters (except for 11 to be discussed below) do not
depend substantially on the doping, hence validating our
assumptions stated above.

The second observation is that-1 is usually found to be very
close to -2. This supports the conclusions of the λ2 analysis
(to be discussed in the next section), which also finds that γ&

is close to -χ .
The third observation is that the bulk of the asymmetry does

actually not come from the explicitly cubic term (parametrized
by 1/11), but rather from 1/12. Hence, it is the presence of
the quasipole at negative frequency that is responsible for the
strong particle-hole asymmetry. This is seen most explicitly
in the doping range δ = 0.2–0.3, where 1/11 almost vanishes
and where, furthermore, the data is excellently described by
the ansatz function from Eq. (39). The physical content of
this observation might be that the low-frequency particle-hole
asymmetry is (at least at not too low dopings) directly related
to the presence of the LHB at much higher frequency scales,
and thus ultimately to the strong-correlation physics. This
observation is consistent with the picture emerging from
the ECFL, where the asymmetry is a consequence of the
Gutzwiller projection.
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FIG. 7. (Color online) (a) Band filling n vs chemical potential µ for U = ∞. (b) Quasiparticle residue Z vs. chemical potential µ for
U = ∞. (c) Charge compressibility for U = ∞.
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FIG. 8. (Color online) Role of the parameters in the ECFL ansatz
function, Eq. (39), used for fitting in Figs. 9 and 10.

C. Summary

To summarize, the ECFL-derived ansatz, Eq. (39), which
retains only the lowest-order Fermi liquid terms in & and
χ , describes the rather complex frequency dependence of the
DMFT data remarkably well at low to intermediate frequencies
and for not too small doping levels. Importantly, retaining
only the Fermi liquid (hence particle-hole symmetric) terms in
these ECFL self-energies already yields a marked particle-hole
asymmetry in the physical electron Dysonian self-energy.
The ansatz also describes the pole at negative frequencies,
associated with the onset of the LHB. Whereas the Fermi
liquid behavior only applies at extremely low frequencies
in the Dysonian self-energy, the Fermi liquid concepts can
still be used over a much broader frequency range when
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FIG. 9. (Color online) Im#(ω) vs rescaled frequency ω/δD and
fits to Eq. (39) for U = ∞. The ansatz describes the DMFT self-
energy at moderate dopings remarkably well. The nipple structure that
becomes pronounced at small doping signals that χ and & develop
non-Fermi liquid corrections.

proper auxiliary quantities are considered, within the broader
framework provided, e.g., by the ECFL theory. At lower
doping levels, however, the DMFT results display structures
(nipple), which signal the increasing importance of corrections
beyond the dominant Fermi liquid terms in &,χ .

VI. ECFL: EXPANSION TO O(λ2)

A. Summary of equations

We now summarize the results of the O(λ2) expansion of
the ECFL equations in Ref. 8, which are then computed and
compared with the DMFT results. We note that the ECFL
reformulation of the Dyson self-energy #(ω) into the ECFL
auxiliary self-energies &(ω) and χ (ω) is exact. Therefore, if
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FIG. 10. (Color online) Parameters in the fit function, Eq. (39),
for a range of doping δ at U = ∞. For a broad fitting energy range,
the fitting parameters are smooth as a function of δ, thus the fitting
procedure is well defined. At dopings where the fits work best (that
is around δ = 0.25), -1 is found to be close to -2.
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one could perform the λ expansion to infinite order in λ, one
would obtain the exact answer for these auxiliary self-energies,
and consequently the Dyson self-energy. The resulting Dyson
self-energy would then agree exactly with the one obtained
through DMFT for the case of infinite U. Our aim here is
to benchmark the lowest nontrivial order of the λ expansion
against the exact DMFT results. Note that in the d → ∞ limit,
in the paramagnetic phase, the single-particle properties of the
t-J model are identical to those of the U = ∞ Hubbard model.
In other words, as long as antiferromagnetic correlations are
short ranged, J does not enter single-particle properties in the
d = ∞ limit. Accordingly, the only coupling constant entering
the simplified ECFL equations is the hopping (band dispersion)
itself, and not the superexchange.

In the O(λ2) scheme, the explicit density factors 1 − n
2 that

occur in Eq. (8) and (9) are replaced by the rule

1 − n

2
→ aG ≡ 1 − λ

n

2
+ λ2 n2

4
+ O(λ3). (41)

The second rule is that the explicit self-energy expressions in
these equations are multiplied by λ. As an illustration of these
rules, we write Eq. (8) and (9) as

g−1(k) = iω + µ − aG εk − λ+(k), (42)

µ̃(k) = aG + λ &(k). (43)

The factor λ is set to 1 before actually computing with these
formulas. The two self-energy functions +(k) and &(k) satisfy
the equations to second order in λ:

&(iωk) = −λ
∑

pq

(εp + εq − u0)g(p)g(q)g(p + q − k),

+(k) =
(
εk − u0

2

)
&(iωk) + χ (iωk) − u0

(
λ

n2

8
− n

2

)

−
∑

p

εpg(p)

χ (iωk) = −λ
∑

pq

(
εp+q−k − u0

2

)
(εp + εq − u0)

×g(p)g(q)g(p + q − k). (44)

All equations in Eq. (44) are implicitly understood to have
O(λ3) corrections, so that the g and µ̃ pieces of G in Eq. (7)
are correct to the stated order. As expected, the functions
&,χ depend on the frequency but not the momentum +k.
Both Green’s functions satisfy an identical number sum
rule

∑
k,ωn

G(k) = n
2 =

∑
k,ωn

g(k), and the theory has two
chemical potentials necessary to impose these, namely µ and
u0. As discussed in Ref. 3, the second chemical potential u0
arises from the requirement of satisfying a shift invariance
in the theory. The shift transformation in the present model
acts as εp → εp + c. This transformation shifts the center
of gravity of the band; it is absorbable in u0, and thus
rendered inconsequential. We can easily verify that χ and &
are independently shift invariant. Combining the expressions,

we write

µ′ ≡ µ + u0

(
λ2 n2

8
− λ

n

2

)
− u0

2
aG + λ

∑

p

εpg(p),

(45)

g−1(k) = iω + µ′ −
(
εk − u0

2

)
{aG + λ&(iωk)} − λχ (iωk).

The Green’s function is then found by combining Eqs. (45),
(44), and (43) in the expression Eq. (7).

B. Setting up the computation

To set up the computation, we write a local Green’s function
with weight m = 0,1, . . . using Eq. (45) as

gloc,m(iωk) ≡
∑

+k

g(k) (ε+k)m

=
∫ D

−D

dε ρ0(ε)
εm

iω + µ′ − (aG + &)
(
ε − u0

2

)
− χ

, (46)

where χ and & are functions of frequency iωk but not the
energy ε. We find that both gloc,0 and gloc,1 are needed to
compute the frequency-dependent self-energy. Similarly, a
local G can be defined, and the number sum rules can be
written as n

2 =
∑

iω gloc,0(iω) and n
2 =

∑
iω Gloc,0(iω). Where

necessary, the usual convergence factor eiω0+
is inserted. The

two +k-independent functions& andχ in Eq. (44) can be written
in a compact way if we first define a function with three indices
(m1m2m3) from the weight factors:

Im1m2m3 (iω) = − 1
β2

∑

ν1,ν2

gloc,m1 (iν1)

×gloc,m2 (iν2)gloc,m3 (iν1 + iν2 − iω). (47)

After continuation iω → ω + iη, and for all values of the
indices, the low frequency and temperature I (iω) is a
Fermi liquid-like self-energy with an imaginary part ∝ [ω2 +
(πkBT )2]. We can now rewrite Eq. (44) as:

&(iω) = −u0I000(iω) + 2I010(iω)

χ (iω) = −u0

2
&(iω) − u0I001 + 2I011(iω). (48)

Clearly, Eqs. (48) and (46) along with the definition (47) and
the number sum rules form a self-consistent set of equations
that can be solved iteratively on a computer. The Dyson self-
energy and the spectral function can be computed in terms of
these quantities using Eq. (13)

C. Auxiliary and Dyson self-energies to O(λ2)

In Fig. 11 we present ρχ , ρψ , and ρ# (from top to bottom).
ρψ and ρχ have similar frequency dependence and a Fermi
liquid form is obeyed much more accurately than what is found
for the Dyson self-energy ρ# . This supports the ansatz that
we employed above. In particular, the auxiliary self-energies
are more particle-hole symmetric; most of the particle-hole
asymmetry follows from the structure of ECFL equations. This
signals that the Fermi liquid concept has validity outside of the
canonical Fermi liquid behavior.
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FIG. 11. (Color online) Imaginary parts (spectral densities) of
the auxiliary self-energies χ and &, and the Dyson self-energy
# within the O(λ2) ECFL. The dotted lines are parabolic fits at
the highest density. Recall that typical Fermi liquid-type spectral
functions exhibit a parabolic and therefore particle-hole symmetric
behavior over a large energy range. From these fits one observes that
the auxiliary functions & and χ have a Fermi liquid form over a wider
energy range than the Dyson self-energy #.

VII. DETAILED COMPARISON OF O(λ2) ECFL RESULTS
TO DMFT

A. Effective density of the ECFL spectral functions and its
phenomenological adjustment

The O(λ2) equations of ECFL discussed here give a high-
ω limiting behavior G ∼ aG

ω
, differing from the exact form

G ∼ 1− n
2

ω
due to the replacement 1 − n

2 → aG ≡ 1 − λn/2 +
λ2n2/4 as per the rules of the calculation. This effect is due

to the incomplete projection of the O(λ2) treatment of the
ECFL equation of motion. At n ∼ 0.75 the error in the high-
frequency weight is 22.5%.

A phenomenological scheme for adjusting for this feature
defines an effective density neff , using the ratio of particle
addition and removal states as the relevant metric, so that

n
1−n+n2/4 = neff

1−neff
, thus yielding

neff = n

1 + n2

4

. (49)

Clearly higher-order calculations would have a corresponding
mapping between the two densities. For several of the
comparisons below, agreement is greatly improved by plotting
the results of ECFL as a function of neff .

B. Comparison between O(λ2)-ECFL and DMFT

We find that the computed values of the quasiparticle weight
Z from ECFL are close to the U/D = 4 DMFT curve, we
detail this in Appendix A, where the momentum distribution
is also shown. This is suggestive of an analogy between the two
incompletely projected theories. In particular, making U finite,
and truncating the λ expansion at second order, both introduce
some double occupancy into the system. It is therefore not
surprising that the U/D = 4 DMFT results agree better with
the O(λ2)-ECFL than with the U/D = ∞ DMFT results.
However the limitations of the O(λ2) calculation within ECFL
preclude obtaining reliable results for doping levels smaller
than δ ≈ 0.25.

1. Spectral line shapes

In Fig. 12 we compare the ECFL and the DMFT results at
U = 4D and U = ∞ for the ε-resolved spectral functions
at two values of the band energy, εk = −D and εk = εF .
In general, the agreement is encouraging. At εk = −D (left
panel), DMFT has a deeper minimum between the QP and
the secondary feature at high binding energy than is seen in
ECFL, but the position of the ECFL peaks agrees well with
that of the DMFT peaks. At εF (right panel) the QP are of
similar width but have different values of Z, as discussed
above. The background of width ∼D lies over essentially the
same frequency range for all three calculations, and has a
peak at ω = −0.5D, approximately the same position for each
data set. However, the height of the peak is less pronounced
for the ECFL than the DMFT. At positive frequencies the
spectral functions are in excellent agreement. Plotting the
spectral function as a function of the scaled frequency ω/ZD
improves the agreement in the position and width of the
quasiparticle, as illustrated in the more sensitive self-energy
curves in Fig. 13. We note that the scaled ECFL curves agree
well with the DMFT curves even for density n ∼ 0.8–0.9
for scaled frequency |ω| # 0.5DZ. We find this agreement
surprising in view of our criterion discussed above, placing
n ∼ 0.75 as the limiting density.

The physical spectral function A(ω), when displayed as
a color intensity plot using the scaled frequency ω/ZD
as in Fig. 14, further emphasizes this similarity. At this
level of description, the U = 4D DMFT curve and the
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FIG. 12. (Color online) Spectral functions within the DMFT (U = ∞ and U/D = 4) and ECFL at two typical energies ε = −D and
ε = εF , with n = 0.7 and T = 0.0025D. The location of the quasiparticle peak near ω ∼ 0 and the broad secondary peak for ω < 0 are
common to both calculations. While there are subtle differences, especially in the magnitudes of the secondary peaks, the main features of the
three calculations match at high and low frequency.

O(λ2) calculation look almost identical. In particular, as clear
from this figure, both theories indicate that the quasiparticle
peak becomes rapidly more dispersive as one moves to
positive energies, corresponding to unoccupied states (i.e.,

the effective Fermi velocity increases as compared to its
low-energy value and becomes closer to the band value). As
discussed above (Sec. IV, Fig. 4), this is one of the primary
common conclusions of both theories, which could be tested

FIG. 13. (Color online) Spectral function (imaginary part) of the Dyson self-energy # versus the scaled variable ω/(DZ) in the ECFL
theory at order λ2, and the DMFT at two values of U . The ECFL predicts a value of Z which is too large at low doping, and significant
U dependence creates differences between the U/D = 4 and U = ∞ results of the DMFT. Nonetheless, all three cases overlap well at low
frequencies when plotted against the scaled frequency. Surprisingly, this agreement survives to densities far beyond the expected range of the
current version of the ECFL.
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FIG. 14. (Color online) Physical spectral function A(ε,ω). From left to right: U = 4 DMFT, U = ∞ DMFT, and ECFL with n = 0.7 and
T/D = 0.0025. Hot colors represent high intensity, while darker blue represents low intensity. Noting from the left panel of Fig. 12 that the QP
band has a slightly different width in each calculation, we plot the spectral function here as a function of ω

DZ
. This brings the low-energy (QP)

features of the spectral function into impressive agreement, indicating that Z, rather than δ, is the fundamental energy scale of the extremely
correlated state.

in future experiments able to probe the unoccupied states in a
momentum-resolved manner.

In view of the remarkable similarity between the different
theories, as seen in Fig. 13 and Fig. 14, it appears that the
O(λ2) version of ECFL has the correct shape of the spectra
built into it, but requires a correction for a too large value
of the QP factor Z. This is the main conclusion of this work
regarding the benchmarking of the ECFL.

VIII. CONCLUSION AND PROSPECTS

In this work we have presented a detailed comparison
between the DMFT and the ECFL theories, applied to the
doped Hubbard model at large as well as infinite U , in
the limit of infinite dimensions (Bethe lattice with infinite
coordination).

Our approach here is twofold. On the one hand, we
have used the general structure of the Green’s function and
self-energy in the ECFL theory to obtain a useful analytical
ansatz, which reproduces quite well the rich and complex
frequency dependence of the DMFT self-energy at not too
low doping level. This ansatz relies on the lowest-order Fermi
liquid expansion of the two auxiliary ECFL self-energies &
and χ . Quite remarkably, the marked deviations from the
Fermi liquid form and the particle-hole asymmetry found in
the physical single-particle self-energy can be accounted for
by this underlying Fermi liquid form of auxiliary quantities.
In turn, the deviations observed between the DMFT results
and this lowest-order ansatz at lower doping levels emphasize
the need for corrections to FL behavior in &,χ within the
ECFL. This part of our study thus provides useful analytical
insights into the DMFT description of the doping-driven Mott
transition.

On the other hand, we have used the DMFT results (ob-
tained here with a high-accuracy NRG solver) as a benchmark
of the ECFL theory. Specifically, we have solved numerically
the O(λ2) ECFL equations, appropriately simplified in the
limit of large dimensions. For not too low doping levels,
where this O(λ2) scheme is applicable, we found that the
spectral properties agree well provided the comparison is
made as a function of the scaled frequency ω/ZD, with Z the

quasiparticle weight. A similar situation arises in comparing
the ECFL method for the Anderson impurity model, where
Z is rapidly suppressed as the Kondo limit is approached.43

This adjustment of the frequency scale compensates the known
weakness of the O(λ2) theory in obtaining Z quantitatively,
and enables, to some extent, a preview of the results of
the planned higher-order calculations in the ECFL projection
parameter λ.

From a physics point of view, we now summarize the most
significant insights provided by our study.

Doped Mott insulators are found to be characterized by
a marked particle-hole dynamical asymmetry, as empha-
sized in recent ECFL44 and DMFT9 studies. In the case
of hole doping, particlelike (ω > 0) excitations are longer
lived than holelike (ω < 0) ones, leading to more resilient
electronlike quasiparticles.9 This dynamical asymmetry has
physical implications for the spectral line shapes9,44 as well as
thermopower.9,45 The asymmetric terms in the low-frequency
expansion of the self-energy signal deviations from the Fermi
liquid theory, which are usually ignored in weak-coupling
studies. They become large at low hole doping and strong
coupling, as demonstrated here in considerable detail, thus
confirming the proposal made originally in Ref. 44.

Due to the importance of this asymmetry, we found that
the energy vs momentum dispersion of the quasiparticle state
quickly deviates on the ω > 0 side from its low-energy value
(associated with the renormalized effective Fermi velocity).
The deviation is towards a weaker dispersion, closer to
the bare band value. This is a prediction of both ECFL
and DMFT, which could be tested experimentally once
momentum-resolved spectroscopies are developed in order to
address unoccupied states (the dark side for photoemission).

Regarding ARPES line shapes, we also emphasize that
the recent successful comparison6,7 between the ECFL and
the experimental ARPES line shapes in the optimally doped
and overdoped cuprates along the nodal direction can just
as well be interpreted as the similar success of the DMFT
interpretation of these line shapes. The adjustment of the
momentum dependence of the caparison factor for different
systems in Refs. 6 and 7 hints at the importance of the
momentum dependence of the self-energy. This momentum
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dependence is already present in the ECFL in two dimensions,
and also emerges from cluster DMFT calculations.

Further comparison between the nature of the momentum
dependence in both theories is to be addressed in future work.
More generally, we believe that this work lays the foundation
of a useful program where the momentum-dependent self-
energies can be reliably computed and expressed in simple
analytic forms. While cluster DMFT methods can already
provide some answers to this important problem, the ECFL
theory readily treats low dimensions and the momentum
dependence. In order to get further solid results, the current
limitation of the ECFL to the somewhat overdoped regime
needs to be overcome. This limitation arises from the low order
of the expansion inλ, and brute-force higher-order calculations
in λ are planned. In this task, the insights gained from the
present comparison with DMFT, are invaluable.
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APPENDIX A: QUASIPARTICLE OCCUPATION
AND Zk IN THE O(λ2) ECFL

The momentum distribution function, Fig. 15, shows good
agreement with the DMFT at a density n = .7, and the
large spillover for k > kF is of the same scale in both sets
of calculation. Its importance in estimating the background
spectrum in ARPES is well known, so this is already a
reasonably reliable common result. It is also interesting that
at the Fermi momentum, the magnitude of the distribution
function is close to 1

2 in both calculations, as argued in the
literature.15,46

In Fig. 16 we compare the quasiparticle weight Z in ECFL
and DMFT. The O(λ2) ECFL result has some similarity
to the Gutzwiller approximation47 result 2δ/(1 + δ) in the
limited density range of validity. However it does not seem
to vanish in any obvious way, if we extrapolate by eye to
higher density n, highlighting its main weakness in the current
state of development, but plotted against the effective density
it becomes comparable to the U/D = 4 DMFT curve over a
limited range.

APPENDIX B: NRG IMPURITY SOLVER CONVERGENCE
AT SMALL DOPING

In order to obtain well-converged spectral functions using
the NRG impurity solver at low doping δ, several parameters in
the method need to be appropriately tuned. Their choice affects
both low-frequency and high-frequency parts of the spectral
functions. In addition, it significantly affects the numerical
requirements—both the duration of each NRG calculation and
the number of the DMFT cycles until self-consistency. Very
close to the Mott transition, obtaining fully converged results

FIG. 15. (Color online) Momentum occupation versus ε within
the DMFT at U/D = 4 (top) and the ECFL (bottom).

becomes computationally very expensive (several hundreds
of DMFT cycles) even with Broyden acceleration.22 In this
section, we explore the effects of different choices on the
quasiparticle residue Z (low-frequency property), Fig. 17, and
on the shape of the LHB (high-frequency property), Fig. 18.

We first explore the choice of the discretization scheme
(i.e., how the coefficients of the Wilson chain are computed
based from the input hybridization function). We compare the
discretization scheme (denoted as Z) proposed by R. Žitko
and Th. Pruschke in Ref. 22, which corrects the systematic
discretization errors near band edges present both in the
conventional discretization scheme (Y), Ref. 48, and in the
improved scheme by V. Campo and L. Oliveira (C), Ref. 49.
At low frequencies, one observes excellent overlap of the
results, as indicated in Fig. 17(a). This is in line with the
common wisdom that the NRG is a reliable method for
low-frequency properties, having good spectral resolution in
the vicinity of the Fermi level where the discretization grid
is condensed. For this reason, the choice of the discretization
scheme has little effect on Z. At high frequencies, however,
one can clearly observe the systematic artifacts present in
schemes Y and C: the LHB presents spurious (nonphysical)
structure at the outer edge, which is not present in the results
of scheme Z, see Fig. 18(a). Recent comparisons of the
NRG (using scheme Z) and continuous-time quantum Monte
Carlo at finite temperatures have established that the NRG
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FIG. 16. (Color online) Quasiparticle weight Z as a function of
hole doping δ (or δeff = 1 − neff , the effective hole doping) from
the O(λ2) version of ECFL, and from DMFT for various values
of U. More detailed DMFT results are in Fig. 1. The blue dashed
line represents Z = δ, the simplest U = ∞ slave-boson estimate,
as a guide to the eye. The dotted red line represents the Gutzwiller
approximation result Z = 2δ

1+δ
.

(using scheme Z) is, in fact, a rather reliable method also
for high-frequency/finite-temperature properties. On the other
hand, the NRG using schemes Y or C is expected to exhibit
more pronounced systematic errors at high frequencies and at
finite temperatures.

The second important choice concerns the value of the
discretization parameter 2, which controls the coarseness of
the logarithmic grid. The standard choice is 2 = 2, which
is suitable to obtain well converged results at both low and
high frequencies, see Figs. 17(b) and 18(b). In fact, the results
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FIG. 17. (Color online) Quasiparticle residue Z for the U = ∞
Hubbard model as a function of doping δ. We compare the DMFT
results for different choices of the NRG impurity solver parameters.
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FIG. 18. (Color online) Lower Hubbard band part of the local
spectral function A(ω) for the U = ∞ Hubbard model at low doping,
δ = 0.01. In (a), the schemes C and Y produce spurious features
at the outer band edge and at ω = 0.3D (indicated by arrows). In
addition, the (expected) feature at the inner band edge at ω = 0.1D is
overemphasized in C and Y schemes. In (d), we note that the curves
for clipping values 10−7, 10−6, and 10−5 nearly overlap, while those
for $ 10−4 exhibit some deviations.

do not change much even when going to somewhat higher
2 = 2.5, while for 2 = 3 we start to observe some systematic
deviations at very low doping δ. We have also performed some
test calculations for smaller values2 = 1.9,1.8,1.7; the results
differ little from those for 2 = 2 while being significantly
more computationally expensive to produce.

We now consider the broadening parameter α, which
controls how the raw spectral function in the form of a set of
weighted δ peaks is processed to obtain a smooth continuous
representation. Too small values lead to spurious oscillations,
too high values to overbroadening. These effects are nicely
illustrated by the results for the LHB part of the spectral
function in Fig. 18(c). The long high-frequency tail of the
LHB for increasing α is a clear overbroadening effect, while
the oscillatory features for α = 0.1 are a discretization artifact.
At low frequencies, the QP residue Z converges as α is
decreased, see Fig. 17(c). We find that for α # 0.1, the results
practically overlap, while for α = 0.2 (the value used for most
calculations in this work), the deviation from the asymptotic
value is of order one percent. For large values of broadening (as
commonly done in NRG calculations), Z is underestimated.
This is because the spectral weight is more spread around as
α increases, thus less weight remains in the QP peak. Based
on these results, we find that α = 0.2 is a good compromise.

Finally, we discuss a subtle issue, which becomes important
at very small dopings. The NRG discretization has difficulties
if in the hybridization function there are extended regions of
very low values. In particular, this leads to very slow approach
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to the self-consistency. For this reason, it is convenient to use
a small, but finite cutoff value for the hybridization function
to clip the input hybridization function to some minimum
value at all frequencies. It is important, however, to choose
this value so that the results are not perturbed. We find that
using too high cutoff leads to incorrect Z vs δ behavior at low
doping (a downturn), see Fig. 17(d). The effect is thus similar

to overbroadening, since the spectral weight shifts from the
quasiparticle peak to the region between the LHB and the QP
peak, where the clipping is applied (for small δ, where the
LHB and the QP peak no longer overlap, but rather the QP
becomes an isolated spectral peak in the gap). There is also
some effect of clipping on the LHB itself, Fig. 18(d). Again,
this effect is analogous to overbroadening.
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a b s t r a c t

We study the infinite spatial dimensionality limit (d → ∞) of
the recently developed Extremely Correlated Fermi Liquid (ECFL)
theory (Shastry 2011, 2013) [17,18] for the t–J model at J = 0.
We directly analyze the Schwinger equations of motion for the
Gutzwiller projected (i.e. U = ∞) electron Green’s function
G. From simplifications arising in this limit d → ∞, we are
able to make several exact statements about the theory. The ECFL
Green’s function is shown to have a momentum independent
Dyson (Mori) self energy. For practical calculations we introduce
a partial projection parameter λ, and obtain the complete set of
ECFL integral equations to O(λ2). In a related publication (Zitko
et al. 2013) [23], these equations are compared in detail with
the dynamical mean field theory for the large U Hubbard model.
Paralleling the well known mapping for the Hubbard model, we
find that the infinite dimensional t–J model (with J = 0) can be
mapped to the infinite-U Anderson impurity model with a self-
consistently determined set of parameters. This mapping extends
individually to the auxiliary Green’s function g and the caparison
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factor µ. Additionally, the optical conductivity is shown to be
obtainable from G with negligibly small vertex corrections. These
results are shown to hold to each order in λ.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Motivation

The Hubbard model (HM) with the Hamiltonian:

H = −
�

ijσ

tijc
Ď
iσ cjσ + U

�

i

ni↑ni↓ − µ
�

i

ni, (1)

has attracted great theoretical interest in condensedmatter physics, and is also a fairly realistic model
of strongly correlated materials such as the cuprates. While the small U

t limit is well described by
standard Fermi-Liquid theory [1,2], the large and intermediate U

t (strongly correlated) cases aremuch
less well understood. Considerable progress has been made by considering the HM in the limit of
infinite dimensions [3–11]. One important result is that the Dyson self energy, defined by inverting
the expression for the electron Green’s function G:

G(k) = 1
iωk + µ − �k − ΣD(k)

, (2)

becomes momentum independent in this limit [3–6]. Two other important results are the self-
consistentmapping of the infinite dimensional HM onto the Anderson Impuritymodel (AIM), detailed
in [8] (Dynamical Mean Field Theory), and the vanishing of the vertex corrections in the optical
conductivity [10,11], so that the two particle response is obtainable from the single particle Green’s
function. The Dynamical Mean Field Theory (DMFT) provides a means for doing reliable numerical
calculations for the Hubbard model, at any value of U and has continued to provide new, and
interesting results [12,13].

A different approach to understanding strong correlations is to consider the extreme correlation
limit, where on sets U → ∞ at the outset. In this case, the Hilbert space is Gutzwiller projected so
that only single occupancy is allowed on each lattice site. One such extremely correlated model, the
t–J model, consists of taking the U → ∞ limit of the Hubbard model (the t part of the model) and
adding on a nearest neighbor anti-ferromagnetic coupling term (the J part of the model). The t model
studied here, is obtained by dropping the J term and thus is identical to the U = ∞ limit of the HM.
It has been argued by Anderson [14] that the t–J model describes the physics of the cuprates, thereby
providing an impetus for its detailed study. The Hamiltonian for this model can be written in terms of
the Hubbard X operators as [15]

H = −
�

ijσ

tijXσ0
i X0σ

j − µ
�

iσ

Xσσ
i + 1

2

�

ijσ

JijXσσ
i + 1

4

�

ijσ1σ2

Jij{Xσ1σ2
i Xσ2σ1

j − Xσ1σ1
i Xσ2σ2

j }. (3)

The operator Xab
i = |a��b| takes the electron at site i from the state |b� to the state |a�, where |a� and

|b� are one of the three allowed states | ↑�, | ↓�, or |−�. Our present goal is to obtain a formally exact
solution of the above t model in the limit of large dimensions by studying its equations of motion.
This is designed to be methodologically independent of the available DMFT solution of the HM with
U = ∞, and can be compared with it.

Our object of study is the Green’s function written as

Gσ1σ2(i, f ) = −�TτX
0σ1
i (τi)X

σ20
f (τf )�, (4)
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where the angular brackets indicate the usual thermal average. Due to the non-canonical
commutation relations of the X operators, the high frequency limit of Green’s function is 1− n

2
iωn

rather
than 1

iωn
as in the canonical case. To avoid linear growth of the self-energy in the high frequency

limit [15], the Dyson self-energy must be redefined to the Dyson–Mori self energy [16] as in:

G(k) = 1 − n
2

iωk + µ − �k
�
1 − n

2

�
− ΣDM(k)

. (5)

Just as is the case for ΣD in the finite-U Hubbard model, ΣDM is finite as iω → ∞ in the t–J model.
Shastry has recently introduced a novel and promising approach for calculating correlation

functions within the t–J model based on Schwinger’s formulation of field theory [15,17,18]. This has
culminated in the theory of the Extremely Correlated Fermi Liquid (ECFL) [17,18]. This theory has been
successfully benchmarked against: line shapes from (ARPES) experiments [19,20], high-temperature
series [21] and the numerical renormalization group (NRG) calculations for the Anderson impurity
model [22]. A recent theoretical benchmarking related to this work is the comparison with DMFT
calculations for the large U Hubbard model in a concurrent publication [23], with the formulas found
here. Indeed the main motivation of the present paper is to obtain results in the limit of large d for
the samemodel, the t–J model (at J = 0) or equivalently the U = ∞ Hubbard model by two different
methods, the ECFL and the DMFT, allowing such a comparison.

In the ECFL theory, the physical Green’s function G(k) is factored into a canonical auxiliary Green’s
function g(k) and an adaptive spectral µ(k), where k = (�k, iωk):

G(k) = g(k) × µ(k). (6)
These two factors are in turn written in terms of two self-energies, Φ(k) and Ψ (k).

g−1(k) = iωk + µ − (1 − n/2)�k − Φ(k), (7)

µ(k) = 1 − n
2

+ Ψ (k). (8)

Here Φ(k) plays the role of a Dyson self-energy for the canonical Green’s function g(k), and Ψ (k) is
a frequency-dependent correction to µ(k) from its high frequency value of 1 − n

2 . Φ and Ψ are then
given in terms of the vertices (i.e. functional derivatives w.r.t. the source of the g−1 and µ) as will
be described below, leading to a closed set of Schwinger differential equations (the ECFL equations
of motion). These equations are in general intractable since there is no obvious small parameter, and
therefore to enable practical calculations, an expansion is carried out in a partial projection parameter
λ. Here λ interpolates between the free Fermi gas and the t–J model. The meaning of λ as a partial
projection parameter is detailed in [18], andmay be summarized in themapping Xσ0

i → f Ďiσ (1−λ niσ̄ ),
where fiσ is a canonical electron operator. Thus atλ = 0wehave canonical electrons,whereas atλ = 1
we have the fully projected electrons.

In this work, our aim is to combine the two approaches, namely to consider the ECFL in the limit of
infinite spatial dimensions. In this limit, J → 0, and the infinite-dimensional t–J model becomes the
infinite dimensional infiniteU Hubbardmodel (see Section 6A of Ref. [23] for a brief discussion of this).
It is not clear a priori, whether or not the aforementioned results, valid for the infinite dimensional
finite-U Hubbard model, carry over to the infinite dimensional t–J model. The possible conflict arises
from the fact that in the case of the former, the ratio U

d → 0, while in the case of the latter, U
d → ∞.

This questionwas raised inRef. [24], pointing to the ECFL solution of the infinite dimensional t–J model
as a source of resolution. Working directly with the infinite-U Hamiltonian (Eq. (3) with J = 0), and
using the corresponding ECFL equations of motion, we are able to address this challenging task and to
show that the two limits U → ∞ and d → ∞ do in fact commute.

Moreover, we are able to determine the structure of the ECFL objects Φ(k) and Ψ (k) in the limit
of infinite dimensions. Such structural information has already been used to fit numerical results
obtained through DMFT calculations to a convenient and flexible functional form [23]. Finally, we
are able to elucidate the nature of the λ expansion in the large d limit. For readers whomight be more
interested in the results than the methodology, we provide a detailed summary of our results at the
outset.
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1.2. Results in the limit of infinite dimensions

We show that in the large d limit, the two self energies Φ(k) and Ψ (k) simplify in the following
way.

Ψ (k) = Ψ (iωk), (9)
Φ(k) = χ(iωk) + �kΨ (iωk). (10)

These in turn show that the Dyson–Mori self energy behaves as

ΣDM(k) = ΣDM(iωk) = (iωk + µ)Ψ (iωk) +
�
1 − n

2

�
χ(iωk)

1 − n
2 + Ψ (iωk)

, (11)

and is therefore local in the limit of infinite dimensions.We show that to each order in theλ expansion,
Ψ (iωk) andχ(iωk) are each a product of an arbitrary number of factors, each ofwhich take on the form�

�p g(�p, iωp)�
m
�p , with m equal to zero or one, and with arbitrarily complex frequency dependence of

the individual factors.
We show that just as in the finite U case [10,11], the optical conductivity is given by the expression

σαβ(ω) = 2
iω

�

�p,iωp

G(�p, iωp)v
α
�p v

β
�p [G(�p, ω + iη + iωp) − G(�p, iη + iωp)], (12)

where vα
�p is the component of the velocity in the α direction (Eq. (39)). We show that this formula can

be applied at each order of the λ expansion.
We show that there is a self consistent mapping between the ECFL theory of the infinite-

dimensional t–J model and the ECFL theory of the infinite-U Anderson impurity model (AIM) [22].
This mapping is similar in spirit to themapping first discussed by Georges and Kotliar for the Hubbard
model [8], but is made directly in the infinite U limit here. In this mapping, gi,i[τi, τf ] and µi,i[τi, τf ]
of the t–J model are mapped to the objects g[τi, τf ] and µ[τi, τf ] of the Anderson model, written with
the same symbols, but without the spatial or momentum labels. This mapping is valid under the self-
consistency condition

�

�k
��kg(k) =

�

�k

|V�k|2
iωn − ���k

g(iωk), (13)

where ��k is the dispersion of the lattice in the t–J model, and V�k and ���k are the hybridization and
dispersion of the bath respectively in the Anderson impurity model. This self-consistency condition
is shown to be equivalent to the standard self-consistency condition from DMFT [8,9]. We also show
that the mapping holds to each order in λ under the same self-consistency condition. We note that
this implies that ECFL computations for the infinite-dimensional t–J model can be done with a DMFT-
like self-consistency loop involving ECFL computations for the AIM. However, since the λ expansion
provides integral equations which are relatively straightforward to solve numerically, this is not
necessary as the t–J model equations can be solved directly.

1.3. Outline of the paper

The paper is structured as follows. In Section 2, some basic facts about lattice sums in the limit
of large dimensions and the ECFL equations of motion as well as the λ expansion are reviewed.
Additionally, the spatial dependence of various standard and ECFL specific objects in the limit of large
dimensions is stated. Finally, we introduce a class of local functions denoted as class-L functions; these
turn out to play a central role in the ECFL in the limit of large dimensions. In Sections 3.1 and 3.2,
Eqs. (9) and (10) are proven in general and to each order in λ, and the locality of the Dyson–Mori self
energy is shown as a consequence. In Section 3.3, Eq. (12) is shown to hold in general and to each
order in λ. In Section 3.4, the ECFL self-consistent integral equations are derived to O(λ2) in the large-
d limit. Finally, in Section 4, the ECFL of the infinite dimensional t–J model is mapped onto the ECFL of
the infinite-U AIM under the self-consistency condition (Eq. (13)). This is done in general and to each
order in λ.
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2. Preliminaries

2.1. Spatial dependence of lattice sums in large d dimensions

We take the hopping to nearest neighbor sites on the d-dimensional hypercube. In this case, it is
well known [4] that tij → 1√

2d
t0 with t0 of O(1). We would like to exploit the smallness of individual

tij’s, these can only contribute (after multiplying with another like object), if one of the indices is
summed over the d-neighbors as in the simplest example

�
j t

2
ij = t20 . Extending this argument

further, for a pair of sites (i,m) located at a (Manhattanmetric) distance rim on the hypercube, suppose

there are two objectsWi,m and Vi,m who both have the dependence on rim : Vi,m;Wi,m ∼ O
�

1
(
√
d)

rim

�
.

Then it follows that

Wi,nVn,m ∼ O




1

�√
d
�rim



 . (14)

Here, and in the rest of the paper, bold and repeated indices are summed and/or integrated over. This
relation can be understood by first considering the case that the site n is on one of the shortest paths
between i and m. In this case, rin + rnm = rim proving the relation. If, n is a certain distance ro off of
a shortest path, then rin + rnm = rim + 2ro. This introduces an extra factor of 1

dro into the lattice sum
in Eq. (14). However, this factor is exactly cancelled by the dr0 choices for the site n. In this argument,
the number of shortest paths between i and m is taken to be O(1).

2.2. ECFL equations of motion and the λ expansion

The ECFL equations of motion for the finite dimensional t–J model can be found in Ref. [18]. There
is some freedom in how these equations arewritten because onemay add terms to themwhich vanish
identically in the exact solution, but play a non-trivial role when implementing approximations (such
as the λ expansion). We denote the version of these equations with no added terms the minimal
theory, and the version containing the added terms the symmetrized theory (since the added terms
make the resulting expressions symmetric in a certain sense). In Ref. [18], the ECFL equations ofmotion
for the symmetrized theory are derived, and the added terms required to go from the minimal theory
to the symmetrized theory are singled out. The ECFL equations for the minimal theory, which are the
ones used in this paper and in Ref. [23], can therefore be obtained from those in Ref. [18] by dropping
these extra terms.

Setting J → 0 (as discussed in Section 1.1), we write the minimal theory ECFL equations of motion
in expanded form:

g−1[i,m] = (µ − ∂τi − Vi)δ[i,m] + t[i,m] (1 − λγ [i])
+ λt[i, j] ξ ∗ · g[j,n] · Λ∗[n,m; i],

µ[i,m] = (1 − λγ [i])δ[i,m] − λt[i, j] ξ ∗ · g[j,n] · U∗[n,m; i],
(15)

where Vi ≡ Vi(τi) is the Bosonic Schwinger source function, and we have used the notation δ[i,m] =
δi,mδ(τi − τm) and t[i,m] = ti,mδ(τi − τm). These exact relations give the required objects g and µ in
terms of the vertex functions. Here we also note that the local (in space and time) Green’s function
γ [i], and the vertices Λ[n,m; i] and U[n,m; i], are defined as

γ [i] = µ(k)[n, i+] · g(k)[i,n]; Λ[n,m; i] = − δ

δVi
g−1[n,m];

U[n,m; i] = δ

δVi
µ[n,m],

(16)
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where we have used the notationM(k)
σ1,σ2

= σ1σ2Mσ̄2,σ̄1 to denote the time reversed matrixM(k) of an
arbitrary matrix M . These exact relations give the vertex functions in terms of the objects g and µ.
The vertices defined above (Λ and U) have four spin indices, those of the object being differentiated
and those of the source. For example, Uσ1σ2

σaσb [n,m; i] = δ

δV
σaσb
i

µσ1σ2 [n,m]. In Eq. (15), ξσaσb = σaσb,

and ∗ indicates that these spin indices should also be carried over (after being flipped) to the bottom
indices of the vertex, which is also marked with a ∗. The top indices of the vertex are given by the
usual matrix multiplication. An illustrative example is useful here: (ξ ∗ · g[j,n] · U∗[n,m; i])σ1σ2 =
σ1σagσa,σb [j,n] δ

δV
σ̄1 σ̄a
i

µσb,σ2 [n,m]. Finally, in order to ensure that the shift identities (Ref. [18]) are

satisfied, the substitution tij → tij + u0
2 δij is made, where u0 is the second chemical potential. For the

sake of clarity, this substitution will be ignored in the proofs given below, although they are easily
generalized to account for it. This generalization is discussed at the end of Section 3.1.

The λ expansion is obtained by expanding Eqs. (15) and (16) iteratively in the continuity parameter
λ. The λ = 0 limit of these equations is the free Fermi gas. Therefore, a direct expansion in λ will
lead to a series in λ in which each term is made up of the hopping tij and the free Fermi gas Green’s
function g0[i, f ]. As is the case in the Feynman series, this can be reorganized into a skeleton expansion
in which only the skeleton graphs are kept and g0[i, f ] → g[i, f ]. However, one can also obtain the
skeleton expansion directly by expanding Eqs. (15) and (16) in λ, but treating g[i, f ] as a zeroth order
(i.e. unexpanded) object in the expansion. This expansion is carried out to second order for the finite-
dimensional case in Ref. [18]. In doing this expansion, one must evaluate the functional derivative
δg
δV

. This is done with the help of the following useful formula which stems from the product rule for
functional derivatives:

δg[i,m]
δVr

= g[i, x] · Λ[x, y, r] · g[y,m]. (17)

This is an exact formula and will be used extensively in the arguments given below. Within the λ
expansion, the LHS is evaluated to a certain order in λ by taking the vertex Λ on the RHS to be of that
order in λ.

2.3. Leading order spatial dependence of various objects

All objects may be expanded in the inverse square root of the number of spatial dimensions d. The

lowest order term in the physical Green’s functionG[i, f ]must be at leastO
�

1
(
√
d)

rif

�
. Thismust be so

because it takes at least rif hops to get from the site i to the site f . Any terms that contribute to G[i, f ]
at higher order than O

�
1

(
√
d)

rif

�
are neglected in the large d limit. In a similar vein, the lowest order

term in g[i, f ], g−1[i, f ], µ[i, f ], Λ[i, f ; r], and U[i, f ; r] must be at least O
�

1
(
√
d)

rif

�
. Furthermore,

using the real space version of Eqs. (6) and (14), we see that any terms of higher order than this in
g[i, f ] and µ[i, f ] will result in a higher order term in G[i, f ] and may therefore be neglected as well.
Finally, using matrix inversion in the space–time indices, we see that higher order terms may also be
dropped from g−1[i, f ] as these will lead to higher order terms in g[i, f ], and using Eq. (15), higher
order terms may be dropped from Λ[i, f ; r], and U[i, f ; r] as these will lead to higher order terms in
g−1[i, f ] andµ[i, f ] respectively. In summary, in all objects:G[i, f ], g[i, f ], g−1[i, f ], µ[i, f ], Λ[i, f ; r],
and U[i, f ; r], terms of higher order than O

�
1

(
√
d)

rif

�
may be neglected in the large d limit.

We also note that the correlation function Παβ [i, f ] appearing in Eq. (40) must be at least O
�

1
drif

�
.

This is due to the fact that unlike the creation and destruction operators which appear in the Green’s
function, the current operators appearing in this correlation function conserve particle number.
Hence, one must hop from site i to site f and back, which takes 2× rif hops. Any terms that contribute
to Παβ [i, f ] at higher order than O

�
1

drif

�
are neglected in the large d limit.
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2.4. Class L functions

For the arguments given below, we need to define a class of localized functions, denoted as class L
functions. A class L function Li has three properties.

• (a) Li ∼ O
�

1
d0

�
.

• (b) Li is a function of only one site i, and an arbitrary number of time variables. Upon turning off
the sources, it becomes translationally invariant, but an arbitrary function of frequencies.

• (c) The V source derivative of Li is also localized:

δ

δVi
Lj = δijL�

i, (18)

with L�
i again a class-L function.

Our proofs deal with functions that turn out to be of this class. Iterating property (c), the following
equation must hold for any positive integer s.

δ

δVr1
· · · δ

δVrs
Li = δir1 . . . δirs

δ

δVi(τr1)
· · · δ

δVi(τrs)
Li. (19)

In the presence of the current source κ (Eq. (42)), class L functions acquire one additional property
(d): consider a typical contribution to Παβ [i, f ] (Eq. (44)) denoted by Oif

Oif = Wf ,x
δ

δκα
i

(Lx) Vx,f , (20)

where the functions Vx,f ,Wf ,x ∼ O
�

1
(
√
d)

rxf

�
. Then, neglecting terms of higher order than O

�
1

drif

�
in

Oif ,
�

i−f Oif → 0 as A → 0. Again iterating property (c) and using property (d), the following must
hold for any nonnegative integer s:

�

i−f

�
Wf ,x

δ

δκα
i

δ

δVx(τr1)
· · · δ

δVx(τrs)
(Lx) Vx,f

�

A→0
= 0. (21)

3. Limit of large dimensionality through the ECFL equations of motion

3.1. Simplification of the ECFL self energies

Weuse notation inwhichwe indicate spatial dependence by subscripts, so that g[i, j] → gi,j[τi, τj],
and recall that t[i, j] = ti,j δ(τi − τj), δ[i, j] = δi,j δ(τi − τj), δ[τi, τj] = δ(τi − τj) etc. After some
inspection of Eqs. (15) and (16) in the limit of high dimension, we make an Ansatz – to be proven
below – namely

g−1[i,m] = (µ − ∂τi − Vi) δ[i,m] + t[i,m] (1 − λγ [i]) − λ δi,m χi[τi, τm]
+ λ ti,m Ψi[τi, τm],

µ[i,m] = δ[i,m](1 − λγ [i]) + λ δi,m Ψi[τi, τm], (22)

whereΨi[τi, τm], χi[τi, τm], and γ [i] are class L functions. Wewill prove Eq. (22) by assuming that it is
true, and then showing that this assumption is consistent with the equations of motion (Eqs. (15) and
(16)). This argument will consist of a loop which begins with Eq. (22). Then, substituting this equation
into Eq. (16), we will derive a certain form for Λ, U, and γ . Finally, substituting these objects into
Eq. (15), and using simplifications which occur in the large d limit, we will complete the loop and
arrive back at Eq. (22).
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Substituting Eq. (22) into Eq. (16), we find that the vertices and γ [i] have the following form.

Λ[n,m; i] = δi,nδi,m Ai[τn, τm; τi] + δi,ntn,m Bi[τn, τm; τi],
U[n,m; i] = −δi,nδi,m Bi[τn, τm; τi],
γ [i] =

�
1 − λγ (k)[i]

�
g(k)[i, i] + λ Ψ

(k)
i [τj, τi]g(k)

ii [τi, τj],
(23)

where we defined two new functions:

Ai[τn, τm; τi] = δ[τi, τn]δ[τi, τm] 1 + λ
δ

δVi
χi[τn, τm],

Bi[τn, τm; τi] = λ δ[τn, τm] δ

δVi
γi[τn] − λ

δ

δVi
Ψi[τn, τm].

(24)

Here Ai and Bi are class L functions since they inherit this property from Ψi, χi, and γ [i] by functional
differentiation. Substituting Eq. (23) into Eq. (15) and comparing with Eq. (22),

χi[τi, τm] = −ti,j ξ ∗ · gj,i[τi, τn] · Ai,∗[τn, τm; τi],
Ψi[τi, τm] = ti,j ξ ∗ · gj,i[τi, τn] · Bi,∗[τn, τm; τi]. (25)

If we can now show that χi, Ψi, and γ [i] as defined in Eqs. (23) and (25) are Class L functions, we will
have justified our Ansatz and therefore we will have proven all of the above equations. To do this, we
must show that gii[τi, τm] and ti,j gj,i[τi, τm] are Class L functions. Taking their functional derivatives
we obtain:

δ

δVr
ti,j gj,i[τi, τm] = ti,jgj,r [τi, τk] Ar [τk, τl; τr ]gr,i[τl, τm]

+ ti,jgj,r [τi, τk] Br [τk, τl; τr ]tr,lgl,i[τl, τm], (26)

and
δ

δVr
gi,i[τi, τm] = gi,r [τi, τk] Ar [τk, τl; τr ]gr,i[τl, τm]

+ gi,r [τi, τk] Br [τk, τl; τr ]tr,lgl,i[τl, τm]. (27)

Using Eq. (14), the terms on the RHS of Eqs. (26) and (27) survive the large d limit if and only if r = i.
Moreover, uponmaking the substitution r → i, we see that theRHS ismadeupof the sameobjects that
appear on the LHS of the equations (as well as the class L functions A and B). Therefore, this argument
can be iterated to any number of derivatives acting on ti,j gj,i[τi, τm] or gi,i[τi, τm] (as required by
Eq. (19)), which are therefore class L functions. Thus, we have shown the self-consistency of our ansatz
Eq. (22).

The above results hold for any value of λ, since the proof was done with λ present in all of the
equations. In the bare expansion, this would imply that they also hold to each order in λ. However,
this line of reasoning is not as straightforward in the skeleton expansion because each order in the
skeleton expansion contains contributions from all orders in the bare expansion. Nonetheless, the
above results do hold to each order in λ in the skeleton expansion. In proving this, we shall shedmore
light on the nature of the objects Ψi, χi, γ [i], Ai, and Bi. In particular, we will show that they satisfy a
certain explicit form stated below in Eq. (28). We will do this using an inductive argument, in which
we will assume that they have this form through a certain order in λ, and then substituting this form
into the equations of motion, will show that it must hold for the next order.

We now use the symbol Ri as a proxy for either of the two functions gi,i[τn, τm] or ti,jgj,i[τn, τm]
where the time indices are arbitrary. Inductive hypothesis: through nth order in λ, Eqs. (22) and (23)
hold. Through n− 1st order in λ, the objects Ψi, χi, and γ [i], and through nth order, the objects Ai and
Bi, (all denoted below by the generic object Li) can be written as the following product (multiplied by
some delta functions in time variables):

(Li)(n) = λn(Ri)
m, (28)
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where m is arbitrary. We first examine the base case of zeroth order. In this case,

A(0)
i [τn, τm; τi] = δ[τi, τn]δ[τi, τm]; B(0)

i [τn, τm; τi] = 0. (29)

Clearly the hypothesis is satisfied. Now, we prove the inductive step. Explicitly displaying the order
in λ of all objects, the equations for χ , Ψ , and γ (Eqs. (25) and (23)) become

χ
(n)
i [τi, τm] = −ti,j ξ ∗ · gj,i[τi, τn] · A(n)

i,∗ [τn, τm; τi],
Ψ

(n)
i [τi, τm] = ti,j ξ ∗ · gj,i[τi, τn] · B(n)

i,∗ [τn, τm; τi],
γ (n)[i] = −λ γ (k)(n−1)[i]g(k)[i, i] + λ Ψ

(k)(n−1)
i [τj, τi]g(k)

ii [τi, τj].
(30)

By the inductive hypothesis, χ (n)
i , Ψ

(n)
i , and γ (n)[i] have the required form. The equations for A and B

(Eq. (24)) become

A(n+1)
i [τn, τm; τi] = λ

�
�

r≤n

δ

δVi
χ

(r)
i [τn, τm]

�(n)

,

B(n+1)
i [τn, τm; τi] = λ δ[τn, τm]

�
�

r≤n

δ

δVi
γ

(r)
i [τn]

�(n)

− λ

�
�

r≤n

δ

δVi
Ψ

(r)
i [τn, τm]

�(n)

.

(31)

To see that A(n+1) and B(n+1) have the required form we note that for all l ≤ n,
�

δ

δVr
ti,j gj,i[τi, τm]

�(l)

= ti,jgj,r [τi, τk] A(l)
r [τk, τl; τr ]gr,i[τl, τm]

+ ti,jgj,r [τi, τk] B(l)
r [τk, τl; τr ]tr,lgl,i[τl, τm], (32)

and
�

δ

δVr
gi,i[τi, τm]

�(l)

= gi,r [τi, τk] A(l)
r [τk, τl; τr ]gr,i[τl, τm]

+ gi,r [τi, τk] B(l)
r [τk, τl; τr ]tr,lgl,i[τl, τm]. (33)

In the limit of large dimensions, r → i. We can therefore (using the inductive hypothesis) write the
RHS of Eqs. (32) and (33) as λl(Ri)

m. Applying Eq. (28) (which has been shown to hold for χ
(n)
i , Ψ

(n)
i ,

and γ (n)[i]) to Eq. (31), we may write

A(n+1)
i =

n�

r=0

λr+1
�

δ

δVi
(Ri)

m
�(n−r)

,

B(n+1)
i =

n�

r=0

λr+1
�

δ

δVi
(Ri)

m
�(n−r)

.

(34)

Eq. (34), in conjunction with Eqs. (32) and (33), shows that A(n+1)
i and B(n+1)

i have the required form.
This completes the proof.

Since ti,j is independent of the source, the substitution ti,j → ti,j + u0
2 δi,j can be made directly into

all of the above equations. The only problem that could potentially arise involves Eqs. (26) and (27),
where the large d simplifications are actually used. However, one can check that this substitution does
not affect the simplifications. Therefore, this substitution merely adds the term λ u0

2 δi,mΨi[τi, τm] −
λ u0

2 δ[i,m]γ [i] to g−1[i,m], and everywhere replaces the local function ti,jgj,i[τn, τm] with the local
function ti,jgj,i[τn, τm]+ u0

2 gi,i[τn, τm]. This can be seen explicitly in the O(λ2) equations in Section 3.4,
and does not change the general structure of the solution.
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3.2. The zero source limit

Setting the sources to zero, the system becomes translationally invariant so that all objects can be
written in momentum space. Additionally, γ [i] → n

2 . Then, the above results can be summed up in
the following formulae (in which we set λ = 1):

g−1(k) = iωk + µ − εk

�
1 − n

2

�
− χ(iωk) − εkΨ (iωk),

µ(k) = 1 − n
2

+ Ψ (iωk), (35)

where Ψ (iωk) and χ(iωk) are the two momentum independent self-energies of the ECFL in infinite
dimensions. In terms of these self-energies, the physical Green’s function is written as

G(k) = 1 − n
2 + Ψ (iωk)

iωk + µ − εk
�
1 − n

2

�
− χ(iωk) − εkΨ (iωk)

. (36)

Comparing with the standard form of the Green’s function in terms of the Dyson–Mori self energy

G(k) = 1 − n
2

iωk + µ − �k
�
1 − n

2

�
− ΣDM(k)

, (37)

we see the momentum independence of the Dyson–Mori self energy ΣDM(k) = ΣDM(iωk), and

ΣDM(iωk) = (iωk + µ)Ψ (iωk) +
�
1 − n

2

�
χ(iωk)

1 − n
2 + Ψ (iωk)

. (38)

3.3. Conductivity in the limit of large dimensions

It is well known that for the finite-U Hubbard model in the limit of large dimensions, for zero
wave vector, vertex corrections can be neglected in the current–current correlation function [10,9].
This simple observation allows one to express the optical conductivity in terms of the single particle
Green’s function as in Eq. (50).We show that this is also the case for the infinite dimensional t–J model.
Moreover, a question of practical importance for the purpose of calculating the optical conductivity
within the framework of ECFL, is whether or not Eq. (50) can be applied at each order in the λ
expansion (as is done in Ref. [23]). We show that it can be applied and is the correct procedure. First,
we define the relevant objects.

The Schrödinger picture current operator for site j in the direction α is defined as follows:

Jαj = i
�

kσ

vα
k,jX

σ0
k X0σ

j ; vα
k,j = tk,j(�Rk − �Rj)α, (39)

so that v is a velocity. Using the notation Jα[i] = Jαi (τi);�Jα[i] = Jα[i]−�Jα[i]�, we define the correlation
function Παβ [i, f ] and its Fourier transform as

Παβ [i, f ] = �Tτ
�Jα[i]�Jβ [f ]�;

Παβ(�q, iΩn) =
� β

0
d(τi − τf ) eiΩn(τi−τf )

�

i−f

e−i�q·(�Ri−�Rf )Παβ [i, f ]. (40)

The optical conductivity can be given in terms of this object as

σαβ(ω) = 1
iω − η

�
Παβ(�0, ω + iη) − Παβ(�0, iη)

�
, (41)
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where η = 0+. We would like to express the object Παβ [i, f ] as a functional derivative of the Green’s
function. To this end, we add a source which couples to the current operator

A → A +
�

jα

� β

0
dτκα

j (τ )Jαj (τ ). (42)

In terms of the κ source derivative of the Green’s function, and using the definitions vα[i, j] =
vα
i,jδ(τi − τj); κα

i = κα
i (τi), Παβ [i, f ] is given as

Παβ [i, f ] = −i Tr
�

δ

δκα
i

G[f , j] vβ [j, f +]
�

A→0
, (43)

where the trace is over the spin degrees of freedom only. We expand the RHS of this equation using
Eq. (17) (which holds equally well for the κ source derivative), finally obtaining an expression for
Παβ [i, f ] in terms of the κ source derivatives of g−1 and µ.

Παβ [i, f ] = i Tr
�
g[f , x] δ

δκα
i
g−1[x, y] g[y, k]µ[k, j] vβ [j, f +]

�

A→0

− i Tr
�
g[f , k] δ

δκα
i

µ[k, j] vβ [j, f +]
�

A→0
. (44)

We now consider how the additional source Eq. (42) affects the ECFL equations ofmotion (Eqs. (15)
and (16)). The source enters into the equations of motion in the same way as the Hamiltonian does,
via its commutator with the destruction operator, X0σ

i . Moreover, the source has the same form as the
Hamiltonian, with the hopping in the kinetic energy replaced by the velocity in the current operator.
Therefore, the additional source affects the equations of motion only through the substitution

t[i, f ] → t[i, f ] − i
�

α

κα
f vα[i, f ]. (45)

Thus, the new equations of motion can be read off from Eq. (15) as

g−1[i,m] = (µ − ∂τi − Vi) δ[i,m] +
�

t[i,m] − i
�

α

κα
m vα[i,m]

�

× (1 − λγ [i]) + λ

�

t[i, j] − i
�

α

κα
j vα[i, j]

�

ξ ∗ · g[j,n] · Λ∗[n,m; i],

µ[i,m] = (1 − λγ [i])δ[i,m] − λ

�

t[i, j] − i
�

α

κα
j vα[i, j]

�

ξ ∗ · g[j,n] · U∗[n,m; i].

(46)

Since there is no source derivative with respect to κ in the equations of motion and vα[i, f ] is of the
same order in 1√

d
as t[i, f ], all of the results derived in Section 3.1 continue to hold after making the

substitution in Eq. (45). In particular, we showed that g−1[i,m] and µ[i,m] have the following form
(Eq. (22)):

g−1[i,m] = (µ − ∂τi − Vi) δ[i,m] − λ δi,m χi[τi, τm] +
�

t[i,m] − i
�

α

κα
m vα[i,m]

�

× (1 − λγ [i]) + λ

�

ti,m − i
�

α

κα
m vα

i,m

�

Ψi[τi, τm],

µ[i,m] = δ[i,m](1 − λγ [i]) + λ δi,m Ψi[τi, τm], (47)

where χi, Ψi, and γ [i] have properties (a)–(c) of class L functions (Section 2.4), and are defined by
Eqs. (22) through (25). We shall now further assume that they also satisfy property (d) (Eq. (21))
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and show that this assumption is consistent with their definitions. This, in turn, will allow us to
demonstrate the validity of Eq. (50).

Our task is then to show that χi, Ψi, and γ [i], as defined in the last line of Eqs. (23) and (25), satisfy
Eq. (21). By Eq. (24), Ai and Bi satisfy Eq. (21) since they inherit this property from χi, Ψi, and γ [i]. It
remains to show that gx,x[τn, τm] and (tx,j−i

�
α κα

j (τn)v
α
x,j) gj,x[τn, τm] (the time indices are arbitrary)

satisfy this equation.
Defining the notation wi,f (τi) ≡ ti,f − i

�
α κα

f (τi) vα
i,f , and using (the κ source derivative version

of) Eq. (17) as well as Eq. (47), we find that
�

δ

δκα
i

wx,j(τn) gj,x[τn, τm]
�

A→0
= −iδ[τi, τn]vα

x,i gi,x[τi, τm] + itx,jgj,a[τn, τa]

× (1 − λγ [a]δ[τa, τi] + λΨa[τa, τi])vα
a,igi,x[τi, τm]

+ λ tx,jgj,a[τn, τa]
δ

δκα
i

(γ [a]δ[τa, τb] − Ψa[τa, τb])

× ta,bgb,x[τb, τm] + λ tx,jgj,a[τn, τa]

× δ

δκα
i

(χa[τa, τb]) ga,x[τb, τm], (48)

where the RHS is also evaluated in the A → 0 limit. We now substitute this into Eq. (21) (with
s = 0). The last two terms must vanish by assumption (where a has taken the place of x). The first
term contains two paths from i to f , both via x. Hence, this term must vanish in the large d limit
unless x = i or x = f . The former also vanishes since vα

i,i = 0 while the latter must vanish due
to the sum over i − f and the odd parity of vα

i,f . The same reasoning applies to the second term
except that in this term the x = i case vanishes by the odd parity of vα

i,f . Hence, we have shown
that (tx,j − i

�
α κα

j (τn)v
α
x,j) gj,x[τn, τm] satisfies Eq. (21) with s = 0. A completely analogous argument

shows that this is also the case for gx,x[τn, τm]. Using Eqs. (26) and (27) (in particular the fact that the
RHS ismade up of the sameobjects as the LHS), the above argument can be used to show that the result
holds for any value of s. Thus, we have demonstrated the self-consistency of our ansatz (Eq. (21)).

Substituting Eq. (47) into Eq. (44), and using Eq. (21), we find that
�

i−f

Παβ [i, f ] =
�

i−f

Tr
�
G[f , k]vα[k, i]G[i, j] vβ [j, f +]

�
A→0 . (49)

Substituting this equation into Eq. (41), the optical conductivity may be expressed as

σαβ(ω) = 2
iω

�

�p,iωp

G(�p, iωp)v
α
�p v

β
�p [G(�p, ω + iη + iωp) − G(�p, iη + iωp)]. (50)

We now want to prove that this result holds to each order in λ. We do this via an inductive

argument, in which we assume that through nth order in λ,
�

δ
δκα

i
Lx

�(n)

A→0
(where Li can be Ψi, χi, or

γ [i]) satisfies a certain explicit form (Eq. (51)), and then show that this formholds for n+1st order.We

then plug Eq. (47) into
�

i−f Παβ [i, f ] (Eq. (44)), and use the explicit form of
�

δ
δκα

i
Lx

�(n)

A→0
to simplify

the resulting expressions, thereby proving Eqs. (49) and (50) to each order in λ.
For the reason given below (Eq. (46)), we are free to use any of the results from Section 3.1, after

making the substitution in Eq. (45).Wedefine Xi to be a product of local functions of the type in Eq. (28)
(i.e. Xi = (Ri)

m) and Yi,f to be a proxy for either gi,f [τn, τm] or ti,jgj,f [τn, τm] where the time indices are
again arbitrary. Inductive hypothesis: through nth order in λ, the κ source derivative of the objects
Ψi, χi, and γ [i] (denoted below by the generic symbol Li) can be written as

�
δ

δκα
i
Lx

�(n)

A→0
= λn XxYx,x1Xx1Yx1,x2Xx2 . . . Xxm−1Yxm−1,xmXxm

× vα
xm,i Yi,xm−1Xxm−1 . . . Xx1Yx1,xXx, (51)
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where the numberm is arbitrary. In the base case of zeroth order, the objects Ψi, χi, and γ [i] are

Ψ
(0)
i [τi, τm] = 0; γ (0)[i] = g(k)[i, i];

χ
(0)
i [τi, τm] = −

�

ti,j − i
�

α

κα
j (τi)v

α
ij

�

ξ ∗ · gj,i[τi, τi]δ[τi, τm].
(52)

We note that
�

δ
δκα

i
wx,j(τn) gj,x[τn, τm]

�(l)

A→0
is given by Eq. (48) with the appropriate objects on the

RHS evaluated to the appropriate order in λ. An analogous formula holds for
�

δ
δκα

i
gx,x[τn, τm]

�(l)

A→0
.

Using these formulas with l = 0 shows that the hypothesis is satisfied for the base case.
We now prove the inductive step. Eq. (28) continues to hold with ti,j → wi,j(τn) (the time index is

again arbitrary). Therefore, using the notation�Ri = [Ri]ti,j→wi,j(τn), we may write

�
δ

δκα
i
Lx

�(n+1)

A→0
=

n+1�

r=0

λr
�

δ

δκα
i

(�Rx)
m
�(n+1−r)

A→0
. (53)

Substituting the formulas for
�

δ
δκα

i
wx,j(τn) gj,x[τn, τm]

�(l)

A→0
and

�
δ

δκα
i
gx,x[τn, τm]

�(l)

A→0
(Eq. (48)) for

l ≤ n + 1 into Eq. (53), and using the inductive hypothesis, shows that
�

δ
δκα

i
Ψx

�(n+1)

A→0
,
�

δ
δκα

i
χx

�(n+1)

A→0
,

and
�

δ
δκα

i
γ [x]

�(n+1)

A→0
all have the desired form (Eq. (51)). Thus, Eq. (51) holds to all orders in λ.

Substituting Eq. (47) into
�

i−f Παβ [i, f ] (Eq. (44)), and using Eq. (51), the only non vanishing terms
are those which involve a derivative of the explicit factor (tx,y − i

�
α κα

y vα
x,y) from Eq. (47). The other

terms vanish due to the following reasoning. Upon substituting Eq. (51), in each of these terms there
are two paths from i to f , both of which pass through the point x as well as the points x1 . . . xm−1 in
Eq. (51). Hence, in the large d limit, all of these points must be chosen to be either i or f for these terms
to be non vanishing. Then, if we choose xm−1 = i, the term vanishes due to parity, while if we choose
xm−1 = f , the term vanishes due to parity combinedwith the sum

�
i−f . Therefore, aftermaking these

simplifications, we find that Eq. (49) and consequently Eq. (50) hold to each order in λ.

3.4. O
�
λ2

�
theory in the limit of large dimensions

To obtain self-consistent integral equations to any order in λ for the objects g−1[i, f ] and µ[i, f ],
we expand Eqs. (22) through (25) iteratively in λ, and set the sources to zero. Once the sources are set
to zero, the system becomes translationally invariant in both space and time and we may express the
equations in momentum/frequency space. Using the definitions

gloc,m(iωk) ≡
�

�k
g(k)�m

�k , (54)

Im1m2m3(iωk) ≡ −
�

ωp,ωq

gloc,m1(iωq)gloc,m2(iωp)gloc,m3(iωq + iωp − iωk), (55)

the resulting equations to O
�
λ2

�
are

aG ≡ 1 − λ
n
2

+ λ2 n
2

4
, (56)

g−1(k) = iωk + µ� − aG

�
εk − u0

2

�
− λ

�
��k − u0

2

�
Ψ (iωk) − λχ(iωk), (57)

µ(iωk) = aG + λΨ (iωk), (58)
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µ� = µ − u0

�
λ
n
2

− λ2 n
2

8

�
+ λ

�

p
εpg(p) − aG

u0

2
, (59)

Ψ (iωk) = −λu0I000(iωk) + 2λI010(iωk), (60)

χ(iωk) = −u0

2
Ψ (iωk) − u0λI001(iωk) + 2λI011(iωk). (61)

Before solving the equations, one must set λ = 1. The two Lagrange multipliers µ and u0 are
determined by the two sum rules:

�

k

g(k) = n
2
;

�

k

G(k) = n
2
. (62)

The objects gloc,m(iωk) are given by an appropriate integral over the non-interacting density of states of
a function composed of the two self energiesχ(iωk) andΨ (iωk) and the energy � (Eq. (57)). Therefore,
these constitute a self-consistent set of equations for the two self energies. These equations have been
solved numerically and compared to DMFT calculations in Ref. [23].

4. Anderson model

A word is needed at this point on the notation used, since similar looking symbols represent
quite different objects in the t–J model and the AIM. We use the functions G({τj}), g({τj}), µ({τj}) or
G({iωj}), g({iωj}), µ({iωj}) and the related vertex functions for the impurity site of theAIMaswell, but
distinguish them from the t–J model variables by dropping the spatial ormomentum labels. Therefore
in an equation such as Eq. (88), the object on the left (right) hand side corresponds to the t–J model
(AIM).

4.1. Equations of motion for the Anderson model

In DMFT [8,9], the local Green’s function of the infinite-dimensional finite-U Hubbard model is
mapped onto the impurity Green’s function of the finite-U AIM, with a self-consistently determined
set of parameters. Using the ECFL equations of motion for both models, we show that the same
mapping can be made between the infinite-dimensional t–J model and the infinite-U AIM. Further,
we show that this mapping also extends to the auxiliary Green’s function g, and the caparison factor
µ individually. In this section, we briefly review the ECFL theory of the AIM [22], and we establish the
mapping in the following section.

Consider the AIM in the limit U → ∞ which has the following Hamiltonian:

H =
�

σ

�dXσσ +
�

kσ

��knkσ +
�

kσ

(Vk Xσ0 ckσ + V ∗
k cĎkσ X0σ ), (63)

where we have set the Fermi energy of the conduction electrons to be zero. The impurity Green’s
function is given by the following expression:

Gσiσf [τi, τf ] = −�� X0σi(τi) Xσf 0(τf )��. (64)

The ECFL solution of the Anderson model is presented in Ref. [22]. The impurity Green’s function is
factored into the auxiliary Green’s function and the caparison factor:

G[τi, τf ] = g[τi, τj] · µ[τj, τf ]. (65)

The equations of motion for g and µ can be written as

(∂τi + �d + V(τi))g[τi, τf ] = −δ(τi − τf ) − (1 − λγ [τi]) · ∆[τi, τj] · g[τj, τf ]
− λ ξ ∗∆[τi, τj] · g[τj, τx] · Λ∗[τx, τy; τi] · g[τy, τf ], (66)

µ[τi, τf ] = δ(τi − τf )(1 − λγ [τi]) + λ ξ ∗ · ∆[τi, τj] · g[τj, τx] · U∗[τx, τf ; τi], (67)
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where the conduction band enters through the (V independent) function

∆[τi, τf ] = −1

�

k

|Vk|2(∂τi +��k)−1δ(τi − τf ). (68)

We have also made use of the following definitions:

Λ[τn, τm; τi] = − δ

δV(τi)
g−1[τn, τm]; U[τn, τm; τi] = δ

δV(τi)
µ[τn, τm];

γ [τi] = µ(k)[τn, τ+
i ] · g(k)[τi, τn].

(69)

4.2. Mapping of the t–J model onto the Anderson model in infinite dimensions

Now let us consider the t–J model in the limit of infinite dimensions. Inverting Eq. (15), the
equations of motion for gi,i[τi, τf ] and µi,i[τi, τf ] are

(∂τi − µ + Vi(τi)) gi,i[τi, τf ] = −δ(τi − τf ) + (1 − λγ [i]) · ti,j gj,i[τi, τf ]
+ λ ti,j ξ ∗ · gj,i[τi, τx] · Ai,∗[τx, τy; τi] · gi,i[τy, τf ]
+ λ ti,j ξ ∗ · gj,i[τi, τx] · Bi,∗[τx, τy; τi] · ti,y gy,i[τy, τf ], (70)

µi,i[τi, τf ] = (1 − λγ [i])δ(τi − τf ) + λ ti,j ξ ∗ · gj,i[τi, τx] · Bi,∗[τx, τf ; τi]. (71)

By mapping gi,i[τi, τf ] and µi,i[τi, τf ] onto g[τi, τf ] and µ[τi, τf ] of the AIM, we would like to show
that the equations of motion of the AIM (Eqs. (66) and (67)) and those of the infinite dimensional t–J
model (Eqs. (70) and (71))map onto each other. To do this, we need the analog of the object g−1[τi, τf ]
of the AIM in the t–J model. We denote this new object by g−1

loc,i[τi, τf ] and define it to be the temporal
inverse of the local auxiliary Green’s function:

gi,i[τi, τj] · g−1
loc,i[τj, τf ] = δ(τi − τf ). (72)

Note that g−1
loc,i[τi, τf ] �= g−1

i,i [τi, τf ]. We also define the corresponding vertex:

Λloc,i[τn, τm; τi] = − δ

δVi(τi)
g−1
loc,i[τn, τm]. (73)

We now make use of the following identity:

Λloc,i[τx, τy; τi] · gi,i[τy, τf ] = Ai[τx, τy; τi] · gi,i[τy, τf ] + Bi[τx, τy; τi] · ti,y gy,i[τy, τf ]. (74)

This identity is easily proven by considering δ
δVi(τi)

gi,i[τx, τf ]:

δ

δVi(τi)
gi,i[τx, τf ] = gi,i[τx, τj]Λloc,i[τj, τy; τi]gi,i[τy, τf ]. (75)

The LHS can also be expressed as

δ

δVi(τi)
gi,i[τx, τf ] = gi,i[τx, τj] · (Ai[τj, τy; τi] · gi,i[τy, τf ]

+ Bi[τj, τy; τi] · ti,y gy,i[τy, τf ]). (76)

Left multiplying the above 2 equations by g−1
loc,i, we recover the identity Eq. (74). Substituting this

identity into Eq. (70), we obtain

(∂τi − µ + Vi(τi))gi,i[τi, τf ] = −δ(τi − τf ) + (1 − λγ [i]) · ti,jgj,i[τi, τf ]
+ λ ti,j ξ ∗ · gj,i[τi, τx] · Λloc,i∗[τx, τy; τi] · gi,i[τy, τf ]. (77)
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Weare now ready tomap the t–J model onto the Andersonmodel. To do this, wemap the local objects
gi,i[τi, τf ] and µi,i[τi, τf ] of the t–J model to the objects g[τi, τf ] and µ[τi, τf ] of the Anderson model.
We also map µ to −�d. The following mappings also follow as a consequence of these.

γ [i] → γ [τi]; Λloc,i[τn, τm; τi] → Λ[τn, τm; τi];
Bi[τn, τm; τi] → −U[τn, τm; τi].

(78)

Comparing Eq. (77) with Eq. (66) and Eq. (71) with Eq. (67), we see that the equations of motion map
onto each other if the following constraint is satisfied:

ti,j gj,i[τi, τf ] = −∆[τi, τj] · g[τj, τf ]. (79)

4.3. Mapping to each order in λ

The O(λ2) equations for the infinite-dimensional t–J model and infinite-U AIM are solved
numerically in Ref. [23] and Ref. [22] respectively. This can in principle be done to higher orders in
λ as well, and it is therefore interesting to know if the mapping from the previous section holds to
each order in λ. We show that it does, and give a simple prescription for obtaining the ECFL integral
equations for one model from those of the other one (Eq. (83)).

We review the λ expansion for the Anderson model from Ref. [22]. There, Eqs. (66) and (67) are
written as

g−1[τi, τf ] = −(∂τi + �d + V(τi))δ(τi − τf ) − (1 − λγ [τi]) · ∆[τi, τf ]
− λξ ∗∆[τi, τj] · g[τj, τx] · Λ∗[τx, τf ; τi], (80)

µ[τi, τf ] = δ(τi − τf )(1 − λγ [τi]) + λξ ∗ · ∆[τi, τj] · g[τj, τx] · U∗[τx, τf ; τi]. (81)

The λ expansion is obtained in the same way as for the t–J model, by iterating the equations in g−1

andµ and keeping track of explicit powers of λ. The details toO(λ2) can be found in Ref. [22]. To relate
this to the λ expansion for the infinite-dimensional t–J model, recall from Eq. (28) that to each order
in λ, Ψi, χi, γ [i], Ai, and Bi can be written as a product of the functions gi,i[τn, τm] and ti,jgj,i[τn, τm].
We can now state our inductive hypothesis: through nth order in λ, the λ expansion for the Anderson
model has the form

g−1[τi, τm] = −(∂τi + �d + V(τi)) δ[τi, τm] − λ χ[τi, τm]
− (1 − λγ [τi])∆[τi, τm] − λ Ψ [τi, τj]∆[τj, τm],

µ[τi, τm] = δ[τi, τm](1 − λγ [τi]) + λΨ [τi, τm],
Λ[τn, τm; τi] = A[τn, τm; τi] − B[τn, τj; τi]∆[τj, τm],
U[τn, τm; τi] = −B[τn, τm; τi], (82)

where through nth order in λ, the objects A[τn, τm; τi] and B[τn, τm; τi], and through n−1st order in λ,
the objects γ [τi], χ[τi, τm], and Ψ [τi, τm], can be obtained from their infinite dimensional t–J model
counterparts via the substitution

gi,i[τn, τm] → g[τn, τm]; µ → −�d; ti,jgji[τn, τm] → −∆[τn, τj] · g[τj, τm]. (83)

We first examine the base case of zeroth order:

A(0)[τn, τm; τi] = δ[τi, τn]δ[τi, τm]; B(0)[τn, τm; τi] = 0. (84)

Comparing with Eq. (29), the hypothesis clearly holds. We now prove the inductive step. Eq. (69)
together with Eqs. (80) through (82) implies the following:

χ (n)[τn, τm] = ξ ∗∆[τn, τj] · g[τj, τx] · A(n)
∗ [τx, τm; τn],

Ψ (n)[τn, τm] = −ξ ∗∆[τn, τj] · g[τj, τx] · B(n)
∗ [τx, τm; τn],

A(n+1)[τn, τm; τi] = λ

�
δ

δV(τi)
χ [τn, τm]

�(n)

,
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B(n+1)[τn, τm; τi] = λ δ[τn, τm]
�

δ

δV(τi)
γ [τn]

�(n)

− λ

�
δ

δV(τi)
Ψ [τn, τm]

�(n)

,

γ (n)[τi] = −λ γ (k)(n−1)[τi]g(k)[τi, τi] + λ Ψ (k)(n−1)[τj, τi]g(k)[τi, τj]. (85)

Comparingwith Eq. (30), we see thatχ (n)[τn, τm], Ψ (n)[τn, τm], and γ (n)[τi] have the desired form.We
also note that

�
δ

δV(τr)
g[τi, τm]

�(l)

= g[τi, τx](A(l)[τx, τy; τr ] − B(l)[τx, τj; τr ]∆[τj, τy])g[τy, τm]. (86)

Comparing this with Eqs. (26) and (27), we see that by the inductive hypothesis, the mapping Eq. (83)
continues to hold through order l ≤ n even after both sides have been acted on with a functional
derivative. Furthermore, in evaluating A(n+1)[τn, τm; τi] and B(n+1)[τn, τm; τi] using Eq. (85), we will
at most need to set l = n in Eq. (86). Finally, comparing Eq. (85) with Eq. (31), we see that
A(n+1)[τn, τm; τi] and B(n+1)[τn, τm; τi] have the desired form. Thus, we have proven our inductive
hypothesis.

Setting the sources to zero, and Fourier transforming Eq. (82), we may write (λ → 1, γ [τi] →
nd
2 ≡ n

2 )

g−1(iωk) = iωk − �d −
�
1 − n

2

�
∆(iωk) − χ(iωk) − ∆(iωk)Ψ (iωk),

µ(iωk) = 1 − n
2

+ Ψ (iωk). (87)

Comparing with Eq. (35), it immediately follows that under themapping Eq. (83),µi,i(iωk) → µ(iωk).
Furthermore, multiplying both sides of the equation for g−1(k) by g(k), summing over �k, and using
the mapping Eq. (83), it follows that gi,i(iωk) → g(iωk). Therefore, the ECFL solution of the infinite
dimensional t–J model maps onto the ECFL solution of the AIM to each order in λ as long as the
following self-consistency condition is satisfied:

�

�k
��kg(k) =

�

�k

|V�k|2
iωn − ���k

g(iωk). (88)

This mapping and self-consistency condition can be understood by referring back to DMFT. In
DMFT [9], the physical Green’s function Gi,f (iωk) is determined for any separation of i and f by the
local Green’s function Gi,i(iωk) or equivalently the local self energy Σ(iωk). The impurity Green’s
function of the Anderson model G(iωk) can be set equal to Gi,i(iωk) as long as �εk and Vk satisfy a
self-consistency condition relating them to G(iωk) (see Eqs. (13) and (15) of Ref. [9]). In the ECFL
mapping, the auxiliary Green’s function gi,f (iωk) is determined for any separation of i and f by the
local auxiliary Green’s function gi,i(iωk) and by the local caparison factor µi,i(iωk), or equivalently by
the two local self energiesΨ (iωk) andχ(iωk).µi,f (iωk) is itself local and related simply toΨ (iωk). The
impurity auxiliary Green’s function of the Anderson model g(iωk) can be set equal to gi,i(iωk) and the
caparison factor of the Anderson model µ(iωk) set equal to µi,i(iωk) as long as �εk and Vk satisfy the
self-consistency condition (Eq. (88)). We now show that Eq. (88) can be put into the form of Eqs. (13)
and (15) of Ref. [9]. Using Eq. (35) the LHS can be written as

�

�k
��kg(k) = −1

1 − n
2 + Ψ (iωk)

[1 − (iωk + µ − χ(iωk))g(iωk)]. (89)

Using Eqs. (2), (5), (35), (38) and the relation G(iωk) = g(iωk) · µ(iωk), the above equation becomes

ΣD(iωk) + 1
G(iωk)

− (iωk + µ) = −
�

�k
��kg(k)

1
g(iωk)

. (90)

Substituting Eq. (88) into the RHS of the above equation, we recover Eqs. (13) and (15) from Ref. [9].
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5. Conclusion

In this work we provide a detailed analysis of the simplifications arising from the large
dimensionality limit of the t–J model, and have given the first few terms in the λ series that leads
to practically usable results. It is clear that the formal result of a local Dysonian self energy is already
implied by the large d results for the Hubbardmodel reviewed in Ref. [9], if we take the limit of infinite
U; that is indeed another description of themodel studied here. However it must be kept inmind that
the present calculation starts with the infinite U limit already taken, and thus provides a non trivial
check on the uniqueness of the limit of U → ∞ and d → ∞, i.e. its independence on the order of
these two limits. Also the present work uses the novel ECFL methodology that rests on a different set
of tools from the ones usually used to study the Hubbard model and its large dimensional limit. We
use the Schwinger equations of motion, as opposed to the usual Feynman–Wick theory, and we have
obtained analytical results that do not rely on Wick’s theorem.

Summarizing, we have considered the ECFL theory for the t–J model (J = 0) by establishing the
simplifications that arise in the equations of motion in the limit of large dimensions. The auxiliary
Green’s function g(k) and the caparison factor µ(k) can be written in terms of two local self energies
Ψ (iωk) and χ(iωk) as in Eq. (35). This insight into the structural form of the physical Green’s function
G(k) has been used in a concurrent publication (Ref. [23]), to benchmark and compare the ECFL and
DMFT calculations. The ECFL integral equations in the large d limit, derived here to O(λ2), have been
solvednumerically in Ref. [23], and their solution compares favorablywithDMFT results. It can be seen
explicitly from these equations that Eq. (35) holds to secondorder inλ, withΨ (iωk) andχ(iωk)written
as a product of the functions gloc,m(iωk) (Eq. (54)) with m = 0 or m = 1. This continues to hold to
each order in λ. We have analyzed the optical conductivity and have shown that it is given by Eq. (50)
in general and to each order in λ. We have separately also studied the ECFL theory of the infinite-U
AIM[22], and have shown that there is a mapping between the ECFL of the infinite dimensional t–J
model and the ECFL of the AIM with a self-consistently determined set of parameters (Eq. (88)). This
mapping holds to each order in λ and there is a simple prescription for obtaining the ECFL integral
equations for one model from those of the other (Eq. (83)).

In conclusion this work provides a solid foundation for the study of the t–J model, and in particular
for the ECFL formalism, in the limit of infinite dimensions, by providing exact statements about the
k dependence of self energies, the absence of vertex corrections in computing the conductivity and
finally in yielding a systematic expansion in the parameter λ that enables a quantitative comparison
with other methods as in Ref. [23].
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The t–J model is studied using a novel and rigorous mapping of
the Gutzwiller projected electrons, in terms of canonical electrons.
The mapping has considerable similarity to the Dyson–Maleev
transformation relating spin operators to canonical Bosons. This
representation gives rise to a non Hermitian quantum theory,
characterized by minimal redundancies. A path integral represen-
tation of the canonical theory is given. Using it, the salient results of
the extremely correlated Fermi liquid (ECFL) theory, including the
previously found Schwinger equations of motion, are easily red-
erived. Further, a transparent physical interpretation of the pre-
viously introduced auxiliary Greens function and the ‘caparison
factor’, is obtained.

The low energy electron spectral function in this theory, with
a strong intrinsic asymmetry, is summarized in terms of a few ex-
pansion coefficients. These include an important emergent energy
scale ⇥0 that shrinks to zero on approaching the insulating state,
thereby making it difficult to access the underlying very low en-
ergy Fermi liquid behavior. The scaled low frequency ECFL spectral
function, related simply to the Fano line shape, has a peculiar en-
ergy dependence unlike that of a Lorentzian. The resulting energy
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dispersion obtained bymaximization is a hybrid of a massive and a

massless Dirac spectrum E⇤Q � ⌦ Q �
q

� 2
0 + Q 2, where the van-

ishing of Q , a momentum type variable, locates the kinkminimum.
Therefore the quasiparticle velocity interpolates between (⌦ ⌅ 1)
over a width �0 on the two sides of Q = 0, implying a kink there
that strongly resembles a prominent low energy feature seen in an-
gle resolved photoemission spectra (ARPES) of cuprate materials.
We also propose novel ways of analyzing the ARPES data to isolate
the predicted asymmetry between particle and hole excitations.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The intensely studied t–J model is often regarded as the effective low energy Hamiltonian for
describing several observed phenomena in cuprate superconductors [1]. Here the U ↵⌘ limit
is presupposed, and hence the Hilbert space is restricted to a maximum of single occupancy at
each site, i.e. Gutzwiller projected [2]. A few words on the choice of the t–J model are relevant
here. The implied infinite U limit eliminates high energy (U scale) electronic states, known as the
upper Hubbard band states. The residual low energy (. 100 meV scale) excitations are probed by
sensitive spectroscopies and transport phenomena, making the t–J model suitable for our task. At
reasonably highU , say comparable to the bandwidth in aHubbardmodel, this elimination of the upper
Hubbard band must already occur in part. Therefore the limit U ↵⌘ must be regarded as a useful
mathematical idealization of the very strong, or extreme correlation phenomenon. The resulting
Gutzwiller projected electron operators, denoted byHubbard’s convenient notation of X operators [3],
are rendered non canonical. The non-canonical nature of the electrons precludes the Wick’s theorem
underlying the Feynman diagram approach, whereby leading to the fundamental difficulty of
the t–J model, namely the impossibility of a straightforward Feynman type perturbative expansion.
This situation leads to enormous calculational difficulties, so that systematic and controlled analytical
calculations with this model have been very difficult.

In a series of recent papers [4,6–8,5,9,10], we have shown that it is possible to overcome some
of these difficulties by using alternate methods based on Schwinger’s treatment of field theory with
time dependent potentials. This idea yields exact equations ofmotion for the electronGreens function.
These equations have the nature of functional differential equations, and provide a powerful launching
pad for various approximations. The specific approximation pursued is a systematic expansions in
a parameter ✏ related to double occupancy. Using this we have presented an analytical theory of
the normal state of the t–J model termed the extremely correlated Fermi liquid (ECFL) theory. An
interesting feature of the theory is that we find a non-Dysonian representation of the projected
electron Greens function. This is a significant structural departure from the usual field theories, and
arises in a most natural fashion. The Greens function is determined by a pair of self energies, denoted
by⇧(�k, i⇠n) and ⌃ (�k, i⇠n), instead of the standard Dyson self energy⌅(�k, i⇠n) (see Eq. (21) below).
The latter can be reconstructed from the pair by a simple inversion. Startingwith rather simple pairs of
self energies, it is found that non trivial complexity is introduced into the Dyson self energy through
this inversion process. Explicit self consistent calculations in parameter ✏ have been carried out to
O(✏2) so far, and yield reliable results for electron densities 0 ⌃ n . .7. The detailed dynamical results
of the ECFL theory have been benchmarked against independent theories in overlapping domains;
e.g. against high temperature series results in Ref. [11]. The ECFL theory has been shown to have
a momentum independent Dyson self energy in the limit of infinite dimensions [10]. This enables
benchmarking against the dynamical mean field theory (DMFT) in Ref. [9]. Importantly, the results
from the ECFL theory for the spectral function compare well with a large U Hubbard model solved
by the DMFT method, and not just infinite U . The ECFL theory has also been benchmarked in Ref.
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[12] against the exact solution of the asymmetric U = ⌘ Anderson impurity model, obtained
from the numerical renormalization group study of Krishnamurthy, Wilson and Wilkins [13]. In
addition, a detailed comparison between the data on cuprate superconductors at optimal filling and
the theoretical photoemission spectral lines of the ECFL theory has been carried out in Refs. [14,15],
where excellent agreement is found. In all cases studied, the comparisons with ECFL are good, and
seem to indicate the utility of this approach.

The ECFL formalismcould initially seemsomewhat unfamiliar, in viewof its reliance on the analysis
of the Schwinger equations ofmotion. This analysiswas originally used to derive themain constituents
of the theory, namely the auxiliary Greens function and the two self energies (detailed below). This
type of analysis is somewhat removed from the toolkit of ‘‘standard’’ many body physics courses, and
hence might obstruct a ready visualization of these objects. One goal of the present work is to show
that these results are (A) minimal, i.e. having least redundancy, and (B) available more transparently.
The latter follows from an important and novel hat removal theorem, leading to a compact mapping of
the Hubbard operators to canonical Fermions. The mapping is given in Eq. (1) and described further
in Section 3.2, leading to a path integral formulation (Section 7). It is possible that such a simplified
presentation could lead to improved strategies for devising approximate methods, especially close to
the insulating state.

This method rests on an exact replacement rule for the Hubbard X operators in terms of the
canonical Fermi operators

X0◆
i ↵ Ci◆ , X◆0

i ↵ CÑ
i◆ (1� Ni◆̄ ), X◆◆ ⇣

i ↵ CÑ
i◆Ci◆ ⇣ . (1)

This replacement rule is shown to be exact when ‘‘right-operating’’ on states which satisfy the
Gutzwiller constraint. This replacement is similar in spirit to the Dyson–Maleev representation [16,
17], where spin operators are expressed in terms of canonical Bosonic operators. With the advantage
of this representation, most steps in the ECFL theory, such as the factorization of the Greens function
into an auxiliary Greens function, the two self energies and the caparison function (see Eqs. (18), (19)
and (21)) becomes very intuitive.

The analogy can be pushed further to establish a parallel between the ✏ parameter of the ECFL
theory, and the small parameter of the Dyson–Maleev [16,17] theory, namely the inverse spin 1

2s .
Finally we are able to make contact with the illuminating work of Harris, Kumar, Halperin and
Hohenberg [18]. In a detailed work these authors computed the Greens function of the spins for two
sublattice antiferromagnet using theDyson–Maleev schemeand extracted the lifetimeof themagnons
of the theory. We find that their calculation contains the precise Bosonic counterparts of the auxiliary
Greens function and the second self energy ⌃ defining the ‘‘caparison function’’ of the ECFL theory
(see Eqs. (18), (19) and (21)). Unlike the spin problem with variable number of excitations, the t–J
model has a fixed number of particles. Hence there are significant new elements in the ECFL theory
involving the imposition of the Luttinger–Ward volume theorem, as discussed later.

A few comments on the canonical description of the equations of motion are appropriate. The
general problem is to represent a time evolution of a state of the t–J model

[⌫]⇣final = Q ⇣M . . .Q ⇣2.Q
⇣
1.[⌫]⇣initial, (2)

where the primed states and operators are in the t–J model Hilbert space defined with the three
allowed states at each site as usual (see Section 2.1 for details). The operators Q ⇣j may be thought of
as the exponential of the t–J Hamiltonian: Q ⇣j � e�itjHtJ written in terms of the projected operators.
Since the algebra of the projected electrons is very inconvenient, one seeks a reframing of the problem
into a canonical space. This involves mapping the states, the Hamiltonian and all other operators of
the original theory, into the unconstrained Hilbert space of two Fermions at each site. This canonical
space is of course described by the usual Fermi operators Cj�, Cj� and their adjoints. This gives us an
enlarged spacewith four states per site, with one redundant state corresponding to double occupancy,
eliminated using Gutzwiller projection. There are various possibilities for doing this elimination
leading to the different theories in literature. This includes the popular slave Boson or slave Fermion
technique [19–21], where additional degrees of freedom, over and above the already enlarged 4
dimensional local state space, are introduced and finally eliminated as best as possible. This handling
of the redundancy leads to gauge theories for the t–J model that are reviewed in Ref. [21].
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In the enlarged state space let us block diagonalize the state space into physical and unphysical
states and write the projection operator as

[⌫] =


⌫ph

⌫un

�

; P̂G =


1
ph 0
0 0

�

, (3)

where 1ph is the identity operator in the physical space. The relevant operators in the theoryQj e.g. the
Hamiltonian, the creation operators or the destruction operators, are now written in terms of the
canonical Fermions:

Qj =


Qpp
j Q pu

j
Q up
j Q uu

j

�

. (4)

The next goal of the construction is to ensure that a state resulting from the application of a sequence
of operators on a projected state remains in the projected space, i.e.

[⌫]final = QM . . .Q2.Q1.P̂G.[⌫]initial, (5)

and [⌫]final = P̂G.[⌫]final. If this condition is not ensured, the projector has to be introduced at all
intermediate time slices, thus making the calculations intractable. A sufficiency condition for this is
the commutation [Qj, P̂G] = 0 for all j. The slave Boson–Fermion technique uses the conservation
of the Gutzwiller constraint by writing a suitable version of the Hamiltonian. This enables the use
of a time independent Lagrange multiplier, as demonstrated in the work of Read and Newns [20]. In
Section 3.1, we display a compact Hermitian representation that also achieves this, without however
adding further states (beyond the four states) into the problem.

While the commutation condition [Qj, P̂G] = 0 is sufficient, it is not necessary, and a much less
restrictive condition can be found. We note that if the operators Qj have a vanishing Qup

j then the
product in Eq. (5) remains in the physical sector with

[⌫]final =


Qpp
M . . .Qpp

2 .Qpp
1 . ⌫

ph
initial

0

�

. (6)

The property of a commuting projection operator [Qj, P̂G] = 0, requires that Qpu
j = 0 as well as

Qup
j = 0, whereas the vanishing property of the unphysical components noted in Eq. (6) requires only

Qup
j = 0. Then Qpu

j as well as Quu
j are quite arbitrary. With this property, all the Qj operators in Eq. (4)

are block triangular

Qj =


Qpp
j Q pu

j
0 Quu

j

�

. (7)

Inmore formal terms the sufficiency conditionwith least constraints that leads to Eq. (6) (via the block
triangularity Eq. (7)) is

(1� P̂G).Qj.P̂G = 0. (8)

This condition is also expressible as [Qj, P̂G].P̂G = 0; a conditional vanishing of the commutator,
when right operating on projected states. This observation provides some intuition for why Eq. (8)
is sufficient in the present context. In view of the block triangular operators in Eq. (7), the adjoint
property, namely of representing conjugate operators by their matrix Hermitian conjugates, is lost in
this representation. This is seen clearly in Eq. (1), where the first two operators are mutual adjoints in
the defining representation, but not so in the canonical basis. In general this situation is expected to
lead to non Hermitian Hamiltonians. The non Hermitian representation in Eq. (64) and Section 3.2
implements this idea and therefore leads to the most efficient canonical theory. We show that it
exactly matches the minimal theory, found from the minimal description of the t–J model in terms
of the Hubbard X operators and the Schwinger equations of motion. It is notable that the Gutzwiller
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projection operator does not appear explicitly in the equations ofmotion, although it does play a crucial
role in the canonical theory, and is at the root of its difficulty.

Theplan of the paper is as follows. In Sections 2.1–2.3we review the Schwinger equations ofmotion
for the t–J model, and the ingredients of the recentmethod developed for a systematic expansion in a
parameter ✏. In Section 2.4 we summarize the general form of the Greens function at low frequencies
near the Fermi surface, and obtain the prototypical spectral function of the theory. We summarize
in Section 2.5 a kink in the electronic dispersion that arises from the theory, and seems to be closely
related to that seen in many photoemission experiments. We also present simple but important ideas
for analyzing photoemission data, with a view to isolating important feature of asymmetry predicted
by the ECFL theory.

In Section 3 we formulate the ‘‘best possible’’ representation of the Hubbard operators in terms
of canonical Fermions, as discussed above. Section 3.1 summarizes the well known representation
and Section 3.2 implements the block triangular idea to obtain a non Hermitian method with least
redundancy. Sections 3.3 and 3.4 give further details of the Hamiltonian in this representation and the
proof of the antiperiodic temporal boundary conditions necessary for defining the new framework.

In Section 4, the above non Hermitian representation is used to analyze the nature of the Greens
function of projected electrons. Quite remarkably this process also yields the Greens function as a
convolution of an auxiliary Greens function and a caparison function, in complete parallel to that
obtained from the Schwinger method employed in Sections 2.2 and 2.3. In Section 5 we generalize
the above representation to define ✏ Fermions where the Gutzwiller projection is only partial, and
becomes full at ✏ = 1. The equations of motion from these Fermions are shown to be those obtained
in the ✏ expansion of Section 2.3.

In Section 6wedisplay a close analogy between the nonHermitian representation of theGutzwiller
projected electrons and the well known Dyson–Maleev representation of spin operators in terms of
canonical Bosons. This connection also provides further meaning of the small parameter ✏ in the
Fermion theory, as a parallel of the expansion parameter 1

2s of the Dyson–Maleev theory. A connection
with the work of Harris, Kumar, Halperin and Hohenberg (HKHH) [18] is noted, who invented a
method for computing the lifetime of spin waves in antiferromagnets, with considerable overlap with
our representation of the Greens function with two self energies.

In Section 7, we cast the canonical theory in terms of Fermionic path integrals, and show how
the exact Schwinger equations of motion can be obtained directly from this representation, thereby
validating all the links in the argument. The subtle role of the Gutzwiller projection operator is
explored, it does not appear explicitly in the equations of motion and yet plays an important role
in the theory. In Section 8 we summarize the main points of the paper.

In Appendix A we summarize the derivation of the minimal equations of motion from the
Schwinger viewpoint. In Appendices B–D we provide the details of the coherent state path integrals
and the implementation of the Gutzwiller projection. In Appendix E we provide a more detailed
interpretation of the caparison function in terms of a change of variable of the source fields.

2. Summary of the ECFL theory for the t–J model

2.1. The t–J model preliminaries

Thewell studied t–J model is a two component Fermi system on a lattice, defined on the restricted
subspace of three local states, obtained by excluding all doubly occupied configurations. The allowed
states are |a⌫ with a = 0,�,�, and the double occupancy state |��⌫ is removed by the (Gutzwiller)
projection operator. These Gutzwiller projected electron operators are denoted, in the convenient
notation due to Hubbard, as Xa,b

i = |a⌫�b|. Its Hamiltonian HtJ is expressed in terms of the X operators
so that the single occupancy constraint is explicit. Summing over repeated spin indices we write

HtJ = Ht + HJ ,

Ht = �
X

ij

tijX◆0
i X0◆

j � µ
X

i

X◆◆
i ,

(136)



B.S. Shastry / Annals of Physics 343 (2014) 164–199 169

HJ = 1
2

X

ij

Jij
✓

�Si.�Sj �
1
4
X◆◆
i X◆ ⇣◆ ⇣

j

◆

. (9)

In computing the Green’s functions we add two kinds of Schwinger sources to the Hamiltonian; the
anticommuting Grassmann pair J, J⇤ coupling to electron creation and destruction operators, and the
commuting potentialV , coupling to the charge aswell as spin density. These sources serve to generate
compact Schwinger equations of motion (EOM), and are set to zero at the end. Explicitly we write

ÂS =
X

i

Z  

0
ÂS(i,  )d ,

ÂS(i,  ) =
⇥

X◆0
i ( )Ji◆ ( ) + J⇤i◆ ( )X0◆

i ( )
⇤

+ V◆ ⇣◆
i ( )X◆ ⇣◆

i ( ), (10)

and all time dependences are as inQ ( ) = eHtJ Qe�HtJ . The generating functional of Green’s functions
of the t–J model is

Z[J, J⇤, V] ⇧ TrtJ e� HtJ T
⇣

e�ÂS
⌘

. (11)

It reduces to the standard partition function on turning off the indicated source terms. The Green’s
functions for positive times 0 ⌃ j ⌃  , are defined through the Martin–Schwinger prescription
[22,23]:

G◆◆ ⇣(ii, f f ) = �

D

T
⇣

e�ÂS X0◆
i (i)X◆ ⇣0

f (f )
⌘E

�T e�ÂS ⌫
. (12)

The functional Z conveniently yields the Green’s functions upon taking functional derivatives with
respect to the sources, e.g.

G◆◆ ⇣(ii, f f ) =
✓

1
Z

↵2Z
↵J⇤i◆ (i)↵Jf ◆ ⇣(f )

◆

, (13)

where the sources are turned off at then end. We note that n◆ , the number of particles per site, is
determined from the number sum rule:

n◆ = G◆◆ (i�, i ), (14)
and µ the chemical potential is fixed by this constraint.

2.2. The Schwinger equations of motion

The detailed theory of the t–J model developed so far [4,6] uses the Schwinger equations of
motion. Since these equations play a fundamental role in the theory,we summarize next the equations
of motion and their extension, obtained by introducing a parameter ✏. We relegate to Appendix A
the derivation of the ‘‘minimal theory’’ equations. In the minimal theory, the most compact set of
Schwinger equations are established, and some redundant terms from Ref. [4] are omitted. This
minimal version of the theory is important for the purposes of the present paper, since our goal in
this paper is to recover these from a canonical formalism.

As the Schwinger school has [22,24,25] emphasized, a field theory is rigorously determined by its
equations of motion plus the boundary conditions. We can also establish alternate descriptions such
as path integrals formulations, from the requirement that they reproduce these equations of motion—
we present an example of this approach in Section 7.2. In terms of the original description of the t–J
model involving the Hubbard X operators, the Schwinger equation of motion is a partial differential
equation in time and also a functional differential equation involving the derivatives with respect to
a Bosonic source:

⇣

g

�1
0,◆i,◆j(ii, jj)� X̂◆i◆j(ii, jj)� Y1◆i◆j(ii, jj)

⌘

⇥G◆j◆f (jj, f f ) = ↵if ↵(i � f )
�

↵◆i◆f � ⌦◆i◆f (ii)
�

, (15)
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where g0 is the noninteracting Green’s function (Eq. (136)), X̂ is a functional derivative operator
(Eq. (130)), ⌦ is the local Green’s function obtained from G as ⌦◆a◆b(ii) = ◆a◆bG◆̄b◆̄a(i

�
i , ii) (see

Eq. (135)) and Y1 is the band hopping times ⌦ (Eq. (131)); further details can be found in Appendix A.
This equation has been written down in Refs. [4,6]: Antiperiodic boundary conditions with respect
to both times (as in Eqs. (75) and (76)), and the number sum-rule (14) together with the equation of
motion (15), specify the theory completely.

2.3. The ✏ expansion, the shift identities and second chemical potential u0

The idea of introducing a parameter into the EOM (15) becomes quite natural when we
observe the Schwinger EOM for the Hubbard model closely. These can be written schematically as
�

g

�1
0 � U↵/↵V � UG

�

.G = ↵ 1. By scaling the interaction U ↵ ✏ U , with a parameter ✏ (0 ⌃ ✏ ⌃ 1),
the interacting theory is connected continuously to the Fermi gas by tuning✏ from1 to 0. The standard
perturbative expansion can be organized by counting the various powers of ✏, setting ✏ = 1 at the end
before evaluating the expressions [26]. Below in Section 5 we provide a more microscopic argument
for introducing the ✏ parameter in the Hubbard X operators directly, this method leads back to the
equations found here.

In the corresponding equation for the t–J model (15), we observe that the Green’s function differs
from that for the free Fermi gas through two terms on the left hand side, exactly as in the Hubbard
model, but also through one term on the right hand side. Scaling these three terms by ✏, we rewrite
(15) schematically as:

⇣

g

�1
0 � ✏X̂ � ✏Y1

⌘

. G = ↵ (1� ✏⌦ ). (16)

The strategy of the perturbative ✏ expansion method is to build up the solution of this equation at
✏ = 1 through a suitable expansion in ✏, starting from the free Fermi limit ✏ = 0. Thus ✏ < 1
corresponds to the admixture of a finite fraction of double occupancy that vanishes at ✏ = 1. Insights
from sum rules, the skeleton graph expansion and the physics of the Hubbard sub bands has played a
major role in formulating a systematic ✏ expansion described in detail in Refs. [4,6].

Within this approach it is also necessary to add a term ✏u0
P

i Ni�Ni� to the Hamiltonian, and a
corresponding term to the EOM, so that the X̂ and Y1 in Eq. (16) are suitably redefined. Here u0 is
an extra Hubbard interaction type parameter that is determined by a sum rule as explained below.
At ✏ = 1 such a term makes no difference since the double occupancy is excluded. This parameter
u0 also enables us to enforce a simple but crucial symmetry of the t–J model-the shift invariance,
noted in Ref. [6]. This invariance arises from the twofold function of the hopping in the t–J model
when expressed in terms of the canonical operators, of providing hopping as well as the four Fermion
(interaction) terms. Therefore in an exact treatment, adding a constant times the identitymatrix to the
hopping matrix: tij ↵ tij + const⇥ ↵ij, shifts the center of gravity band innocuously. In approximate
implementations it has the unphysical effect of also adding to the interaction (i.e. four Fermion type)
terms. Such a change must therefore be compensated by an adjustable parameter that can soak up
this additive constant. Indeed u0 provides precisely this type of a parameter. It also plays the role of
a second chemical potential u0 [6] to fix the number of Fermions in the auxiliary Green’s function g

through n◆ = g◆◆ (i�, i ), while the thermodynamical chemical potential µ (residing in the non
interacting g

�1
0 ), is fixed by the number sum rule n◆ = G◆◆ (i�, i ) (Eq. (14)). Enforcing this shift

invariance to each order in the ✏ expansion plays an important ‘‘watchdog’’ role on the ✏ expansion,
in addition to other standard constraints such as the Ward identities.

To summarize some key points of the ✏ expansion, we first decompose the Greens function into
the space time convolution of an auxiliary Greens function and a caparison function as:

G = g.µ. (17)

With this the operator in Eq. (16) acts on the two factors of Eq. (17), and breaks into two equations
upon using the ansatz that g has a canonical structure

⇣

g

�1
0 � ✏X̂ � ✏Y1

⌘

.g = ↵ 1. The ✏ expansion
[6] is then an iteration scheme that proceeds by an expansion of the caparison function µ(k) and Y1
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Table 1

A flowchart of the ECFL theory as developed in Refs. [4,6]. See Sections 2.2 and 2.3 for a detailed description.

Step(I) Step(II) Step(III) Step(IV) Step(V) Step(VI) Step(VII)

Green’s
function G
in terms of
Hubbard
operators.

Exact
Schwinger
equations
of motion
for G.

Product
expression into
canonical part g
and adaptive
spectral weight
(caparison) part
µ(k).

Exact
equations
for g(k)
and µ(k).

Introduction of
interpolating
parameter ✏
connecting the
Fermi gas to the
extreme
correlation limit.

Shift invariance
requires second
chemical
potential u0.
Same sum rule
for both Greens
functions so that
Fermi surface
volume is
conserved.

Successive
orders in ✏
expansion
satisfying
shift
invariance
for practical
calculations.

G ⇢G G(k) = g(k)µ(k) 0 ⌃ ✏ ⌃ 1
P

G = P

g = n
2

(Y1 = t⌦ ) in powers of ✏. Dyson’s skeleton graph idea is implemented by keeping the auxiliary g

intact (i.e. unexpanded in ✏), while all other variables are expanded in powers of ✏ and g, thereby
obtaining self consistent equations for g and the vertex functions. Successive levels of approximation
are obtained by retaining increasing powers of ✏. At each approximation level, we set ✏ = 1 before
actually evaluating the expressions, and implement the antiperiodic boundary conditions (75), (76),
and the number sum-rule n◆ = G◆◆ (i�, i ) (Eq. (14)).

Elaborating on the representation (17) of G, we note that the ⌦ term on the right hand side of
(16) is due to the non canonical anticommutator of the projected Fermi operators. As noted in Ref.
[4], this term contains the essential difficulty of the t–J problem, having no parallel in the (canonical)
Hubbard typemodels. After turning off the sources, in themomentum–frequency spacewe can further
introduce two self energies ⌃ (k, i⇠), and⇧(k, i⇠) with

µ(�k, i⇠n) = 1� n
2

+ ⌃ (�k, i⇠n) (18)

g

�1(�k, i⇠n) = g

(�1)
0 (�k, i⇠)� ⇧(�k, i⇠n), (19)

where the constant n
2 in Eq. (18) is fixed by the condition that ⌃ vanishes at infinite frequency. The

auxiliary Greens function satisfies a second sumrule analogous to Eq. (14), written in the Fourier
domain:

(kBT )
X

k,n

ei⇠n0+
g◆◆ (k, i⇠n) = n◆ . (20)

Clearly the same sumrule holds for G◆◆ (k, i⇠n). Eq. (17) can now be written explicitly in the non-
Dysonian form proposed in Refs. [4,5]

G(�k, i⇠) = 1� n
2 + ⌃ (�k, i⇠)

g

(�1)
0 (�k, i⇠)� ⇧(�k, i⇠)

. (21)

As argued in [4,6,8,9], simple Fermi liquid type self energies ⌃ and ⇧ can, in the combination above,
lead to highly asymmetric (in frequency) Dyson self energies from the structure of Eq. (21), thus
providing a considerable tactical advantage in describing extreme correlations. We further discuss
the physical meaning of this decomposition and the twin self energies in Section 4. Table 1 provides
an overview of the various steps in the construction of the theory.

2.4. G(�k, i⇠n) and the low energy spectral function in ECFL theory

We summarize here the low temperature low energy theory near the Fermi surface that follows
from the general structure of Eq. (21) in terms of a small number of parameters, upon assuming that
the two self energies have a Fermi liquid behavior at low energies. In the limit of large dimensions,
a similar exercise gives a very interesting spectral function that matches the exact solution of the
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U = ⌘ Hubbard model found from the dynamical mean field theory (DMFT) [9]. The presentation
below generalizes that to include a momentum dependence that is absent in high dimensions, and is
supplemented by a discussion of the behavior of the various coefficients as the density of electrons n
approaches unity, or equivalently the hole density ↵↵ 0.

The Dyson self energy can be inferred from a simple inversion, and has a strong set of corrections to
the Fermi liquid theory that we delineate here.We assume here a Fermi liquid type state that survives
the limit of small hold density ↵↵ 0. In reality at very small ↵ several other broken symmetry states
would compete and presumably win over the liquid state, so that this Fermi liquid state would be
metastable. It characteristics are of interest and hence we proceed to describe these.

We study Eq. (21) by analytically continuing i⇠↵ ⇠ + i0+ and write

g

(�1)
0 (�k, i⇠) = ⇠ + µ�

⇣

1� n
2

⌘

⇡k. (22)

Let us define k̂ as the normal deviation from the Fermi surface i.e. k̂ = (�k � �kF ).�kF/|�kF |, and the
frequently occurring Fermi liquid function

R = ✓{⇠2 + (✓kBT )2}. (23)
We carry out a low frequency expansion as follows:

1� n
2

+ ⌃ (�k,⇠) = �0 + c⌃ (⇠ + ⇣⌃ k̂ vf ) + iR/⌦⌃ + O(⇠3), (24)

where �0 = 1� n
2 +⌃0 is the constant term at the Fermi surface, and a similar expansion for⇧(�k,⇠)

so that

⇠ + µ�
⇣

1� n
2

⌘

⇡k � ⇧(k,⇠) = (1 + c⇧)
⇣

⇠ � ⇣⇧ k̂ vf + iR/⌥⇧ + O(⇠3)
⌘

, (25)

where vf = (⇢k⇡k)kF is the bare Fermi velocity. The expansion coefficients above are in principle
functions of the location of �kF on the Fermi surface, and have suitable dimensions to ensure that ⌃ is
dimensionless and ⇧ is an energy. The dimensionless velocity renormalization constants ⇣⇧ and ⇣⌃
capture the momentum dependence normal to the Fermi surface, arising from the two respective self
energies. The Greens function near the Fermi surface can now be written as

G(�k,⇠) � z0
�0

 

�0 + c⌃ (⇠ + ⇣⌃ k̂ vf ) + iR/⌦⌃

⇠ � ⇣⇧ k̂ vf + iR/⌥⇧

!

(26)

where z0 = �0/(1 + c⇧) is the net quasiparticle renormalization constant. The spectral function can
be computed from A(�k,⇠) = � 1

✓
m G(�k,⇠ + i0+) in the ECFL form of a Fermi liquid function times

a caparison function µ(k,⇠) as follows:

A(�k,⇠) = z0
✓

�0

(⇠ � ⇣⇧ k̂ vf )2 + � 2
0

⇥ µ(k,⇠), (27)

where the (Fermi liquid) width function

�0(k̂,⇠) = � + ✓(⇠2 + (✓kBT )2)

⌥⇧

, (28)

with an extra phenomenological parameter � required to describe elastic scattering [14] in impure
systems. The caparison function is

µ(k̂,⇠) = 1� ⇠

⇥0
+ ⇣0 k̂ vf

⇥0
, (29)

where we introduced an important (emergent) low energy scale combining the other parameters:

⇥0 = �0
⌦⌃

⌥⇧ � c⌃ ⌦⌃
(30)
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and the dimensionless momentum dependence coefficient
⇣0 = (⇣⌃ ⌦⌃ c⌃ + ⇣⇧⌥⇧)/(⌥⇧ � c⌃ ⌦⌃ ). (31)

A cutoff �
⇣

µ(k̂,⇠)
⌘

is implicit in Eq. (29), so that the function µ(k̂,⇠) is assumed to be zero at
large positive frequencies as discussed in Ref. [4]. The five final parameters defining the spectral
function (27) are z0, ⇣0, ⇣⇧,⌥⇧,⇥0. For fitting experimental data, it may be best to think of them
as adjustable parameters that determine the line shapes, their asymmetries and also features in
the spectral dispersions. In addition the � parameter is needed to describe impurities that are not
contained in the microscopic theory. In the early fit [14] the total number of free parameters is even
smaller—just two instead of five. The corrections to the Landau Fermi liquid theory are encapsulated
in the caparison factor, which contains a correction term that is odd in frequency and seems to be
ultimately responsible for the asymmetric appearance of the line shapes [14,8].

For reference we note that in the limit of high dimensions [9], the coefficient of the momentum
dependent term ⇣0 vanishes in Eq. (27), while the earlier fits to experiments in [14], it is non zero, and
in modified fits [15] its magnitude is varied to get a good description of the constant energy cuts of
the data.

It is useful to consider the approach to the Mott insulating limit, where the parameters behave
in a specific fashion to satisfy the expected behavior. We consider the limit of density ↵ ↵ 0, and
a frequency scale 0 ⌃ |⇠| < ⇠c � ↵t , where the above expression (27) may be expected to work.
For reference, it is useful to note that in this limiting case, the widely used Gutzwiller–Brinkman–Rice
theory [2,27] gives the quasiparticle propagator as:

GGBR(�k,⇠) � z

⇠ � z k̂ vf
, (32)

where z vanishes linearly with ↵ as z = 2↵/(1 + ↵). This leads to a delta function spectral weight
AGBR = z ↵(⇠ � z k̂ vf ). In contrast Eq. (27) provides the spectral function at non zero T and ⇠.

As n ↵ 1 in Eq. (24) we expect that the constant ⌃0 ↵ � n
2 , in order to reach the Mott

insulating limit continuously. This implies that �0 ✏ ↵ in this regime, and this drives the various
other coefficients as well. We summarize the expected behavior of the above five coefficients

z0 ↵ z0 ⇥ ↵; ⇥0 ↵ ⇥0 ⇥ ↵; ⌥⇧ ↵ ⌥⇧ ⇥ ↵;
⇣0 ↵ ⇣0 ⇥ ↵; ⇣⇧ ↵ ⇣⇧ ⇥ ↵; (33)

by using an overline for denoting a non vanishing limit of the stated variable [9,28]. The scaling of
the velocity constants ⇣ is guided by the results in high dimensions, and ensure that the dispersing
quasiparticles have a vanishing bandwidth aswe approach the insulator—as emphasized by Brinkman
and Rice [27]. From this we find that the ECFL spectral function (27) satisfies a simple homogeneity
(i.e. scaling) relation valid in the low energy regime for a scale parameter s:

A(k̂, s⇠|s T , s ↵) = A(k̂,⇠|T , ↵), (34)
where the dependence on the temperature and hole density are made explicit. The momentum
variable does not scale with s due to the assumed behavior of the ⇣’s. The scaling holds for � = 0,
and generalizes to a non zero values if we scale �↵ s �. This scaling relation describes a Fermi liquid
including significant corrections to Fermi liquid theory through the caparison function. It rests upon
the specific behavior for the coefficients as the density varies near the insulating state, unlike other
generalized scaling relations that have been proposed in literature Ref. [29] for non Fermi liquid states.
If set s⇥ ↵ = ↵0 with say ↵0 . .5, then the ratio ↵0

↵
⌦ 1 and we infer

A(k̂,⇠|T , ↵) � A
✓

k̂, ⇠
↵0

↵

�

�

�

�

T
↵0

↵
, ↵0

◆

, (35)

relating the low hole density system to an overdoped (i.e. high hole density) system at a high effective
temperature. This relation provides basic intuition for why the t–J model, near the insulating limit
behaves almost like a classical liquid, unless one fine tunes parameters very close to the T = 0,⇠ = 0
limit.
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2.5. Electronic origin of the low energy kink and further tests of dynamical asymmetry

In this section we summarize the origin of the important low energy kink feature of the dispersion
relation obtained in the ECFL theory. Since a similar feature is seen in the experiments on angle
resolved photoemission studies (ARPES) of various groups [30–32,14], it is worth clarifying the purely
electronic origin of this feature within the ECFL theory. A higher (binding) energy kink is also seen
and is well understood in terms of the behavior of the self energy over a greater range [5,9], and is
not pursued here. Rather we focus on the low energy kink seen around�.05 eV in several compounds
[30–32,14], and finds a natural interpretation within ECFL.

We also present a few experimentally testable features relating to dynamical asymmetry, i.e. the
asymmetric in ⇠ correction to the Fermi liquid theory contained in ECFL, arising from the caparison
function in Eq. (27).

Let us assume that |⇠|  �0 at low enough frequency relative to T so that we may treat �0 as a
constant. We may then bring Eq. (27) to an interesting form studied in Ref. [5] by defining variables

� = ⇠ � ⇣⇧ k̂ vf

�0

sinh uk = ⇥0 + (⇣0 � ⇣⇧) k̂ vf

�0
, (36)

so that the spectral function reduces to the standard form occurring in the ECFL theory:

A(uk, �) = A0
sinh uk � �

1 + �2
⇥ �(sinh uk � �) (37)

with A0 = z0
⇥0

. This expression is valid for small enough � [5,4], and can be viewed as the (weighted)
sum of the real and imaginary parts of a simple damped oscillator with a scaled susceptibility �(�) =
1/(� + i). It is interesting to note that the scaled spectral function (37) can be related to the (scaled)
Fano line shape

AFano(qf , �) ✏
(qf + �)2

(1 + �2)
. (38)

This spectrum is often considered with the Fano parameter qf > 0, it is highlighted by a vanishing
at negative energies � = �qf , representing the destructive interference of a scattering amplitude
with a background term arising from a continuum of states. However we can flip the sign of qf and by
choosing qf = �euk , we can relate these through

A(uk, �) ✏
�

AFano(�euk , �)� AFano(�euk ,⌘)
�

. (39)

For the purpose of representing ARPES spectral functions, the scaled spectral function (37) gains an
advantage over the Fano line shape (38) by the absence of a background at large |�|. In relating them
via Eq. (39), the background term in the Fano process is killed, while its interference with the peak is
retained.

Unlike the simple Lorentzian obtained at uk ↵ ⌘, the energy variable enters the numerator as
well as the denominator in both Eq. (37) and the Fano shape. This feature gives rise to the characteristic
skew to the ECFL spectrum. The spectral function can be maximized with respect to the frequency
at a fixed k̂, yielding the energy distribution curve (EDC) dispersion E⇤k , or with respect to k̂ at a
fixed frequency ⇠, giving the momentum distribution curve (MDC) dispersion Ek. Let us introduce
the convenient variables

r = ⇣0

⇣⇧
, (40)

giving the ratio of the two velocity factors. The ratio r = 0 in the limit of high dimensions [9]. In
the simplified ECFL analysis in [4,14], we find r > 1 due to the suppression of ⇣⇧ relative to ⇣0 by

(142)



B.S. Shastry / Annals of Physics 343 (2014) 164–199 175

a quasiparticle renormalization factor zFL. We see below that the magnitude and sign of (r � 1) play
a significant role in determining the location of the kink, and its observability in ARPES respectively.
We also introduce a (linear in k̂ vf ) energy variable:

Q (k̂) = ⇥0 + (⇣0 � ⇣⇧) k̂ vf . (41)

In terms of these, the two dispersions are obtained as

E(k) = 1
2� r

✓

⇣⇧ k̂ vf + ⇥0 �
q

r(2� r)� 2
0 + Q 2

◆

, (42)

E⇤(k) =
✓

⇣0 k̂ vf + ⇥0 �
q

� 2
0 + Q 2

◆

. (43)

Simplifying the notation, both energy dispersions are of the form E � ⌦ Q�
p

Q 2 + M2, i.e. the hybrid
of a massless and amassive Dirac spectrum. As Q varies from�⌘ to⌘, the energy crosses over from
(⌦ + 1)Q to (⌦ � 1)Q , thus exhibiting a knee or a kink near Q � 0, with its sharpness determined by
the ‘‘mass term’’. The mass term in the MDC spectrum depends on the ratio r , and this generally leads
to a smaller magnitude. Upon turning off the decay rate �0, both the EDC and MDC spectra reduce to
the expected spectrum ⇡k = ⇣⇧ k̂ vf , arising from the pole of the auxiliary Greens function in Eq. (21).
These expressions illustrate an unusual feature of this theory: the two dispersions are influenced by
the emergent energy scale⇥0, as well as the width �0 (Eq. (28)).

The above dispersions exhibit an interesting kink feature at Q = 0 in both spectra. The condition
Q = 0 locates the kink momentum as

(k̂ vf )kink = ⇥0

⇣⇧(1� r)
, (44)

it corresponds to occupied momenta provided r > 1, we will confine to this case below. For the other
case r < 1, a kink would arise in the unoccupied side, for this reason we do not pursue it here. For
|Q | ⌦ �0, the two dispersions asymptotically become E⇤(k) � (⇣0 + (⇣0 � ⇣⇧) sign(k̂)) k̂ vf and
E(k) � 1

2�r (⇣⇧ + (⇣0 � ⇣⇧) sign(k̂)) k̂ vf . Hence these spectra exhibit a change in velocity (i.e. slope)
around Q � 0 of magnitude 2(⇣0 � ⇣⇧)vF for the EDC and the usually larger 2

2�r (⇣0 � ⇣⇧)vF for the
MDC spectrum. The change in slope of the spectrum occurs over a range ⇥Q ✏ �0, thus becoming
sharper as �0 decreases.

The value of the EDC energy at the kink is found by substituting Q = 0 and gives

E⇤(kkink) = � r
r � 1

⇥0 � �0. (45)

The MDC spectrum shows a kink for 2 ⌥ r ⌥ 1 at the same momentum (44), with energy

E(kkink) = � 1
r � 1

⇥0 � �0

r

r
2� r

, (46)

this feature is sharper than in the EDC spectrum since the effective damping is smaller.
When r > 2, theMDC energy is real only for |k̂ vf | < (|k̂ vf |)cutoff , where the (negative)momentum

(k̂ vf )cutoff = (k̂ vf )kink + �0

⇣⇧(r � 1)

p

r(r � 2).

For k̂ vf beyond the cut off, the root becomes complex implying the loss of a clear peak in the MDC
spectrum. Thus the spectrum ‘‘fades’’ before reaching the kinkmomentum (44). Therefore in this case,
the kink is less than ideal, unlike the EDC kink or the MDC kink for 1 ⌃ r ⌃ 2, which should be visible
on both sides of the kink momentum. From Eq. (33) we may extract the hole density dependence of
all the kink parameters, while �0, determining the kink width, is given in Eq. (28).
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Fig. 1. A kink feature in the MDC dispersion relation E(k) from Eq. (42) and in the inset from the EDC dispersion E⇤(k)
(Eq. (43)) with parameters ⇥0 = .025 eV, ⇣0 = 1.05, ⇣⇧ = 0.7 and three values of �0 = 0., .01, .02 in eV from top to
bottom. The kink is more pronounced in the MDC curve as discussed in text.

We observe in Fig. 1 that the kink becomes sharp when �0 decreases. The MDC curves display a
sharper kink than the EDC curves, this is easy to understand since the effective damping is smaller
in this case, and also the net change in velocity across the kink is greater, as discussed above. From
Eq. (28) we see various parameters that control �0, in case of laser ARPES, it is argued [14] that �
is small so we expect to see sharper kinks in this setup. Further, as T drops below Tc , the d-wave
superconductor has gapless excitations along the nodal direction �11⌫, and the quasiparticles seen
in this case are sharper. Theoretical considerations [33] show that in the superconducting state, a
reduction in the available gapless states responsible for the linewidth implies a reduction of �0 and
hence to a sharper kink.

We next discuss the feature of dynamical asymmetry in the spectra. It is also important to note that
the ECFL spectral function (27) has an unusual correction to the standard Fermi liquid part, embodied
in the caparison function µ(k,⇠). This function is odd in frequency, thus disturbing the particle hole
symmetry of the Fermi liquid part, and it grows in importance as we approach the insulating state
since ⇥0 ↵ ↵⇥0 as indicated in Eq. (33). It is also interesting that the spectral line shape in the
calculation of Anderson and Casey (AC) [34] as well as Doniach and Sunjic (DS) [35] also have such
odd in ⇠ corrections to the Fermi liquid part. In fact the AC result may be viewed as the vanishing of
the scale ⇥0 ✏ kBT so that the ground state is non Fermi liquid like. At finite T and ⇠ the AC and DS
theories are parallel with the ECFL line shapes regarding the asymmetry as remarked in Ref. [8], and
wewish to make a few comments about the experimental tests for such an asymmetry, going beyond
standard measures such as the skewness factor.

DS [35] make the interesting point that the asymmetry is best isolated by looking at the inverse of
the spectral function in a plot of

1
A(k,⇠)

vs (⇠ � E⇤k )
2, (47)

where E⇤k is the peak location in the EDC. With this plot, a Fermi liquid yields two coincident straight
lines above and below E⇤k , whereas an asymmetric contribution, as in Eq. (27) or the DS line shape [35],
would split into two distinct non linear curves, from below and above E⇤k . The inversion of the spectral
function is an interesting device, since it refocuses attention on the asymmetric parts. For very similar
reasons Ref. [4] (Fig. 1 inset) also advocates plotting the inverse of the spectral function. On the other
hand an untrained examination of the EDC curves invariably focuses on the close proximity of the
peaks of A(k,⇠), these are arguably the least interesting part of the asymmetry story!

In fact armed with the explicit knowledge of the spectral function of the ECFL theory in Eq. (27),
we can aim to do better in establishing the asymmetry and in determining the various parameters.
We first redefine the frequency by subtracting off the EDC peak value

e⇠k = ⇠ � E⇤k , (48)
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so that the spectral peak occurs ate⇠k = 0. The inverse spectral function can be computed as a function
ofe⇠k and reads:

A(k, E⇤k )
A(k, E⇤k +e⇠k)

= 1 + euk

2�0
⇥ e⇠2

k

�0 cosh(uk)�e⇠k
, (49)

where the peak value of the spectral function ate⇠k = 0 is:

A(k, E⇤k ) = A0

2
euk . (50)

We next construct the object Q(e⇠k) from Eq. (49) by subtracting unity and cross multiplying:

Q(e⇠k) = e⇠2
k

A(k, E⇤k )/A(k, E⇤k +e⇠k)� 1
. (51)

This variable is designed to be ae⇠k independent constant in a simple Fermi liquid with a Lorentzian
line shape (i.e. Eq. (27) without the caparison function µ). Here Q has dimensions of the square of
energy, and when plotted againste⇠k in the small range surrounding zero i.e. |e⇠k| ⌃ �0 it exhibits a
linearly decreasing behavior withe⇠k within the ECFL spectral function (27)

Q(e⇠k) = � 2
0 (1 + e�2uk)�

�

2�0e�uk
�

e⇠k. (52)
Note that this function is flat for the usual Fermi liquid state without asymmetric corrections, since
in this case uk ↵ +⌘. If found in data, this linear in e⇠ behavior is the distinctive aspect of the
asymmetric line shapes. We can then read off various physical quantities once the curve of Q(e⇠k)
versus e⇠k is obtained. For this purpose we need the intercept Q(0) and the slope near the origin
(dQ(e⇠k)/de⇠k)0. Clearly the Q(e⇠k) function will deviate from a straight line sufficiently far from
e⇠k = 0, and it will also be contaminated with background terms as well as noise. However, with
high quality data this procedure could be useful in inverting the data to fit simple functional forms,
and to make decisive tests of the predictions of the theories containing asymmetry, namely the DS
and AC theories as well as ECFL.

3. Exact formulation in terms of a canonical Fermions

We will next rewrite this in canonical Fermi representation in an enlarged Hilbert space where
double occupancy is permitted, and the singly occupied states forma subspace.We regard the physical
subspace of states |⌃ ⌫ as those that satisfy the condition of single occupancy, i.e. D̂|⌃ ⌫ = 0 with the
double occupancy operator D̂ is given by:

D̂ =
X

i

D̂i, D̂i ⇧ CÑ
i�Ci�C

Ñ
i�Ci�, (53)

and Ci◆ and CÑ
i◆ denote the canonical Fermionic destruction and creation operators. The unphysical

states contain one or more doubly occupied states. In terms of these, the Gutzwiller projector over all
sites is written as:

P̂G =
Y

i

⇣

1� D̂i

⌘

. (54)

This projection operator can be introduced into a partition function to deal with unphysical states, as
we show below.

The next goal (see Table 1) is to write the most efficient representation in the enlarged space of
the t–J model Green’s functions, in terms of the canonical operators and the projection operator.
As pointed out in the introduction, we note that pairs of operators that are mutual adjoints in
the t–J model (e.g. X0◆

i = (X◆0
i )Ñ), are allowed to be represented by operators that violate this adjoint

property. The main result of this section is that this possibility leads to the most compact canonical
theory; we term it the non-Hermitian theory. However we first warmup with a short summary of the
more obvious Hermitian theory, which sets the stage for the main result.
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3.1. A Hermitian canonical representation with redundancy

Projected Fermi operators distinguished by the hats can be written in a familiar construction [36]
eCi◆ = Ci◆ (1� Ni◆̄ )

eCÑ
i◆ = CÑ

i◆ (1� Ni◆̄ ), (55)

where Ni◆ = CÑ
i◆Ci◆ , and Ni = P

◆ Ni◆ , with the property that these conserve the number of doubly
occupied sites locally:

[eCi◆ , D̂i] = 0, [eCÑ
i◆ , D̂i] = 0 (56)

and therefore also globally i.e. with D̂ in place of D̂i. It implies that any Hamiltonianwritten in terms of
these operators with hats commutes with the individual D̂i as well as the global D̂, and thus conserves
the local symmetry of themodel. Therefore acting within the physical subspace of states, (55) provide
a faithful realization of the Xab

i operators as X0◆
i � eCi◆ and X◆0

i � eCÑ
i◆ , and clearly satisfies the

mutual adjoint property. We are also interested in the product of two X ’s in order to represent the
kinetic energy term of the effective Hamiltonian below. The optimal choice is seen to be

X◆0
i X0◆

j � CÑ
i◆Cj◆

�

1� Ni◆̄ � Nj◆̄
�

. (57)

While the choice

X◆0
i X0◆

j �eCÑ
i◆
eCj◆ (58)

is also a faithful representation, it contains an extra term CÑ
i◆Cj◆Ni◆̄Nj◆̄ , over and above (57), which is

redundant since (57) already commutes with (54).
Using (57) we write a canonical expression for the Hamiltonian

HtJ ↵ Ĥeff = Ĥt + ĤJ , (59)

with

Ĥt = T̂eff � µ
X

i

Ni◆ ,

T̂eff = �
X

ij◆

tijC
Ñ
i◆Cj◆

�

1� Ni◆̄ � Nj◆̄
�

, (60)

we call this as the symmetrized kinetic energy in view of its obvious symmetry under the exchange
i� j, and write ĤJ ↵ 1

2

P

ij Jij
⇣

�Si.�Sj � 1
4NiNj

⌘

,with the spin and number operators written in terms
of C ’s and CÑ’s without hats (since the occupancy of a site is unaffected by the exchange term). We
easily verify that

[Ĥeff , D̂] = 0 = [Ĥeff , P̂G], (61)

therefore if we startwith a state satisfying D̂|⌃ ⌫ = 0, i.e. in the singly occupied subspace, the resultant
state Heff |⌃ ⌫ remains in this subspace; we do not create doubly occupied states. We note that (61)
implies that the operator (54) is invariant under time evolution through Heff :

P̂G( ) = P̂G(0). (62)

The partition functional as in (11), now defined with arbitrary 0:

Z = Tr e� Ĥeff T
⇣

e�ÂS P̂G(0)
⌘

, (63)

where the trace (unlike that in Eq. (11)), is over the entire canonical basis, i.e. includes doubly occupied
states. For the observables as well as the source terms ÂS , we use the replacement rules:

X0◆
i ↵eCi◆ , X◆0

i ↵eCÑ
i◆ , X◆◆ ⇣

i ↵ CÑ
i◆Ci◆ ⇣ , (64)
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to convert arbitrary expressions involving Xab
i into those with theeC,eCÑ. Note that the density or spin

density type variables are replaced by the canonical operators without a hat, since these commutes
with the local D̂i.

We can compute the Green’s functions in the enlarged (canonical) basis from

G◆i◆f (ii, f f ) = �

D

T
⇣

e�ÂSeCi◆i(i)
eCÑ
f ◆f (f ) P̂G(0)

⌘E

D

T
⇣

e�ÂS P̂G(0)
⌘E , (65)

evaluated [23] at ÂS ↵ 0. This relation can be replaced by differentiating the partition functional
(63) with the Fermi sources J, J⇤. Using the commutation of P̂G or D̂with all operators and (62), we are
free at this stage to locate place P̂G at any specific time, without affecting the results. This formulation
of the theory has parallels with the path integral representation of the electromagnetic field (QED) in
the temporal gauge, where the scalar potential is chosen to be zero (i.e. �(rt) = 0) [37,38]. In this case
the Gauss’s law condition ⇡.�E(r, t) = 0 needs to be imposed at each time slice. However upon using
[H, �E] = �⇡ ⇥ �B, this object commutes with the Hamiltonian [H, �⇡.�E] = 0, and therefore it suffices
to impose this condition at the initial time. The situation has a clear analogy with Eq. (63), where it
suffices to insert the projection operator at the initial time.

3.2. The hat removal rule and optimal non-Hermitian theory

The non-Hermitian theory arises when we inspect closely expressions of the type in (63), with
the time 0 chosen as the earliest time 0�. The general argument has been given in the introduction,
we consider its specific application to the present problem next. Discretizing the time variables and
expanding, we obtain a series containing expression of the type

const⇥
X

�i|Q1(1) . . .Qm(m)P̂G|i⌫,
so that the first operator from the right Qm(m) acts upon a state which is Gutzwiller projected. Now
the creation operators contained in the Q ( )’s are defined with the hats (see (55)) ensuring that
they never create doubly occupied states. Next observe that destroying a particle cannot create a
doubly occupied site. Therefore it cannot take a projected state out of this subspace! Therefore the
operator eCi◆ can as well be replaced by the destruction operator Ci◆ without a hat. We can iterate
this argument for the next operator, which also acts on a Gutzwiller projected state, and so forth,
leading to the hat removal rules. In this argument, we may replace the operator’s Q (m) by any
expressions involving the destruction operators aswell as creation operatorswith hats (as in (55)), and
the same argument holds. More formally we may summarize by saying that the destruction operator
conditionally commuteswith the projection operator, when right-operating on projected states:

[Ci◆ , P̂G]P̂G = 0, (66)

although [Ci◆ , P̂G] ◆= 0, as one readily checks. Thus the commutator lives in an orthogonal subspace
to that spanned by the Gutzwiller projected states. This property also extends to arbitrary functions
f̂ (f̂ ⇧ f̂ {Ci◆ }, {eCÑ

j◆ ⇣}) of the operators:

[f̂ , P̂G]P̂G = 0. (67)
This property is just a rewriting of the important block triangularity condition of the operators noted
in Eq. (8) leading to Eq. (7). We will make frequent use of this expression below.

We now turn to implementing this observation. Let us write the partition functional

Z = Tr e� Ĥeff T
⇣

e�ÂS P̂G(0�)
⌘

, (68)

and introduce the important abbreviation for averages:

��A(1)B(2) . . .⌫⌫ ⇧ 1
Z
Tr e� Ĥeff T

⇣

e�ÂS A(1)B(2) . . . P̂G(0�)
⌘

, (69)
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where notice that we located the projector at the initial time, by bringing it under the time ordering
symbol.

We now state the crucial hat-removal rule: in all expressions of the type (68) and (69), the hats on
all destruction operators can be removed

eCi◆ ( )↵ Ci◆ ( ), (70)

leaving the result unchanged. Notice that this rule can also be applied to Heff , and the source terms
ÂS containing the destruction operators Ci◆ . Note that the creation operators cannot be ‘un-hatted’ in
this fashion since these do create a doubly occupied site. Summarizing, we can use instead of (64), the
more compact non-Hermitian rule

X0◆
i ↵ Ci◆ , X◆0

i ↵eCÑ
i◆ = CÑ

i◆ (1� Ni◆̄ ), X◆◆ ⇣
i ↵ CÑ

i◆Ci◆ ⇣ . (71)

We thus rewrite the sources (10) as:

ÂS(i,  ) =
⇣

eCÑ
i◆ ( ) Ji◆ ( ) + J⇤i◆ ( )Ci◆ ( )

⌘

+ V◆ ⇣◆
i ( )CÑ

i◆ ⇣( )Ci◆ ( ), (72)

and the Green’s function with imaginary time 0 ⌃ i, j ⌃  is therefore written as:

G◆i◆f (ii, f f ) = ���Ci◆i(i)
eCÑ
f ◆f (f )⌫⌫, (73)

analogous to (65) but with an unprojected destruction operator. We will show below that this is the
most useful and compact expression for the Green’s function. To complete the description of this
theory, we turn to the task of specifying the Hamiltonian, and obtain the boundary conditions on the
time variables. The last task is somewhat nontrivial since the projection operator does not commute
with the other operators.

3.3. Hamiltonian in the symmetrized and minimal theories

In order to represent the Hamiltonian, the spin operators of the exchange part HJ are unambigu-
ously expressed in terms of the Ci◆ and CÑ

i◆ operators without hats as in (71), since they preserve the
occupation of a site. For the kinetic energy we could choose to work with (60), and thereby gain some
advantage of dealing with a Hermitian Hamiltonian. This leads to the equations of motion termed the
the symmetrized theory in Ref. [6]. Alternately we can implement the hat removal rule for the kinetic
energy as well:

T̂eff = �
X

ij◆

tijeC
Ñ
i◆Cj◆ . (74)

This minimal version of the kinetic energy is clearly non-Hermitian. However, it has exactly the same
action as the symmetrized version (59), when right-operating on the physical Gutzwiller projected
states, as proved above. This leads to equations of motion of the minimal theory noted in Ref. [6] and
elaborated upon in Refs. [10,9]. For completeness, we provide in Section 7.2 a brief derivation of these
equations for the minimal case, using the above canonical representation, in place of the Schwinger
equations.

3.4. Kubo–Martin–Schwinger antiperiodic boundary conditions

In working with the expressions (68), (71) and (73), we have assumed that all the times j are
positive and satisfy 0 ⌃ j ⌃  . The Green’s function (12) satisfies the Kubo–Martin–Schwinger
(KMS) anti-periodic boundary conditions [39]

G(a i = 0, b f ) = �G(a i =  , b f ), (75)

G(a i, b f = 0) = �G(a i, b f =  ), (76)
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Table 2

A summary of the representations of the Green’s functions. The non-Hermitian minimal theory provides the most compact set
of equations of motion, which are identical to those from the Hubbard–Gutzwiller theory in the second column. The absence
of the adjoint property for the non-Hermitian theory arises from the asymmetric hat removal between the destruction and
creation operators in the first two rows of the last column.

Hubbard–Gutzwiller
theory

(Canonical) Hermitian theory (Canonical) Non-Hermitian theory

Operators: X◆0
eCÑ◆ = CÑ◆ (1� N◆̄ ) eCÑ◆ = CÑ◆ (1� N◆̄ )

X0◆
eC◆ = C◆ (1� N◆̄ ) C◆

X◆◆ ⇣
i CÑi◆ Ci◆ ⇣ CÑi◆ Ci◆ ⇣

Partition
Functional: Z

TrtJ e� HtJ T
⇣

e�ÂS
⌘

Tr e� Ĥeff T
⇣

e�ÂS P̂G(0)
⌘

;

Arbitrary time 0 (0 ⌃ 0 ⌃  ).

Tr e� Ĥeff T
⇣

e�ÂS P̂G(0�)
⌘

Green’s
function:
�G(1, 1⇣)

�T (e�Âs X0◆
1 X◆ ⇣0

1⇣ )⌫
D

T
⇣

e�ÂSeC◆ (1)eCÑ
◆ ⇣ (2)P̂G(0)

⌘E

Arbitrary time 0 (0 ⌃ 0 ⌃  ).

D

T
⇣

e�ÂS C◆ (1)eCÑ
◆ ⇣ (2)P̂G(0

�)
⌘E

Remarks: H = HÑ in the defining
representation.

Symmetrized theory H = HÑ (i) Symmetrized theory: Ĥeff = HÑ
eff

(ii) Minimal theory: Ĥeff ◆= ĤÑ
eff

where the fixed time f (i) in the first (second) equations is assumed to satisfy 0 ⌃  ⌃  . These
conditions are usually proven by using the cyclic invariance of the trace [24], and translates easily to
the canonical representation (65), witheC andeCÑ replacing the X operators (64).

In using the non-Hermitian representation (71) as in (73), we cannot use cyclicity of trace since the
operatoreC does not commute with PG. Remarkably enough, the conditional commutativity (66) and
(67) suffices to guarantee the required antiperiodicity. In physical terms these proofs follow from the
observation made above, the creation operators with hats, and destruction operators (without hats)
preserve a Gutzwiller projected state within that subspace.

For simplicity we present the case with sources turned off i.e. A ↵ 0, the more general case
follows by a similar argument. From the definitions of the Green’s functions, Eq. (76) is true since
Tr

⇣

e� Heff Ca◆ (i)[eCÑ
b◆ ⇣(0), P̂G]

⌘

vanishes identically from Eq. (56).
In order to prove that Eq. (75) remains true, we need to show that the expression

Tr
⇣

e� Heff
eCÑ
b◆ ⇣(f )[Ca◆ (0), P̂G]

⌘

(77)

vanishes, despite the non vanishing of the commutator in the expression. For this purpose, we utilize
the conditional commutator (66) to write [Ca◆ (0), P̂G] = [Ca◆ (0), P̂G](1 � P̂G). We next use cyclicity
of trace and the simple identity (for any Q̂ ): Tr

⇣

(1� P̂G)Q̂ P̂G
⌘

= 0, to write the required expression
(77) in the form

Tr
⇣

(P̂G � 1)e� Heff
eCÑ
b◆ ⇣(f )P̂GCa◆ (0)

⌘

. (78)

Using (P̂G)2 = P̂G, we rewrite this as:

(P̂G � 1)e� Heff
eCÑ
b◆ ⇣(f )P̂G = [P̂G, e� Heff

eCÑ
b◆ ⇣(f )]P̂G.

This expression vanishes on using the conditional commutator (67), thereby proving the required
result (75).

The two canonical theories providing an exact mapping of the original theory are summarized in
Table 2.

4. The auxiliary Green’s function and the caparison function using canonical Fermions

We next discuss the rationale for decomposing the Green’s function into an auxiliary Greens
function and a caparison function as in Ref. [4], using a simple argument from the exact formula
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(73). This important part of the theory is also encountered in Section 6. In its simplest version this
decomposition can be illustrated using the minimal theory, where the averages are defined as in
Eq. (68), with the projection operator pinned at the initial time. We recall the Green’s function from
Eq. (73)G◆i◆f (ii, f f ) = ���Ci◆i(i)

eCÑ
f ◆f (f )⌫⌫, with the averages from Eq. (69). Expanding the eCÑ

operator this becomes

G◆i◆f (ii, f f ) = ���Ci◆i(i)C
Ñ
f ◆f (f )⌫⌫+ ��Ci◆i(i)C

Ñ
f ◆f (f )Nf ◆̄f (f )⌫⌫. (79)

We next define the auxiliary Green’s function as:

g◆i◆j(ii, jj) = ���Ci◆i(i)C
Ñ
j◆ (j)⌫⌫, (80)

and regarding the spin, space and time indices as matrix indices with a matrix inverse g

�1. By
separating the disconnected and connected parts (_c) of the second term in (79) we write

��Ci◆i(i)C
Ñ
f ◆f (f )Nf ◆̄f (f )⌫⌫ = �g◆i◆f (ii, f f )�Nf ◆̄f (f )⌫+ ��Ci◆i(i)C

Ñ
f ◆f (f )Nf ◆̄f (f )⌫⌫c . (81)

The connected part is written in terms of a second self energy ⌃ defined as

⌃◆i◆f (ii, f f ) = g

�1
◆i◆k

(ii, kk)⇥ ��Ck◆
k

(
k

)CÑ
f ◆f (f )Nf ◆̄f (f )⌫⌫c, (82)

and assembling these we rewrite (79) as the product relation [4]
G◆i◆f (ii, f f ) = g◆i◆k(ii, kk)µ◆

k

◆f (kk, f f ),

µ◆i◆f (ii, f f ) = ↵(if )
�

1� �N◆̄i(i)⌫
�

+ ⌃◆i◆f (ii, f f ). (83)
There is a slight ambiguity in defining the two objects g and µ, since we have the freedom of adding
a common function to the two parts of Eq. (79) that cancels out in the physical Greens function. Apart
from this, we expect that the two objects in Eq. (83) are exactly equivalent to the auxiliary Greens
function and the caparison factor in Eqs. (17)–(19) as found from the Schwinger method.

We observe from the expression (82) that if the averages are (temporarily) computed in a standard
Feynman Dyson theory, then ⌃ is essentially the self energy of a Hubbard type model, made
dimensionless by dropping an explicit interaction constantU . Indeed this is the key observationmade
in Ref. [4], on the basis of the ✏ expansion, where the two self energies are argued to be generically
Fermi liquid-like and similar to each other. An energy scale (⇥) emerges froma ratio of their imaginary
parts, and controls the significant asymmetry seen in the spectral functions.

5. The �-Fermions

A natural question is whether Eq. (16), explicitly containing the parameter ✏, can arise in a
microscopic theorywhere✏ enters in a fundamentalway, as opposed to the ‘‘engineering approach’’ in
Section 2.3. A set of ✏-Fermi operators are defined below, as generalized version of the non-Hermitian
representation (71)with a parameter✏ ✓ [0, 1]providing a continuous interpolation between the free
Fermi and extremely correlated limits:

X◆0
i (✏)↵ CÑ

i◆ (1� ✏CÑ
i◆̄Ci◆̄ )

X0◆
i (✏)↵ Ci◆

X◆◆ ⇣
i (✏)↵ CÑ

i◆Ci◆ ⇣ . (84)
Clearly ✏ = 0 gives us back the canonical Fermion operators, whereas ✏ = 1 gives the Gutzwiller
projected Hubbard X operators [3] as in (71), provided the states are Gutzwiller projected. A feature
of this representation is the loss of the adjoint property, i.e.

�

X◆0
i (✏)

�Ñ ◆= X0◆
i (✏), unless ✏ = 0.

These operators satisfy a ✏ dependent (graded) Lie algebra with fundamental brackets that are
partly Fermionic and partly Bosonic. Using the canonical anticommutation relations of the C, CÑ

operators, we work out the fundamental Fermionic bracket:

{X0◆i
i (✏), X◆j0

j (✏)} = ↵ij{↵◆i◆j � ✏ ◆i◆jX
◆̄i◆̄j
i (✏)}. (85)
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We next evaluate the fundamental Bosonic bracket

[X0◆i
i (✏), X◆j◆k

j (✏)] = ↵ij↵◆i◆j X
0◆k
i (✏) (86)

[X◆i0
i (✏), X◆j◆k

j (✏)] = �↵ij↵◆i◆kX
◆j0
i (✏). (87)

Here (87) requires a brief calculation [40] invoking the Pauli principle vanishing of CÑ
◆C

Ñ
◆ ↵ 0. On

the other hand (86) is elementary, due to the absence of ✏ in both sides of the equation. At ✏ = 1
these reduce to the relevant subset of the Hubbard algebra [3] found from the fundamental definition
Xab
i = |a⌫�b|.
The representation (84) does not at general ✏ reproduce the ‘‘half bracket’’, or product relations

expected for projection operators. We find that

X◆0
i (✏)X0◆ ⇣

i (✏) ◆= X◆◆ ⇣
i (✏), (88)

X0◆ ⇣
i (✏)X◆0

i (✏) ◆= X00
i ↵◆◆ ⇣ . (89)

The exceptions are at ✏ = 0, where it is trivially true, and non trivially at ✏ = 1, where Gutzwiller
projection of the allowed states does restore this property when right-operating on the projected
states. In the Green’s functions below, we will equate the averages of both sides of Eq. (88). This
equality of the averages acts as the number constraint and fixes the chemical potential µ. In doing
so, the average of Eq. (89) is not constrained and takes on a suitable value determined by the
anticommutation relation (85).

This representation can be used to define a many-body problem where the ✏ dependent EOMs
for the Green’s functions constructed from (84) can be written down. Observe that the EOMs for
the Green’s functions only require the use of (85) and the Heisenberg equations of motion, and in
turn these arise from the basic Lie commutators (anticommutators) of the type given in (86) and
(87). The calculation does not ever require the use of product relations of the type (88). It then
follows that we can replace the t–J Hamiltonian and the operators in the original theory by their
✏-versions, i.e. replacing Xab

i ↵ Xab
i (✏), and thereby obtain equations that yield (16). This procedure

then provides a (continuous) interpolation between the free Fermi and extremely correlated regimes
by varying ✏ from 0 to 1. Let us first demonstrate this by a brief calculation.

5.1. The ✏-Fermion theory equations of motion

Using the ✏ Fermions, we define the Green’s function as

G(✏)
◆i◆f

(ii, f f ) = ��TX0◆i
i (i, ✏)X

◆f 0
f (f , ✏)⌫(✏) (90)

where with arbitrary Â

�Â⌫✏ ⇧ �
Tr e� Heff (✏)T

⇣

e�ÂS (✏)Â
⌘

Z(✏)
,

Z(✏) = Tr e� Heff (✏)T
⇣

e�ÂS (✏)
⌘

. (91)

In this expression Heff (✏) is given by Eq. (92) and ÂS(✏) is obtained from (10), with the replacement
Xab
i ↵ Xab

i (✏):

Heff (✏) = �
X

ij

tijX◆0
i (✏)X0◆

j (✏)� µ
X

i

Ni◆ + ✏
1
2

X

ij

Jij
✓

�Si.�Sj �
1
4
Ni◆Nj◆ ⇣

◆

+ u0 ✏
X

i

Ni�Ni�, (92)
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where u0 is now the ‘‘second chemical potential’’. The scaling of the J term with ✏ is optional, and
done here so that we obtain the Fermi gas at ✏ = 0. Using Eq. (84), we see that this Hamiltonian is
linear in ✏ and interpolates between the free Fermi gas and the fully interacting model, when acting
on suitably projected states. The equation of motion of G(✏) can be obtained using the commutation
relations (85)–(87), the calculation is parallel to that in Appendix A. In brief, Eqs. (132) and (133) are
unchanged by working with X (✏)’s, and in place of Eq. (137) we obtain

g

�1
0,◆i,◆j(ii, jj)G

(✏)
◆j◆f

(jj, f f ) = ↵(i � f )↵ij(1� ✏ ⌦◆i◆f (ii))

� ✏
X

j◆j

tij(◆i◆j)
D

T
⇣

X ◆̄i◆̄j
i (i)X

0◆j
j (i) X

◆f 0
f (f )

⌘E

(✏)

+ 1
2

X

j◆j

Jij(◆i◆j)
D

T
⇣

X ◆̄i◆̄j
j (i)X

0◆j
i (i)X

◆f 0
f (f )

⌘E

(✏)

� 1
2
✏u0

X

◆j

(◆i◆j)
D

T
⇣

X ◆̄i◆̄j
i (i)X

0◆j
i (i)X

◆f 0
f (f )

⌘E

(✏)
, (93)

where the ✏ dependence of the X operators is implicit. The higher order Green’s functions may be
expressed as functional derivatives with respect to the Bosonic source V , in the same fashion as in
Appendix A. The exchange term Jij does not pick up a factor of ✏ through the EOM since it conserves
double occupancy. We can choose to additionally scale it with ✏ as Jij ↵ ✏Jij, so that at ✏ = 0 we
obtain the Fermi gas. This choice seems reasonable in the liquid phase of the electrons, in other phases
it is easy enough to recover from this scaling if needed. To save writing the u0 term is absorbed as
Jij ↵ Jij � u0↵ij, with this the resulting equation is

⇣

g

�1
0,◆i,◆j(ii, jj)� ✏ X̂◆i◆j(ii, jj)� ✏ Y1◆i◆j(ii, jj)

⌘

⇥ G(✏)
◆j◆f

(jj, f f )

= ↵if ↵(i � f )
�

↵◆i◆f � ✏ ⌦◆i◆f (ii)
�

. (94)

The constitutive relation determining the chemical potential is taken as

ni◆ = �X◆0
i ( , ✏)X0◆

i (�, ✏)⌫(✏),
= G(✏)

◆◆ (i, �,  ), (95)

rather than ni◆ = �X◆0
i ( , ✏)X0◆

i ( , ✏)⌫(✏) [41]. This limiting process corresponds to enforcing the
half bracket relation Eq. (88) as an average. (95) is exact for the fully projected operators where ✏ = 1,
while for other values of ✏ it is guided by the requirement of continuity in ✏. In the same spirit, we
express the function ⌦ in Eq. (16) as

⌦◆◆ ⇣(i ) = ◆◆ ⇣G◆̄ ⇣◆̄ (i�, i ), (96)

while the direct computation using Eq. (85) would yield identical times, rather than the split times
in Eq. (96). An iteration scheme for solving these equations using ideas of the skeleton expansion is
detailed in Refs. [6,7], and hence we skip the details.

A very simple example can be given to illustrate the role of ✏ and u0, where the skeleton expansion
is avoided. Let us consider the atomic limit of the ✏-Fermions theory. We consider the Hamiltonian
H0 = �µ

P

◆ N◆ + ✏u0N�N� with u0 ⌥ 0. The Green’s function in Eq. (90) can be calculated easily
using the EOM technique as:

G(i⇠n) = 1� n◆̄
i⇠n + µ

+ (1� ✏)n◆̄
i⇠n + µ� ✏u0

. (97)

At ✏ = 0 or 1, this yields the exact atomic limit result, and provides a smooth interpolation between
these limits. The positive energy pole at ✏u0�µ does not contribute to the occupancy for a sufficiently
large u0 and low T . In the more realistic case with non zero hopping discussed in Refs. [6,7], the
energy u0 is non-trivially fixed by a second sum rule (20), and the iteration procedure is more
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complex, involving the skeleton expansion. While the atomic limit example is quite explicit, it does
not generalize in any simple way to the case of finite hopping, and therefore is somewhat trivial.

We next remark on some consequences of the ✏ expansion in the intermediate region ✏ < 1,
that follow from general principles. Let us first summarize the high frequency limit of the Green’s
functions. When i⇠n ↵⌘, the local Green’s function falls off as G(i⇠n)↵ aG/i⇠n. Here the constant
aG = �{Ĉ, ĈÑ}⌫, with Ĉ, ĈÑ the two appropriate operators involved in G, it is a measure of the total
fraction of states. In the Hubbard model aG = 1, since we have canonical operators, and implicitly
|⇠n|⌦ U as well. However for the t–J model we obtain aG = (1�n/2), with a net deficit of n/2 states
from the Hubbard model. This deficit is accounted for by the upper Hubbard band that is ignored in
the t–J model. The lower Hubbard band thus contains a fraction 1 � n/2 of all the states, of which
we account for n/2 as the occupied states (with two spin projections available), and 1 � n as the
unoccupied part of the lower Hubbard band. These 1� n states are available for charge excitations in
the t–J model, and freeze out towards the insulating limit. Summarizing, in this picture we have n/2
occupied and 1 � n unoccupied states in the lower Hubbard band, and n/2 states at high energy of
O(U).

In the ✏ expansion, from Eq. (16) we have aG = 1 � ✏⌦ , where ⌦ is further expanded in ✏. On
enforcing the number sum rule (95) we find that the effective number of states described by this
theory can be decomposed into n/2 occupied states and (1 � n) + (n/2 � ✏⌦ ) unoccupied states.
These are to be taken as the low energy sector of a fiduciary Hamiltonian. The fraction (n/2 � ✏⌦ )
vanishes only when ✏ = 1 and is otherwise an unspecified surplus of states in the low energy sector.
An unbalanced state count of this type is to be expected when we have non-unitary evolution.
Indeed in the second order ✏ expansion carried out numerically, a similar excess of states is found
[7, Section (2), last paragraph]. Another related consequence is that the spectral function positivity,
requiring unitary evolution, can no longer be guaranteed in finite orders of the ✏ expansion. This
feature is well recognized in Ref. [4], where it is noted that the occupied states with ⇠ < 0 are
essentially unaffected by this problem.

6. Analogy with the Dyson–Maleev representation of spin operators

The non-Hermitian representation in Eq. (71) of the Gutzwiller projected electron operators, when
used with the averaging in Eq. (69), was shown in Section 3.2 to provide an exact mapping of the t–J
model. Reflecting on this result, the author realized recently that themapping Eq. (71) is the Fermionic
analog of the Dyson–Maleev representation for spin operators [16,17], used to understand spin wave
interactions in magnets (see Table 3).

With the advantage of hindsight, this connection seems natural. The Gutzwiller projected
electronic Xab operators defined by Hubbard [3], generate a non canonical algebra of Fermions that
is (partly) given in Eqs. (85)–(87) with ✏ = 1. On the other hand the spin operators provide the best
studied non canonical Bosonic algebras. The spins are not quite Bosons, they are equivalent to ‘‘hard
core’’ Bosons—with infinite on site repulsion, in parallel to the infinite U in the extremely correlated
electron problem. In order to avoid dealing with the infinite energy of the hard core, several other
representations of spins were invented, such as the Holstein Primakoff method [44]. Dyson’s use of a
non-Hermitian representation provides themost compact canonical description of the spin operators.
In fact it is analogous to the non-Hermitian mapping of the Fermionic Gutzwiller problem in Eq. (71).

Dyson’s representation, later streamlined by Maleev [17], may be written with ni = bÑi bi as

S+
i = (2s) bÑi

⇣

1� ni

2s

⌘

S�i = bi
Szi + s = ni, (98)

where �Si.�Si = s(s + 1) and bi, b
Ñ
i are canonical Bose operators. The Boson vacuum state bi|vac⌫ = 0

is mapped as |vac⌫ � |�,�,� . . . �⌫, so that the action of bÑi creates spin reversals. Their number
is cut off such that ni ⌃ (2s), thereby defining the physical states. Under these conditions Eq. (98) is
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Table 3

A comparison of the Dyson–Maleev representation for spins and the non-Hermitian representation (71) for two component
Fermions ◆ = ±1 with ◆̄ = �◆ . At ✏ = 1 the Fermion mappings provide a faithful representation of Gutzwiller projected
Fermi operators Xab

i , acting to the right on states with single occupancy, since their action produces states that remain in this
space. The representation is non self adjoint, i.e. its left operation on Dirac bra states is not faithful. The situation has an exact
parallel in the Dyson–Maleev representation. The Dyson projection operator P̂D for integer 2s and the Gutzwiller projection
operator P̂G at ✏ = 1, play a similar role in filtering out unphysical states. The role of the parameter ✏ away from 0, 1 is similar
to that of 1

2s , extending the Dyson–Maleev representation to spin values that are neither integer or half integer. The last three
rows show the auxiliary Green’s function, the caparison function and the second self energy in terms of the Bosons from Eqs.
(100) and (101). These follow from the work of Harris, Kumar, Halperin and Hohenberg [18] adapted to the ferromagnet. The
corresponding Fermionic objects are discussed in Section 4 and detailed in Eqs. (82) and (83).

Spins: The Dyson–Maleev mapping Fermions: The non-Hermitian
mapping

Destruction operator S�i bi X0◆
i Ci◆

Creation operator S+
i (2s) bÑi (1� ni

2s ) X◆0
i CÑi◆ (1� ✏Ni◆̄ )

Density operator(s) Szi + s ni = bÑi bi X◆◆ ⇣
i CÑi◆ Ci◆ ⇣

Projection operator P̂D
Q

i{
P2s

m=0 ↵ni,m} P̂G
Q

i(1� Ni�Ni�), for ✏ = 1
Vacuum | �� . . . �⌫ |00 . . . 0⌫ |Vac⌫ |00 . . . 0⌫
Small parameter & its
range

1
2s

1
2s ✓ [0, 1] ✏ ✏ ✓ [0, 1]

Auxiliary Green’s
function

g(i, j) = ���bibÑj ⌫⌫ g(i, j) = ���Ci◆ C
Ñ
j◆ ⌫⌫

Caparison function µ(i, j) = ↵ij(1� 1
2s �nj⌫)+ 1

2s⌃ (i, j) µ(i, j) = ↵ij(1�✏⌦ )+✏⌃ (i, j)
Second Self energy ⌃ ⌃ (i, j) = g

�1(i, a)��b
a

bÑj nj⌫⌫c ⌃ (i, j) =
g

�1(i, a)��C
a◆ C

Ñ
j◆Nj◆̄ ⌫⌫c

shown to provide a faithful representation of the angularmomentumoperators, when right-operating
on physical states. Under the action of the operators in (98), the physical states form an invariant
subspace of the extended Bose Hilbert space, and are selected by projection. The Dyson projection
operator P̂D acts on the Bose state space and leaves the physical states unchanged while annihilating
states with ni > (2s).

It is now evident that the Dyson–Maleev representation has a strong formal similarity to the
minimal representation (71). The Dyson projector P̂D plays a role parallel to that of the Gutzwiller
projector P̂G in (71) in our theory. The parallel further deepens in the path integral representation of
the Fermions that we discuss below. The interesting work of Douglass [42], following Langer’s [43]
path integral program for Bosons, employs the projection operator P̂D in the same spirit to our usage
below.

The work of Harris, Kumar, Halperin and Hohenberg (HKHH) [18] extended Dyson’s method to
two sublattice antiferromagnets, and provided a non trivial generalization to study the lifetime of
the excitations. Details of the ECFL formalism turn out to have points of overlap with those in HKHH
that are worth noting. In particular HKHH decompose the physical Green’s function into a space time
convolution of two parts. These parts are precisely the Bosonic analogs of the ECFL breakup of the
physical Green’s function, into an auxiliary Green’s function g(k) and a caparison function µ(k), as
detailed in Ref. [4] and in Section 4.

The computation of the Green’s function by HKHH [18] was carried out for the two sublattice
antiferromagnet. In order to avoid dealing with the added complexity of the two sublattice problem,
we translate theirmethod to theDyson problemof the dynamical Green’s function of the ferromagnet.
We use a notation that brings out the close parallel with the product ansatz used in ECFL [4].

The calculation, paraphrasing that of HKHH, proceeds as follows. In order to compute the imaginary
time Green’s function G(i, j) = ���S�i S+

j ⌫⌫ with the shorthand spacetime notation i ⇧ (ri, i), the
repeated index summation (integration) convention and denoting the averages as ��Q ⌫⌫ = Tr(e� H
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TQPD)/Tre� HPD, we write from (98)

1
2s

G(i, j) = �
⌧⌧

bib
Ñ
j

✓

1� 1
2s

nj

◆��

. (99)

Separating out the disconnected part we write ��bibÑj nj⌫⌫ = ��bibÑj ⌫⌫�nj⌫ + ��bibÑj nj⌫⌫c , and defining the
auxiliary Green’s function g(i, j) = ���bibÑj ⌫⌫ as well as its inverse through g(i, k)g�1(k, j) = ↵(i, j),
we arrive at

1
2s

G(i, j) = g(i, j)
✓

1� 1
2s
�nj⌫

◆

+ 1
2s

g(i, k) ⌃ (k, j), (100)

⌃ (i, j) = g

�1(i, a)��b
a

bÑj nj⌫⌫c . (101)

We use a notation with sums over repeated bold indices everywhere. We can rewrite (100) as a
convolution of the auxiliary Green’s function g and a caparison function µ, in the form 1

2sG(i, j) =
g(i, k)µ(k, j), where µ(i, j) = ↵ij(1� 1

2s �nj⌫) + 1
2s⌃ (i, j). The auxiliary Green’s function is defined in

terms of its own self energy ⇧ through the usual Dyson equation g

�1(i, j) = g

�1
0 (i, j)� ⇧(i, j). Thus

the physical Green’s function G is determined in terms of the two self energies ⇧(k,⇠) and ⌃ (k,⇠).
Written in (k, i⇠) space, this is identical to the functional form in ECFL theory Eq. (21)!

The corresponding Fermionic objects are discussed in Section 4 and detailed in Eqs. (82) and (83).
On comparing the two we recognize that the structure of Eqs. (100) and (101) is the exact parallel of
the ECFL theory for the Green’s function written in the notation of Ref. [4]. In the HKHH paper, the
objects evaluated amount to these two ECFL self energies, by the correspondence⌃ (k,⇠)� ⇤(k,⇠)
(see [18, Eq. (C10)]), and ⇧(k,⇠)� ⌅(k,⇠) (see [18, Eq. (2.22)]). It is worth noting further that the
role of the parameter ✏ in the ECFL theory is in close parallel to that of 1

2s in the magnon problem.
Expansions in these two ‘‘small parameters’’ serve to organize the calculations.

The product ansatz in ECFL [4,6] was originally arrived at in Ref. [4] by analyzing the Schwinger
equations and insisting on a canonical Green’s function to be factored out from the physical G.
The calculation of HKHH, on the other hand, was through a different route using insights from
the Feynman diagrams applied to the four Boson operators in (99). It is satisfying that the two
independent calculations, one for Gutzwiller projected Fermions and the other for hard-core Bosons,
lead to such a close parallel, expressed most naturally in the twin self energy representation
(100) and (101).

A few additional comments on the role of the projection operator in the two problems are relevant
here. Dyson demonstrated in his non-Hermitian representation that magnon interactions at low
temperatures lead to T 4 type corrections to themagnetization of the ideal spinwave theory. He argued
that the projection operator P̂D is largely irrelevant in the ferromagnet, and provided an estimate of
corrections to the low T behavior arising from this neglect. For the antiferromagnet, HKHH similarly
argued that the projector is unimportant at low T , and gave an estimate of the expected corrections.
The corrections are larger than in the ferromagnet, and yet smaller than most quantities of interest
at low T . The density of excitations is small at low T in the magnetic problem, and thus provides
a basis for ignoring the projection operator. However in the Fermion problem studied here, the
particle density is never too small in the interesting regime, and hence the projection operator must
be respected. Interestingly enough, the projector does not explicitly appear in the Schwinger EOM
(16), but it does determine the choice of the correct constitutive relation (14). Thus the projection
operator plays a significant role in enforcing the Luttinger–Ward theorem [45] for the volume of the
Fermi surface.
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Another major difference between the Fermionic and the spin problems is the role of the second
Lagrange multiplier u0, when the parameter ✏ < 1. In the Fermi problem, it is essential to change the
Hamiltonian by adding the term ✏uo

P

i Ni�Ni�, in addition to replacing the projected Xab
i by Xab

i (✏).
This is required in order to satisfy the shift identities, and as explained in Ref. [6], the parameter u0
is fixed by a number sum rule on the auxiliary Green’s function. The problem of magnetic excitations
does not have a counterpart to this term. However, we can imagine extending the Dyson–Maleev
and HKHH formalism to an extremely correlated Bose liquid with a fixed number of Bosons, e.g. 4He
on a suitable substrate giving rise to a lattice model with hard core repulsion. In such a case, a
corresponding theory parallel to ECFL can be developed, requiring both the shift identities and a
second Lagrange multiplier u0 disfavoring multiple occupancy to satisfy these.

7. Path integrals

7.1. Canonical path integral representation

We now introduce path integrals to represent the partition functional (68), wherein the operators
are replaced by anticommuting c-numbers, i.e. the Grassmann variables.Wewill keep the discussions
to a minimum since excellent references can be consulted for details [46–49]. We map the operators
as Ci◆ ↵ ci◆ , eCi◆ ↵ eci◆ ⇧ ci◆ (1 � c⇤i◆̄ ci◆̄ ), CÑ

i◆ ↵ c⇤i◆ , eC
Ñ
i◆ ↵ ec⇤i◆ ⇧ c⇤i◆ (1 � c⇤i◆̄ ci◆̄ ). The time

dependence is dealt with using a standard Trotter decomposition of the non commuting pieces [49].
Handling theGutzwiller projector is discussed belowand inAppendix C. It is understood thatwhen the
Trotter indexM is finite, we have a discretized time representation, so that whenM ↵⌘, we obtain
the continuous time path integrals. We work initially with the discrete time version since somewhat
subtle identities such as the Pauli principle and the Gutzwiller projection identities can be verified
explicitly. We now write the partition functional Z (68), in terms of Grassmann variables at discrete
times ci◆ (j) and c⇤i◆ (j), and a global integration over all Grassmann variables with the conventional
definition [49]:

Z (M)[J⇤, J, V] =
Z

c
PG(1, 0) e�A

(M)
Tot ,

ATot = A
(M)
0 + A

(M)
S + A

(M)
t + A

(M)
J . (102)

We detail the various contributions next; the free Fermi term is given by

1
⇥

A
(M)
0 =

M�1
X

j=0

⇥

c⇤i◆ (j+1)↵j ci◆ (j)� µ nj◆ (j)
⇤

, (103)

with the finite difference operator ↵j defined through

↵j F(j) ⇧
1
⇥

�

F(j+1)� F(j)
 

. (104)

As M ↵⌘, we note that ↵j reduces to the derivative operator ⇢ , and we obtain the integral
A0 =

R  

0 d c⇤i◆ ( )(⇢ �µ)ci◆ ( ), and in that limit Z (M) ↵ Z[J⇤, J, V]. The source termA
(M)
S (j+1, j)

obtained from (72) is given by

A
(M)
S =

X

i

⇥

ec ⇤i◆ (j+1) Ji◆ (j+1) + J⇤i◆ (j+1)ci◆ (j)
⇤

+
h

V◆ ⇣◆
i (j+1)c⇤i◆ ⇣(j+1)ci◆ (j)

i

. (105)

As in (72), the projected variable with a hat appears in the creation operator and nowhere else in this
expression. The Hamiltonian (59) gives rise to two parts of the action. The hopping term is given by

A
(M)
t = ⇥

X

j

Teff (j)↵
Z  

0
d Teff ( ), (106)
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with Teff from Eq. (60) or Eq. (74):

T Sym
eff (j) = �

X

lm◆

tlm c⇤l◆ (j+1)cm◆ (j)⇥
�

1� nl◆̄ (j)� nm◆̄ (j)
�

,

TMin
eff (j) = �

X

lm◆

tlm c⇤l◆ (j+1)cm◆ (j)⇥
�

1� nl◆̄ (j)
�

, (107)

where (107) corresponds to the symmetrized theory of (64) and (107) to the minimal version of (71).
The exchange part of the action is given by

A
(M)
J = ⇥

X

j

HJ(j)↵
Z  

0
d HJ( ),

HJ(j) ⇧ �
1
4

X

lm

Jlm ◆1◆2 ⇥ c⇤l◆1(j+1)c⇤m◆̄1(j+1)cm◆̄2(j)cl◆2(j). (108)

Where possible we simplify the notation by dropping the superscript M; most expressions provide
sufficient context for this and there should be no confusion. Thus we will write G

(M)
◆◆ ⇣(ai, bf ) ↵

G◆◆ ⇣(ai, bf ) and Z (M) ↵ Z etc. below. When no confusion is likely we will refer to Z[J⇤, J, V] as
simply Z , and also abbreviate terms such as Heff (j+1, j) to Heff (j) or even more simply to Heff .
Eq. (102) is almost in the form of a canonical partition function for unprojected electrons, but with an
important difference. The extra term in the integration measure is the Gutzwiller projector written in
Grassmann variables. These variables arise at the initial and next time instant only and the rest of the
time variables have only the standard measure of unity. Explicitly we find

PG(1, 0) ⇧
Ns
Y

i=1

�

1� c⇤i�(1)ci�(0)c
⇤
i�(1)ci�(0)

�

, (109)

it has all creation (destruction) operators at j = 1 (j = 0), andNs is the number of sites. In Appendix D,
we summarize the Pauli principle and Gutzwiller identities obeyed by the present coherent state
representation, these represent an important aspect of the strong correlation problem. We will also
recycle the notation of (63) for the average in this distribution of any function Q of the Grassmann
variables:

��Q ⌫⌫ = ⇠Q⇠
Z

, with ⇠Q⇠ =
Z

c
PG(1, 0)e�A Q , (110)

a useful abbreviation (110), and drop the superscript (M). This representation of the path integral
with a constraining projection factor at only the initial time has a resemblance to the that in the
canonical quantization of the electromagnetic field in the temporal gauge [37,38], as already noted
in the introduction. The Green’s functions follow from Eq. (73) using ↵/↵J(j)↵ 1

(⇥ )
d/dJ(j) [50]:

G◆i◆f (ii, f f ) = 1
Z
⇠ec ⇤f ◆f (f ) ci◆ (i)⇠. (111)

7.2. Equations of motion from path integral representation

In this section we obtain the Schwinger equations of motion of ECFL (see Ref. [6] and especially
Appendix A Eq. (138)), directly from the path integral representation given above thus providing a
non trivial check on the representation. To obtain Eq. (138), we initially set the Fermionic sources to
zero, the Bosonic sources are turned off at the very end. The equations ofmotion aremost easily found
using a Grassmann integration identity:

Z

c
PG(1, 0)

↵

↵c⇤i◆i(i+1)

h

ec ⇤f ◆f (f+1) e�ATot
i

= 0. (112)

This identity is a straight forward generalization of the theorem on vanishing of a total derivative [46],
including a non trivial measure PG (109) where the time arguments are greater than all time
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arguments in (109), i.e. i, f ⌥ 1. It is proved by the usual logic for Grassmann variables; the derivative
↵

↵c⇤i◆i (i+1)
is in addition to an integration over c⇤i◆i(i+1) contained in the overall integration. We next

recall that the highest possible degree of a polynomial in any Grassmann variable is unity. The above
expression vanishes upon further noting that Grassmann integration and Grassmann differentiation
are identical. The same identity is valid if we replace ec ⇤f ◆f (f+1) by any other allowed Grassmann
variable U , subject to the double occupancy restriction, and similarly with V (see Ref. [51]). In
summary, an abstract equation of motion, following from

R

PG ↵
↵V (Ue�ATot ) = 0 and Fermionic U, V

reads
�

�

�

�

↵U
↵V

�

�

�

�

+
�

�

�

�

U
↵AS

↵V

�

�

�

�

+
�

�

�

�

U
↵A0

↵V

�

�

�

�

+
�

�

�

�

U
↵At

↵V

�

�

�

�

+
�

�

�

�

U
↵AJ

↵V

�

�

�

�

= 0. (113)

7.3. Equation for G◆i◆f (i, f )

Our first task is to find an equation for the Green’s function [50]—we use (113) with U = ec ⇤f ◆f (f )
and V = c⇤i◆i(i). We compute the various pieces of (113) next.

Denoting

b⌦◆i◆f (i) ⇧ ◆i◆f c⇤i◆̄i(i+1)c i◆̄f (i), (114)

and using the convention that repeated spin indices are summed over, we obtain the first result:

↵

↵c⇤i◆i(i+1)
ec ⇤f ◆f (f+1) = ↵if ↵if

�

↵◆i◆f �b⌦◆i◆f (i)
 

. (115)

We obtain

1
⇥

↵A0

↵c⇤i◆i(i+1)
= ↵i ci◆i(i)� µ ci◆i(i), (116)

1
⇥

↵AS

↵c⇤i◆i(i+1)
= V

◆i◆j
i (i+1) ci◆j(i) +

�

↵◆i◆j �b⌦◆i◆j(i)
 

Ji◆j(i+1), (117)

1
⇥

↵A
Sym
t

↵c⇤i◆i(i+1)
= �tijcj◆i(i) + tij

⇥

⌦̂◆i◆j(ii) cj◆j(i) + c⇤j◆̄i cj◆̄i cj◆i + c⇤j◆̄i ci◆̄i ci◆i
⇤

,

1
⇥

↵AMin
t

↵c⇤i◆i(i+1)
= �tijcj◆i(i) + tij⌦̂◆i◆j(ii) cj◆j(i)

1
⇥

↵AJ

↵c⇤i◆i(i+1)
= �1

2
Jij◆i◆j c⇤j◆̄i(i+1)cj◆̄j(i)ci◆j(i), (118)

We combine the two terms as:

1
⇥

↵(At + AJ)

↵c⇤i◆i(i+1)
= �

X

j

tijcj◆i(i) + Ai◆i(i+1, i), (119)

the first (linear) term in Fermions is separated out in this expression, and Ai◆i , detailed below in Eq.
(120), is obtained by combining all the three Fermion contributions in Eqs. (117) and (118). In the
minimal case we get from Eqs. (107), (108), (114) and (115)

AMin
i◆i = tijb⌦◆i◆j(ii) cj◆j(i)�

1
2
Jijb⌦◆i◆j(ji)ci◆j(i), (120)

(158)



B.S. Shastry / Annals of Physics 343 (2014) 164–199 191

in agreement with Eq. (22) of Ref. [6], and the symmetrized case is obtained in a similar way.
Combining these (with J ↵ 0) we get the EOM in discrete time space:

hn

µ� ↵i � V
◆i◆j
i (i+1)

o

↵i,j + tij
i

⇠ec ⇤f ◆f (f+1)cj◆i(i)⇠ � ⇠ec ⇤f ◆f (f+1)Ai◆i(i+1, i)⇠

= ↵if ⇠(↵◆i◆f �b⌦◆i◆f (i))⇠
↵i,f

⇥
. (121)

Wenext take the continuum limit in time i; with⇥ ↵ 0, and using
↵i,f
⇥
↵ ↵(i�f ), and using the

non interacting Fermi Green’s function from (136), and implementing the basic Schwinger identity for
representing higher order correlation functions as source derivatives:

⇠ec ⇤f ◆f (f )Ai◆i(i)⇠ = X̂◆i◆j(ii, jj)⇠ec ⇤f ◆f (f )cj◆j(j)⇠ (122)

where X̂ is a functional derivative operator defined more completely below in (130). With this
preparation we can rewrite Eq. (121) as

⇣

g

�1
0,◆i,◆j(ii, jj)� X̂◆i◆j(ii, jj)

⌘

⇠ec ⇤f ◆f (f )cj◆j(j)⇠ = ↵if ⇠(↵◆i◆f �b⌦◆i◆f (i))⇠↵(i � f ). (123)

Here and elsewhere since j repeats in product, it is assumed to be integrated between 0 ⌃ j ⌃  ,
this rule is analogous to the spin index summation rule. We next divide by Z , use (110) to define the
Green’s function, and also define

Y1◆i◆j(ii, jj) = 1
Z

(X̂◆i◆j(ii, jj)Z), (124)

to rewrite (123) in the same form as Eq. (138)
⇣

g

�1
0,◆i,◆j(ii, jj)� X̂◆i◆j(ii, jj)� Y1◆i◆j(ii, jj)

⌘

⇥G◆i◆j(ii, jj) = ↵if ↵(i � f )
⇥

↵◆i◆f � ⌦◆i◆f (i)
⇤

, (125)

where

⌦◆i◆f (i) ⇧ ��b⌦◆i◆f (i)⌫⌫. (126)

This is readily seen to be identical to the direct definition given before in (135). We next use ĩ ⇧
(i, i, ◆i) as an abbreviation for the (space, time, spin) indices, and use the repeated index summation
convention. Here summation stands for spin and spatial sums, and temporal integrals in the standard
intervals.With thiswe canwrite X̂◆i◆j(ii, jj)� X̂ ĩ j̃, and similarly for g�10 ,G and Y1. The variable (126)
is local and needs the extra definition ⌦◆i◆f (ii)↵if ↵(i�f )� ⌦ ĩ f̃ and also denote ↵if ↵◆i◆f ↵(i�f )�
↵ ĩ f̃ . With these, the matrix product form of Eq. (123) reads:

⇣

g

�1
0, ĩ j̃
� X̂ ĩ, j̃ � Y1 ĩ, j̃

⌘

G j̃, f̃ = (↵ ĩ f̃ � ⌦ ĩ f̃ ). (127)

This is exactly the form of the Schwinger equation for the Green’s function obtained from the
continuous time Heisenberg equations of motion (138) in [4,6], using the above abbreviation
convention.

In order to obtain an expression for X̂ , we note a useful relationship involving the action on the
partition functional (102) of the operator D◆i◆j(i) ⇧ ◆i◆j↵/↵V

◆̄i◆̄j
i (from Eq. (39) of Ref. [6])

D◆i◆j(i)Z[V] = �⇠⌦̂◆i◆j(i)⇠, (128)

so that:

⇠ec ⇤f ◆f (f+1)AMin
i◆i ⇠ = �tijD◆i◆j(i)⇠ec ⇤f ◆f (f+1)cj◆j(i)⇠+ 1

2
JijD◆i◆j(j)⇠ec ⇤f ◆f (f+1)ci◆j(i)⇠, (129)
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and comparing with Eq. (122) we conclude

X̂◆i◆j(ii, jj) = ↵(i � j)(�tijD◆i◆j(i) + ↵ij
X

k

1
2
JikD◆i◆j(ki)), (130)

where the derivative D◆i◆j(ki) is at spatial site k and time i. The corresponding Y1 (with a similar
convention as above) in Eq. (124) is

Y1◆i◆j(ii, jj) = �↵(i � j)

 

�tij⌦◆i◆j(i) + ↵ij
X

k

1
2
Jik⌦◆i◆j(ki)

!

. (131)

Analogous expressions for the symmetrized case, for Ai, X̂ and Y1 parallel to Eqs. (130), (131) and
(120), can be obtained by using the symmetrized version (top line) of Eq. (117). This expression agrees
with Eq. (43) of Ref. [6], and their minimal version obtained after dropping the second and fourth
term. We have thus verified that the exact equations of motion are obtained from the path integral
representation outlined here, constituting a non trivial check on the formalism.

8. Conclusions

In this work we have presented a simpler method to obtain the ECFL theory that complements the
Schwinger method used earlier. This new method brings an important analogy to the Dyson–Maleev
theory to attention, and this connection helps us to get a different perspective on the main results
of ECFL, in particular the novel non-Dysonian representation of the Greens function is placed on a
firm foundation. The path integral method is used to set up an alternate quantum field theory with a
non Hermitian Hamiltonian, and it is proven to be valid by reproducing the Schwinger equations of
motion.

We draw particular attention to the scaling result for the spectral function (34) and (35) in
Section 2.4. Here the low energy spectral function is shown to satisfy a simple relation involving the
hole density that throws light on the ever shrinking regime of validity of the Landau Fermi liquid, as
we approach the insulating state. Finally the discussion of the alternateways to analyze the ARPES line
shapes discussed in Section 2.5 should be of interest to the ARPES community, as also the discussion
of the electronic origin of a kink in the EDC energy dispersion.
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Appendix A. Summary of the minimal theory and its Schwinger equations of motion

In order to make the discussions reasonably self contained, we provide a brief discussion of the
minimal equations ofmotion for theGreen’s function. These are obtained through the usual Schwinger
method used in Refs. [4,6]. These equations are a subset of the ones given in Ref. [6], and can be
obtained by omitting certain extra terms therein, which were added to satisfy a symmetry property.
We term these equations are the minimal theory, since no terms are added or dropped, and the
expressions are not reducible by any other argument. We also indicate the generalization to include
the parameter ✏ in these equations, to facilitate comparing with the equations in this work.

Using the Hamiltonian (9) we note the important commutator (given in Ref. [6]):

[HtJ , X
0◆i
i ] =

X

j

tijX
0◆i
j + µX0◆i

i �
X

j◆j

tij(◆i◆j)X
◆̄i◆̄j
i X0◆j

j + 1
2

X

j◆=i

Jij (◆i◆j)X
◆̄i◆̄j
j X0◆j

i . (132)

Temporarily ignoring the Fermionic sources:

[ÂS(ii), X
0◆i
i ] = �V

◆i◆j
i X0◆j

i , (133)

(160)
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and combining with the Heisenberg equation of motion, we see that the Green’s function satisfies the
EOM

⇢iG◆i◆f (i, f ) = �↵(i � f )↵ij(1� ⌦◆i◆f (ii))

�
D

T
⇣

e�ÂS [HtJ + ÂS(i, i), X
0◆i
i (i)] X◆f 0

f (f )
⌘E

(134)

where the local Green’s function

⌦◆a◆b(ii) = ◆a◆bG◆̄b◆̄a(i
�
i , ii). (135)

Substituting and using the Fermi gas (i.e. free) Green’s function:

g

�1
0,◆i,◆j(ii, jj) =

n

↵◆i◆j
⇥

↵ij(µ� ⇢i) + tij
⇤

� ↵ijV
◆i◆j
i (i)

o

↵(i � j), (136)

we obtain (using the repeated index summation and integration convention of Ref. [6])

g

�1
0,◆i,◆j(ii, jj)G◆j◆f (jj, f f ) = ↵(i � f )↵ij(1� ⌦◆i◆f (ii))

�
X

j◆j

tij(◆i◆j)
D

T
⇣

X ◆̄i◆̄j
i (i)X

0◆j
j (i)X

◆f 0
f (f )

⌘E

+ 1
2

X

j◆j

Jij(◆i◆j)
D

T
⇣

X ◆̄i◆̄j
j (i)X

0◆j
i (i)X

◆f 0
f (f )

⌘E

. (137)

We next express the higher order Green’s function in terms of the derivatives of the lower one to
obtain the Schwinger EOM:

⇣

g

�1
0,◆i,◆j(ii, jj)� X̂◆i◆j(ii, jj)� Y1◆i◆j(ii, jj)

⌘

G◆j◆f (jj, f f )

= ↵if ↵(i � f )
�

↵◆i◆f � ⌦◆i◆f (ii)
�

, (138)

where we used the functional derivative operator

D◆i◆j(ii) = ◆i◆j
↵

↵V
◆̄i◆̄j
i (i)

(139)

and the composite derivative operator

X̂◆i◆j(ii, jj) = ↵(i � j)

 

�tijD◆i◆j(ii) + ↵ij
X

k

1
2
JikD◆i◆j(ki)

!

, (140)

where the derivative D◆i◆j(ki) is at spatial site k and time i. The corresponding Y1 (with a similar
convention as above) in Eq. (124) is

Y1◆i◆j(ii, jj) = �↵(i � j)

 

�tij⌦◆i◆j(ii) + ↵ij
X

k

1
2
Jik⌦◆i◆j(ki)

!

. (141)

Eqs. (138), (140) and (141) define the minimal theory. For reference we note that Ref. [6] gives these
equations, and goes on to add terms that account for the symmetrized theorywith aHermitianHeff .We
also note that Eq. (138) can be generalized to include the ✏ parameter by scaling X̂◆i◆j , Yi◆i◆j , ⌦◆i◆j ↵
✏X̂◆i◆j , ✏Yi◆i◆j , ✏⌦◆i◆j .

(161)
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Appendix B. Coherent state definitions

We use standard anticommuting Grassmann variables [46] to represent the canonical Fermions C
and CÑ for each spin and site. In brief we note the anticommuting property

�

ci, c⇤j
 

= 0 =
�

ci, cj
 

=
�

c⇤i , c
⇤
j
 

=
n

ci, C
Ñ
j

o

. Suppressing j and spin index the Fermi coherent states are given as usual by:

|c⌫ = e�c CÑ |vac⌫ =
�

1� c CÑ
�

|vac⌫

�c| = �vac|e�C c⇤ = �vac|
�

1� C c⇤
�

�c|c ⇣⌫ = 1 + c⇤c ⇣ = ec
⇤c⇣ , (142)

where |vac⌫ is the vacuum state. We use the abbreviation to denote coherent state integrals:
Z

c
=

Z

dc⇤ dc. (143)

The basic integrals are
Z

c

�

1, c⇤, c, cc⇤
�

= (0, 0, 0, 1)

Z

c
e�c

⇤c = 1. (144)

The completeness relation reads:
Z

c
e�c

⇤c |c⌫�c| = |vac⌫�vac| + CÑ|vac⌫�vac|C ⇧ 1, (145)

and the trace over Fermionic variables is given by:

TrA =
Z

c
e�c

⇤c ��c|A|c⌫. (146)

Appendix C. Path integral representation

We now introduce path integrals to represent Eq. (68) leading to (102). Towards this end let us
write

 Ĥeff + ÂS =
Z  

0
Ĥ( )d

Ĥ( ) ⇧ Ĥeff +
X

i

ÂS(i,  ). (147)

The integral is represented by a finite sum over M intervals, and the limit M ↵⌘ taken at the end,
thus

Z  

0
Ĥ( )d ↵ lim

M↵⌘
⇥

X

j=1,M

Ĥ(j), (148)

where we defined

j = ⇥ ⇥ j = j  
M

,

⇥ =  

M
, j = 1,M. (149)

(162)
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Thus with Ĥ(j) ⇧ Ĥ(j) arranged to be in normal ordered form (creation operators to the left of the
destruction operators) we write Trotters formula for the exponential

Z (M) =
Z

c(0)
e�c

⇤
i◆ (0)ci◆ (0) ��c(0)|e�⇥Ĥ(M ) e�⇥Ĥ(M�1) . . . e�⇥Ĥ(2)e�⇥Ĥ(1) P̂G|c(0)⌫

=
Z

c
e�

PM
j=1 c⇤i◆ (j)ci◆ (j) �c(M)|e�⇥Ĥ(M )|c(M � 1)⌫ . . . |c(2)⌫�c(2)|

⇥ e�⇥Ĥ(2)|c(1)⌫�c(1)|e�⇥Ĥ(1) P̂G|c(0)⌫. (150)

Anti periodic boundary conditions are used: c(M) = �c(0) and we set at each time slice j the
coherent state |c(j)⌫ = Q

i◆ |ci◆ (j)⌫ as a global product over all sites and both spins, and the symbol
R

c
represents integration over all the sites spins and time slices. The site index i and spin ◆ are implicitly
summed over. Recall that P̂G is brought to the extreme right of the product. We calculate as usual:

�c(j+1)|c(j)⌫ = ec
⇤(j+1)c(j)

�c(j+1)|e�⇥Ĥ(j+1)|c(j)⌫ ⇧ ec
⇤(j+1)c(j)�⇥H(j+1,j) + O(⇥ 2)

H(j+1, j) ⇧
�c(j+1)|Ĥ(j+1)|c(j)⌫
�c(j+1)|c(j)⌫

. (151)

The last term needs careful attention, we note

�c(1)|e�⇥Ĥ(1) P̂G|c(0)⌫ = �c(1)|(1�⇥Ĥ(1)) P̂G|c(0)⌫+ O(⇥ 2)

= �c(1)|c(0)⌫(1�⇥H(1, 0)) PG(1, 0) + O(⇥ 2)

= �c(1)|c(0)⌫e�⇥H(1,0) PG(1, 0) + O(⇥ 2), (152)

where Eq. (109) details the expression for PG(1, 0), it contains variables at the initial and next time
instant only. Combining all terms, we get the expression (102). We have thrown out terms of O(⇥ )2

in obtaining Eq. (102), andhence it is important to keep track of the Pauli principle identities, discussed
above in Eqs. (156) and (158). Note that for arbitrary 

� |CÑ
i◆ |j⌫ = c⇤i◆ ( )ec

⇤
i◆ ( )ci◆ (j) = � ↵

↵ci◆ (j)
� |j⌫. (153)

In view of this relation we note the following mappings:

�⌫ |CÑ
i◆ |j⌫ ↵ �

↵

↵ci◆ (j)
�⌫ |j⌫,

�⌫ |Ci◆ |j⌫ ↵ ci◆ (j)�⌫ |j⌫,
�j|CÑ

i◆ |⌫⌫ ↵ c⇤i◆ (j)�j|⌫⌫,

�j|Ci◆ |⌫⌫ ↵ ↵

↵c⇤i◆ (j)
�j|⌫⌫, (154)

Let us show how the commutation works here:

(CCÑ + CÑC)|c⌫ =
✓

�C ↵

↵c
+ CÑc

◆

|c⌫ =
✓

↵

↵c
C � cCÑ

◆

|c⌫ =
✓

↵

↵c
c + c

↵

↵c

◆

|c⌫ = |c⌫. (155)

Appendix D. Pauli and Gutzwiller exclusion identities

It is worth highlighting a few conventions about (102) and related expressions. These are designed
to retain some of themost important features of strongly interacting electrons on a lattice. In contrast,
in a theory of electrons in the continuum, these constraints are of no special consequence since
coincident spatial points have a measure of zero. We first discuss the Pauli principle related rules

(163)
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referring to the same spin spices, and then the Gutzwiller projection related rules relating to opposite
spin species, these are operative when two electronic operators have coincident space and time
coordinates.

• (I)When two coincident times in a product of operators on the same lattice site and same spin arise,
we follow the convention of immediate evaluation of the product. By evaluation, we understand
that the product of two similar Grassmann variables is set to zero, and for dissimilar Grassmann
variables (e.g. c and c⇤) at a common time, both of them are integrated out immediately. This leads
to the basic set of Pauli exclusion identities at equal times as one easily verifies:

ci◆ (j)c⇤i◆ (j) ↵ 1
c⇤i◆ (j)ci◆ (j) ↵ �1
ci◆ (j)ci◆ (j) ↵ 0

c⇤i◆ (j)c⇤i◆ (j) ↵ 0. (156)

• (II) We denote the number operator as

ni◆ (j) ⇧ c⇤i◆ (j+1) ci◆ (j), (157)

where we observe that the c⇤ has the immediately later time argument than that of c , this comes
about from representing � j + 1|CÑC |j⌫ = c⇤(j+1)c(j) ⇥ �j + 1|j⌫. Using this we will verify the
second set of Pauli exclusion identities

ni◆ (j+1)ni◆ (j) = ni◆ (j)

c⇤i◆ (j+1)ni◆ (j) = 0
ni◆ (j)c⇤i◆ (j) = c⇤i◆ (j+1)

ni◆ (j)ci◆ (j) = 0

ci◆ (j)ni◆ (j�1) = ci◆ (j�1). (158)

(III) We next obtain the important Gutzwiller exclusion identity. Calling the ith term in the product
(109) as P (i)

G (1, 0); we see that

ni�(1)ni�(1)P
(i)
G (1, 0) = ni�(1)ni�(1)

�c⇤i�(2)ci�(0)c⇤i�(2)ci�(0) � 0. (159)

The last line follows upon expanding 2(⇧ 1 + ⇥ ) about 1. The assumption that terms of
O(⇥ ) are negligible is implicit in the entire path integral formulation. This shows that the double
occupancy type terms ni�(1)ni�(1) that occur at any site lead to vanishing contribution, thus
enforcing Gutzwiller projection. We can extend this argument to other times j ⌥ 1:

ci�(j)ci�(j) . . . P (i)
G (1, 0) = 0, (160)

where the dots indicate contributions from intermediate times. These contributions, after
Grassmann integration over the terms at intermediate times, must necessarily end up with
. . . ci�(1)ci�(1)P

(i)
G (1, 0). Expanding this factor leads to ci�(1)ci�(1) � ci�(0)ci�(0), and

therefore vanishes to O(⇥ ), as in the argument in (159).

Appendix E. Interpreting the caparison factor in the Schwinger method

Within the Schwinger method, or the related path integral formulation given above, the
decomposition of G is best done by rescaling the source terms by a factor determined through a self
consistent argument given next. A convenient method is to work in the presence of the Fermionic
sources, which allows us to start with the non vanishing average of a Fermi operator:

⌘i◆i(i) ⇧
1
Z
⇠X0◆i

i (i)⇠ = 1
Z
⇠ci◆i(i)⇠, (161)

(164)
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and further abbreviate ⌘i◆i(i)� ⌘ ĩ. A creation variable average ⌘ ⇤
ĩ
⇧ 1

Z ⇠X
◆i0
i (i)⇠ is also useful. The

variable ⌘ ĩ satisfies the functional differential equation that we study next:

(g�1
0, ĩ, j̃
� X̂ ĩ j̃)(Z⌘ j̃) = Z(↵ ĩ, k̃ � ⌦ ĩ, k̃)J k̃, (162)

or using Eq. (124)

(g�1
0, ĩ, j̃
� X̂ ĩ j̃ � Y1 ĩ j̃) ⌘ j̃ = (↵ ĩ, k̃ � ⌦ ĩ, k̃)J k̃. (163)

This equation can be arrived at within the path integral representation (73), by using a variant of (112)
after omitting the Fermionic creation type variable in the square bracket; and of course with a non
vanishing Fermi source term. Alternately we can take the Heisenberg equations of motion in terms of
the original expressions in terms of the X operators (11) and (13). The agreement between the two
methods can be checked easily, and provides a strong check on the path integral formulation.

The Green’s function is found from a variant of Eq. (13):

G ĩ f̃ � ⌘ ⇤f̃ ⌘ ĩ = ↵⌘ ĩ

↵J f̃
, (164)

and on taking the limit J ↵ 0, J⇤ ↵ 0, all the single Fermi expectations ⌘ , ⌘ ⇤ vanish. Taking the J
derivative of (164), we see that (127) follows, so we will work with this equation from here.

The main objective from this point onwards, is to cast Eq. (163) or Eq. (127) into a form where the
expressions on right are in the canonical form, i.e. where the time dependent ⌦ term is gotten rid of in
favor of a suitable constraint [4,52,53]. The occurrence of the factor 1� ⌦ multiplying the source J in
Eq. (163) suggests that one should scale the source J by a suitable time dependent factor to obtain new
sources I. The factor can be adjusted self consistently, so as to extract a canonical Green’s function.
Thus we scale

J ĩ = (µ�1) ĩ j̃ I j̃, (165)
so that

↵

↵J f̃
= ↵

↵I k̃
µ k̃ f̃ , (166)

where (µ�1) is the matrix inverse of µ. These equations have inverses that are easily obtained. The
matrix µ is dependent on the Fermi sources only indirectly, and this dependence may be neglected
since the Fermi sources are turned off in the sequel. However it is allowed to be a functional of the
Bosonic sourcesV , thereby giving us considerable flexibility in defining it,wemust also then be careful
in locating it relative to the operator X̂ , since it contains derivatives with respect to V .

In view of Eq. (166) we obtain the product relation
G ĩ f̃ = g ĩ k̃ µ k̃ f̃ + ⌘ ⇤f̃ ⌘ ĩ,

g ĩ k̃ = ↵⌘ ĩ

↵I k̃
. (167)

The goal is to choose µ such that the so defined g satisfies a canonical equation, i.e. the analog of Eq.
(127), but without the ⌦ term on the right. For this purpose we can differentiate Eq. (163) with the
scaled source field I k̃, taking care to observe the non commutation of I k̃ with the derivative term X̂ .
This process yields the equations:

(g�1
0, ĩ, j̃
� X̂ ĩ j̃ � Y1 ĩ j̃) g j̃ k̃ = (↵ ĩ, j̃ � ⌦ ĩ, j̃)(µ

�1) j̃ k̃ �
h

X̂ ĩ j̃(µ
�1) l̃ k̃

i

g j̃ m̃µ m̃ l̃, (168)

where the square brackets demarcate the terms acted upon, by the derivative operators in X̂ . Eq. (168)
exhibits a separation of variables, all the dependence onµ is confined to the right hand side, and hence
we set both sides to the identity matrix:

(g�1
0, ĩ, j̃
� X̂ ĩ j̃ � Y1 ĩ j̃) g j̃ k̃ = ↵ ĩ k̃, (169)

(165)
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and

(↵ ĩ, j̃ � ⌦ ĩ, j̃)(µ
�1) j̃ k̃ �

h

X̂ ĩ j̃(µ
�1) l̃ k̃

i

g j̃ m̃µ m̃ l̃ = ↵ ĩ k̃. (170)

Multiplying through with µ and using
h

X̂ ĩ j̃(µ
�1) l̃ k̃

i

µ m̃ l̃ = �
h

X̂ ĩ j̃µ m̃ l̃

i

(µ�1) l̃ k̃, (171)

we rewrite Eq. (170) as

µ ĩ f̃ = (↵ ĩ f̃ � ⌦ ĩ f̃ ) + g j̃ k̃

h

X̂ ĩ j̃µ k̃ f̃

i

. (172)

We next show that Eqs. (169) and (170) can be rewritten in terms of the two self energies ⇧ and ⌃
used in Refs. [4,6]. We need the relation analogous to Eq. (171) to simplify Eq. (169):

h

X̂ ĩ j̃g j̃ k̃

i

= �g j̃ k̃

h

X̂ ĩ j̃g
�1
k̃ l̃

i

g l̃ k̃. (173)

Therefore we write the two equations as

(g�1
0, ĩ, j̃
� ⇧ ĩ j̃ � Y1 ĩ j̃) g j̃ k̃ = ↵ ĩ k̃,

µ ĩ f̃ = (↵ ĩ f̃ � ⌦ ĩ f̃ ) + ⌃ ĩ f̃ , (174)

where the two self energies ⇧ and ⌃ are functions obtained by iteration, and have a finite limit on
turning off the Bosonic source V . These are obtained from the above as

⇧ ĩ j̃ = �g m̃ k̃

h

X̂ ĩ m̃g
�1
k̃ j̃

i

⌃ ĩ f̃ = g j̃ k̃

h

X̂ ĩ j̃µ k̃ f̃

i

. (175)

Using the definition of X̂ and of various vertex functions, we can verify that these are precisely the
pair of equations that we obtained in Refs. [4,6] for the two self energies of G.
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We implement a highly efficient strong-coupling expansion for the Green’s function of the Hubbard model.
In the limit of extreme correlations, where the onsite interaction is infinite, the evaluation of diagrams simplifies
dramatically enabling us to carry out the expansion to the eighth order in powers of the hopping amplitude. We
compute the finite-temperature Green’s function analytically in the momentum and Matsubara frequency space
as a function of the electron density. Employing Padé approximations, we study the equation of state, Kelvin
thermopower, momentum distribution function, quasiparticle fraction, and quasiparticle lifetime of the system at
temperatures lower than, or of the order of, the hopping amplitude. We also discuss several different approaches
for obtaining the spectral functions through analytic continuation of the imaginary frequency Green’s function,
and show results for the system near half filling. We benchmark our results for the equation of state against those
obtained from a numerical linked-cluster expansion carried out to the eleventh order.
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I. INTRODUCTION

In 1991, Metzner put forth an algorithm to compute the
finite-temperature Green’s function of the Fermi-Hubbard
model [Eq. (1)] through a linked-cluster strong-coupling
expansion [1]. His approach offers a relatively straightforward
implementation on a computer, which is particularly useful
today given the enormous improvements in computer power in
the past two decades. The Metzner formalism further simplifies
in the limit of extreme correlations, as the onsite repulsion U
tends to infinity. In this paper, we implement his approach to
obtain analytical expressions for the single-particle Green’s
function in that limit through eighth order in the expansion
parameter βt , where β is the inverse temperature and t is the
hopping amplitude of the electrons on the lattice.

In another recent development, the extremely correlated
Fermi liquid theory (ECFL) [2] addresses this important limit
through the use of Schwinger’s source formulation of field
theory. One of the significant physical ideas to come out of
this theory is the presence of particle-hole asymmetry in the
spectral densities of the single-particle Green’s function and
the Dyson-Mori self-energy [2–8]. This asymmetry, which
has also been observed in dynamical mean-field theory studies
of the Hubbard model [7,9,10], becomes more pronounced
as the density approaches half-filling, i.e., as n → 1. The
asymmetry has implications for understanding the magnitude
and sign of the Seebeck coefficient near the Mott insulating
limit [10–12] and for explaining the anomalous line shapes of
angle-resolved photoemission spectroscopy experiments [13]
in strongly correlated materials.

In a recent work [14], the present authors (with Hansen)
used the series expansion method to successfully benchmark
the ECFL results for the spectral function [5], in their
common regime of applicability. The currently available
[O(λ2)] self-consistent solution of the ECFL is valid for
n ! 0.75. Additionally, the insight afforded by the aforemen-
tioned particle-hole asymmetry enabled us to construct a suit-
ably modified first moment of the spectral function, providing
a good estimate for the location of the quasiparticle peak. This

moment reduces the contribution from the occupied side of the
spectrum relative to the unoccupied side, leading to a sharper
location of the peaks. Therefore, using the series expansion to
calculate this moment, we were able to study the dispersion
of the quasiparticle energy and, as a result, the evolution of
the Fermi surface in the limit n → 1, i.e., beyond the density
regime currently accessible to the O(λ2) version of the ECFL.

Here, we expand upon our previous findings and perform
analytic continuation to obtain the full spectral functions.
Direct analytic continuation of finite series, however, leads to
unphysical results, e.g., negative spectral functions can arise
due to the truncation of the series. This is a well-studied
problem with known resolutions [15,16]. Therefore, and in
particular, to ensure the positivity of spectral densities, we
either take advantage of a transformation that guarantees this
positivity, or assume an approximate form for the spectral
functions, which comes out of the ECFL. We find a good
agreement between results from the two approaches, which
capture the expected features of the spectra discussed above.

Using strong-coupling expansions, there have been several
earlier studies of the thermodynamics and time-independent
correlations of the Hubbard and related models [17]. However,
strong-coupling expansions for the time-dependent correla-
tions are very rare [16,18,19]. In Ref. [16], the authors carried
out a strong-coupling expansion for the Green’s function to
fifth order in βt for the finite-U Hubbard model. Here, the
simplifications arising from the U → ∞ limit allow us to go
to eighth order in βt . This provides us with the opportunity
to employ Padé approximations and study several static and
dynamic quantities, such as the equation of state, momentum
distribution function, the quasiparticle fraction, and lifetime
at temperatures lower than the hopping amplitude, where
the direct sums in the series do not converge. We also
take advantage of the state-of-the-art numerical linked-cluster
expansions (NLCEs) [20], developed recently for the t-J
model, and set the exchange interaction J to 0, to gauge
our low-temperature equation of state obtained from the Padé
approximations.
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The organization of the paper is as follows: In Secs. II and
III, we review the Metzner formalism and detail its numerical
implementation. In Sec. IV, we provide analytical expressions
for the Green’s function and the Dyson-Mori self-energy in
momentum and Matsubara frequency space as a function of the
density. In Sec. V, we discuss the convergence of the series both
before and after the use of Padé approximations. Additionally,
using the series, we report results for the time-dependent local
Green’s function, the equation of state, Kelvin thermopower,
the quasiparticle weight at the Fermi surface, momentum
occupation number, and quasiparticle lifetime and spectral
functions at different points along the irreducible wedge of
the Brillouin zone. We summarize our results in Sec. VII.

II. THE MODEL

In the strong-coupling limit, the Hubbard Hamiltonian is
written as the sum of the unperturbed local Hamiltonian H0,
and a perturbation H1 that accounts for hopping of electrons
between the sites of the lattice,

H = H0 + H1, (1)

where

H0 = U
∑

i

ni↑ni↓ − µ
∑

iσ

niσ ,

(2)
H1 = −

∑

ijσ

tij c
†
iσ cjσ .

Here, ciσ (c†
iσ ) annihilates (creates) a fermion with spin σ on

site i, niσ = c
†
iσ ciσ is the number operator, U is the onsite

repulsive Coulomb interaction, µ is the chemical potential,
and tij is the hopping matrix element between sites i and j .
As discussed in the following, we allow for nearest-neighbor
hopping only, namely, tij = t if i and j are nearest neighbors,
and tij = 0 otherwise.

III. METZNER’S APPROACH FOR COMPUTING
THE GREEN’S FUNCTION

We start by describing the Metzner formalism before
turning our focus to topics related to its computational
implementation in the limit of extreme correlations. Following
the conventions in Ref. [1], we define the finite-temperature
single-particle Green’s function as

Gσjj ′ (τ − τ ′) = −〈Tτ cjσ (τ )c†
j ′σ (τ ′)〉, (3)

where 〈..〉 denotes the thermal average with respect to H , Tτ

denotes the imaginary time-ordering operator, and the creation
and annihilation operators in the Heisenberg representation are
expressed as

c
†
jσ (τ ) = eH τ c

†
jσ e−H τ ,

(4)
cjσ (τ ) = eH τ cjσ e−H τ ,

where 0 " τ " β is an imaginary time variable.
To derive a perturbative expansion for Gσjj ′ (τ − τ ′), we

switch to the interaction representation, where the time
evolution of the operators is governed by the unperturbed

Hamiltonian H0. The Green’s function can then be expressed
as

Gσjj ′(τ − τ ′) = −〈Tτ cjσ (τ )c†
j ′σ (τ ′)S〉0/〈S〉0, (5)

where the expectation values (〈..〉0) are taken with respect to
the unperturbed Hamiltonian, and S is given by

S = Tτ exp




∫ β

0
dτ

∑

ijσ

tij c
†
iσ (τ )cjσ (τ )



 . (6)

Next, by expanding the exponential in Eq. (6), both the
numerator and the denominator of Eq. (5) can be written as
perturbative series expansions in t . As detailed in Ref. [1],
every term of the expansions can be written in terms of
cumulants (connected many-particle Green’s functions) of
the unperturbed system, denoted by C0

m (m indicates the
number of creation or destruction operators in the cumulant).
Due to the local nature of the unperturbed Hamiltonian,
the cumulants are site diagonal, i.e., the only nonzero ones
are those whose site variables are the same, and they can
therefore be indexed by site. Due to the translational invariance
of the Hamiltonian, an order m cumulant at site i is independent
of i and is a function of only the time and spin indices of
the m creation, and m destruction operators acting on i, i.e.,
C0

mi ≡ C0
m(τ1σ1, . . . τmσm|τ ′

1σ
′
1, . . . τ

′
mσ

′
m). As we will see in

the following, this invariance is a major advantage of the
present method. Using it, each term in the expansion can be
written as a product of a spatial part and a temporal part, which
may then be evaluated independently.

The terms in the expansion for 〈S〉0 can be evaluated
using a diagrammatic approach, where each diagram consists
of vertices, and directed lines connecting the vertices. Each
vertex represents a site on the lattice, and each line represents
a hopping process between two sites. Furthermore, the spatial
sums reduce to calculating free multiplicities of graphs when
embedded on the lattice. This computationally inexpensive
part of the algorithm can be carried out independently of the
most expensive part (taking the time integrals), for any lattice
geometry.

The expectation value in the numerator of Eq. (5) can be
calculated the same way as 〈S〉0, except that any graph in
the former contains two additional external lines, one entering
the site j ′ at time τ ′ and one exiting the site j at time τ .
Consequently, in the lattice sums, one has to “fix” the vertices
to which the external lines attach to be the sites j and j ′ on
the lattice with the desired separation between them.

Another important feature of this method is the fact that the
spatial sums are unrestricted (different vertices are allowed to
be on the same lattice site), and therefore it can be verified that
the contributions of disconnected diagrams are products of
the contributions of their connected components (the linked-
cluster theorem holds). Hence, the disconnected diagrams in
the numerator of Eq. (5) are canceled by the denominator, and
Gσjj ′ (τ,τ ′) is given as the sum of the contributions of only the
connected graphs in its numerator.

Further details of the method are given in Ref. [1] and
will not be repeated here. The rules mentioned in Ref. [1] for
generating the graphs and evaluating their contributions are
reproduced below.
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FIG. 1. (Color online) Diagram of a sample graph in the sixth
order (with six internal and two external lines). The time and spin
indices of lines are ordered according to rule (iii). To calculate the
contribution of this graph, we need to insert C0

2 , C0
3 , C0

1 , and C0
1 for

vertices j ′, 1, 2, and j , respectively, for the time integral and the spin
sum, and (tj ′1)3(t12)2t1j for the spatial sum. The symmetry factor is
2 since exchanging lines that correspond to τ1σ1 and τ3σ3 does not
change the topology of the graph.

A. Rules for calculating the one-particle
Green’s function diagrammatically

(i) Draw all topologically distinct diagrams: vertices con-
nected by directed lines such that the number of entering and
exiting lines at each vertex is the same. The graphs consist
of the internal lines that connect two vertices as well as two
external lines that enter a vertex and exit a vertex. The order to
which each graph contributes is equal to the number of internal
lines it has.

(ii) Label each line with a time and spin index, and each
vertex by a lattice index. The vertex that has the entering
external line is labeled by j ′ and the vertex that has the exiting
external line is labeled by j .

(iii) Order the lines by defining a path that starts from the
entering external line at vertex j ′, goes through all of the
vertices, and ends with the exiting external line at j . Figure 1
shows an example of such a graph in the sixth order.

(iv) Insert a factor of (−til) for each line that connects vertex
i to vertex l.

(v) Insert C0
m(τ1σ1, . . . τmσm|τ ′

1σ
′
1, . . . τ

′
mσ

′
m) for each vertex

that has m entering lines labeled τ ′
1σ

′
1, . . . τ

′
mσ

′
m and m exiting

lines labeled τ1σ1, . . . τmσm, such that τiσi corresponds to the
next line after τ ′

iσ
′
i according to the ordering defined in (iii).

This will ensure that there are no fermion loops in the diagram.
(vi) Determine the symmetry factor of the graph, which is

the number of permutations of labeled lines and vertices that
do not change its topology.

(vii) To calculate the contribution of the graph, integrate
each internal time index between 0 andβ, sum over the internal
spatial and spin indices, and divide the result by the symmetry
factor. As an example, the contribution of the graph c in Fig. 1
is

W (c) = 1
2

∑

1,2

(tj ′1)3(t12)2t1j

∫ β

0
dτ1 . . .

∫ β

0
dτ6

×
∑

σ1...σ6

C0
2 (τ1σ1,τ3σ3|τ ′σ,τ2σ2)

×C0
3 (τ2σ2,τ4σ4,τ6σ6|τ1σ1,τ3σ3,τ5σ5)

×C0
1 (τ5σ5|τ4σ4) C0

1 (τσ |τ6σ6). (7)

(viii) To obtain the lth-order contribution to the Green’s
function, add the contributions W (c), of all the graphs with l
internal lines:

G(l) =
∑

c ∈ order l

W (c). (8)

In this scheme, the only zeroth-order graph consists of a
vertex and the two external lines. In the first order, the only
possible topology has two vertices, each having an external
line, and a single internal line connecting them. In higher
orders, the number of vertices can vary from two to l + 1,
where l denotes the order, depending on the topology. The
topologically distinct graphs up to the fourth order are shown
in Fig. 4 of Ref. [1].

B. Computational implementation

We have implemented a computer program to perform all of
the steps described in Sec. III A for the infinite-U case. In this
limit, since no double occupancy is allowed, the calculation of
the cumulants simplifies drastically. This enables us to carry
out the expansion to eighth order. In this subsection, we explain
some of the details of this implementation at each step.

1. Generation of topologically distinct graphs

To generate all topologically distinct diagrams in step (i)
above, we need to have a way of uniquely identifying them in
a computer program. For this, we use the concept of adjacency
matrices. The elements of a m×m adjacency matrix, where m
is the number of vertices, represent the connections between
every two vertices. For instance, for a graph with undirected
lines between vertices, the (i,j ) element can be an integer that
simply counts the number of lines between vertices i and j .
Here, since the lines are directed, we use a generalization of
this matrix where every element is replaced by an array of size
two. The first element of this array (we call it the left element)
represents the number of incoming lines from vertex i to vertex
j while the second element (or the right element) represents
the number of outgoing lines from vertex j to vertex i.

One has to note that a topologically distinct graph cannot
be uniquely represented by such an adjacency matrix since
different labelings of the vertices, while not altering the
topology, lead to different adjacency matrices. Therefore,
one has to devise an algorithm to pick only one, out of
m! possibilities, of the labelings of a graph to be able to
establish a one-to-one correspondence between the graphs
and its adjacency matrix. This can be done, for example,
through sorting the adjacency matrix; by assigning the first
row (column) to the vertex that possesses the largest number
of lines, and so on. Alternatively, in our case, we can more
simply employ the order of vertices that results from rule (iii)
above.

After defining the mapping between the adjacency matrices
and graphs in the computer algorithm, we generate graphs with
m vertices by considering all possible numbers for the elements
of the m × 2m adjacency matrix, subject to the following two
constraints: First, the number of incoming and outgoing lines
at each vertex have to be the same, so, if we subtract the
sum of left elements and the sum of right elements at each
row (column) the result has to be zero. Second, the total
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number of lines in the graph (or the sum of all elements of
the matrix, divided by 2) should be equal to the desired order
in the expansion. Note that, in this strong-coupling expansion,
there is no line that leaves a vertex and then enters the same
vertex, i.e., the diagonal elements of all adjacency matrices are
zero.

2. Cumulants

We obtain cumulants to any order by taking functional
derivatives of the generating functional with respect to Grass-
mann variables as described in Refs. [1,21]. As a result, a
cumulant of order l is written in terms of the local unperturbed
Green’s function (UGF) of the same order G0

l , as well as lower

order UGFs. In Appendix A, we show this expansion for the
first few cumulants. The calculation of the cumulants then
reduces to the evaluation of the UGFs, which, for order l, is the
expectation value of 2l time-ordered creation and annihilation
operators with respect to the unperturbed Hamiltonian. For
our case of the infinite-U limit, since no double occupancy
is allowed, a creation operator can only be followed by
an annihilation operator and vice versa. Hence, the Green’s
function can assume only two distinct values depending on
whether a creation or an annihilation operator is on the right
side of the time-ordered product of operators. The two values
are, respectively, (1 − ρ) and ρ

2 , where ρ = 2eβµ

1+2eβµ is the
density in the atomic limit. For example, we end up with the
following terms for the first two orders:

G0
1(τ1σ1|τ ′

1σ
′
1) = 〈Tτ c

†
jσ ′

1
(τ ′

1)cjσ1 (τ1)〉 = eµ(τ1−τ ′
1)δσ1σ

′
1

[
ρ

2
'(τ ′

1 − τ1) − (1 − ρ)'(τ1 − τ ′
1)

]
, (9)

G0
2(τ1σ1,τ2σ2|τ ′

1σ
′
1,τ

′
2σ

′
2) = 〈Tτ c

†
jσ ′

1
(τ ′

1)cjσ1 (τ1)c†
jσ ′

2
(τ ′

2)cjσ2 (τ2)〉

= eµ(τ1+τ2−τ ′
1−τ ′

2)
∑

qp

(−1)q(−1)p
[
ρ

2
δqσ2pσ ′

1
δqσ1pσ ′

2
'(pτ ′

1 − qτ1)'(qτ1 − pτ ′
2)'(pτ ′

2 − qτ2)

+ (1 − ρ)δqσ2pσ ′
2
δqσ1pσ ′

1
'(qτ1 − pτ ′

1)'(pτ ′
1 − qτ2)'(qτ2 − pτ ′

2)
]
, (10)

where the sum runs over permutations p and q of the time
and spin indices of the primed and unprimed variables,
respectively, and ' is the usual step function.

3. Free multiplicities

The spatial sums are performed for a specific lattice
geometry. We have calculated them on the square lattice. In
the computer program, we define a large enough lattice where
we can fit any cluster with a number of sites at least twice as
large as the maximum number of vertices in our largest order
graphs. We then assign vertices j ′ (where an external line
enters) and j (where an external line exits) to two lattice sites
with a given displacement between them. The next part of the
algorithm involves finding the number of possibilities for as-
signing the rest of the vertices to lattice sites. This can be done
by following the path we have defined for each graph in rule
(iii) to go from vertex j ′ to j . We start from vertex j ′ and in each
step, we move to the next vertex in the list and assign a site to it.
We ensure that if we come back to a vertex in the graph, we also
come back to the corresponding site on the lattice. However,
since we are calculating free multiplicities, we can assign the
same lattice site to multiple vertices wherever the topology of
the graph allows for it. In Table I, we show the number of topo-
logically distinct graphs in each order, along with the number
of graphs that have nonzero contributions on bipartite geome-
tries, and the sum of free multiplicities for all graphs in each
order for the (0,0) and (1,0) separations, up to the 10th order.

This computationally inexpensive process can be repeated
for all possible separations (the maximum separation is set
by the largest order considered). They can then be used to
calculate the Fourier transform of the Green’s function into
the momentum space.

4. Time integrals

As seen in Sec. III B 2, the cumulants for the infinite-U
Hubbard model consist of products of only step functions and
exponentials in the internal and external imaginary times. After
multiplying several cumulants to obtain the contribution of a
graph, we typically end up with a huge number of terms, each
consisting of the product of a set of step functions of the time
variables, the exponentials associated with the external times
(the exponentials associated with the internal times cancel),
Kronecker delta functions of the spin indices, and a function

TABLE I. Total number of topologically distinct graphs (second
column), number of graphs that have nonzero multiplicity on bipartite
geometries (third column), and the sum of multiplicities of all graphs
for the smallest separations for which they have nonzero multiplicity
(fourth column) at each order. The smallest separation for graphs
with even number of lines (in even orders) is rj ′ − rj = (0,0), and
for graphs in odd orders is considered to be rj ′ − rj = (1,0).

Order Topologically distinct Used for bipartite
∑

Multiplicities

0 1 1 1
1 1 1 1
2 2 2 8
3 5 4 18
4 14 10 164
5 41 22 458
6 130 59 4240
7 431 146 13 544
8 1512 425 130 516
9 5542 1136 448 211
10 21 236 3497 4 408 216
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of ρ. As mentioned before, one of the main advantages of
our approach is that the time integrals over internal time
variables can be taken independently of the spatial sums (free
multiplicity calculations). We choose τ ′ = 0 without loss of
generality since the Green’s function is a function of τ − τ ′

and G(τ − τ ′ < 0) can be obtained from G(τ − τ ′ > 0) using
the antiperiodicity of the Green’s function in imaginary time
[22]. To see how the time integrals are evaluated, we proceed
with the following example. Suppose that one of the terms that
belongs to a graph in the third order can be written as

I(τ ) =
∫ β

0

∫ β

0

∫ β

0
dτ1dτ2dτ3'(τ1 − τ3)'(τ − τ3). (11)

Note that in the above example, we have a smaller number of
step functions in the integrand than typically expected for a
term in the third order. However, the above combination is a
perfectly valid one as the products of step functions are often
simplified given that 'n(x) = '(x) for any nonzero n. The
integral over τ2 yields a factor β as there is no restriction on τ2.
The remaining integrals are nonzero if τ1 > τ3 and τ > τ3. But,
the latter condition does not uniquely determine the position of
τ1 relative to τ in the [0,β] interval. Therefore, we consider the
two possibilities, τ > τ1 and τ < τ1, and rewrite the integral
of Eq. (11) as

I(τ ) = β

∫ β

0

∫ β

0
dτ1dτ3

× ['(τ1 − τ )'(τ − τ3) + '(τ − τ1)'(τ1 − τ3)].

(12)
Note that for any value of τ1 and τ3, only one of the terms in the
integral in Eq. (12) is nonzero, justifying the equality. At this
point, we can use the known results for the types of integrals
in Eq. (12) (see Appendix B), leading to β[τ (β − τ ) + τ 2

2! ].
Computationally, the two distinct possibilities for the

ordering of times in the above example can be found by

generating all of the permutations of the time indices, and
for each permutation, examining whether every step function
in the product is nonzero. If that is the case, a multiplication
of step functions corresponding to that permutation is inserted
as the integrand.

5. Symmetry factor

Calculating the symmetry factor of each graph is straight-
forward in the framework of adjacency matrices. First, we
note that the symmetry factor is proportional to the factorials
of elements of the adjacency matrix in its upper triangle as
they correspond to the number of permutations of directed
lines that do not change the topology of the graph. Second, in
order to find the symmetry factor related to those permutations
of labeled vertices that leave the graph topology intact, we
simply generate all the m! matrices that correspond to different
orderings of vertex labels and find how many of them are the
same as the original matrix. We then multiply this number by
the factorials calculated in the first step to obtain the symmetry
factor of the graph.

IV. ANALYTICAL RESULTS

After evaluating the contribution of each diagram in a
particular order by multiplying its free multiplicity for a given
separation, time integral, and the spin sum, and dividing it
by the symmetry factor, we add all of those contributions for
that order to form the Green’s function in terms of the atomic
density ρ, the imaginary time τ , t , µ, and β. By calculating
the spatial sums for all possible separations for each graph
and performing a Fourier transformation on the space and
imaginary time, one can express the Green’s function in
terms of the momentum k, and the Matsubara frequency ωn.
Below, we show the resulting Green’s function in the first four
orders [23]:

G(0)
σ (z,k) =

1 − ρ
2

z
,

G(1)
σ (z,k) =

(
1 − ρ

2

)2
εk

z2
,

G(2)
σ (z,k) =

(
1 − ρ

2

)3
ε2
k

z3
+

(4 − ρ)ρ
(
1 − ρ

2

)
t2

z3
− 2β(ρ − 1)ρt2

z2
+ β2ρ[(3 − 2ρ)ρ − 1]t2

z
,

G(3)
σ (z,k) =

(
1 − ρ

2

)4
ε3
k

z4
− 7(ρ − 4)ρ(ρ − 2)2t2εk

16z4
+ 3β(ρ − 1)ρ(ρ − 2)t2εk

2z3
+ β2(ρ − 1)ρ[ρ(7ρ − 19) + 8]t2εk

4z2
,

G(4)
σ (z,k) =

(
1 − ρ

2

)5
ε4
k

z5
+ 5(ρ − 4)ρ(ρ − 2)3t2ε2

k

16z5
− ρ{ρ[(ρ − 8)ρ − 152] + 240}(ρ − 2)t4

8z5

− β(ρ − 1)ρ(ρ − 2)2t2ε2
k

z4
+ β(ρ − 1)ρ[ρ(4ρ + 11) − 16]t4

z4
− β2(ρ − 1)ρ[ρ(5ρ − 14) + 6](ρ − 2)t2ε2

k

4z3

+ β2(ρ − 1)ρ{ρ[2ρ(5ρ − 24) + 43] − 16}t4

2z3
− β3(ρ − 1)ρ[ρ(97ρ − 100) + 18]t4

6z2

− β4(ρ − 1)ρ{ρ[ρ(388ρ − 591) + 236] − 18}t4

24z

... , (13)
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where z = iωn + µ, and εk = −2t[cos(kx) + cos(ky)]. Note that in this format, the Green’s function is written in terms of the
atomic density ρ or equivalently the chemical potential µ, and not the true density for the many-body system, n = 1 + Gjjσ (τ −
τ ′ = 0+,µ) [25]. By definition, n, too, can be written as an expansion in the hopping (using the expansion for the local Green’s func-
tion). However, we would like to treat n as a parameter and rewrite the Green’s function in terms of it. In that case, the chemical po-
tential can no longer remain constant and we have to solve for it order by order in terms of n and t : µ = µ(0) + µ(2) + µ(4) . . . where

n − 1 = G
(0)
jjσ (0+,µ(0)) + G

(2)
jjσ (0+,µ(0)) +

dG
(0)
jjσ (0+,µ)

dµ

∣∣∣∣
µ=µ(0)

µ(2) + G
(4)
jjσ (0+,µ(0)) +

dG
(2)
jjσ (0+,µ)

dµ

∣∣∣∣
µ=µ(0)

µ(2)

+ 1
2

d2G
(0)
jjσ (0+,µ)

dµ2

∣∣∣∣
µ=µ(0)

(µ(2))2 +
dG

(0)
jjσ (0+,µ)

dµ

∣∣∣∣
µ=µ(0)

µ(4) + · · · (14)

Inverting this equation for µ in terms of n, we obtain

µ(0) = 1
β

log
n

2(1 − n)
, µ(2) = 2(2n − 1)t2β, µ(4) = 1

12
(6 + n(n − 4)(1 + 4n))t4β3

... (15)

Finally, by inserting these back into the expansion for the momentum- and frequency-dependent Green’s function order by
order, we end up with the following terms for up to the fourth order [26]:

G(0)
σ (z,k) =

1 − n
2

z
,

G(1)
σ (z,k) =

(
1 − n

2

)2
εk

z2
,

G(2)
σ (z,k) =

(
1 − n

2

)3
ε2
k

z3
+ [2(n − 2) − n][2(n − 1) − n]nt2

2z3
− [2(n − 1) + n]t2β

z2
,

G(3)
σ (z,k) =

(
1 − n

2

)4
ε3
k

z4
− 7[2(n − 2) − n]n(2 − n)2t2εk

16z4
− [2(n − 1) − n][2(2 − 3n) + (n − 1)n]t2βεk

2z3
− (n − 1)2n2t2β2εk

4z2
,

G(4)
σ (z,k) = +

(
1 − n

2

)5
ε4
k

z5
+ 5[2(n − 2) − n][2(n − 1) − n]3nt2ε2

k

16z5
+ [2(n − 1) − n]n(−n3 + 8n2 + 152n − 240)t4

8z5

+ {4(n − 1)n − 6[2(n − 1) + n]}(2 − n)2t2βε2
k

8z4

+ n{2[−3n2 + 6(2n − 3)n + 4(n − 1)(9n − 10)] + (1 − n)n(4n + 2)}t4β

2z4

+ [4(2n3 + 6n2 − 10n + 4) − (n − 1)n2(4n2 − 12n + 2)]t4β2

4z3
+ (−6n3 + 68n2 − 20n − 24)t4β3

48z2

... , (16)

where z = iωn + µ(0). It is perhaps even more useful to extract a self-energy from this expansion. The Dyson-Mori self-energy
(denoted simply with *DM → *) can be deduced using *(z,k) = z − aG[εk + G(z,k)−1], where aG = (1 − n/2) [3].

*(0)(z,k) = 0

*(1)(z,k) = 0

*(2)(z,k) = t2β(6n − 4)
n − 2

− (n2 − 4n)t2

z

*(3)(z,k) = n2t2εkβ
2(1 + n2 − 2n)

2(n − 2)
− (n − 4)(n − 2)nt2εk

8z2
+ nt2εkβ(n − 1)

z

*(4)(z,k) = t4β3(12 + 3n3 − 34n2 + 10n)
12(n − 2)

− 3(n4 − 8n3 + 72n2 − 80n)t4

4z3

+ 2t4β(2n4 − 40n3 + 65n2 − 24n)
(n − 2)z2

+ t4β2(2n6 − 12n5 + 19n4 − 19n3 + 10n2)
(n − 2)2z

... (17)
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FIG. 2. (Color online) Local Green’s function for a constant
chemical potential µ = 0 vs imaginary time at (a) T = 3.0, (b)
T = 2.0, (c) T = 1.5, and (d) T = 1.0. t = 1 is the unit of energy
throughout the paper.

V. CONVERGENCE AND THE PADÉ APPROXIMATION

In Fig. 2, we show the local imaginary time Green’s
function for ρ = 2/3, corresponding to µ = 0, at different
temperatures. At T = 3.0 (unless specified otherwise, we take
t = 1 as the unit of energy and work in units where kB = 1
throughout the paper), the series show very good convergence
as expected in this high-temperature region. Note that odd
terms in the series are zero for this local quantity. As we lower
T to 2.0, there are some discrepancies between low orders, but
the last two orders (6 and 8) still agree very well. This is no
longer the case as we get closer to T = 1, below which the
finite series is divergent by definition. This is because in the
absence of any other energy scale in the system, an expansion
in t can be viewed as an expansion in β. In other words, βm+1

always couples to tm in the series for the Green’s function.
In Fig. 2(d), one can see large fluctuations between different
orders already at T = 1.0 and there is no clear picture from
the bare results as to what the actual shape of the Green’s
function is.

To demonstrate the trends in the convergence of the series
at other values of µ, in Fig. 3, we show the equation of state
at the same four temperatures as in Fig. 2. We also show the
equation of state in the atomic limit (ρ vs µ). We find that the
last two orders more or less agree with each other for all µ at
T # 1.5. However, for T = 1, the convergence is lost in the
vicinity of µ = 0. This shows that the poor convergence of
the local Green’s function at this value of µ, seen in Fig. 2(d),
represents the worst case scenario. An important feature of the
equation of state as observed in Fig. 3 is that even at these high
temperatures, there are significant deviations of the many-body
density from the density in the atomic limit near the extreme
limits of n = 0 and n = 1.

It is instructive now to study the temperature dependence
of the density at a given µ, and to find out how the region
of convergence can be extended in temperature by the use
of Padé approximations. In Fig. 4, we show the temperature
dependence of the density for various positive and negative
values of µ. We show the direct sums as well as results after
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FIG. 3. (Color online) Density n as a function of the chemical
potential at (a) T = 3.0, (b) T = 2.0, (c) T = 1.5, and (d) T = 1.0.
Thin solid lines are the density in the atomic limit, ρ = 2eβµ

1+2eβµ .

two different Padé approximations. The results in the atomic
limit [ρ(T )] are shown for µ = 0 and ±2.0. In the atomic
limit, the system has two ground states depending on the sign
of µ. They correspond to ρ = 1 and ρ = 0 for positive and
negative µ, respectively. At exactly µ = 0, ρ is temperature
independent at 2/3. As one can see in Fig. 4, the real density for
the many-body system has a qualitatively different behavior
thanρ starting at relatively high temperatures. The temperature
where n starts deviating from ρ due to correlations is around
T ∼ 2 for µ = −2 and T ∼ 5 for µ = 2. As expected, the
density for µ = 0 falls below 2/3 for all T . To perform
Padé approximation for n vs T , we first expand ρ, i.e., the

0.1 1 10
T

0

0.2

0.4

0.6

0.8

1

n

ρ
up to 6th and 8th

Pade{5,4}
Pade{4,5}

µ=-2.0

µ=2.0

µ=0

µ=0.5

NLCE

FIG. 4. (Color online) Average density n as a function of tem-
perature for a range of µ from −2.0 to 2.0, with the increment of
0.5. The two indices of Padé in curly brackets indicate the order of
the polynomials in the numerator and the denominator. From bottom
to top, the dotted-dashed magenta lines are ρ for µ = −2, 0, and 2.
We are also showing results from the NLCE for these three values
of the chemical potential as thin dashed red lines (last two orders
of the bare sums), and thick dashed blue and thin solid violet lines
(after Wynn resummations with five and four cycles of improvement,
respectively) [20].
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zeroth-order term, in powers of β and then add the rest
of the higher order terms from the series. Therefore, in the
case of µ = 0, where ρ is temperature independent, the odd
powers of β in the series for n vanish and the two Padé
approximants yield the same function, leading to n ∼ 0.525
for the ground state. Nevertheless, we cannot verify that this
is the true value of the ground-state density of the system for
µ = 0.

The static properties of the model, such as the density, can in
principle be obtained in higher orders by avoiding the relatively
difficult calculation of the Green’s function, and calculating
only the free energy instead. However, for this purpose, we
can also take advantage of the novel NLCE method that has
been developed in recent years [20]. NLCE uses the same
basis as high-temperature expansions, but calculates properties
of finite clusters exactly, as opposed to perturbatively, using
full diagonalization techniques. As a result, the convergence
region of the NLCE is typically extended to lower temperatures
in comparison to high-temperature expansions with the same
number of terms.

In Fig. 4, we show results from the NLCE for the t-J model
with J = 0 for up to the 11th order in the site expansion,
where contributions of all clusters with up to 11 sites are
considered, for µ = 0 and ±2.0. By comparing the direct sums
in NLCE (thin dashed red lines represent the last two orders)
with those from our series, we find that while we have perfect
agreement between NLCE and the converged bare sums in the
series, the Padé approximants overestimate the value of n in
all cases at temperatures lower than one. The convergence of
the NLCE results at low temperatures can be further improved
using numerical resummations. Here, we show those obtained
from the Wynn algorithm [20] by thin solid violet and thick
dashed blue lines. Remarkably, the convergence is extended to
T ∼ 0.2 for µ = −2.0, and T ∼ 0.3 for µ = 0 and 2.0. The
results for µ = 0 show that the ground-state density is likely
less than 0.525.

In Fig. 5, we plot the chemical potential of the system as a
function of temperature for various fixed densities by inverting
functions such as those seen in Fig. 4. Here, the dotted dashed
lines represent the zeroth-order chemical potential µ(0) for a
fixed density. They all approach zero as T → 0 since they
correspond to the atomic limit. The results from the series and
the NLCE suggest a different behavior starting at relatively
high temperatures for the correlated system, except for the
density near 0.5, where the linearity of the chemical potential,
and the coincidence with the results from the atomic limit, is
extended to low temperatures. This is consistent with theµ = 0
curve in Fig. 3 approaching n ∼ 0.5 at low temperatures. On
the other hand, in the low density Fermi liquid regime, the low-
temperature chemical potential is expected to be proportional
to T 2. We find that the resumed NLCE results for n = 0.1
agree with this behavior as they provide a reasonable fit to the
function A + BT 2, as shown by a light blue (light gray) line
in Fig. 5.

Another feature seen in the plots of chemical potential at
fixed density, with potentially important implications for the
state of the system, is the change in sign of the slope of µ vs T
at low temperatures. Recent theories of thermopower of cor-
related systems identify the Kelvin formula for thermopower
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FIG. 5. (Color online) Chemical potential µ at fixed density vs
temperature for densities from n = 0.1 to n = 0.9 (from bottom to
top with the increment of +n = 0.1). The lines are the same as in
Fig. 4, except that the dotted-dashed magenta lines are the zeroth order
of the chemical potential in the atomic limit, i.e., µ(0) = T log n

2(1−n) ,
and that thin solid lines are Padé{6,3}. Here, we show the NLCE results
for n = 0.1, 0.5, and 0.9. The light blue (light gray) solid line is the fit
of the low-temperature NLCE results for n = 0.1 after resummation
to A + BT 2 with A = −3.12 and B = −1.10. The inset shows the
Kelvin thermopower, SKelvin, from NLCE as defined in Eq. (18), in
units of microvolts per degree Kelvin vs density. At each temperature,
the two lines correspond to different Wynn resummations.

[27,28] by the expression,

SKelvin = −1
qe

(
∂µ

∂T

)

N,V

= 1
qe

(
∂S

∂N

)

T ,V

, (18)

where qe = −|e| is the electron charge, S the entropy, and
a Maxwell relation is employed in the second identity. This
formula captures the considerations of Kelvin’s famous paper
on reciprocity in 1854 [29], within a contemporary setting.
As explained in Refs. [27,28], this expression represents the
“thermodynamic” contribution to the true thermopower in
addition to the dynamical contributions, that are assumed small
in many correlated systems and neglected here. We see from
this expression that a flat chemical potential in temperature
implies a maximum in entropy at the corresponding density,
and locates a density where the thermopower changes sign
(from electronlike to holelike), as often seen in correlated
systems. From Fig. 5, we observe that ∂µ

∂T
> 0 and hence

the Kelvin thermopower is positive for densities close to half
filling, whereas near the empty band things are reversed and
we get electronlike thermopower. The change in sign seems
to arise at a density n between 0.7 and 0.9, somewhat greater
than the value n = 2

3 from the naive atomic limit. A detailed
discussion of the thermopower, and the related Hall constant in
cuprates and in the two-dimensional t-J model can be found
in Refs. [28,30].

In Fig. 6, we show the analog of the quasiparticle fraction
defined in the Matsubara frequency space as

Z0(k) =
[

1 − Im*(ω0,k)
ω0

]−1

, (19)
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FIG. 6. (Color online) The quasiparticle fraction, defined in the
Matsubara frequency space, at the nodal Fermi surface of the
corresponding free Fermi gas, Eq. (19), after Padé approximation
vs temperature for different values of density. At temperatures below
one, the quasiparticle fraction initially decreases with increasing the
density before increasing again for n > 0.7. The green thick solid
lines are for n = 0.1 . . . 0.7 from top to bottom.

where ω0 = πT is the lowest Matsubara frequency, as a
function of temperature at various densities. We choose the
momentum k to be the nodal Fermi vector of a free Fermi
gas with the same density (kF ). Previous studies based on the
ECFL [2], or high-temperature expansions [31], suggest that
this model possesses a Fermi surface coinciding with that of
the free Fermi gas. The quantity in Eq. (19) will be equal to the
actual quasiparticle fraction deduced from the self-energy in
the real frequency axis, Z(k) = [1 − ∂*(ω,k)

∂ω
|ω→0]−1, in the

limit T → 0. Therefore, the lowest temperatures we have
access to may not be low enough to provide us with useful
insight as to how the ground-state value of this quantity
may vary with density. However, already at T ∼ 0.5, Padé
approximants offer an unexpected insight. We find that Z0(k)
decreases monotonically by increasing the density for n < 0.8,
then increases as n increases to 0.9. Interestingly, the onset
of this change of behavior coincides with that of the change
of sign in the thermopower discussed earlier. As n → 1,
we do expect the true ground-state value of Z(k) to vanish,
therefore this nonmonotonic dependence is presumably an
artifact resulting from the finite T definition employed.

In Fig. 7, we show the momentum occupation number,
mk = 〈c†

kσ ckσ 〉, versus k at T = 0.77 for different total densi-
ties. Features of this quantity at much lower temperatures were
discussed in Ref. [5] for the t-J model. However, the value of
the density in the latter study was limited to n ! 0.75. Here, we
find that even at high temperatures, as the density approaches
half filling, there is a huge redistribution of occupations in
comparison to the free Fermi gas, as evidenced by the differ-
ence in mk for n = 0.9 between the two cases as seen in Fig. 7.

In a recent publication [14], the first moments of the
electronic spectral functions of this model were studied using
the same series expansion. It was shown that a modified
first moment, (the “greater” moment) can better capture the
location of the spectral peak at higher densities than the
symmetric first moment. More information about the spectral
properties of electrons in this model can be gathered from

Γ M X Γ
0

0.2

0.4

0.6

0.8

m
k

n=0.2
n=0.5
n=0.7
n=0.9

T=0.77

Γ
M

X

FIG. 7. (Color online) Momentum distribution function at T =
0.77 for n = 0.2, 0.5, 0.7, and 0.9 vs momentum, as obtained from the
average of the two Padé approximations ({4,5} and {5,4}), around the
irreducible wedge of the Brillouin zone as shown in the inset. Vertical
lines show the difference between the two Padé approximants. The
thin dashed line is the momentum occupation number of a free Fermi
gas for n = 0.9 at the same temperature.

higher order moments, also accessible through the series. In
Fig. 8, we show the width of the quasiparticle peak, or the
inverse lifetime, defined as

.−1(k) =
√
ε>

2 (k) − [ε>
1 (k)]2, (20)

where ε>
1 (k) and ε>

2 (k) are the first and second greater
moments, respectively, obtained from the series as described
in Eq. (7) of Ref. [14]. Since the spectral function is largely
skewed at higher densities [4], the width generally grows as
the density increases.

VI. SPECTRAL FUNCTIONS

We next turn to a study of the spectral functions ρG(k,ω),
denoted by A(ω,k) in standard photoemission studies. This
can be found from the usual relation ρG(ω,k) ≡ − 1

π
Im G(ω +

µ(0) + iη,k), and requires a knowledge of the Greens function

Γ M X Γ0

1

2

Γ-1
(k

)

n=0.2
n=0.5
n=0.7
n=0.9

T=1.52

Γ M

X

FIG. 8. (Color online) Inverse lifetime, defined in Eq. (20), at
T = 1.52 and for n = 0.2, 0.5, 0.7, and 0.9 vs momentum around the
irreducible wedge of the Brillouin zone shown in the inset. t = 1 sets
the unit of energy. Lines are the same as in Fig. 7.
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for complex frequencies. To extract spectral functions, we
represent our Green’s function as a continued fraction, which,
when Taylor expanded to eighth order, reproduces Eq. (16).
That is, we write G as (see Ref. [15] for the notation)

G(z,k) = aG

z + b1−
a1

z + b2−
a2

z + b3−
a3

z + b4−
a4

z
, (21)

where al > 0 and bl are real. As explained in Ref. [15]
(see also [16]), these conditions ensure that the resulting spec-
tral function obtained from analytic continuation is positive
definite. The formulas for the al and bl can be obtained by
suitably combining the “raw” moments; this procedure is
detailed in Ref. [32]. In the infinite-U Hubbard model, we
know a priori how many floors will be in the continued fraction
representation of a Green’s function series of a given order.
This is because the constants bl have units of energy (and
must therefore to leading order go like t), and the constants
al have units of energy squared (and must therefore to leading
order go like t2). Therefore, we know that Eq. (21) is the
correct, i.e., maximal continued fraction form obtainable from
our eighth-order series. This is an advantage over the case
of the finite-U Hubbard model (see Ref. [16]), where the
presence of the energy scale U means that the number of
floors necessary to represent a series of a given order must be
determined empirically.

In Ref. [3], Shastry establishes the relationship between
the continued fraction representation of the Green’s function
[Eq. (21)], and a representation in terms of an infinite
sequence of self-energies with spectral densities ρ

(n)
* (ω),

with n = 0,1, . . . . For the standard self-energy we omit the
superscript so that ρ

(0)
* (ω) ≡ ρ*(ω). This is a particularly

convenient reformulation of the well-known Mori scheme
[33] for relaxation processes, where Laplace transforms over
time-dependent correlations are used. In particular, denoting
*∞ ≡ limz→∞ *(z), and recalling that

G(z,k) = aG

iω + µ − aG εk − *∞ −
∫

dν ρ* (ν)
iω−ν

,

b1 = − aG εk −*∞, and the standard self-energy is
expressed as

∫
ρ*(ν − µ(0))

z − ν
dν = a1

z + b2−
a2

z + b3−
a3

z + b4−
a4

z
,

(22)

where ρ*(ω) ≡ − 1
π

Im *(iωn → ω + iη). Following [3], we
identify the constant a1 ≡ a* ≡

∫
ρ*(ν)dν, b2 ≡ −*

(1)
∞ , and

∫
ρ

(1)
* (ν − µ(0))

z − ν
dν = a2

z + b3−
a3

z + b4−
a4

z
. (23)

For l > 1, one has the general formula,

al = a*(l−1) ; bl = −*(l−1)
∞ . (24)

The Green’s function of Eq. (21) will lead to a spectral
function with a small number of well-separated poles and
residues. To obtain a continuous shape for the spectral function,
there are several alternatives. We initially follow the procedure
of Tomita and Mashiyama (TM) [34], which is useful in the
spin relaxation problems, but does not seem to have features
of a fermionic self-energy function built into it. Nevertheless,

we try it out in view of its simplicity, and as it provides a
counterpoint to our preferred method presented next. In the
spirit of Ref. [34], we assume that

ρ*(ω − µ(0)) = A exp[−α2(ω − ω0)2], (25)

so that the coefficients A,α,ω0 are fixed using the moments,
and higher moments are forced to be those of the Gaussian.
Using Eq. (22), we can solve for A, α, and ω0 in terms of
a1, a2, and b2. It is also possible to obtain a continuous
spectral function whose moments correctly reproduce all of the
coefficients in Eq. (21) by making the Gaussian approximation
for the second-level self-energy:

ρ
(2)
* (ω − µ(0)) = A exp[−α2(ω − ω0)2]. (26)

Then, using the relation,
∫

ρ
(2)
* (ν − µ(0))

z − ν
dν = a3

z + b4−
a4

z + · · ·
, (27)

we can solve for A, α, and ω0 in terms of a3, a4, and b4.
However, as shown in Fig. 9 below, this is actually a worse
approximation as it accentuates an unphysical sharp peak in
the TM scheme spectral function.

An alternative scheme for obtaining continuous spectral
functions makes use of our knowledge of the approximate
form of the self-energy as (T ,ω) → 0 [7]:

ρ*(ω) = A(ω2 +π2T 2)
(

1 − ω

+

)
exp

[
−ω2 +π2T 2

ω2
c

]
. (28)

Here, (ω2 + π2T 2) is the standard Fermi-liquid form, 1
+

provides the aforementioned particle-hole asymmetry, and
the exponential extrapolates the low-energy answer to higher
energies in a natural way [2]. Once again, we can solve for A,
+, and ωc in terms of a1, a2, and b2 by using Eq. (22).

We obtain the spectral function ρG(ω,k) using both
Eqs. (25) and (28) at T = 1.1 for n = 0.7 and n = 0.9 and
at various points along the irreducible wedge of the Brillouin

8 4 0 4
0

0.1

0.2

0.3

Ω

Ρ G

k Π 2,0

FIG. 9. (Color online) The spectral density for the physical
Green’s function vs ω for T = 1.1 and n = 0.9. t = 1 sets the unit
of energy. The red (dashed) curve is obtained from the TM scheme
with the self-energy Eq. (25) and the black (solid) curve is obtained
from the TM scheme with the second level self-energy [Eq. (26)]. The
latter accentuates the unphysical secondary peak of the TM scheme
spectral function.
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FIG. 10. (Color online) The spectral density for the physical Green’s function vs ω for T = 1.1 and n = 0.7. The blue (solid) curve is
obtained from the Fermi-liquid-type scheme [Eq. (28)] and the red (dashed) curve is obtained from the TM scheme [Eq. (25)]. The fairly sharp
extra peaks obtained from the TM scheme, as compared to the Fermi-liquid scheme, seem to be physically unreasonable. We also note that the
spectral functions from ECFL found numerically using the O(λ2) scheme (see Fig. 3(f) of Ref. [14]) find rather broad peaks at high T.

zone. The spectral functions ρG(ω,k) are plotted in Fig. 10 for
n = 0.7 and in Fig. 11 for n = 0.9.

VII. SUMMARY

We present an implementation of the linked-cluster expan-
sion for the Green’s function of the infinite-U Hubbard model
on a computer, which is based on a formalism proposed by

Metzner [1]. Using efficient algorithms on parallel computers,
we have carried out the expansion up to the eighth order in
terms of the hopping amplitude, and obtained analytic results
for the Green’s function and the Dyson-Mori self-energy on
the square lattice as a function of momentum and Matsubara
frequency at a given fixed density. Since the lattice sums for
graphs in this approach are evaluated independently of their
time integrals and spin sums, our implementation paves the
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FIG. 11. (Color online) The spectral density for the physical Green’s function vs ω for T = 1.1 and n = 0.9. Lines are the same as in
Fig. 10.
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way for obtaining similar results for other geometries and
spatial dimensions.

To extend the region of convergence in temperature, we
employ Padé approximations and study several static and
dynamic quantities. The equation of state exhibits significant
deviations from the atomic limit starting at relatively high
temperatures and reveals interesting trends near n = 0.5,
where we find that the chemical potential changes linearly
with temperature and remains very close to the one in the
atomic limit down to the lowest temperatures accessible to
us. We also find that the change in sign of the derivative
of µ with respect to T at constant density, which is propor-
tional to the thermopower in Kelvin’s formula, takes place
at increasingly higher densities due to correlations as the
temperature is lowered. The momentum distribution function
also shows significant deviations from free fermions, and
becomes more uniform across the Brillouin zone as the
correlations build up at higher densities. We further study
dynamic quantities, such as the analog of the quasiparticle
fraction in the Matsubara frequency space vs temperature,
which shows a nonmonotonic dependence on density at
low temperatures, and the lifetime of the quasiparticles at
various densities, obtained in the series through the first
two moments of the electronic spectral functions. To make
contact with experiments and extend previous results for the
spectral functions obtained within the ECFL or the dynamical
mean-field theory, we calculate them here after transforming
the Green’s function series to continued fractions, or by
employing certain forms for the spectral functions suggested
by the ECFL theory. We present our results for densities
close to half filling at several points in the momentum space.

To benchmark our results from the Padé approximations
for the equation of state at temperatures lower than the
hopping amplitude, where the direct sums in the series do
not converge, and to shed more light on the state of the system
at those temperatures, we also present results from the NLCE
up to eleventh order for an equivalent model, i.e., the t-J
model with J = 0. We find perfect agreement between the
direct sums from the two methods when they converge, and
that at lower temperatures, the Padé approximants generally
overestimate the density for a given chemical potential.
The NLCE results after numerical resummations also help
obtain the thermopower vs density at a temperature that is
not otherwise accessible to the series even after the Padé
approximations.
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APPENDIX A: RECURSIVE EXPANSION OF CUMULANTS

In the following, we combine the time and spin variables
and denote them by their index only, i.e., C0

m(τ1σ1, . . . τmσm|
τ ′

1σ
′
1, . . . τ

′
mσ

′
m) → C0

m(1, . . . m|1′, . . . m′). Cumulants are cal-
culated by taking functional derivatives of a generating
functional with respect to Grassmann variables [1,21], and can
be expressed in terms of UGFs. We give explicit expressions
for C0

m through m = 3.

C0
1 (1|1′) = G0

1(1|1′), C0
2 (1,2|1′,2′) = G0

2(1,2|1′,2′) − G0
1(1|1′)G0

1(2|2′) + G0
1(1|2′)G0

1(2|1′), (A1)

C0
3 (1,2,3|1′,2′,3′) = G0

3(1,2,3|1′,2′,3′) − C0
2 (1,2|1′,2′)G0

1(3|3′) + C0
2 (1,2|1′,3′)G0

1(3|2′) − C0
2 (1,2|2′,3′)G0

1(3|1′)

+C0
2 (1,3|1′,2′)G0

1(2|3′) + C0
2 (1,3|2′,3′)G0

1(2|1′) − C0
2 (1,3|1′,3′)G0

1(2|2′)

−C0
2 (2,3|1′,2′)G0

1(1|3′) − C0
2 (2,3|2′,3′)G0

1(1|1′) + C0
2 (2,3|1′,3′)G0

1(1|2′)

−G0
1(1|1′)G0

1(2|2′)G0
1(3|3′) + G0

1(1|1′)G0
1(2|3′)G0

1(3|2′) + G0
1(1|2′)G0

1(2|1′)G0
1(3|3′)

−G0
1(1|2′)G0

1(2|3′)G0
1(3|1′) + G0

1(1|3′)G0
1(2|2′)G0

1(3|1′) − G0
1(1|3′)G0

1(2|1′)G0
1(3|2′). (A2)

The rule for obtaining the expansion for C0
m(1, . . . m|1′, . . . m′) − G0

m(1, . . . m|1′, . . . m′) is as follows. Partition the unprimed
integers 1 . . . m into at least two sets. Each set in the partition corresponds to a cumulant, in which the unprimed numbers in
the set are written in ascending order. The primed numbers 1′ . . . m′ are then partitioned amongst the cumulants created by the
unprimed number partitions, and are also written in ascending order. The sign of the term is (+) if the permutation to get from
primed to unprimed numbers is odd, and (−) if it is even. The sign is due to the Grassmann variables in the generating functional,
and is ultimately a consequence of the fermionic nature of the operators. C0

3 (1,2,3|1′,2′,3′) can be expressed in terms of the
UGFs by plugging Eq. (A1) into Eq. (A2). In general, C0

m(1, . . . m|1′, . . . m′) can be obtained in terms of UGFs of equal or lower
orders by this recursive procedure.

APPENDIX B: TIME INTEGRALS

In evaluating the time integrals, we use the following general result for the time integral of a product of step functions in terms
of a series of ordered internal times τi , over which the integrals are taken, and a fixed external time τ :

∫ β

0
dτn

∫ β

0
dτn−1 . . .

∫ β

0
dτ2

∫ β

0
dτ1'(τn − τn−1)'(τn−1 − τn−2) . . .'(τm+1 − τ )'(τ − τm) . . .'(τ3 − τ2)'(τ2 − τ1)

= τm(β − τ )n−m

m!(n − m)!
. (B1)
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a b s t r a c t

The recently developed theory of extremely correlated Fermi liq-
uids (ECFL), applicable to models involving the physics of
Gutzwiller projected electrons, shows considerable promise in un-
derstanding the phenomena displayed by the t–J model. Its for-
mal equations for the Greens function are reformulated by a new
procedure that is intuitively close to that used in the usual Feyn-
man–Dyson theory. We provide a systematic procedure by which
one can draw diagrams for the �-expansion of the ECFL introduced
in Shastry (2011), where the parameter � 2 (0, 1) counts the or-
der of the terms. In contrast to the Schwinger method originally
used for this problem, we are able to write down the nth order dia-
grams (O(�n)) directly with the appropriate coefficients, without
enumerating all the previous order terms. This is a considerable
advantage since it thereby enables the possible implementation of
Monte Carlomethods to evaluate the� series directly. The newpro-
cedure also provides a useful and intuitive alternative to the earlier
methods.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Motivation

The t–J model is amodel of fundamental importance in condensedmatter physics, and is supposed
to have the necessary ingredients to explain the physics of the high-temperature cuprates [1]. Its
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Hamiltonian can be written in terms of the Hubbard X operators as [2]

H = �
X

ij�

tijX�0i X0�
j � µ

X

i�

X��i + 1
2

X

ij�

JijX��i + 1
4

X

ij�1�2

Jij{X�1�2i X�2�1j � X�1�1i X�2�2j }. (1)

The operator Xab
i = |aihb| takes the electron at site i from the state |bi to the state |ai, where |ai

and |bi are one of the two occupied states |"i, |#i, or the unoccupied state |0i. In terms of electron
operators C, CÑ, and the Gutzwiller projection operator PG that eliminates double occupancy, wemay
explicitly write X�0i = PG CÑ

i� PG, X0�
i = PG Ci� PG and X�� 0

i = CÑ
i�Ci� 0 PG. The key object of study for

this model is the single-particle Green’s function, given by the expression

G�1�2(i, f ) = �hT⌧X0�1
i (⌧i)X

�20
f (⌧f )i, (2)

aswell as higher order dynamical correlation functions. Several novel approaches for computing these
objects have been tried in literature [3–8], but it has been founddifficult to impose the Luttinger–Ward
volume theorem in a consistentway,while providing a realistic description of both quasiparticle peaks
and background terms in the spectral function.

The essential difficulties in computing these objects are (I) the non-canonical nature of the X op-
erators, and hence the absence of the standard Wick’s theorem, and (II) the lack of a convenient ex-
pansion parameter. In the recently developed extremely correlated Fermi liquid theory (ECFL) [9–11],
Shastry proposed a formalism which successfully resolves both difficulties. This formalism is based
on Schwinger’s approach to field theory, which bypasses Wick’s theorem, and is more generally ap-
plicable than the Feynman approach that is fundamentally based uponWick’s theorem. Building atop
this powerful formalism, the ECFL theory consists of the following main ingredients:

• (1) The product ansatz, in which the physical Green’s function G[i, f ] is written as a product of the
auxiliary (Fermi-liquid type) Green’s function g[i, f ], and a caparison functioneµ[i, f ] (Eq. (9)). The
former is a canonical, i.e. unprojected electron typeGreen’s function,while the latter is a dynamical
correction, which arises fundamentally from the removal of double occupancy from the Hilbert
space. This addresses the difficulty (I) above.

• (2) The introduction of an expansion parameter � 2 (0, 1), which continuously connects the
t–J model with the free Fermi gas, and enables the formulation of a systematic expansion. This
parameter is related to the extent towhich double occupancy is removed, and has a close parallel to
the semiclassical expansion parameter 1

2S arising in the expansion of spin S (angular momentum)
operators in terms of canonical Bosons [11].

In addition the detailed calculations require certain crucial steps

• (3) The introduction of a particle–number sum rule for the auxiliary Green’s function (Eq. (62)),
fixing the number of auxiliary fermions to equal the number of physical fermions. This arises
from requiring the charge of the particle to be unaffected by Gutzwiller projection, and is closely
connected to the volume of the Fermi-surface of the physical fermions. In essence it ensures that
the theory satisfies the Luttinger–Ward volume theorem [12,13].

• (4) The introduction of the second chemical potential u0, which ensures that g[i, f ] and eµ[i, f ]
individually satisfy the shift invariance theorem [10], and together with the original chemical
potential µ, facilitates the fulfilling of the two particle–number sum rules.

In earlier work these ingredients are accomplished directly using the Schwinger equation of motion
(EOM) for the t–J model. In particular, the fundamental objects g[i, f ] andeµ[i, f ] are defined through
their respective equations ofmotion, and the expansion parameter� is inserted directly into the equa-
tion of motion. The practical issue of computing objects to various orders in � is also accomplished by
iterating the EOM order by order. The technical details are given in Refs. [9,10], and are summarized
in Section 2, facilitating a self contained presentation.

In recent papers, the O(�2) ECFL has been theoretically benchmarked using Dynamical Mean-Field
Theory (DMFT) [14], Numerical RenormalizationGroup (NRG) calculations [15], andhigh-temperature
series [16]. In all cases, the low order ECFL calculation compares remarkably well with these well
established techniques. On the experimental side, a phenomenological version of ECFL which uses
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simple Fermi-liquid expressions for the self-energies �[i, f ] and  [i, f ] (which are simply related
g[i, f ] and eµ[i, f ] respectively) was successful in explaining the anomalous lines shapes of Angle-
Resolved Photoemission Spectroscopy (ARPES) experiments [17]. Encouraged by this, higher order
terms e.g. O(�3) are of considerable interest in order to probe densities closer to the Mott limit than
possible with the O(�2) theories, and in this context the present work is relevant. In this paper, we
develop a diagrammatic � expansion. This expansion allows one to calculate the Greens function and
related objects to any order in � by drawing diagrams. These diagrams are reminiscent of those in the
Feynman series [18,19], although more complicated than the former. This extra complication stems
from the non-canonical nature of the X-operators and the absence of Wick’s theorem. The diagram-
matic formulation of the � series has the following advantages:

• It allows one to calculate the nth order contribution to any object by drawing diagrams directly for
that order, without having to iterate the expressions from the previous orders. This not only allows
for greater ease of computation of analytical expressions, but is also essential for powerful numer-
ical series summation techniques, such as diagrammatic Monte Carlo [20]. Ultimately, it will allow
the series to be evaluated to high orders in �, whereas presently, only a second order calculation
has been possible [21].

• It allows for the diagrammatic interpretation of the various objects in the theory such as the aux-
iliary Green’s function g[i, f ] and the caparison factor eµ[i, f ]. For example, one can see that the
product ansatz (Eq. (9)) is a natural consequence of the structure of the G[i, f ] diagrams. In par-
ticular, it is necessitated by the extra complexity introduced into the diagrams (over those of the
Feynman series) by the projection of the double occupancy.

• It allows one to visualize the structure of the diagrams to all orders in �, therefore facilitating dia-
grammatic re-summations based on some physical principle.

1.2. Results

Themain result of the paper is the formulation of diagrammatic rules to calculate the Green’s func-
tion to any order in �. More precisely, the rules state how to generate numerical representations (see
Section 4.2), which are then converted into diagrams. A subset of these numerical representations
(determined by a simple criterion) are in one-to-one correspondence with the standard Feynman di-
agrams. Therefore, the diagrams given here are a natural generalization of the Feynman diagrams.
In this broader class of diagrams, we obtain a subset of numerical representations which are not in
one-to-one correspondence with the resulting non-Feynman diagrams. In particular, two different
numerical representations can lead to the same (non-Feynman) diagram. This occurs since in these
non-Feynman diagrams, an interaction vertex can have more than two pairs of Green’s function lines
exiting and entering it (e.g. Fig. 40g). However, the contributions of both numerical representa-
tions must be kept. We also discuss the relationship between ECFL and a formalism using the high-
temperature expansion for the t–J model due to Zaitsev and Izyumov [7,8] in Section 8, and make
some connections in the following.

We find that a certain subset of the G[i, f ] diagrams terminate with a self-energy insertion, rather
than a single point, as in the case of the Feynman diagrams. This expresses the diagrammatic necessity
for the factorization of G into g andeµ. These are in turn expressed in terms of the two self-energies�
and  . It is interesting that within the Zaitsev–Izyumov [7,8] formalism, a two self-energy structure
for the Green’s function is necessary for the exact same reason. The fact that the two self-energy struc-
ture comes from three independent approaches, the � expansion, the high-temperature expansion,
and the factorization of the Schwinger EOM, shows that it is the correct representation of the Green’s
function for this model. In addition, as already reported in Ref. [11], the Dyson–Maleev approach de-
veloped by Harris, Kumar, Halperin and Hohenberg [22] also leads to a similar two self energy scheme
in quantum spin systems, where again the algebra of the basic variables is non-canonical.

We derive diagrammatic rules for the constituent objects g, eµ, � , and  from their definitions,
starting from the Schwinger equations of motion. We avoid the use of dressed propagators (leading
to skeleton terms), but rather expand various objects in powers of � directly. The fact that these di-
agrammatic rules are consistent with those of G and the product ansatz serves as an independent
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proof of the rules given for G. We find that � consists of two independent pieces. The first can be
obtained by adding a single interaction line to the terminal point of a  diagram, while the second
one is completely independent of  . We denote the second piece by the letter � , which leads to the
relation �(Ek, i!k) = ✏Ek (Ek, i!k) + �(Ek, i!k) in momentum space. In a previous work by the same
authors [23], we showed directly from the Schwinger equations of motion, that in the limit of infinite
spatial dimensions, �(Ek, i!k) = ✏Ek (i!k) + �(i!k). Here, using the diagrammatic � expansion, we
show that this relationship continues tomake sense in finite dimensions. In going from finite to infinite
dimensions, we lose momentum dependence so that  (Ek, i!k) !  (i!k) and �(Ek, i!k) ! �(i!k).
We also derive the Schwinger EOM defining the object � in finite dimensions.

We derive diagrammatic rules for the three point vertices ⇤ and U, defined as functional deriva-
tives of g�1 andeµ (Eq. (11)). Diagrammatically, their relationship to� and  is seen to be consistent
with the Schwinger equations of motion (Eq. (10)). We also derive a generalized Nozières relation for
these vertices, which differs from the standard one for the three-point vertices of the Feynman dia-
grams. We introduce the concept of a skeleton diagram into our series. This enables us to make the
rather subtle connection between our diagrammatic approach for the � expansion, and the iterative
one used previously. Finally, we use our diagrammatic approach to derive analytical expressions for
the third order skeleton expansion of the objects g andeµ, whereas previously only the second order
expressions had been derived via iteration of the equations of motion.

1.3. Outline of the paper

In Section 2,we begin by reviewing the ECFL formalism fromRefs. [9] and [10] in the simplified case
of J = 0. In Section 3, we introduce the � expansion diagrams in a heuristic way, drawing an analogy
with the standard Feynman diagrams. In Section 4, we derive the rules for drawing and evaluating
the bare diagrams for G to each order in �. We also draw and evaluate the first and second order bare
diagrams for G. In Section 5, we derive the diagrammatic rules for the constituent objects g, eµ, � ,
 , � , � ,⇤, and U. We also show how to evaluate diagrams in momentum space. We then introduce
skeleton diagrams into the series, and complete the full circle by relating our diagrammatic approach
to the � expansion to the original iterative one reviewed in Section 2. In Section 6, we review the ECFL
formalism [9,10] with J 6= 0, and introduce J into our diagrammatic series. In Section 7, we compute
the skeleton expansion to third order in � for the objects g andeµ. We also discuss the high-frequency
limit of G to each order in the bare and skeleton expansions, as well as the ‘‘deviation’’ of the � series
from the Feynman series. Finally, in Section 8, we discuss the connection between the ECFL and the
Zaitsev–Izyumov formalism for the high-temperature expansion of the t–J model.

2. ECFL equations of motion and the � expansion

The Greens function is the fundamental object in this theory and is defined as usual by

G�i,�f [i, f ] ⌘ �hhX0�i
i X�f 0f ii = � 1

Z[V] tr e
��HT⌧

⇣

e�AX0�i
i (⌧i)X

�f 0
f (⌧f )

⌘

, (3)

where A = P

j

R �

0 X�� 0
j (⌧ 0)V�� 0

j (⌧ 0)d⌧ 0, is the additional term in the action due to the Bosonic source
Vi ⌘ Vi(⌧i), included in the partition functional Z[V] = tr e��HT⌧ e�A. The angular brackets represent
averages over the distribution in Eq. (3). The function G satisfies the Schwinger equation of motion for
the t–J model as derived in Refs. [9], [10], and [2].

n

⇥

(@⌧i � µ)�[i, j] � t[i, j]
⇤

��1,�j + V
�1,�j
i �[i, j]

o

G�j,�2 [j, f ]
= ��[i, f ]��1,�2 + ��[i, f ]��1,�2 [i] � �t[i, j]��1,�a [i]G�a,�2 [j, f ]

+ �t[i, j]�1�a
�

�V
�̄1,�̄a
i

G�a,�2 [j, f ] + �

2
J[i, j]

 

��1,�a [j]G�a,�2 [i, f ] � �1�a
�

�V
�̄1,�̄a
j

G�a,�2 [i, f ]
!

, (4)
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where the bold repeated indices are summed over. The functional derivative takes place at time (⌧+
i ),

and we have used the notation �[i,m] = �i,m�(⌧i � ⌧m), t[i,m] = ti,m�(⌧i � ⌧m), and ��1,�2 [i] =
�1�2G�̄2,�̄1 [i, i+].

We next outline how one obtains the above equation ofmotion from the definition Eq. (3).We take
a time derivative @⌧i of Eq. (3), yielding several terms.We start with a simple contribution, namely the
time derivative of the ✓(⌧i � ⌧f ), which involves the anticommutator

{X0�i
i , X�j0j } = �ij

⇣

��i�j � � �i�jX
�̄i�̄j
i

⌘

, (5)

strictly speaking with � = 1. We use the anticommutator, generalized as above by introducing the
parameter � 2 [0, 1], so that the result interpolates smoothly between the canonical value � = 0 and
the fully Gutzwiller projected value � = 1. This process is fundamental to obtaining the � expansion.
From this, we get �if �(⌧i�⌧f )

⇣

��i�f � ��i�f hX �̄i�̄fi (⌧i)i
⌘

. This is expressed back in terms of the Greens

function bywriting hX �̄i�̄fi i ! G�̄f �̄i [i⌧i, i⌧+
i ] = �i�f ��i�f [i], and thus to the first two terms on the right

hand side of Eq. (4).
Another contribution arises from the ⌧i dependence in the lower and upper limits of the time

integrals in the expression

T⌧ e�AS X0�i
i (⌧i) = e

�P
j

R �
⌧i

X��
0

j (⌧ 0)V�� 0
j (⌧ 0)d⌧ 0

X0�i
i (⌧i)e

�P
j

R ⌧i
0 X��

0
j (⌧ 0)V�� 0

j (⌧ 0)d⌧ 0

, (6)

involving the equal time commutator
P

j V
�� 0
j (⌧i)[X�� 0

j (⌧i), X
0�i
i (⌧i)] = V

�i�
0

i (⌧i)X0� 0
i (⌧i). This leads

to the third term in the left hand side of Eq. (4).
The non trivial term is obtained when the @⌧i X

0�
i (⌧i) is evaluated from the Heisenberg equation of

motion [H, X0�
i ] and the fundamental anticommutator Eq. (5) yielding

[X0�
i ,H] = �µX0�

i � tijX
0�i
j + �

X

j�j

tij(�i�j)X
�̄i�̄j
i X0�j

j � 1
2
�
X

j6=i

Jij(�i�j)X
�̄i�̄j
j X0�j

i . (7)

Note that the J term has an almost identical structure to the t term, with i $ j. The term involving J
actually does not come with the external �, we introduce it so that the � = 0 limit is the Fermi gas.
(This is permissible since we are finally interested in the limit � = 1.) A higher order Greens function
hhX �̄i�̄ji (⌧i)X

0�j
j (⌧i), X

�f 0
f (⌧f )ii is generated by the third term and a similar one by the fourth term. These

are re-expressed in terms of the Greens function by using the identity due to Schwinger

hhX �̄i�̄ji (⌧i)X
0�j
j (⌧i), X

�f 0
f (⌧f )ii = hhX �̄i�̄ji (⌧i)iihhX0�j

j (⌧i), X
�f 0
f (⌧f )ii

� �

�V
�̄i�̄j
i (⌧i)

hhX0�j
j (⌧i), X

�f 0
f (⌧f )ii. (8)

Using again hhX �̄i�̄ji (⌧i)ii = G�̄j�̄i [i⌧i, i⌧+
i ] = �i�j��i�j [i], we obtain the last four terms on the right hand

side of equation Eq. (4). For ease of presentation we will initially set J ! 0 and reinstate it at a later
stage.

As demonstrated in Ref. [9], the electron Green’s function G[i, f ] can be factored via the following
product ansatz:

G[i, f ] = g[i, j].eµ[j, f ], (9)

where g[i, f ] is the auxiliary Green’s function, eµ[i, f ] is the caparison factor, all objects have been
represented as 2 ⇥ 2 matrices in spin space, and matrix multiplication has been indicated by a dot.
g[i, f ] andeµ[i, f ] are defined by the their respective Schwinger equations of motion.

g�1[i,m] = (µ � @⌧i � Vi) �[i,m] + t[i,m] (1 � �� [i]) � ��[i,m].
eµ[i,m] = (1 � �� [i])�[i,m] + � [i,m]
�[i,m] = �t[i, j] ⇠ ⇤.g[j,n].⇤⇤[n,m; i];  [i,m] = �t[i, j] ⇠ ⇤.g[j,n].U⇤[n,m; i]. (10)
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These exact relations give the required objects g andeµ in terms of the vertex functions. Here we also
note that the local (in space and time) Green’s function � [i], and the vertices⇤[n,m; i] andU[n,m; i],
are defined as

� [i] = eµ(k)[n, i+].g(k)[i,n]; ⇤[n,m; i] = � �

�Vi
g�1[n,m]; U[n,m; i] = �

�Vi
eµ[n,m], (11)

where we have used the notationM(k)
�1,�2

= �1�2M�̄2,�̄1 to denote the time reversed matrixM(k) of an
arbitrary matrix M . These exact relations give the vertex functions in terms of the objects g and eµ.
The vertices defined above (⇤ and U) have four spin indices, those of the object being differentiated
and those of the source. For example, U�1�2

�a�b [n,m; i] = �

�V
�a�b
i

eµ�1�2 [n,m]. In Eq. (10), ⇠�a�b = �a�b,

and the ⇤ indicates that these spin indices should also be carried over (after being flipped) to the
bottom indices of the vertex, which is also marked with a ⇤. The top indices of the vertex are given by
the usual matrix multiplication. An illustrative example is useful here: (⇠ ⇤.g[j,n].U⇤[n,m; i])�1�2 =
�1�a g�a,�b [j,n] �

�V
�̄1 �̄a
i

eµ�b,�2 [n,m].
The � expansion is obtained by expanding Eqs. (10) and (11) iteratively in the continuity parameter

�. The� = 0 limit of these equations is the free Fermi gas. Therefore, a direct expansion in�will lead to
a series in � in which each term is made up of the hopping tij and the free Fermi gas Green’s function
g(0)[i, f ]. As is the case in the Feynman series, this can be reorganized into a skeleton expansion in
which only the skeleton graphs are kept and g(0)[i, f ] ! g[i, f ]. However, one can also obtain the
skeleton expansion directly by expanding Eqs. (10) and (11) in �, but treating g[i, f ] as a zeroth order
(i.e. unexpanded) object in the expansion. This expansion is carried out to second order in Ref. [9]. In
doing this expansion, onemust evaluate the functional derivative �g

�V
. This is donewith the help of the

following useful formula which stems from the product rule for functional derivatives.

�g[i,m]
�Vr

= g[i, x].⇤[x, y, r].g[y,m]. (12)

Within the � expansion, the LHS is evaluated to a certain order in � by taking the vertex⇤ on the RHS
to be of that order in �.

3. Heuristic discussion of � expansion diagrams

3.1. Numerical representations of Feynman diagrams

Before deriving the precise rules for the � expansion diagrams, it is useful to have a heuristic dis-
cussion in which we compare them to the more familiar Feynman diagrams [18,19]. To this end, we
introduce numerical representations for the standard Feynman diagrams. These numerical represen-
tations will then be generalized to generate the � expansion diagrams.

Consider any Feynman diagram for the Green’s function G[i, f ] such as those displayed in Fig. 1.
There is a unique pathwhich runs between i and f which uses only Green’s function lines, not counting
the interaction lines. We denote this as the zeroth Fermi loop. It is drawn in red in Fig. 1. We number
the interaction lines which connect to the zeroth Fermi loop in the order in which they appear in this
loop. This list of numbers (along with f ) is placed in the top row of our numerical representation. In
the case of both Figs. 1(a) and 1(b), it is

1 2 f .

If the zeroth Fermi loop does not exhaust all of the Green’s function lines in the diagram, such as
in Fig. 1(a), we proceed to the first Fermi loop. To identify the first Fermi loop, we find the interaction
vertex with the highest number which connects to the zeroth Fermi loop with only one of its two
sides. In this case, this is the interaction vertex labeled 2. The other side has one incoming line and
one outgoing line. There is a unique path in the diagram which connects these two lines using only
Green’s function lines, not interaction lines. This defines the first Fermi loop. It is drawn in blue in
Fig. 1(a).
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ba

Fig. 1. Second order Feynmandiagrams forG[i, f ]. The zeroth Fermi loop,which is the chain running from i to f is colored in red.
In panel (a), the first Fermi loop is colored in blue. The numerical representation of the diagram in panel (a) is 1 2⇤ f ; 2⇤ : 0 1 f ,
while that of the diagram in panel (b) is 1 2 1 2 f . (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 2. This Feynmandiagram results from reversing the order of the subscripts in the numerical representation of the Feynman
diagram in Fig. 1(b). Therefore, the numerical representation of this diagram is 1 2 2 1 f .

Since the interaction vertex 2 spawned the first Fermi loop, it is starred in the top row of the repre-
sentation.Wealso include a lower row for the first Fermi loop. Therefore, the numerical representation
of Fig. 1(a) now reads.

1 2⇤ f
2⇤ : 0 f .

The second row, which represents the first Fermi loop, is labeled by 2⇤, since it was spawned by the
second interaction vertex in the zeroth Fermi loop. The fact that only 0 and f are present in the sec-
ond row tells us that there were no interaction vertices introduced in the first Fermi loop. That is to
say there are no interaction vertices which connect to the first Fermi loop, but not to the previous
ones (in this case the zeroth Fermi loop). Finally, after all of the Fermi loops have been recorded, all
nonzero integers which are not starred indicate the position of one side of an interaction vertex in a
Fermi loop. We record the position of the other side as a subscript. Therefore, the complete numerical
representation of Fig. 1(a) is

1 2⇤ f
2⇤ : 0 1 f .

We can represent this in short as 1 2⇤ f ; 2⇤ : 0 1 f , where the semi colon indicates the next line. The
complete numerical representation of Fig. 1(b) is

1 2 1 2 f .

Note that the order of appearance of the 1 and 2 as subscripts is important. Reversing them would
yield the diagram in Fig. 2, which has the following numerical representation.

1 2 2 1 f .

We now consider the slightly more complicated diagram in Fig. 3 to illustrate the scope of this
approach. We will now show how the numerical representation of this diagram is derived. We first
identify the zeroth Fermi loop, which is drawn in red in Fig. 3. The top row now reads

1 2 3 4 f .

In this case, the vertex with the highest number which connects to this loop with only one side is 4.
Hence, 4 spawns another Fermi loop, and gets a star in the top row.

1 2 3 4⇤ f .
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Fig. 3. Sixth order Feynman diagram. The zeroth, first, second, and third Fermi loops are drawn in red, blue, green, and
turquoise respectively. Interaction vertices introduced in a particular Fermi loop are numbered in the same color as that loop.
An interaction vertex is starred if it spawns a new Fermi loop. The numerical representation for this diagram is 1 2⇤ 3 4⇤ f ; 4⇤ :
0 3 1 2⇤ f ; (4, 2)⇤ : 0 (4,1) 1 f ; 2⇤ : 0 f . (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

We identify this as the first Fermi loop. It is drawn in blue in Fig. 3. The numerical representation is
modified to read

1 2 3 4⇤ f
4⇤ : 0 1 2 f .

Considering only the interaction vertices introduced in the first Fermi loop, we now search for the one
with the highest number which connects to the first Fermi loop with one side, but whose other side
is free, that is to say that it does not connect to any of the Fermi loops introduced thus far (zeroth and
first). This is the interaction vertex 2. Hence, it gets a star, and spawns the second Fermi loop, which
is drawn in green. The numerical representation now reads

1 2 3 4⇤ f
4⇤ : 0 1 2⇤ f

(4, 2)⇤ : 0 f .

Here, the ordered pair (4, 2) is used to distinguish the 2 in the first Fermi loop from the 2 in the zeroth
Fermi loop, the latter being denoted simply as 2. The first number in the pair is 4 since the fourth
interaction vertex in the zeroth Fermi loop spawned the first Fermi loop. Also note that no interaction
vertices are introduced in the second Fermi loop, hence its row only has a 0 and an f . Therefore, we
have arrived at the end of our first sequence of nested Fermi loops. We now take a step back in this
sequence and return to the first Fermi loop. Considering only the interaction vertices introduced in
the first loop with number less than 2, we search for the one with the highest number which connects
with one side to the first Fermi loop, but whose other side is free (i.e. does not connect to the zeroth,
first, or second Fermi loops). There is no such interaction vertex. Therefore, we take another step back
in the sequence, and return to the zeroth Fermi loop. We find that the interaction vertex 2 connects
to this loop with one side, but that the other side is free. Hence, 2 gets a star and spawns the fourth
Fermi loop, which is drawn in turquoise. The numerical representation now reads

1 2⇤ 3 4⇤ f
4⇤ : 0 1 2⇤ f

(4, 2)⇤ : 0 f
2⇤ : 0 f .

Since there are no interaction vertices introduced in the fourth Fermi loop, we have arrived at the end
of our second sequence of nested Fermi loops. We take a step back to the zeroth Fermi loop and find
that there are nomore interaction vertices introduced in this loopwhich have one side free. Since all of
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the Fermi loops have been identified, as the final step, wemust take the integerswhich are not starred,
andplace them in their final locations as subscripts. The complete numerical representation now reads

1 2⇤ 3 4⇤ f
4⇤ : 0 3 1 2⇤ f

(4, 2)⇤ : 0 (4,1) 1 f
2⇤ : 0 f .

If we nowwanted to formulate a set of rules for generating the numerical representations obtained
from the Feynman diagrams, they would be the following.

• (1) Write a row of integers 1 . . .m f wherem � 1, e.g.

1 2 3 4 f .

• (2) Assign a star to any of the integers in the row (f does not count as an integer), e.g.

1 2⇤ 3 4⇤ f .

• (3) Every starred integer gives rise to a lower row. The ith lower row also consists of integers
0 . . .mi f , where mi � 0, e.g.

1 2⇤ 3 4⇤ f
4⇤ : 0 1 2 f
2⇤ : 0 f .

• (4) In the lower rows, assign a star to any of the integers excluding 0, e.g.

1 2⇤ 3 4⇤ f
4⇤ : 0 1 2⇤ f
2⇤ : 0 f .

• (5) The integers starred in step 4 once again give rise to lower rows, etc. Continue this process until
the last rows which you create have no starred integers, e.g.

1 2⇤ 3 4⇤ f
4⇤ : 0 1 2⇤ f

(4, 2)⇤ : 0 f
2⇤ : 0 f .

• (6) Label each integer with a tuple (an ordered list of numbers) which traces that integer back to
the first row through the starred integers. For example, the 0 in the third row would be labeled
(4, 2, 0).

• (7) Between any 2 consecutive integers of a row (including 0’s and f ’s), one can place as subscripts
an ordered list of tuples from the following set: all those corresponding to non-starred integers
except 0 whose tuple can be obtained from the tuple of the smaller of the 2 consecutive integers
in question, by taking the first k  l entries of this tuple (where l is the length of the tuple),
and subtracting a non-negative integer from the last entry. For example, suppose that the two
consecutive integers in question are the 2 and f of the second row. Then all tuples (corresponding
to non-starred integers) eligible to be used as subscripts between them are: (4, 1), 3, and 1. All
non-starred integers (except 0’s) must be used exactly once in this way, e.g.

1 2⇤ 3 4⇤ f
4⇤ : 0 3 1 2⇤ f

(4, 2)⇤ : 0 (4,1) 1 f
2⇤ : 0 f .

If we think back to the order in which we generated Fermi loops (and hence the numerical repre-
sentation) from a given Feynman diagram, we can see that it complies exactly with rule (7) stated
above. Doing things in this way ensures that the mapping between Feynman diagrams and numerical
representations is one-to-one.
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ba

Fig. 4. The 2 elements used for constructing the � expansion diagrams.

a b

Fig. 5. Two of the simplest non-Feynman diagrams in the � expansion. A non-Feynman diagram occurs when the terminal
point of a Fermi loop spawns another Fermi loop. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

3.2. Topologies of � expansion diagrams

The exact rules for drawing diagrams for the � expansion, as defined in Section 2 will be derived in
Section 4. There, it will be shown that the � expansion diagrams are constructed from the 2 elements
displayed in Fig. 4. The one in panel (a) is a generalization of the Feynman interaction vertex, in which
one of the sides can have any number of pairs of incoming and outgoing lines rather than just one
pair. The one in panel (b) is a generalization of the terminal point f in a Feynman diagram. In the case
of the Feynman diagrams, it is a single point, while in the case of a � expansion diagram, it is a single
point along with any number of pairs of incoming and outgoing lines. These extra lines come from the
second term on the RHS of Eq. (17). This term, which itself comes from the anti-commutator of the
X-operators in Eq. (2), and which is absent in the EOM of canonical theories, allows a diagram to close
in on itself in an iterative expansion of the EOM.

In Fig. 5, we have drawn two of the simplest non-Feynman diagramswhich can bemade from these
elements. The one in panel (a) has the following numerical representation.

f ⇤

f ⇤ : 0 f .

The zeroth Fermi loop runs from the site i to the site f and is drawn in red. The site f , which is the
terminal point of the zeroth Fermi loop spawns the first Fermi loop, drawn in blue. The one in panel
(b) has the following numerical representation.

1⇤⇤ f
1⇤⇤ : 0 f ⇤

(1, f )⇤ : 0 f .

Here, the interaction vertex 1, introduced in the zeroth Fermi loop (drawn in red) spawns the first
Fermi loop (drawn in blue). Additionally, the terminal point of the first Fermi loop spawns the second
Fermi loop (drawn in green).

The diagrams drawn in Fig. 5 are both valid � expansion diagrams. However, as shown below, the
allowed topologies of � expansion diagrams do not include all of the possible ways of combining the
two elements in Fig. 4, but rather only a subset of these. To see which subset, consider the plausible
diagram displayed in Fig. 6(a), which is not an allowed � expansion diagram. This diagram is obtained
from the Fock diagram in Fig. 6(b) by adding a Fermi loop to the latter. The numerical representation
for the diagram in Fig. 6(b) is

1 1 f .

We see that the point from which the first Fermi loop emanates in Fig. 6(a) is represented by a sub-
script in Fig. 6(b). Alternatively, using the terminology introduced in Section 3.1, the first Fermi loop
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a b

Fig. 6. The diagram in panel (a) is not allowed in the � expansion. This is because first Fermi loop emanates from a point which
is represented by a subscript in the Fock diagram displayed in panel (b).

Fig. 7. A more elaborate version of the diagram in Fig. 6(a), which is also not allowed in the � expansion.

a b

Fig. 8. A demonstration that unlike Feynman diagrams, � expansion diagrams are not in one-to-one correspondencewith their
numerical representations. In the diagram in panel (a), the interaction vertex 1 of the zeroth Fermi loop also connects to the
first Fermi loop. In the diagram in panel (b), it connects to the second Fermi loop. The topologies of both diagrams, however,
are identical. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

is spawned by the interaction vertex 1 of the zeroth Fermi loop. However, the other side of this in-
teraction vertex is not free, but rather connects to the zeroth Fermi loop itself. This is not allowed. In
fact, we shall find that when there are more than one pair of lines connected to a single point of an
interaction vertex, each pair must both start and terminate a Fermi loop at that point, as in Fig. 5(b).
Another diagram which is not an allowed � expansion diagram is drawn in Fig. 7.

Another feature of the � expansion diagrams is that they are not in one-to-one correspondence
with their numerical representations. To see this, consider the diagrams drawn in Fig. 8. As usual, the
zeroth, first, and second Fermi loops are drawn in red, blue, and green respectively. The diagram in
(Fig. 8(a)) has the numerical representation

1 2⇤⇤ f
2⇤⇤ : 0 1 f ⇤

(2, f )⇤ : 0 f .

In words, this says that the interaction vertex 2 of the zeroth Fermi loop spawns the first Fermi loop.
The interaction vertex 1 of the zeroth Fermi loop connects to the first Fermi loop. Finally, the terminal
point of the first Fermi loop spawns the second Fermi loop. On the other hand, the diagram in (Fig. 8(b))
has the numerical representation

1 2⇤⇤ f
2⇤⇤ : 0 f ⇤

(2, f )⇤ : 0 1 f .

In this case, the interaction vertex 1 of the zeroth Fermi loop connects to the second Fermi loop rather
than the first. We see that both of the above numerical representations lead to the same diagram,
although they both have a contribution which must be accounted for.
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ba

Fig. 9. t-vertices in panel (a) versus J-vertices in panel (b) for the � expansion diagrams which are also Feynman diagrams.
The corresponding lines are marked with corresponding letters.

ba

Fig. 10. t-vertices in panel (a) versus J-vertices in panel (b) for the more general � expansion diagrams. The corresponding
lines are marked with corresponding letters.

A final point to mention in this discussion of the � expansion diagrams is that when drawing the
diagrams in real space, the vertex appropriate for the t-interaction differs from the one appropriate
for the J-interaction. While this is derived rigorously from the EOM below, one can understand it by
examining the relevant terms in the Hamiltonian (Eq. (1)). First, we examine the t-term. Writing the
X operators in terms of canonical creation and destruction operators, we obtain

�
X

ij�

tijX�0i X0�
j = �

X

ij�

tijc
Ñ
i� (1 � ni�̄ )cj� = �

X

ij�

tijc
Ñ
i� cj� +

X

ij�

tijc
Ñ
i�ni�̄ cj� . (13)

Here, we have used the non-Hermitean mapping described in Ref. [11]

X�0i ! cÑi� (1 � ni�̄ ); X0�
j ! cj� . (14)

As discussed in Ref. [11], it is permissible to drop the projection from the destruction operator, since
if the system starts in the subspace of no double occupancy, the unprojected destruction operator
cannot take it out of this subspace. The second term on the RHS of Eq. (13) can be represented with
the interaction vertex drawn in Fig. 9(a). Next, we examine the J term. Since a spin flip operator or
number operator cannot take the system out of the subspace of no double occupancy, the X operators
in the J term can be replaced by their canonical counterparts. Therefore, written in terms of canonical
operators, the J term looks like

1
2

X

ij�

Jijni� + 1
4

X

ij�1�2

{JijcÑi�1ci�2c
Ñ
j�2cj�1 � ni�1nj�2}. (15)

The first term amounts to a shift in the chemical potential µ, while the second one leads to the
interaction vertex drawn in Fig. 9(b). The corresponding lines between Figs. 9(a) and 9(b) have been
marked with corresponding letters. Throughout the text, we shall sometimes use the term ‘‘Feynman
diagrams’’ to refer to the � expansion diagrams formed solely from the interaction vertices in Fig. 9,
and sometimes to refer to the usual Feynman diagrams [19,18]. It should be clear what wemean from
the context. To obtain the more general � expansion diagrams, one must use the vertices drawn in
Fig. 10. Once again, the corresponding lines have been marked with corresponding letters between
the t-vertices in panel (a) and the J-vertices in panel (b). A � expansion diagram drawn in real
space will of course have a mix of t-vertices and J-vertices. Luckily, when drawing the diagrams
in momentum space, we can use only one type of vertex (t or J). The details of this procedure are
discussed in Section 6. To convert between ‘‘t-diagrams’’ and ‘‘J-diagrams’’, we must rearrange every
interaction vertex as indicated in Fig. 10. For example, the Hartree and Fock diagrams, when drawn
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Fig. 11. The zeroth order contribution to the Green’s function: g(0)[i, f ].

using t-vertices, appear as in Fig. 12(b) and Fig. 12(c) respectively. In this introductory section,wehave
used the more familiar J-vertices to construct our diagrams, while in the rest of the paper, we shall
take the point of view of using the t-vertices. The counterparts of the diagrams drawn in Figs. 1(a),
1(b), 2, 5(b), and 8, are drawn in Figs. 17(g), 17(b), 17(c), 17(n), and 40(g) respectively.

To conclude this preliminary discussion, we point out that while it may be possible to define the �
diagrams as all inequivalentways of combining the elements displayed in Fig. 4with some topological
constraints, this definition would not have much practical value. It also would not tell us how to
evaluate the diagram once we had drawn it. On the other hand, the numerical representations of the
� expansion diagrams defined below are both easy to generate in a systematic manner, and easy to
evaluate. In fact, one may argue that even for the standard Feynman diagrams, the definition in terms
of the numerical representations presented in Section 3.1 is more useful than the usual one, since it
gives a systematic way of generating, and a compact way of representing the diagrams.

4. Bare diagrammatic � expansion for G[i, f ].

4.1. Integral equation of motion and the first order � expansion.

As can be seen from Eq. (4), the parameter � adiabatically connects the free Fermi gas at � = 0
with the fully projected model at � = 1. Therefore, in the bare � series for G, to each order in �, G[i, f ]
is expressed as a functional of the free Fermi gas, g(0)[i, f ] and the hopping tij. In this section, we aim
to derive a set of rules for drawing diagrams to compute the nth order contribution to the bare series
for G[i, f ]. We do this by rewriting Eq. (4) as an integral equation, and then iterating this equation in
�. An analogous expansion is done for the first couple of orders of the Feynman series in Kadanoff and
Baym in Ref. [24]. To this end, we rewrite Eq. (4) as

� g�1(0)
�1,�j

[i, j]G�j,�2 [j, f ] = ��[i, f ]��1,�2 + �⇥ �[i, f ]��1,�2 [i] � �⇥ t[i, j]��1,�a [i]G�a,�2 [j, f ]

+ �⇥ t[i, j]�1�a
�

�V
�̄1,�̄a
i

G�a,�2 [j, f ], (16)

where g�1(0)[i, f ], the inverse of the free Fermi gas Green’s function is obtained by setting � = 0 in
Eq. (10). Rewriting Eq. (16), we obtain the following integral equation for G[i, f ].

G�1,�2 [i, f ] = g(0)
�1,�2

[i, f ] � � g(0)
�1,�b

[i, f ]�b�2G�̄2,�̄b [f , f +]

� �⇥ g(0)
�1,�b

[i, k]
 

�t[k, j]�b�aG�̄a,�̄b [k, k+]G�a,�2 [j, f ] + t[k, j]�b�a
�

�V
�̄b,�̄a
k

G�a,�2 [j, f ]
!

, (17)

This expression has considerable parallels to a similar expression for the (canonical) Hubbard model,
with one exception, the second term on the RHS, (arising from the non-canonical nature of the X ’s)
has no counterpart in the canonical theory. If we drop this term, the series so generated is exactly the
Feynman series.

We now proceed to draw the diagrams for the zeroth and first order contributions to G. The zeroth
order contribution to theGreen’s function,which is given by the free Fermi gas g(0)[i, f ], is represented
by the diagram in Fig. 11.

To obtain the first order contribution to G[i, f ], we plug g(0)[i, f ] in for G[i, f ] in the
RHS of Eq. (17). This leads to the three diagrams displayed in Fig. 12. The diagrams (a), (b),
and (c) in Fig. 12 correspond to the three terms in the parenthesis on the RHS of Eq. (17) re-
spectively. They correspond to the analytical expressions (a): ���b�2g(0)

if
�1�b

[⌧i, ⌧f ]g(0)
ff

�̄2 �̄b

[⌧f , ⌧+
f ];
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b ca

Fig. 12. The first order contribution to the Green’s function: G(1)[i, f ]. The diagrams in panels (a), (b), and (c) come from the
first, second, and third terms on the RHS of Eq. (17), respectively.

(b): ��a�bg
(0)

ia
�1�a

[⌧i, ⌧a]g(0)
aa
�̄b �̄a

[⌧a, ⌧+
a ]tabg(0)

bf
�b�2

[⌧a, ⌧f ]; and (c): ���a�bg(0)
ia

�1�a
[⌧i, ⌧a]tabg(0)

ba
�b �̄a

[⌧a, ⌧+
a ]g(0)

af
�̄b�2[⌧a, ⌧f ]. In drawing the diagram in Fig. 12(c), we have used the Schwinger identity

�g(0)
�a,�b

[i, f ]
�V

�c�d
r

= �g(0)
�a,�x

[i, x]
�g�1(0)

�x,�y
[x, y]

�V
�c�d
r

g(0)
�y,�b

[y, f ] = g(0)
�a,�c

[i, r]g(0)
�d,�b

[r, f ]. (18)

In other words, the role of the functional derivative in the Eq. (17) is to pick a line in the diagram for
G�a�2 [j, f ], and to split it into two lines, one entering the point k, and the other one exiting it.

The reader would recognize that we bypassed the Wicks theorem, by utilizing instead the
Schwinger identity Eq. (18).

4.2. Rules for calculating the nth order contribution

By plugging in the first and zeroth order diagrams into the RHS of Eq. (17), we can obtain the
second order diagrams. Using this iterative process, we can obtain diagrams for G to any order in �.
Moreover, by noticing the pattern in the iterative process, we can derive the rules for obtaining the
nth order contribution to G directly without calculating the lower order contributions. In the case
of the Feynman diagrams, this is merely an alternate way of deriving the rules obtained from using
Wick’s theorem. However, in the present case, in which the standardWick’s theorem is not available,
this derivation is essential in going from the EOM definition of the � expansion introduced in Ref. [9]
and the equivalent diagrammatic one developed here. We now present the diagrammatic rules for
calculating the nth order contribution to G.

• (1) Write a row of consecutive integers followed by the letter f , i.e. 1 . . .m f , where m � 0 (if
m = 0, we simply write f ), e.g.

1 2 3 f .

• (2) Give any number of stars (including no stars) to each these integers (including f ), e.g.

1⇤⇤ 2 3 f ⇤.

• (3) Each integer (including f ) with p stars (p � 1) gives rise to another row of integers which now
starts with 0 (as opposed to 1), and which ends with an f with p� 1 stars. Each new row can have
any number of integers between the 0 and the f , each ofwhich can have any number of stars, giving
rise to further rows. 0 is not allowed to have any stars, e.g.

1⇤⇤ 2 3 f ⇤

1⇤⇤ : 0 1 2⇤⇤⇤ f ⇤

(1, 2)⇤⇤⇤ : 0 1 f ⇤⇤

(1, 2, f )⇤⇤ : 0 f ⇤

(1, 2, f , f )⇤ : 0 1 f
(1, f )⇤ : 0 1 f

f ⇤ : 0 1 2 f .
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Note that each integer in the above diagram is uniquely specified by a tuple which traces it back to
the first row through the starred integers. For example, the number 1 in the fifth row corresponds
to the tuple (1, 2, f , f , 1).

• (4) Let ⌫ be the total number of integers without stars excluding 0’s and f ’s. Let sf be the total
number of stars on the f in the top row, and let s be the total number of stars excluding those on
f ’s. Then the order nmust satisfy the relation n = ⌫ + sf + s. In the above example, ⌫ = 8, sf = 1,
and s = 5. Therefore this a 14th order diagram.

• (5) Between any 2 consecutive integers of a row (including 0’s and f ’s), one can place as subscripts
an ordered list of tuples from the following set: All those corresponding to non-starred integers
(except 0’s and f ’s) whose tuple can be obtained from the tuple of the smaller of the 2 consecutive
integers in question, by taking the first k  l entries of this tuple (where l is the length of the tuple),
and subtracting a non-negative integer from the last entry.We have taken f ’s to be integers greater
than all other integers in their respective rows. For example, suppose that the two consecutive
integers in question are 1 and f in the fifth row of the above diagram. Then all integers eligible to
be used as subscripts between them are: (1, 2, f , f , 1), (1, 2, 1), and (1, 1). All non-starred integers
(except 0’s and f ’s) must be used exactly once in this way. e.g.

1⇤⇤ 2 3 3 2 f ⇤

1⇤⇤ : 0 1 2⇤⇤⇤ f ⇤

(1, 2)⇤⇤⇤ : 0 1 f ⇤⇤

(1, 2, f )⇤⇤ : 0 (1,2,1) f ⇤

(1, 2, f , f )⇤ : 0 1 (1,2,f ,f ,1) f
(1, f )⇤ : 0 1 (1,f ,1) (1,1) f

f ⇤ : 0 1 2 (f ,1) (f ,2) f .

• (6) We use the numerical representation to draw the diagram in the following way. Each integer
excluding 0’s and f ’s corresponds to an interaction vertex shown in Fig. 13. The interaction vertices
displayed in panels (a), (b), (c), and (d) correspond to 0, 1, 2, and 3 stars respectively on the integer
in question. On the top right of each panel, we indicate how the spins contribute to the sign of the
diagram. Note that when two outgoing or two incoming lines share the same spin label, this spin
contributes to the sign of the diagram, while when an outgoing and an incoming line share the
same spin label, this spin does not contribute to the sign of the diagram. For example, in panel (d)
�a and �d contribute to the sign while �b and �c do not.

The f in the top row corresponds to a terminal point shown in Fig. 14. The terminal points
displayed in panels (a), (b), (c), and (d) correspond to 0, 1, 2, and 3 stars respectively on the f in
the top row. On the top right of each panel, we indicate how the spins contribute to the sign of the
diagram. Note that the same general rule holds as in the case of the interaction vertices, except
that now for the case of 1 or more stars, the spin �2 also contributes to the sign of the diagram.
For the case of one or more stars, one can obtain the terminal points in Fig. 14 from the interaction
vertices in Fig. 13 by removing the interaction line and the Green’s function line to the right of it,
andmaking the substitution �a ! �2. The interaction vertices displayed in Fig. 13 and the terminal
points displayed in Fig. 14 continue to follow the same pattern for greater than three stars.

To actually draw the diagram, let us momentarily ignore the subscripts in our numerical
representation, and correspondingly the Green’s function lines labeled by �̄a and �̄b in panel (a)
of Fig. 13, (the case of 0 stars). Then the top row of the numerical representation corresponds to a
chain of interaction lines connected to each other by Green’s function lines running from the point
i to the point f . The lower rows also correspond to a similar chain running from a single point
back to itself. This is the point k (displayed in panels (b), (c), and (d) in Fig. 13) on the interaction
vertex corresponding to the starred integer which gives rise to this lower row. Thus, the number
of such chains beginning and ending at a point of a particular interaction vertex is equal to the
number of stars on the starred integer which corresponds to this vertex. For the example given
above, following this procedure yields the intermediate diagram displayed in Fig. 15.

Finally, to put the subscripts back into the diagram, we break each chain at any place where
there are subscripts between two consecutive vertices of the chain, and pass the chain through
the (non-starred) vertices indicated by the subscripts in the order in which they are written, after
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a b

dc

Fig. 13. Interaction vertices appearing in the diagrams. Panels (a), (b), (c), and (d) correspond to 0, 1, 2, and 3 stars on the
number representing the interaction vertex, respectively. Note that the lines are broken into pairs based on spin. A pair of two
incoming or two outgoing lines share opposite spins, while a pair of one incoming and one outgoing line share the same spin.
Moreover, in the case of the former, the spin contributes to the sign of the diagram, while in the case of the latter, it does not.
The contribution to the sign is written in the top right of each panel.

a b

dc

Fig. 14. Terminal point in the diagram corresponding to the f in the top row. Panels (a), (b), (c), and (d) correspond to 0, 1, 2,
and 3 stars on the f in the top row, respectively. Same comments regarding spin apply as in Fig. 13. Note that in the case of one
or more stars on the f in the top row, the line labeled by �̄2 is outgoing. This is compensated by the fact there are two more
lines entering the point f than exiting it.

which it resumes its original course. This is accomplishedwith the help of the two Green’s function
lines labeled by �̄a and �̄b on the non-starred vertices, (displayed in panel (a) of Fig. 13), whichwere
ignored in drawing the intermediate diagram in Fig. 15. The final diagram is displayed in Fig. 16.

Note that when drawing a vertex (or terminal point) with multiple stars, such as that displayed
in Fig. 13(d), the lines �̄a and �c (incoming) correspond to the row with 2 stars on its f , the lines
�b (outgoing) and �d correspond to the row with 1 star on its f , and the lines �c (outgoing) and �̄d
correspond to the row with 0 stars on its f . Therefore, in Fig. 16, on the point k corresponding to
the vertex (1, 2)⇤⇤⇤, the lines �̄m and �n (incoming) are part of the row (1, 2)⇤⇤⇤ (3rd row) in the
numerical representation, the lines �l (outgoing) and �o are part of the row (1, 2, f )⇤⇤ (4th row)
in the numerical representation, and the lines �n (outgoing) and �̄o are part of the row (1, 2, f , f )⇤
(5th row) in the numerical representation.

• (7) Each solid line in the diagram contributes a non-interacting Green’s function, each wavy line
contributes a hopping matrix element. An equal-time Green’s function is always taken to be
g(0)(⌧ , ⌧+), i.e. the incoming (creation) line is given the greater time.

• (8) The total sign of the diagram is given by (�1)n(�1)s(�1)sf �1 ⇥ (sign from the spins), where in
the case of sf = 0, (�1)sf �1 ⌘ 1, and theway inwhich the spins contribute to the sign is indicated
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Fig. 15. Intermediate step in the process of drawing the diagram corresponding to the numerical representation in step 5 of
the rules. All of the interaction vertices are drawn in. To complete the diagram, wemust split some of the Green’s function lines
through the unused points in the interaction vertices in a manner indicated by the numerical representation.

Fig. 16. Diagram corresponding to the numerical representation in step 5 of the rules.

Figs. 13 and 14. Therefore, the diagram in Fig. 16 has sign (�1)14(�1)5(�1)0(sign from the spins)
= ��b�h�c�d�e�g�v�2�w�x�y�z�t�u�j�k�m�o�p�q�r�s.

• (9) Sum over internal sites and spins, and integrate over internal times.

According to the above rules, the contribution of the diagram drawn in Fig. 16 is

��b�h�c�d�e�g�v�2�w�x�y�z�t�u�j�k�m�o�p�q�r�s

g(0)
ia
�1�a

[⌧i, ⌧a]tabg(0)
bc
�b�c

[⌧a, ⌧b]tcdg(0)
de
�d�e

[⌧b, ⌧c]tegg(0)
ge
�g �̄e

[⌧c, ⌧+
c ]g(0)

ec
�̄g �̄c

[⌧c, ⌧b]

g(0)
cf
�̄d�v

[⌧b, ⌧f ]g(0)
ah
�̄b�̄j

[⌧a, ⌧d]thjg(0)
jk
�k�l

[⌧d, ⌧l]tklg(0)
la

�m�n

[⌧l, ⌧a]g(0)
ko
�e�̄p

[⌧e, ⌧g ]top
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g(0)
pk
�q�n

[⌧g , ⌧e]g(0)
ko
�̄m�p

[⌧e, ⌧g ]g(0)
ok
�̄q�o

[⌧g , ⌧e]g(0)
kq
�n�r

[⌧e, ⌧r ]tqr

g(0)
rq
�s�̄r

[⌧r , ⌧+
r ]g(0)

qk
�̄s�̄o

[⌧r , ⌧e]g(0)
am
�a�t

[⌧a, ⌧s]tmng
(0)
nm
�u�̄t

[⌧s, ⌧+
s ]g(0)

mh
�̄u�̄j

[⌧s, ⌧d]g(0)
ha
�̄k�̄h

[⌧d, ⌧a]

g(0)
fs

�̄2�w

[⌧f , ⌧u]tstg(0)
tu
�x�y

[⌧u, ⌧v]tuvg(0)
vs

�z �̄w

[⌧v, ⌧u]g(0)
su
�̄x�̄y

[⌧u, ⌧v]g(0)
uf
�̄z �̄v

[⌧v, ⌧f ].

Upon turning off the sources, the Green’s functions become spin diagonal, i.e. g(0)
�1�2

[i, f ] =
��1�2g

(0)
""[i, f ] = ��1�2g

(0)
##[i, f ] ⌘ ��1�2g

(0)[i, f ]. This allows one to evaluate the spin sum and the
sign of the above expression. A good way to evaluate the spin sum is to break the diagram into spin
loops in the following manner. Recall that at each interaction vertex and at the terminal point, lines
are paired according to spin. They share the same spin if one is incoming and the other is outgoing, and
they have opposite spins if both lines of the pair are incoming or both are outgoing. Starting with the
line exiting i, follow the path of Green’s function lines created by the spin pairings until you reach the
line labeled by �2 (or �̄2 if f has one or more stars). These spins are all set by the value of �1 = �2, and
therefore this is the zeroth spin loop. If not all of the lines have been used up by the zeroth loop, find
a random line and follow the path created by the spin pairings to reach the line to which it is paired.
This is the first spin loop, etc. Continue to do this until you have used up all of the lines in the diagram.
Let Fs denote the number of spin loops in the diagram. Then, the spin sum is 2Fs . We emphasize that
unlike the case of the standard Feynman diagrams, the spin loops of the � expansion diagrams do not
coincide with the Fermi loops (where each row of the numerical representation can be thought of as
a Fermi loop).

To determine the sign of the diagram, assign values to the spins in a manner consistent with the
spin loops (i.e. the value of any one spin in the spin loop determines the values of all of them). Then,
plug these values into the analytical expression for the diagram. It is important to note that the reason
we can compute the spin sum and the sign independently, is that the choice we make for the values
of the spins does not affect the sign of the diagram. To see this note that every spin loop consists of an
even number of pairs that have either two incoming lines or two outgoing lines (since it has an equal
number of each kind), and an arbitrary number which have one incoming line and one outgoing line.
However, only the former contributes to the sign, while the latter does not (see Figs. 13 and 14.)More-
over, each pair contributes a distinct spin and appears in exactly one spin loop. Therefore, by flipping
all of the spins in a spin loop, we flip an even number of spins, and therefore do not change the sign of
the diagram. The only exception to this line of reasoning is the zeroth spin loop, in the case when the
terminal point f has 1 ormore stars (see Fig. 14). In this case, the zeroth spin loopmust have onemore
pair where both lines are incoming than it has pairs where both lines are outgoing. This is due to the
fact that in this case both the spins �1 and �̄2 exit the sites i and f respectively. It is also consistentwith
the fact that the terminal point f now has one more pair with two incoming lines than two outgoing
lines. Therefore, the spin pairs in the zeroth spin loop now contribute an odd number of spins. How-
ever, the spin �2 from the zeroth spin loop now also appears explicitly in the sign. Therefore, flipping
all of the spins in the zeroth loop once again does not change the sign of the diagram. In Fig. 16, we find

(�1) = (�a) = �t = �̄u = �̄j = �b = �c = �g = �̄e = �̄d = �v = �z = �̄w = �2; �x = �y;
�h = �k = (�l) = �̄p = �m; �q = �̄o = �̄s = �r = (�n),

where the parenthesis indicates that the spin does not contribute to the sign of the diagram. Therefore,
Fs = 3. The loops contribute (�1)5+0+1+2 = (�1)8 = 1 to the sign. Therefore, the final contribution
of the diagram in Fig. 16 is

�8 ⇥ g(0)
ia [⌧i, ⌧a]tabg(0)

bc [⌧a, ⌧b]tcdg(0)
de [⌧b, ⌧c]tegg(0)

ge [⌧c, ⌧+
c ]g(0)

ec [⌧c, ⌧b]
g(0)
cf [⌧b, ⌧f ]g(0)

ah [⌧a, ⌧d]thjg(0)
jk [⌧d, ⌧l]tklg(0)

la [⌧l, ⌧a]g(0)
ko [⌧e, ⌧g ]topg(0)

pk [⌧g , ⌧e]g(0)
ko [⌧e, ⌧g ]

g(0)
ok [⌧g , ⌧e]g(0)

kq [⌧e, ⌧r ]tqrg(0)
rq [⌧r , ⌧+

r ]g(0)
qk [⌧r , ⌧e]g(0)

am[⌧a, ⌧s]
tmng(0)

nm[⌧s, ⌧+
s ]g(0)

mh[⌧s, ⌧d]g(0)
ha [⌧d, ⌧a]g(0)

fs [⌧f , ⌧u]tstg(0)
tu [⌧u, ⌧v]tuvg(0)

vs [⌧v, ⌧u]g(0)
su [⌧u, ⌧v]g(0)

uf [⌧v, ⌧f ],
where all sites and times other than i and f , and ⌧i and ⌧f are summed/integrated over.
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Fig. 17. The second order diagrams contributing to the Green’s function: G(2)[i, f ], and their corresponding numerical
representations. Note that the diagrams (a) through (j) are the standard second order Feynman diagrams. The other diagrams
are not.

4.3. Second order contribution

Using the rules from Section 4.2, we draw the diagrams that contribute to G[i, f ] in second order
in Fig. 17, and calculate their contributions below.

The contributions of these diagrams are

(a) g(0)
ia [⌧i, ⌧a]tabg(0)

ba [⌧a, ⌧+
a ]g(0)

ac [⌧a, ⌧b]tcdg(0)
dc [⌧b, ⌧+

b ]g(0)
cf [⌧b, ⌧f ]

(b) � 2g(0)
ia [⌧i, ⌧a]tabg(0)

bc [⌧a, ⌧c]tcdg(0)
da [⌧c, ⌧a]g(0)

ac [⌧a, ⌧c]g(0)
cf [⌧c, ⌧f ]

(c) g(0)
ia [⌧i, ⌧a]tabg(0)

bc [⌧a, ⌧b]tcdg(0)
dc [⌧b, ⌧+

b ]g(0)
ca [⌧b, ⌧a]g(0)

af [⌧a, ⌧f ]
(d) g(0)

ia [⌧i, ⌧a]g(0)
aa [⌧a, ⌧+

a ]tabg(0)
bc [⌧a, ⌧b]tcdg(0)

dc [⌧b, ⌧+
b ]g(0)

cf [⌧b, ⌧f ]
(e) g(0)

ia [⌧i, ⌧a]tabg(0)
ba [⌧a, ⌧+

a ]g(0)
ac [⌧a, ⌧b]g(0)

cc [⌧b, ⌧+
b ]tcdg(0)

df [⌧b, ⌧f ]
(f ) g(0)

ia [⌧i, ⌧a]tabg(0)
bc [⌧b, ⌧+

b ]tcdg(0)
da [⌧b, ⌧a]g(0)

af [⌧a, ⌧f ]
(g) � 2g(0)

ia [⌧i, ⌧a]tabg(0)
bc [⌧a, ⌧b]g(0)

ca [⌧b, ⌧a]g(0)
ac [⌧a, ⌧b]tcdg(0)

ia [⌧b, ⌧f ]
(h) g(0)

ia [⌧i, ⌧a]g(0)
aa [⌧a, ⌧+

a ]tabg(0)
bc [⌧a, ⌧b]g(0)

cc [⌧b, ⌧+
b ]tcdg(0)

df [⌧b, ⌧f ]
(i) g(0)

ia [⌧i, ⌧a]tabg(0)
bf [⌧a, ⌧f ]g(0)

ac [⌧a, ⌧b]tcdg(0)
dc [⌧b, ⌧+

b ]g(0)
ca [⌧b, ⌧a]

(j) g(0)
ia [⌧i, ⌧a]tabg(0)

bf [⌧a, ⌧f ]g(0)
ac [⌧a, ⌧b]g(0)

cc [⌧b, ⌧+
b ]tcdg(0)

da [⌧b, ⌧a]
(k) � g(0)

ia [⌧i, ⌧a]tabg(0)
ba [⌧a, ⌧+

a ]g(0)
af [⌧a, ⌧f ]g(0)

ff [⌧f , ⌧+
f ]

(l) 2g(0)
ia [⌧i, ⌧a]tabg(0)

bf [⌧a, ⌧f ]g(0)
fa [⌧f , ⌧a]g(0)

af [⌧a, ⌧f ]
(m) � g(0)

ia [⌧i, ⌧a]g(0)
aa [⌧a, ⌧+

a ]tabg(0)
bf [⌧a, ⌧f ]g(0)

ff [⌧f , ⌧+
f ]

(n) � g(0)
ia [⌧i, ⌧a]g(0)

aa [⌧a, ⌧+
a ]g(0)

aa [⌧a, ⌧+
a ]tabg(0)

bf [⌧a, ⌧f ]
(o) � g(0)

if [⌧i, ⌧f ]g(0)
fa [⌧f , ⌧a]tabg(0)

ba [⌧a, ⌧+
a ]g(0)

af [⌧a, ⌧f ]
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(p) � g(0)
if [⌧i, ⌧f ]g(0)

fa [⌧f , ⌧a]g(0)
aa [⌧a, ⌧+

a ]tabg(0)
bf [⌧a, ⌧f ]

(q) g(0)
if [⌧i, ⌧f ]g(0)

ff [⌧f , ⌧+
f ]g(0)

ff [⌧f , ⌧+
f ].

5. Diagrammatic � expansion for constituent objects

5.1. Introduction of the two self-energies

We next consider the auxiliary Green’s function g[i, f ]. Using Eq. (10) for g�1[i, f ], we can write
the analog of Eq. (17) for g[i, f ].

g�1,�2 [i, f ] = g(0)
�1,�2

[i, f ]

� � g(0)
�1,�b

[i, k]
 

�t[k, j]�b�aG�̄a,�̄b [k, k+]g�a,�2 [j, f ] + t[k, j]�b�a
�

�V
�̄b,�̄a
k

g�a,�2 [j, f ]
!

, (19)

Comparing the iterative expansion of G[i, f ] through Eq. (17) with that of g[i, f ] through Eq. (19), we
see that the terms in the parenthesis are identical in both expansions. However, the second termon the
RHS of Eq. (17), missing in Eq. (19), allows a Green’s function diagram to close on itself in the iterative
expansion, merging the initial point i and the terminal point f . Such a diagrammust necessarily have
more than one line connected to its terminal point, and therefore at least one star on the f in the top
row. Therefore, the diagrams for g[i, f ] are the subset of the diagrams for G[i, f ] which have no stars
on the f in the top row. In Fig. 17, these are diagrams (a) through (j), and diagram (n).

We see that in the diagrams for g[i, f ], the terminal point labeled by f is connected to the rest of
the diagram only by a single line. Therefore, it will be possible to describe these diagrams in terms
of a Dyson equation, with a Dyson self-energy. This is not the case for the other diagrams in Fig. 17
(those which do have a star on the f in the top row), and these diagrams require the introduction of a
second-self energy. We now proceed to define these two types of self-energies.

We shall denote the Dyson self-energy for g[i, f ] by ⌃a. As is the case in the Feynman diagrams,
it is obtained from the diagrams for g[i, f ] by removing the external line coming in from the point i,
and the one going out to the point f . If a diagram for⌃a can be split into two pieces by cutting a single
line, then it is reducible. Otherwise, it is irreducible. Denote the irreducible part of⌃a by⌃⇤

a .
Now consider those diagramswhich do have a star on the f in the top row. The second self-energy,

⌃b, is obtained from these diagrams by removing the external line coming from the point i. Once again,
if a diagram for⌃b can be split into two pieces by cutting a single line, then it is reducible. Otherwise,
it is irreducible. Denote the irreducible part of⌃b by⌃⇤

b .
From the diagrammatic structure of the series, it is clear that G[i, f ] = g[i, f ] + g[i, j].⌃⇤

b [j, f ].
Comparing with Eq. (9), we see thateµ[i, f ] = �[i, f ]+⌃⇤

b [i, f ]. Also, from Dyson’s equation, we know
that g�1[i, f ] = g�1(0)[i, f ] �⌃⇤

a [i, f ]. We shall give an independent proof of these formulae starting
from the equations of motion for g�1 andeµ (Eq. (10)) in Section 5.2.

5.2. g�1 andeµ

We shall now prove, starting with the equations of motion in Eq. (10), the observations already
made in Section 5.1, that

eµ[i, f ] = �[i, f ] +⌃⇤
b [i, f ]; g�1[i, f ] = g�1(0)[i, f ] �⌃⇤

a [i, f ]. (20)

This is equivalent to showing that
⌃⇤

b [i, f ] = ��� [i]�[i, f ] + � [i, f ]; ⌃⇤
a [i, f ] = �� [i]t[i, f ] + ��[i, f ]. (21)

We rewrite the EOM foreµ[i, f ] (Eq. (10)) in expanded form.

eµ�1�2 [i, f ] = (��1�2 � ��1�2G�̄2�̄1 [i, i+])�[i, f ] + � �1�2 [i, f ]

 �1�2 [i, f ] = �t[i, j] �1�ag�a,�b [j,n] �

�V
�̄1�̄a
i

eµ�b�2 [n, f ]. (22)
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Fig. 18. Schematic representation for a Green’s function diagram with only the number f ⇤...⇤ in the top row. Upon removing
the incoming external line, it contributes to⌃⇤

b1[i, f ].

We now proceed to prove the first of Eq. (20) using induction in �. The lowest order contribution
to ⌃⇤

b [i, f ] comes from diagram (a) in Fig. 12. Removing the incoming external line, we obtain
⌃

⇤(1)
b

�1�2

[i, f ] = ���1�2�[i, f ]g(0)
ff

�̄2�̄1

[⌧f , ⌧+
f ]. Using Eq. (22) to obtain the first order contribution to

eµ[i, f ], we geteµ(1)
�1�2

[i, f ] = ���1�2g(0)
�̄2,�̄1

[i, i+]�[i, f ]. Clearly, these two are equal, and we have that
⌃

⇤(1)
b

�1�2

[i, f ] = eµ(1)
�1�2

[i, f ].

Now consider themth order contribution⌃⇤(m)
b

�1�2

[i, f ]. This will be obtained from the corresponding

mth orderG[i, f ]diagramupondropping the incoming external line. If in the numerical representation
for this G[i, f ] diagram, there are no numbers other than f ⇤...⇤ in the top row (e.g. panels
(o), (p), and (q) in Fig. 17), then the contribution of this diagram to G[i, f ] is G(m)

�1�2
[i, f ] =

�� g(0)
�1�b

[i, f ]�b�2G(m�1)
�̄2�̄b

[f , f +] (see Fig. 18). The resulting contribution to⌃⇤
b , which we shall denote

by⌃⇤
b1, is

⌃
⇤(m)
b1
�1�2

[i, f ] = �� �1�2G(m�1)
�̄2�̄1

[f , f +]�[i, f ]. (23)

Alternatively, there are numbers other than f ⇤...⇤ in the top row of the numerical representation
of the corresponding mth order G[i, f ] diagram. Then, the top row reads 1 . . . f ⇤...⇤ (e.g. panels (k)
through (m) of Fig. 17). In this case, we know that for the resulting⌃b[i, f ] diagram to be irreducible,
i.e. for it to contribute to ⌃⇤

b [i, f ], the number 1 in the top row should not be starred. Therefore, we
can represent the diagram schematically as in Fig. 19. This representation is obtained as follows. If
we consider just the part of the diagram between the points j and f , we know that a line in this part
of the diagram (denoted in Fig. 19 by the letter s) is split by the point k. If we restore s by removing
the lines labeled by �̄a and �̄b from the point k, then the part of the diagram running from j to f is a
Green’s function diagramwhich contributes to g[j,n].⌃⇤

b [n, f ] (since the f has at least one star on it).
However, the line s cannot be contained in the g[j,n] part of the diagram (represented in Fig. 19 by
a double line), since then the resulting ⌃b (of the overall diagram) would be reducible. Therefore it
must be contained in the ⌃⇤

b [n, f ] part of the diagram. The analytical expression for the diagram in
Fig. 19 is

� �g(0)
�1�b

[i, k]t[k, j]�b�ag�a�c [j,n] �

�V
�̄b�̄a
k

⌃⇤
b

�c�2

[n, f ]. (24)

Removing the incoming external line, and using the inductive hypothesis, we obtain the contribution
of these types of diagrams to⌃⇤

b [i, f ], which we shall denote as⌃⇤
b2[i, f ].

⌃
⇤(m)
b2
�1�2

[i, f ] = ��t[i, j]�1�ag(m1)
�a�b

[j,n] �

�V
�̄1�̄a
i

eµ(m2)
�b�2

[n, f ], (25)

where m = m1 + m2 + 1. Comparing Eq. (25) with Eq. (22), we see that

⌃⇤
b2
�1�2

[i, f ] = � �1�2 [i, f ]. (26)
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Fig. 19. Schematic representation for a Green’s function diagram whose top row is 1 . . . f ⇤...⇤ . Upon removing the incoming
external line, it contributes to⌃⇤

b2[i, f ].

Combining Eqs. (23) and (26), we find that
⌃⇤

b
�1�2

[i, f ] = ⌃⇤
b1
�1�2

[i, f ] +⌃⇤
b2
�1�2

[i, f ] = �� �1�2G�̄2�̄1 [f , f +]�[i, f ] + � �1�2 [i, f ]. (27)

Therefore, comparing Eq. (27) with Eq. (22), we have shown the first of Eq. (20) to be true.
Now consider the EOM for g�1[i, f ] (Eq. (10)) in expanded form.

g�1
�1�2

[i, f ] = g�1(0)
�1�2

[i, f ] � � t[i, f ]�1�2G�̄2�̄1 [i, i+] � ���1�2 [i, f ]

��1�2 [i, f ] = t[i, j] �1�ag�a,�b [j,n] �

�V
�̄1�̄a
i

g�1
�b�2

[n, f ]. (28)

Our goal is to prove the second of Eq. (20) using Eq. (28). To this end, we note that diagrams for
⌃⇤

a [i, f ] can be split into four groups. Recall that a diagram for ⌃a[i, f ] is obtained from a g[i, f ]
diagram (or equivalently from a G[i, f ] diagram with no stars on the f in the top row) by removing
the incoming and outgoing external lines. Consider a g[i, f ] diagramswhose numerical representation
has the following property. There are no subscripts between the number immediately to the left of f
in the top row (which we shall denote by c) and f (e.g. panels (e), (g) through (j), and (n) of Fig. 17).
This implies that c has at least one star, as otherwise c must be a subscript between c and f . Therefore,
the top row looks like 1 . . . c⇤...⇤ f . In the case that c = 1 (e.g. panels (i), (j), and (n) of Fig. 17), these
diagrams can be represented schematically as in Fig. 20. We denote the corresponding contribution
to ⌃⇤

a by ⌃⇤
a1. If c > 1 (e.g. panels (e), (g), and (h) of Fig. 17), then the diagrams can be represented

schematically as in Fig. 21.We denote the corresponding contribution to⌃⇤
a by⌃⇤

a2. Comparing Fig. 18
with Fig. 20 and Fig. 19 with Fig. 21, and removing the external lines, we find that

⌃⇤
a1
�1�2

[i, f ] = �⌃⇤
b1
�1�2

[i, j]t[j, f ]; ⌃⇤
a2
�1�2

[i, f ] = �⌃⇤
b2
�1�2

[i, j]t[j, f ]. (29)

Here, the minus comes from rule (8) of Section 4.2, where there is a minus sign discrepancy between
the factors (�1)sf �1 (applicable to f ⇤...⇤ in ⌃⇤

b ) and (�1)s (applicable to c⇤...⇤ in ⌃⇤
a ). Using Eqs. (23)

and (26), we find that
�⌃⇤

a1
�1�2

[i, f ] = �� �1�2G�̄2�̄1 [i, i+]t[i, f ]; �⌃⇤
a2
�1�2

[i, f ] = � �1�2 [i, j]t[j, f ]. (30)

Motivated by this observation, we define a new object ��1�2 [i, f ] defined by the formula
��1�2 [i, f ] = � �1�2 [i, j]t[j, f ] + ��1�2 [i, f ]. (31)

Plugging this formula into Eq. (28), we obtain

g�1
�1�2

[i, f ] = g�1(0)
�1�2

[i, f ] � � t[i, f ]�1�2G�̄2�̄1 [i, i+] + � �1�2 [i, j]t[j, f ] � ���1�2 [i, f ] (32)

Plugging Eq. (32) into the equation for� (Eq. (28)), we obtain
��1�2 [i, f ] = �t[i, j]�1�̄2g�̄2�̄1 [j, i]�[i, f ] �  �1�2 [i, j]t[j, f ]

� �t[i, j]�1�ag�a�b [j,n] �

�V
�̄1�̄a
i

��b�2 [n, f ], (33)
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Fig. 20. Schematic representation for Green’s function diagram whose top row is 1⇤...⇤ f . Upon removing the incoming and
outgoing external lines, it contributes to⌃⇤

a1[i, f ]. One can obtain⌃⇤
b1[i, f ] displayed in Fig. 18 by also removing the interaction

line exiting the point k.

Fig. 21. Schematic representation for Green’s function diagramwhose top row is 1 . . . c⇤...⇤ f . Upon removing the outgoing and
incoming external lines, it contributes to⌃⇤

a2[i, f ]. One can obtain⌃⇤
b2[i, f ] displayed in Fig. 19 by also removing the interaction

line exiting the point l.

where we have used Eq. (22) to handle the second and third terms on the RHS of Eq. (32). Comparing
Eq. (33) with Eq. (31), we obtain the following EOM for ��1�2 [i, f ].

��1�2 [i, f ] = �t[i, j]�1�̄2g�̄2�̄1 [j, i]�[i, f ]

� �t[i, j]�1�ag�a�b [j,n] �

�V
�̄1�̄a
i

��b�2 [n, f ]. (34)

Comparing Eqs. (32) and (30), we see that �⌃⇤
a1
�1�2

[i, f ] and �⌃⇤
a2
�1�2

[i, f ] account for the second

and third terms on the RHS of Eq. (32) respectively. Therefore, we now show that the remainder of
the�⌃⇤

a [i, f ] diagrams account for the fourth term. To this end, we consider all g[i, f ] diagramswhich
do have a subscript between the number c (the number immediately to the left of f in the top row)
and f in the top row. The top row now looks like 1 . . . c...f (e.g. panels (a) through (d) and (f) of Fig. 17).
Note that for the resulting⌃a[i, f ] diagram to be irreducible, the number 1 cannot have any stars. We
further subdivide this group of g[i, f ] diagrams into 2 groups. In the first group, whose contribution to
⌃⇤

a [i, f ] shall be denoted by ⌃⇤
a3[i, f ], the subscript immediately preceding f in the top row is 1. The

top row for these diagrams looks like 1 . . . c...1f (e.g. panels (c) and (f) of Fig. 17). In the second group,
whose contribution to ⌃⇤

a [i, f ] shall be denoted by ⌃⇤
a4[i, f ], the subscript immediately preceding f

in the top row is not 1. The top row for these diagrams looks like 1 . . . c...df , where d 6= 1 (e.g. panels
(a), (b), and (d) of Fig. 17). Our goal is to show that ���1�2 [i, f ] = ⌃⇤

a3
�1�2

[i, f ] +⌃⇤
a4
�1�2

[i, f ].
We do this by induction. The g[i, f ] diagrams contributing to ⌃⇤

a3[i, f ] are shown in Fig. 22. The
contribution of this diagram becomes

� ��a�bg
(0)
ia
�1�a

[⌧i, ⌧a]tabg ba
�b�̄a

[⌧a, ⌧+
a ]g(0)

af
�̄b�2

[⌧a, ⌧f ]. (35)

After removing the two external lines, we find that

⌃⇤
a3
�1�2

[i, f ] = ���1�̄2tibg bi
�̄2�̄1

[⌧i, ⌧+
i ]�[i, f ]. (36)
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Fig. 22. Schematic representation for Green’s function diagramwhose top row is 1 . . . c...1f . Upon removing the incoming and
outgoing external lines, it contributes to ⌃⇤

a3[i, f ]. This is the analog of the Fock diagram in the standard Feynman skeleton
expansion.

Fig. 23. Schematic representation for Green’s function diagram whose top row is 1 . . . c...df , where d 6= 1. Upon removing the
incoming and outgoing external lines, it contributes to⌃⇤

a4[i, f ].

Thus,⌃⇤
a3
�1�2

[i, f ] is equal to the first term on the RHS of Eq. (34). Note that since this term contains

the lowest order contribution to � [i, f ], this covers the base case of the induction. We now want to
show that⌃⇤

a4
�1�2

[i, f ] equals the second term on the RHS of Eq. (34). The g[i, f ] diagrams contributing

to ⌃⇤
a4
�1�2

[i, f ] can be represented schematically as in Fig. 23. Here, the reasoning is similar to that

which led to Fig. 19. If the line s were contained in g jn
�a�c

[⌧k, ⌧n], then the resulting ⌃a (of the overall

diagram) would be reducible, while if s was the bare line g(0)
df
�̄d�2

[⌧d, ⌧f ], the diagram would contribute

to ⌃⇤
a3 (see Fig. 22). The box can be either a ⌃⇤

a3 insertion or a ⌃⇤
a4 insertion, but cannot be a ⌃⇤

a1
insertion or a ⌃⇤

a2 insertion, since in this case the diagram would contribute to ⌃⇤
a2 (see Fig. 21). The

analytical contribution of Fig. 23 is

� �g(0)
�1�b

[i, k]t[k, j]�b�ag�a�c [j,n] �

�V
�̄b�̄a
k

✓

⌃⇤
a3
�c �̄d

[n, d] +⌃⇤
a4
�c �̄d

[n, d]
◆

g(0)
�̄d�2

[d, f ]. (37)

Dropping the external lines, and using the inductive hypothesis, we obtain

⌃⇤
a4
�1�2

[i, f ] = ��2t[i, j]�1�ag�a�b [j,n] �

�V
�̄1�̄a
i

��b�2 [n, f ]. (38)

Combining this with Eq. (36) and comparing with Eq. (34), we find that

⌃⇤
a3
�1�2

[i, f ] +⌃⇤
a4
�1�2

[i, f ] = ���1�2 [i, f ]. (39)

Using Eqs. (39), (30), and (32), we have proven the second of Eqs. (20).

5.3. Diagrams in momentum space

Upon turning off the sources, all objects become translationally-invariant in both space and time.
We define the Fourier transform of all objects with two external points (e.g. G[i, f ]), denoted below
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Fig. 24. Momentum space representation of diagram for g(k) from Fig. 17(b). Upon removing the incoming and outgoing
external lines, it contributes to �(k).

Fig. 25. Momentum space representation of diagram for G(k) from Fig. 17(l). Upon removing the incoming external line, it
contributes to  (k).

by the generic symbol Q [i, f ], as

Q [i, f ] = 1
Ns�

X

k

eik(i�f )Q (k), (40)

where Ns is the number of sites on the lattice, � is the inverse temperature, k ⌘ (Ek, i!k), and
k(i� f ) ⌘ Ek · (ERi �ERf )�!k(⌧i � ⌧f ). For the rest of the paper, we shall not write the explicit factor 1

Ns�
that goes along with each momentum sum. To obtain the momentum space contribution of a given
g(k) diagram, we assign momentum k to the outgoing and incoming external lines, and sum over the
momenta of the internal lines, in such away thatmomentum is conserved at eachpoint in the diagram.
We also associate with each Green’s function line the factor g(0)(q), where q is the momentum label
of that line, and with each interaction line the factor �✏q, where q is the momentum label of that
interaction line, and t[i, f ] ⌘ �Pq e

iq(i�f )✏q. The other rules are the same as in the coordinate space
evaluation. For example, consider the diagram in panel (b) of Fig. 17, whose momentum space labels
are displayed in Fig. 24. The momentum space contribution of this diagram is

� 2 g(0)(k)✏pg(0)(p)✏qg(0)(q)g(0)(k + q � p)g(0)(k) (41)
where a sum over the internal momenta p and q is implied. Upon removing the external lines, we
obtain the following contribution to⌃⇤

a (k), or equivalently to �(k):

� 2 ✏pg(0)(p)✏qg(0)(q)g(0)(k + q � p). (42)

Additionally, consider the diagram for G(k) displayed in panel (l) of Fig. 17, whose momentum
space labels are displayed in Fig. 25. The incoming external line carriesmomentum k into the diagram,
while the terminal point absorbs this momentumwithout transferring it to an outgoing external line.
The momentum space contribution of this diagram is

� 2 g(0)(k)✏pg(0)(p)g(0)(q)g(0)(k + q � p) (43)
Upon removing the incoming external line, we obtain the following contribution to ⌃⇤

b (k), or
equivalently to  (k):

� 2 ✏pg(0)(p)g(0)(q)g(0)(k + q � p). (44)

5.4. The vertices⇤ and U

In Section 5.2, we showed that our diagrammatic series is consistent with the ECFL EOM, Eqs. (10)
and (11). We rewrite them here for convenience.
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a b

Fig. 26. Schematic diagram for the vertices. ⇤�a�b
�c�d [n,m; i] is displayed in panel (a) while U

�a�b
�c�d [n,m; i] is displayed in panel

(b).

ba

Fig. 27. Schematic diagram for the vertices.⇤�a�b
�c�d [n,m; i] is displayed in panel (a)whileU

�a�b
�c�d [n,m; i] is displayed in panel (b).

g�1[i,m] = (µ � @⌧i � Vi) �[i,m] + t[i,m] (1 � �� [i]) � ��[i,m].
eµ[i,m] = (1 � �� [i])�[i,m] + � [i,m]
�[i,m] = �t[i, j] ⇠ ⇤.g[j,n].⇤⇤[n,m; i];  [i,m] = �t[i, j] ⇠ ⇤.g[j,n].U⇤[n,m; i]. (45)

� [i] = eµ(k)[n, i+].g(k)[i,n]; ⇤[n,m; i] = � �

�Vi
g�1[n,m]; U[n,m; i] = �

�Vi
eµ[n,m]. (46)

We now examine the vertices ⇤�a�b
�c�d [n,m; i] ⌘ � �

�V
�c�d
i

g�1
�a�b

[n,m] and U
�a�b
�c�d [n,m; i] ⌘

�

�V
�c�d
i

eµ�a�b [n,m] in more detail. The zeroth order vertices, also called the bare vertices, are given

by

⇤(0)�a�b
�c�d

[n,m; i] = �[n,m]�[n, i]��a�c ��b�d; U(0)�a�b
�c�d

[n,m; i] = 0. (47)

The higher order terms contributing to⇤�a�b
�c�d [n,m; i] arise from splitting a line in⌃⇤

a
�a�b

[n,m] through
the point i. The higher order terms contributing to U

�a�b
�c�d [n,m; i] arise from splitting a line in

⌃⇤
b

�a�b

[n,m] through the point i. These terms can be represented schematically as in Fig. 26.

From Fig. 26(a), we see that in ⇤�a�b
�c�d [n,m; i], the external points n and m accommodate an

incoming and outgoing external Green’s function line, respectively, while the external point i
accommodates an incoming external Green’s function line and an external interaction line (Compare
with Fig. 13(a)). In Fig. 26(b), we see that in U

�a�b
�c�d [n,m; i], the external point n accommodates

an incoming external Green’s function line, while the external point i accommodates an incoming
external Green’s function line and an external interaction line. However, the external point m is the
terminal point and does not accommodate any external lines. Therefore, the vertices are represented
schematically as in Fig. 27. In the case of the bare vertex ⇤(0)[n,m, i], the diagram in Fig. 27(a)
collapses onto a single point, which corresponds to the point k in Fig. 13(a).

In Eq. (45), the self-energies� and  are expressed in terms of the vertices⇤ and U respectively.
These relationships can be expressed diagrammatically as in Fig. 28.

We now turn the sources off, so that we can represent the vertices in momentum space, as in
Fig. 29. In the case of ⇤(p, k), the external lines carry a total of zero momentum out of the vertex.
In the case of U(p, k), the terminal point (the one with no external lines coming in or out) absorbs
momentum k, and therefore the remainder of the external lines have to bring momentum k into the

(208)



E. Perepelitsky, B. Sriram Shastry / Annals of Physics 357 (2015) 1–39 27

ba

Fig. 28. Schematic diagram for the self-energies in terms of the vertices. In panel (a) ��1�2 [i,m] is expressed in terms of
⇤
�a�b
�c�d [n,m; i] and in panel (b)  �1�2 [i,m] is expressed in terms of U

�a�b
�c�d [n,m; i].

a b

Fig. 29. Schematic diagram for the vertices in momentum space. ⇤�a�b
�c�d (p, k) is displayed in panel (a) while U

�a�b
�c�d (p, k) is

displayed in panel (b).

vertex. Therefore, comparing Fig. 29 with Fig. 27, the Fourier transform of the three point vertices,
denoted below by the generic symbol Q [n,m, i], is:

Q [n,m, i] =
X

kp

eipne�ikmei(k�p)iQ (p, k) =
X

kp

eip(n�i)eik(i�m)Q (p, k). (48)

Furthermore, there are only four non-zero spin configurations contributing to the vertex. These
are Q (1) ⌘ Q ��

�� , Q
(2) ⌘ Q ��

�̄ �̄ , Q
(3) ⌘ Q � �̄

� �̄ , and Q (4) ⌘ Q � �̄
�̄� . These four spin configurations are related

by the equation

Q (1) � Q (2) = Q (3) + Q (4). (49)
We shall now state the rules for computing the Q (i) and derive Eq. (49). Recall that to obtain a diagram
for⇤ (U), we must split a line in the self-energy⌃⇤

a (⌃⇤
b ). This will give us an extra Green’s function

line in the diagram, and we must assign momenta to the external lines as indicated in Fig. 29, at the
same time summing over themomenta of the internal lines in such away as to conservemomentumat
each point of the diagram. Also recall from Section 4.2 that the Green’s function lines in the diagrams
for⌃⇤

a (⌃⇤
b ) are partitioned into anywhere between 0 and Fs spin loops,where the zeroth loop contains

the lines with the labels �1 and �2. The spins carried by the Green’s function lines in a single loop are
allowed to alternate. However, the spin carried by each Green’s function line in the loop is determined
by that of any one of them (in the case of the zeroth loop it is the fixed spin �1).

Now, in the case that the line split in going from ⌃⇤ ! Q is from a loop which is not the zeroth
loop, the resulting vertex diagram contributes only to Q (1) and Q (2) with a factor of 1

2 relative to the
contribution of the original diagram to⌃⇤. In the case that the line split in going from⌃⇤ ! Q is from
the zeroth loop, the line split could either carry spin�1 in the original⌃⇤ diagramor spin �̄1. In the case
of the former, the resulting vertex diagram contributes to both Q (1) and Q (3) with a factor of 1 relative
to the contribution of the original diagram to⌃⇤. In the case of the latter, the resulting vertex diagram
contributes to Q (2) with a factor of 1, and to Q (4) with a factor of (�1), relative to the contribution of
the original diagram to⌃⇤. Eq. (49) immediately follows. Note that in the Feynman diagrams, we have
the simpler situation in which all of the Green’s function lines in a single spin loop (also referred to as
Fermi loop), carry the same spin [18]. Then, the very last case described above becomes impossible,
Q (4) ! 0, and Eq. (49) reduces to the standard Nozières relation Q (1) � Q (2) = Q (3) [19].

Following Ref. [9], we define Q (a) ⌘ Q (2) � Q (3). Fourier transforming Eq. (45), we obtain:

�(k) =
X

p
✏pg(p)⇤(a)(p, k);  (k) =

X

p
✏pg(p)U(a)(p, k). (50)

These relations are represented diagrammatically in Fig. 30.
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ba

Fig. 30. Schematic diagram for the self-energies in terms of the vertices. In panel (a) �(k) is expressed in terms of ⇤(a)(p, k)
and in panel (b)  (k) is expressed in terms of U(a)(p, k).

b ca

Fig. 31. Examples of skeleton and non-skeleton diagrams for the irreducible self-energy ⌃⇤
a . The diagram in panel (a) is a

skeleton diagram. The diagram in panel (b) is not, since we can isolate a self-energy insertion by cutting the two lines labeled
by c. The non-skeleton diagram in panel (b) can be obtained from the skeleton diagram in panel (c) by inserting the self-energy
insertion enclosed by the box into the Green’s function line. However, by splitting the line labeled by s in the diagram in panel
(b), through another external point, we obtain a skeleton diagram for the vertex⇤.

5.5. Skeleton diagrams

Consider the diagrammatic expansion for the irreducible self-energies that we have been using
thus far, in which each diagram is composed of bare Green’s function lines g(0)[i, f ], and hopping
matrix elements tif . We aim to reorganize this expansion in such a way that we only keep a subset
of these diagrams, in which we replace each bare Green’s function line g(0)[i, f ], by the full auxiliary
Green’s function g[i, f ], thereby accounting for the diagramswhichwe discarded.We shall nowdefine
this subset of diagrams, which is referred to as the skeleton diagrams.

The skeleton diagrams are those diagrams in which one cannot separate a self-energy insertion
⌃a from the rest of the diagram by cutting two Green’s function lines. For example, consider the ⌃⇤

a
diagrams in Fig. 31 (the same considerations will apply to⌃⇤

b diagrams). From left to right, these are
the irreducible self-energies corresponding to the g diagrams in Fig. 17(b), Fig. 17(c), and Fig. 12(c).
We see that the⌃⇤

a diagram in panel (b) of Fig. 31 is a non-skeleton diagram, since by cutting the two
Green’s function lines labeled by the letter c , we isolate the ⌃a self-energy insertion enclosed in the
box. In contrast, the⌃⇤

a diagram in panel (a) of Fig. 31 is a skeleton diagram, since it is impossible to
isolate a⌃a insertion by cutting twoGreen’s function lines. Finally, the diagram in panel (c) of Fig. 31 is
also a skeleton diagram. Furthermore, we see that by placing the self-energy insertion enclosed in the
box into the Green’s function line of the diagram in Fig. 31(c), we reproduce the diagram in Fig. 31(b).
Since a full auxiliary Green’s function line consists of an arbitrary self-energy insertion⌃a surrounded
by two bare Green’s function lines g(0), we see that the whole series is reproduced by keeping only
the skeleton diagrams and making the substitution g(0)[i, f ] ! g[i, f ].

Now, consider the vertices⇤[n,m; i] and U[n,m; i]. Recall from Fig. 26, that these correspond to
splitting a Green’s function line through the point i in ⌃⇤

a [n,m] and ⌃⇤
b [n,m], respectively. How do

we obtain the skeleton diagrams for the vertices? A naive guess would be that we do so by splitting a
Green’s function line in the skeleton diagrams for the irreducible self-energies. However, this is only
partially correct. To see this, consider again the non-skeleton⌃⇤

a diagram in panel (b) of Fig. 31. If we
choose to split either of the two lines labeled by c , thenwe leave the self-energy insertion surrounded
by the box intact, and the resulting diagram for⇤ is a non-skeleton diagram. However, if we split the
Green’s function line labeled by s, this breaks up this self-energy insertion, and leads to a skeleton
diagram for⇤.

Taking this reasoning a step further, consider the diagram for⌃⇤
a in panel (a) of Fig. 32. This diagram

can be obtained from the diagram in Fig. 31(b) by inserting the self-energy insertion enclosed by the
box into the line labeled by s in Fig. 31(b). Once again, if we split any line other than the one labeled
by s in Fig. 32(a), the resulting diagram for⇤will be a non-skeleton diagram, while if we split the line
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ba

Fig. 32. In this case both ⌃⇤
a diagrams displayed in panels (a) and (b) are non-skeleton diagrams. However, the diagram in

panel (a) contains only irreducible self-energy insertions, while the one in panel (b) contains a reducible self-energy insertion.
One can obtain a skeleton diagram for the vertex ⇤ only by splitting the line labeled by s in the diagram in panel (a). It is
impossible to obtain a skeleton diagram for the vertex⇤ from the diagram in panel (b) regardless of which line we split.

ba

Fig. 33. Panel (a) demonstrates the general procedure for obtaining a skeleton diagram for the vertex ⇤ from a ⌃⇤
a diagram

consisting of a sequence of⌃⇤
a skeleton diagrams. The original⌃⇤

a diagram is itself a skeleton diagram only if there is only one
skeleton diagram in the sequence, i.e. the ⌃⇤

a diagram in question. If we remove the outermost box in panel (a), we are still
left with a general skeleton diagram for the vertex ⇤. Therefore, to obtain a skeleton diagram for ⇤, one must insert the full
vertex⇤ into a green’s function line of a skeleton diagram for⌃⇤

a . This is displayed in panel (b). In the case that the original⌃⇤
a

diagram in panel (a) is itself a skeleton diagram (i.e. there is only one skeleton diagram in the sequence), the⇤ vertex in panel
(b) is a bare vertex.

labeled by s, the resulting diagram for ⇤ will be a skeleton diagram. Meanwhile, for the ⌃⇤
a diagram

in Fig. 32(b), obtained from the diagram in Fig. 31(b) by putting a reducible self-energy insertion into
the line labeled by s in Fig. 31(b), it is not possible to split any line in such a way that the resulting
diagram for⇤will be a skeleton diagram.

Therefore,we see that to construct the skeleton diagrams for⇤[n,m; i] (U[n,m; i]), we have to use
the following procedure. Take a skeleton diagram for⌃⇤

a [n,m] (⌃⇤
b [n,m]), and insert into atmost one

line of this diagram, a skeleton diagram for⌃⇤
a . Then, insert into atmost line of that diagram, a skeleton

diagram for ⌃⇤
a , and so on. This produces a sequence of skeleton diagrams for the irreducible self-

energies. Then, in the last skeleton diagramof the sequence, split a singleGreen’s function line through
the point i. This procedure is represented schematically (for the case of⇤[n,m; i]) in Fig. 33(a).

Now consider the part of Fig. 33(a) enclosed by the second box (counting from the very outer
box). This is itself a skeleton diagram for the vertex⇤[w, v; i], where w and v are internal variables.
Therefore, we see that one can obtain the skeleton expansion for ⇤[n,m; i] (U[n,m; i]) from the
skeleton expansion for ⌃⇤

a [n,m] (⌃⇤
b [n,m]) by replacing in each skeleton diagram for ⌃⇤

a [n,m]
(⌃⇤

b [n,m]), a single Green’s function line g[x, y], with g[x,w].⇤[w, v; i].g[v, y], where ⇤[w, v; i] is
the full vertex. This is represented schematically in Fig. 33(b). The case in which there is only one box
in Fig. 33(a) corresponds to plugging in the bare vertex into Fig. 33(b).

We now have three skeleton expansions. The first is the original skeleton expansion of the self-
energies in terms of the auxiliary Green’s function.

g�1 ⌘ g�1[g]; eµ ⌘ eµ[g], (51)

The second is the skeleton expansion for the vertices in terms of the auxiliary Green’s function. This
is the skeleton expansion represented in Fig. 33(a).

⇤ ⌘ ⇤[g]; U ⌘ U[g]. (52)

The third is the skeleton expansion for the vertices in terms of the auxiliary Green’s function and the
full vertex⇤. This is the skeleton expansion represented in Fig. 33(b).

⇤ ⌘ ⇤[g,⇤]; U ⌘ U[g,⇤]. (53)
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ba

c d

Fig. 34. The J-vertices in the diagrams of the � expansion. They are more reminiscent of the Feynman diagram vertices than
the t-vertices displayed in Fig. 13. The two types of vertices can be obtained from each other by interchanging lines between
the two points of the vertex.

Using the diagrammatic rules developed here, we have access to all three of these skeleton
expansions at any order. However, in the absence of these rules, we could derive the terms in these
skeleton expansions by using Eqs. (51)–(53), and (45) in the following manner. Suppose that we have
the skeleton expansions in Eq. (51)-(53) through mth order in �. Then, plugging the mth order term
of the skeleton expansion from Eq. (52) into Eq. (45) yields the m + 1st order term of the skeleton
expansion in Eq. (51). Then, applying the rule g ! g⇤g to the m + 1st order term of the skeleton
expansion in Eq. (51), yields the m + 1st order contribution to the skeleton expansion in Eq. (53).
Finally, plugging the kth order term of the skeleton expansion from Eq. (52) (0  k  m) into the
m+1�kth term of the skeleton expansion from Eq. (53) yields them+1st order term of the skeleton
expansion from Eq. (52), after which we can iterate the process again. This process starts at zeroth
order by plugging the bare vertex into Eq. (45) and calculating the first order contribution to the
skeleton expansion in Eq. (51), and so on. This is the approach used in the original ECFL papers [9,
10], and reviewed in Section 2. It reveals the power of the Schwinger approach in that it enables
one to bypass the bare series and work directly with the skeleton expansion. However, the utility
of the diagrams developed here is that they enable one to obtain the contribution of a given order
directly, without iteration, and also to visualize all the higher order terms diagrammatically, therefore
facilitating diagrammatic re-summations.

6. Putting J back into the equations

Let us rewrite Eq. (4) in the form of an integral equation as in Eq. (17), but this time keeping J .

G�1,�2 [i, f ] = g(0)
�1,�2

[i, f ] � � g(0)
�1,�b

[i, f ]�b�2G�̄2,�̄b [f , f +]

� � g(0)
�1,�b

[i, k]
 

�t[k, j]�b�aG�̄a,�̄b [k, k+]G�a,�2 [j, f ] + t[k, j]�b�a
�

�V
�̄b,�̄a
k

G�a,�2 [j, f ]
!

,

� � g(0)
�1,�b

[i, k]
 

1
2
J[k, j]�b�aG�̄a,�̄b [j, j+]G�a,�2 [k, f ] � 1

2
J[k, j]�b�a

�

�V
�̄b,�̄a
j

G�a,�2 [k, f ]
!

. (54)

The �-expansion of Eq. (54) is given by the same set of rules as in Section 4.2, with the only
difference being that now each vertex can be either a t-vertex or a J-vertex. Comparing the second
and third lines on the RHS of Eq. (54), we see that the J-vertices can be obtained from the t-vertices
in Fig. 13 by moving the line labeled by �a from the point j to the point k, and moving all lines but the
one labeled by �b from the point k to the point j. The J-vertices are displayed in Fig. 34. They are more
reminiscent of the standard Feynman diagram vertices.
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ba

Fig. 35. The t and J vertices are displayed in momentum space in panels (a) and (b) respectively. For each interaction vertex
of a diagram, we can choose to use either one as long as we associate with it the factor ✏pb + 1

2 Jpa�pb .

ba

Fig. 36. The G(k) diagrams drawn in panel (a) and panel (b) correspond to the same diagram. The one in panel (a) is drawn
using a t-vertex, while the one in panel (b) is drawn using a J-vertex. In both cases, we associate the factor ✏p + 1

2 Jk�p with the
interaction vertex.

Now, let us compare an arbitrary t-vertex and an arbitrary J-vertex in momentum space. The t-
vertex is shown in panel (a) of Fig. 35, while the J-vertex is shown in panel (b). Conservingmomentum
at each point of the t and J vertices yields the relation

pa +
n
X

m=1

p2m = pb +
n
X

m=1

p2m�1. (55)

In Fig. 35(a), the interaction line contributes a factor of ✏pb , while in Fig. 35(b), the interaction line
contributes a factor of 1

2 Jpa�pb . At first, it seems as though for each diagramwith i interaction vertices,
we must now draw 2i separate diagrams, since for each vertex we must decide whether it will be a t-
vertex or a J-vertex. For example, consider the diagram in Fig. 25, also displayed in Fig. 36(a), in which
the interaction vertex is a t-vertex. In Fig. 36(b), it is drawn with a J-vertex. However, we see that
the Green’s function lines in both diagrams have the same momentum labels, and the only difference
is the momentum label of the interaction line. This is because the two things which determine the
momentum labels of the Green’s function lines are
• (1) the interconnections (via Green’s function lines) between the interaction vertices (irrespective

of where on these vertices these lines appear),
• (2) Eq. (55).
Since the J-vertex simply reshuffles the lines on the t-vertex, and Eq. (55) applies equally well to both
types of vertices, both (1) and (2) are unaffected by the choice of t vertex vs. J vertex. Therefore, we
can choose to use either the diagram in Fig. 36(a) or the diagram in Fig. 36(b) if we associate with the
interaction line in each diagram the factor ✏p + 1

2 Jk�p. In general, we can construct diagrams either
from the vertices in Fig. 35(a) (aswe have already been doing), or from the vertices in Fig. 35(b) (which
would be more reminiscent of the Feynman diagrams), as long as we associate with each interaction
vertex the factor ✏pb + 1

2 Jpa�pb .
The ECFL equations with J included are given as follows [9].

g�1[i,m] = (µ � @⌧i � Vi) �[i,m] + t[i,m] (1 � �� [i]) + �

2
J[i, j]� [j]�[i,m] � ��[i,m],

eµ[i,m] = (1 � �� [i])�[i,m] + � [i,m],
�[i,m] = L[i,n].g�1[n,m];  [i,m] = �L[i,n].eµ[n,m], (56)

where the operator L is given by:

L�1�2 [i,m] = t[i, j]�1�ag�a�2 [j,m] �

�V
�̄1�̄a
i

� 1
2
J[i, j]�1�ag�a�2 [i,m] �

�V
�̄1�̄a
j

. (57)
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Using the same decomposition as in Eq. (31), i.e.

�[i,m] = � [i, j]t[j,m] + � [i,m], (58)

we find that

� [i,m] = L[i,n].g�1(0)[n,m] + �

2
J[m, k]L[i,m]� [k] � �L[i,n]� [n,m], (59)

where

(L[i,n].g�1(0)[n,m])�1�2 = t[i, j]�1�2g�̄2�̄1 [j, i]�[i,m] � 1
2
J[i,m]�1�2g�̄2�̄1 [i,m]. (60)

Finally, we note that the equations associated with Fig. 30 now become

�(k) =
X

p

✓

✏p + 1
2
Jk�p

◆

g(p)⇤(a)(p, k);  (k) =
X

p

✓

✏p + 1
2
Jk�p

◆

g(p)U(a)(p, k). (61)

7. Finite order calculations

7.1. Zeroth through third order calculation

In this section, we compute the skeleton expansion for the objects � ,  , and � through second
order in � in momentum space. As can be seen from Eq. (63), this yields the skeleton expansion for
g�1 andeµ through third order in �. Before proceeding with this computation, we follow Ref. [10] in
introducing a second chemical potential u0 into the theory. As explained in Ref. [10], there is a so-
called shift identity of the t–J model, which states that adding an onsite term to the hopping affects
G only through a shift of the chemical potential µ. However, the same is not true of the constituent
factors g andeµ, whichwill be affected by such a shift. To remedy this, in Ref. [10], the second chemical
potential u0 is introduced directly into the definitions of g�1 and eµ (Eq. (56)) through the formula
t[i, j] ! t[i, j] + u0

2 �[i, j] in every term but the t[i, f ] term in the equation for g�1[i, f ]. Now, an
onsite shift in the hopping affects g and eµ only through a shift in the second chemical potential u0.
Moreover, the fact that G will not be affected for any value of u0 (other than through a shift of the
original chemical potential µ) is a consequence of the shift identity. Furthermore, the two chemical
potentials µ and u0 can now be used to satisfy the two sum rules

X

k

G(k) = n
2
;

X

k

g(k) = n
2
. (62)

The first of these ensures the correct particle sum-rule for the physical electrons. The second one
states that the auxiliary fermions must satisfy the same particle sum-rule as the physical ones. We
can think of the Hubbard operator X0�

i = ci� (1 � ni�̄ ) as representing the physical fermions, and the
canonical operator ci� as representing the auxiliary fermions. Since, the number operator is a charge
neutral object, charge conservation implies that the physical and auxiliary fermions must satisfy the
same particle sum-rule. As a consequence of this, the physical electrons have a Fermi-surface which
complieswith the Luttinger–Ward volume theorem (seeRef. [9]where these sumruleswere originally
introduced and their implications discussed).

We now proceed to present the diagrams and analytical expressions for g�1 andeµ through third
order in �. Taking the Fourier transform of Eqs. (9) and (56), and using Eq. (58), we obtain

g�1(k) = i!k + µ0 � (✏k � u0

2
)eµ(k) � ��(k),

µ0 = µ � u0

2
+ �

2
� J0

eµ(k) = (1 � �� ) + � (k),
G(k) = g(k)eµ(k), (63)
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cb da

Fig. 37. Second order skeleton expansion for � . Only the diagram in panel (a) is a standard Feynman diagram. � (0) is given
by the diagram in panel (a), � (1) is given by the diagram in panel (b), and � (2) is given by diagrams in panels (c) and (d). We
conserve momentum at each interaction vertex as indicated in Figs. 35 and 36.

where J0 is the zero-momentum component of the Fourier transform of Jij. Our strategy is to compute
the skeleton expansion for � ,  , and � through second order in � (i.e. � = � (0) + � (1) + � (2), etc.)
After plugging in the expressions from this skeleton expansion into Eq. (63), we must set � = 1, and
solve the resulting integral equations. The two Lagrange multipliers µ and u0 are then determined by
the sum rules in Eq. (62).

In Fig. 37, we have drawn the skeleton diagrams for � (which is just a constant when the sources
are off) through second order in �. Therefore, � is the sum of the following terms

(a)
n
2

(b) � �
⇣n
2

⌘2

(c) �2
⇣n
2

⌘3

(d) � 2�2
X

plq

g(p)g(l)g(q)g(p + l � q)
✓

✏q � u0

2
+ 1

2
Jp�q

◆

. (64)

In Fig. 38, we have done the same for  (k). Therefore,  (k) is the sum of the following terms

(a) � 2�
X

pq
g(p)g(q)g(k + q � p)

✓

✏p � u0

2
+ 1

2
Jk�p

◆

(b) � 4�2
X

pql

g(p)g(l)g(q)g(k + q � p)g(k + q � l)
✓

✏p � u0

2
+ 1

2
Jk�p

◆✓

✏l �
u0

2
+ 1

2
Jp�l

◆

(c) � �2
X

pql

g(p)g(l)g(q)g(k + q � p)g(q + l � p)
✓

✏p � u0

2
+ 1

2
Jk�p

◆✓

✏l �
u0

2
+ 1

2
Jp�l

◆

(d) � �2
X

pql

g(p)g(l)g(q)g(k + q � p)g(p + l � q)
✓

✏p � u0

2
+ 1

2
Jk�p

◆✓

✏q � u0

2
+ 1

2
Jp�q

◆

(e) � �2
X

pql

g(p)g(l)g(q)g(k + q � p)g(k + l � p)
✓

✏p � u0

2
+ 1

2
Jk�p

◆✓

✏q � u0

2
+ 1

2
Jl�q

◆

(f ) � �2
X

pql

g(p)g(l)g(q)g(k + q � p)g(l + p � k)
✓

✏p � u0

2
+ 1

2
Jk�p

◆✓

✏l �
u0

2
+ 1

2
Jp�k

◆

(g) �2
n
2

X

pq
g(p)g(q)g(k + q � p)

✓

✏p � u0

2
+ 1

2
Jk�p

◆

(65)

The skeleton diagrams for �(k) have been split into two groups. Those drawn in Fig. 40, whose
contribution will be denoted by �B(k), can be obtained from the (k) diagrams in Fig. 38 by attaching
an interaction line to the terminal point of those diagrams. Due to the decomposition Eq. (58), this
interaction line will contribute only a J term, but no ✏ term, to the expression for �B(k). The rest
of the �(k) diagrams, whose contribution will be denoted by �A(k), are drawn in Fig. 39. Then,

(215)



34 E. Perepelitsky, B. Sriram Shastry / Annals of Physics 357 (2015) 1–39

d e

f g

a b c

Fig. 38. Second order skeleton expansion for (k). All diagrams but the one in panel (g) are standard Feynman diagrams (with
one interaction line set to unity).  (1) is given by the diagram in panel (a), and  (2) is given by the diagrams in panels (b)
through (g). We conserve momentum at each interaction vertex as indicated in Figs. 35 and 36.

d

a

e

f g

b c

Fig. 39. Second order skeleton expansion for �A(k). These diagrams are independent of those for  (k). All diagrams are
standard Feynman diagrams. The diagram in panel (a) contributes to � (0) , the diagram in panel (b) contributes to � (1) , and
the diagrams in panels (c) through (g) contribute to � (2) . We conserve momentum at each interaction vertex as indicated in
Figs. 35 and 36.

�(k) = �A(k) + �B(k), where �A(k) is the sum of the terms in Eq. (66) and �B(k) is the sum of the
terms in Eq. (67).

(a) �
X

p
g(p)

✓

✏p � u0

2
+ 1

2
Jk�p

◆

(b) � 2�
X

pq
g(p)g(q)g(k + q � p)

✓

✏p � u0

2
+ 1

2
Jk�p

◆✓

✏q � u0

2
+ 1

2
Jp�q

◆

(c) � �2
X

pql

g(p)g(l)g(q)g(k + q � p)g(l + q � p)

⇥
✓

✏p � u0

2
+ 1

2
Jk�p

◆✓

✏l �
u0

2
+ 1

2
Jp�l

◆✓

✏l+q�p � u0

2
+ 1

2
Jp�q

◆

(d) � 4�2
X

pql

g(p)g(l)g(q)g(k + q � p)g(k + q � l)

(216)



E. Perepelitsky, B. Sriram Shastry / Annals of Physics 357 (2015) 1–39 35

⇥
✓

✏p � u0

2
+ 1

2
Jk�p

◆✓

✏l �
u0

2
+ 1

2
Jp�l

◆✓

✏q � u0

2
+ 1

2
Jl�q

◆

(e) � �2
X

pql

g(p)g(l)g(q)g(k + q � p)g(k + l � p)

⇥
✓

✏p � u0

2
+ 1

2
Jk�p

◆✓

✏l �
u0

2
+ 1

2
Jp�l

◆✓

✏q � u0

2
+ 1

2
Jl�q

◆

(f ) � �2
X

pql

g(p)g(l)g(q)g(k + q � p)g(p + l � q)

⇥
✓

✏p � u0

2
+ 1

2
Jk�p

◆✓

✏q � u0

2
+ 1

2
Jp�q

◆✓

✏l �
u0

2
+ 1

2
Jk+q�p�l

◆

(g) � �2
X

pql

g(p)g(l)g(q)g(k + q � p)g(k + l � p)

⇥
✓

✏p � u0

2
+ 1

2
Jk�p

◆✓

✏l �
u0

2
+ 1

2
Jp�l

◆✓

✏k+l�p � u0

2
+ 1

2
Jp�k

◆

(66)

(a) � �
X

pq
g(p)g(q)g(k + q � p)

✓

✏p � u0

2
+ 1

2
Jk�p

◆

Jp�k

(b) � 2�2
X

pql

g(p)g(l)g(q)g(k + q � p)g(k + q � l)
✓

✏p � u0

2
+ 1

2
Jk�p

◆

(✏l �
u0

2
+ 1

2
Jp�l)Jl�k

(c) � �2

2

X

pql

g(p)g(l)g(q)g(k + q � p)g(q + l � p)
✓

✏p � u0

2
+ 1

2
Jk�p

◆

(✏l �
u0

2
+ 1

2
Jp�l)Jl�k

(d) � �2

2

X

pql

g(p)g(l)g(q)g(k + q � p)g(p + l � q)
✓

✏p � u0

2
+ 1

2
Jk�p

◆✓

✏q � u0

2
+ 1

2
Jp�q

◆

Jq�p

(e) � �2

2

X

pql

g(p)g(l)g(q)g(k + q � p)g(k + l � p)
✓

✏p � u0

2
+ 1

2
Jk�p

◆✓

✏q � u0

2
+ 1

2
Jl�q

◆

Jp�k

(f ) � �2

2

X

pql

g(p)g(l)g(q)g(k + q � p)g(l + p � k)
✓

✏p � u0

2
+ 1

2
Jk�p

◆✓

✏l �
u0

2
+ 1

2
Jp�k

◆

Jp�k

(g) �2
n
4

X

pq
g(p)g(q)g(k + q � p)

✓

✏p � u0

2
+ 1

2
Jk�p

◆

Jp�k (67)

7.2. High frequency limit

We know from the anti-commutation relations for the Hubbard X operators, that the high
frequency limit of the Green’s function is limi!k!1 G(k) = 1� n

2
i!k

. From Eq. (63), we see that the
high frequency limit of the Green’s function can also be expressed as limi!k!1 G(k) = 1���

i!k
. Since

� = P

k G(k) = n
2 in the exact theory, after setting � = 1 the two expressions for the high frequency

limit are equivalent.
From Eq. (63), we see that to obtain g�1(k) andeµ(k) tomth order in �, we must calculate � ,  (k),

and �(k) to orderm�1. If we are doing this using the bare expansion, then in order to satisfy the sum
rules in Eq. (62) order by order, we must also expand the two chemical potentials µ and u0 in � [25].

µ = µ(0) + µ(1) + · · · u0 = u(0)
0 + u(1)

0 + · · · , (68)

where µ(0) is zeroth order in �, µ(1) is first order in �, etc. Denoting g,eµ, � ,  , and � by the generic
symbol Q , and plugging the expansions from Eq. (68) into the bare expansion for Q (m) = Q (m)(µ, u0),
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d

f

e

g

a b c

Fig. 40. Second order skeleton expansion for�B(k), which vanisheswhen J = 0. These diagrams can be obtained from those for
 (k) in Fig. 38 by adding an interaction line to the terminal point of those diagrams. However, this interaction line contributes
only a factor of J , and not a factor of ✏. All diagrams but the one in panel (g) are standard Feynman diagrams. The diagram in
panel (a) contributes to � (1) , and the diagrams in panels (b) through (g) contribute to � (2) . We conserve momentum at each
interaction vertex as indicated in Figs. 35 and 36.

the latter is rearranged with the various orders being mixed due to the expansion of the chemical
potentials. Then, we can solve for the various quantities µ(0), µ(1), etc. such that in the rearranged
series for � (m) = � (m)(n) and g(m) = g(m)(n),

� (m) = �m,0
n
2
;

X

k

g(m)(k) = �m,0
n
2
. (69)

Then, substituting the expression for � (m) back into Eq. (63), we see that only G(0)(k) and G(1)(k)
contribute to the high-frequency limit of the Green’s function, and that limi!k!1 G(k) = 1���

i!k
=

1�� n
2

i!k
.

In the skeleton expansion, the situation is different. In this case, after we set � = 1, the diagrams
from all orders in the skeleton expansion aremixed together on equal footing to generate one integral
equation which together with the sum rules in Eq. (62) determines g, µ, and u0. The other objects are
then obtained from these. In this case, if the skeleton expansions for � ,  (k), and �(k) have been
carried out to m � 1st order before being plugged into Eq. (63), then the sum rule Eq. (62) implies
that (after setting � = 1)

Pm
l=0 �

(l) = n
2 . However, from Eq. (63), the high frequency limit is given by

limi!k!1 G(k) = 1�Pm�1
l=0 � (l)

i!k
. Therefore, the error in the high frequency limit is equal to � (m), and

we have that

lim
i!k!1

G(k) = 1 � n
2 + � (m)

i!k
. (70)

This error vanishes asm ! 1.

7.3. Analysis of the � expansion: Feynman type diagrams and non-Feynman diagrams.

The � series for G differs from the Feynman series for G in two fundamental ways. The first is the
presence of the term���+� (k) in the numerator ofG(k). In the Feynman series, this term is absent.
To discuss the second one, let us identify �� with the Hartree term in the Feynman diagrams, and ��
with all self-energy diagrams other than the Hartree term. forms a subset of� (except for amissing
interaction linewhich is not important for the present discussion), and hence all considerationswhich
apply to � will apply equally well to  . Hence, the second important difference is that there are
diagramswhich contribute to�� which do not contribute theHartree term of the Feynman series, and
there are diagrams that contribute to �� which do not contribute to the other self-energy diagrams
of the Feynman series.
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From Fig. 37, we can see that the first order �� diagram is exactly the Hartree term of the Feynman
series, while the others are all diagrams which do not contribute to the Hartree term of the Feynman
series. However, from Figs. 39 and 40, we can see that the only diagram in the 3rd order skeleton
expansion for �� which is not a Feynman diagram, is diagram (g) in Fig. 40 (Feynman diagrams are
the sameorder in� as they are in the interaction,while non-Feynmandiagrams are not). Therefore, the
deviation of �� and � from the Feynman series grows rather slowly as compared with the growth
of the series itself. Moreover, if we consider the fact that the infinite series for � must sum to n

2 ,
we see that to ‘‘leading order’’, the only difference between the � series and the Feynman series is
the presence of the term ��� + � (k) in the numerator of G(k). This leads us to the point of view
taken in the phenomenological ECFL [9,26,17,14], in which � ! n

2 , and the self-energies  (k) and
�(k) are given simple Fermi-liquid forms. Then, the main correction to Fermi-liquid behavior is not
seen as coming from the self-energies themselves, but from the interplay between the numerator and
denominator of the single-particle Green’s function.

8. Connection with Zaitsev–Izyumov formalism

The Zaitsev–Izyumov formalism [8,7] is a technique for doing an expansion in t and J around the
atomic limit of the t–J model (given by t ! 0 and J ! 0 in Eq. (1)). This can also be viewed as a high-
temperature expansion since each factor of t and J must necessarily appear with a factor of � . The
diagrams of this series give rise to the same two self-energy structure for the single-particle Green’s
function as found in ECFL. In particular, Eq. (3.6) of Ref. [8] reads

G� = hF�0i +��

(G0
� )

�1 �⌃�

. (71)

We can make the identifications

hF�0i ! 1 � � ; �� !  (k); (G0
� )

�1 ! g�1(0); ⌃� ! �✏k� + �(k). (72)

As is the case in the � series, the fundamental object in the Zaitsev–Izyumov high-temperature series
is the auxiliary Green’s function g.

The main difference between the two series is the dimensionless expansion parameter. In the case
of ECFL, it is the continuity parameter �. In the case of the high-temperature series, it is �t and �J .
To see this more explicitly, consider the simplest diagram in both series, which is the zeroth order
diagram for � . In ECFL, this is the diagram in Fig. 37(a). In Ref. [8], it is represented by a dot. The
relationship between the two is shown in Fig. 41. In this figure, the dashed line indicates an atomic
limit auxiliary Green’s function gt!0,J!0(i!k) = 1

i!k+µ
. The big dot indicates the atomic limit value of

� , i.e. �t!0,J!0 = ⇢
2 , where ⇢ = 2e�µ

1+2e�µ is the atomic limit density. The wiggly line indicates a hoping
✏k. Finally, the solid line indicates the bare auxiliary Green’s function g(0)(k) = 1

i!k+µ�✏k . In panel (a),
the zeroth order � from the high-temperature series is expanded as an infinite series in �. Here, each
loop corresponds to

P

i!k
gt!0,J!0(i!k) =

⇢
2

1� ⇢
2
, and there is a minus sign between the successive

terms of the series. Summing the geometric series, we find that
⇢
2

1� ⇢
2

· 1

1+
⇢
2

1� ⇢
2

= ⇢
2 . In panel (b), the

zeroth order � from the � series is expanded as an infinite series in the hopping ✏k. This gives the
geometric series

P

k g
(0)(k) = P

k
P1

n=0
✏nk

(i!k+µ)n+1 . We see that to get from the high-temperature
series to the � series, one would have to break up all atomic limit objects into an infinite series in
terms of �, and replace every atomic limit auxiliary Green’s function with a bare propagating one.

We can summarize the fundamental difference between the two approaches as follows. In the case
of zero magnetic field, the high-temperature series is an expansion around the atomic limit, i.e. an
exponentially degenerate manifold of states, without giving preference to any one of them. In doing
so, it is difficult to recover the adiabatic continuity aspect of physics relating to the Fermi-surface
and the Luttinger–Ward volume theorem [19]. In contrast, ECFL builds the Fermi-surface into the �
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a b

Fig. 41. In panel (a), the zeroth order � diagram from the high-temperature series (the big dot) is expanded as an infinite series
in �. The dashed lines indicate auxiliary Green’s functions in the atomic limit gt!0,J!0(i!k). In panel (b), the zeroth order �
diagram from the � series is expanded as an infinite series in the hopping. The solid line indicates a bare propagating auxiliary
Green’s function g(0)(k), while the wavy line indicates the hopping ✏k .

expansion at zeroth order, by expanding around the free Fermi gas and by maintaining continuity
in �. Finally, by enforcing that the number of auxiliary fermions equals the number of physical ones
through the second chemical potential u0, ECFL is able to satisfy the Luttinger–Ward volume theorem.

9. Conclusion

In conclusion, starting with the � expansion as defined through iteration of the Schwinger EOM
around the free Fermi gas [9,10], we derived a set of diagrammatic rules to calculate the nth order
contribution to the physical Green’s function G in the t–J model. The resulting diagrams suggested
the need for two self-energies, which we denoted by ⌃a and ⌃b. Using the Schwinger equations of
motion defining the ECFL objects, g, eµ, � , � , and  , we derived diagrammatic rules for calculating
these objects and found that they could be related simply to ⌃⇤

a and ⌃⇤
b , the irreducible parts of ⌃a

and⌃b. We also discovered diagrammatically that diagrams are simply a subset of the� diagrams,
with an interaction line missing. Denoting the remainder of the � diagrams by the symbol � , this
implied the expression �(k) = ✏k (k) + �(k). We had already found this to be the case in the limit
of infinite spatial dimensions with �(k) ! �(i!k) and  (k) !  (i!k) in Ref. [23], and here we
generalized it to finite dimensions. We also derived the Schwinger EOM for the object � . We derived
diagrammatic rules for the three point vertices⇤ and U, defined as the functional derivatives of g�1

andeµ respectively, with respect to the source. We derived a generalized Nozières relation for these
vertices, which differs from the standard one for the Feynman diagrams.We then introduced skeleton
diagrams into our series, thereby allowing us to make the connection with the iterative expansion
of the Schwinger equations of motion (as done in Refs. [9] and [10]), which deals exclusively with
skeleton diagrams.

We thenderived the third order skeleton expansion for g andeµ. Previously, this had beendone only
up to second order. We then discussed the error in the high-frequency limit incurred in the skeleton
expansion carried out to any order in �. We also discussed the ‘‘deviation’’ of the � series from the
Feynman series, thereby justifying on a qualitative level, the phenomenological ECFL [9,26], which has
already been successful in explaining lines shapes found both from ARPES experiments [17], and from
DMFT calculations [14]. Finally, we discussed the connection between ECFL and the Zaitsev–Izyumov
high-temperature series. We found that while both formalisms dealt with the projection of double
occupancy by introducing two self-energies, they had fundamentally different approaches to dealing
with the problem of the Fermi-surface. While the high-temperature series is an expansion around a
completely degeneratemanifold of states, ECFLmakes an adiabatic connectionwith the Fermi-surface
and preserves the Luttinger–Ward volume theorem.

Our main motivation in deriving these diagrammatic rules is that they will allow the � expansion
to be evaluated to high orders using powerful numerical techniques such as diagrammatic Monte
Carlo, and also that the intuition gained from the diagrams themselves could facilitate infinite re-
summations guided by some physical principles.
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We present the results for the low-energy properties of the infinite-dimensional t-J model with J = 0, using
O(λ2) equations of the extremely correlated Fermi liquid formalism. The parameter λ ∈ [0,1] is analogous to
the inverse spin parameter 1/(2S) in quantum magnets. The present analytical scheme allows us to approach
the physically most interesting regime near the Mott insulating state n ! 1. It overcomes the limitation to
low densities n ! 0.7 of earlier calculations, by employing a variant of the skeleton graph expansion, and a
high-frequency cutoff that is essential for maintaining the known high-T entropy. The resulting quasiparticle
weight Z, the low ω,T self-energy, and the resistivity are reported. These are quite close at all densities to the
exact numerical results of the U = ∞ Hubbard model, obtained using the dynamical mean field theory. The
present calculation offers the advantage of generalizing to finite T rather easily, and allows the visualization of
the loss of coherence of Fermi liquid quasiparticles by raising T . The present scheme is generalizable to finite
dimensions and a nonvanishing J .

DOI: 10.1103/PhysRevB.94.045138

I. INTRODUCTION

The fundamental importance of the t-J model for under-
standing the physics of correlated matter, including high-Tc

superconductors, has been recognized for many years [1]. The
t-J model is a prototype of extreme correlations, incorporating
the physics of (Gutzwiller) projection to the subspace of
single occupancy. The added superexchange J provides the
mechanism for quantum antiferromagnetism at half-filling,
and upon hole doping, for superconductivity via singlet
pairing [1]. This viewpoint has attracted much attention in
the community. It has led to many approximate methods of
calculation being applied to the t-J model, in order to calculate
experimentally measured variables. Despite intense effort in
recent years, schemes for controlled calculations are rare since
the model has well-known fundamental complexities that need
to be overcome.

Motivated by this challenge, we have recently formulated
the extremely correlated Fermi liquid (ECFL) theory [2,3] for
tackling the t-J and related U → ∞ type models. The ECFL
theory deals with the t-J model by viewing it as a noncanonical
Fermi problem, and proceeds via a nonlinear representation of
Gutzwiller projected fermions in terms of canonical fermions.
It is pedagogically useful to draw a parallel [3] to the Dyson-
Maleev representation of spins [4] used in quantum magnets.
In this representation [4], the spins are hard core bosons, and
are nonlinearly expressed in terms of the canonical bosons,
namely, the spin waves. The ECFL methodology developed to
date consists of successive approximations in the expansion
parameter λ ∈ [0,1], playing a role analogous to the inverse
spin parameter 1/(2S) in quantum magnetism. This analogy
is developed in [3], where parallels between the ECFL calcu-
lations and earlier calculations of the partition function and
Green’s functions of the spin problem are drawn. It is useful
to note that the classical limit for spins 1/S → 0 corresponds

to the limit of free-fermion limit λ → 0. Continuity in λ leads
to a protection of the Fermi surface volume for the interacting
theory, i.e., the Luttinger-Ward volume theorem is obeyed.
Low-order expansions can be performed analytically for the
most part, and therefore have all the usual advantages of
analytic approaches, such as explicit formulas for variables
of interest and also flexibility for different situations. Several
recent applications of the ECFL theory, mentioned below,
show promise in terms of reproducing the salient features of
exact numerical solutions of strong coupling models, wherever
available [5,6]. The theory has also had success in reconciling
extensive data on angle-resolved photoemission (ARPES) line
shapes [7], including subtle features such as the low-energy
kinks, and has made testable predictions on the asymmetry of
line shapes [8].

In order to understand better the nature as well as limitations
of a low-order expansion in λ, we have tested the solution
against two important strongly correlated problems where the
numerical renormalization group and related ideas provide
exact numerical results. In [5], the asymmetric Anderson impu-
rity problem, solved by Wilsonian renormalization numerical
group methods [9–12] was used as one of the benchmarking
models. Second, in [6], the d → ∞ Hubbard model at large
U , solved numerically by the dynamical mean field theory
(DMFT) method [13–39], was used as the benchmarking
model. These benchmarking studies show that the ECFL ap-
proach is overall consistent with the exact solutions, with some
caveats. There are indeed differences in detailed structures at
higher energies [40]. However, the raw initial results seem both
useful and reliable for obtaining the low-energy spectrum, and
for a broad understanding of the occupied side of the spectral
functions. We further found that the calculations are very close
to the exact solutions, provided we scale the frequencies by the
respective quasiparticle weights Z of the two theories.
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FIG. 1. ρdc on absolute scale vs T in Kelvin for particle density
n = 0.85. We have used the estimates D = 12 000 K and ρ0 =
258 µ$ cm. The latter is obtained by using [57] ρ0 ≈ ha0d

e2 , where we
estimate a0d ≈ 10−8 cm. The Fermi liquid behavior with quadratic
resistivity in the blue dotted line breaks down above TFL ≈ 30 K, and
is followed by a regime of linear resistivity.

The version of the ECFL presented in [6] and the closely
related [5] is therefore promising, but has the limitation of
being confined to low density n ! 0.7. In the most interesting
density range n ! 1, it falls short of being a “standalone
theory” since the magnitude of the calculated Z is too large.
One requires rescaling frequencies to compensate for the
incorrect magnitude of Z, and thereby improve the agreement.
It is therefore important to find ways to extend this analytical
approach to cover the physically most interesting density
regime 0.7 " n " 1. A diagnostic objective of this paper is
to identify the cause for the inaccurate Z in the earlier version,
and to explore ways to overcome it. We have found it possible
to do both. This paper presents an alternative scheme that can
be pushed to high-particle densities as well. We show here that
the resulting scheme gives satisfactory results for most of the
interesting low ω,T variables of the model.

Amongst the several variables of interest, the transport
objects are the most difficult ones to compute reliably. The
difficulty lies in their great sensitivity to the lowest excitation
energies, and in the paucity of reliable tools to capture these.
The limit of large dimensionality is helpful here since it has the
great advantage of killing the vertex corrections [41]. Thus, a
knowledge of the one-electron Green’s function can give us
the exact resistivity of a metal, arising from inelastic mutual
collisions of electrons. Despite the stated simplification, this
calculation remains technically challenging. In important
recent work, this calculation has been performed in [42,43]
for the large-U Hubbard model in infinite dimensions. The
authors have produced exact resistivity results that are so rare in
condensed matter systems. We can use them to benchmark our
results for the resistivity at different densities and temperature.
We report the results of this comparison in this paper. Figure 1
shows one of the main results of the calculation presented here,
the details leading to it are described below.

In Sec. II, we summarize the second-order equations and
introduce the various Green’s functions and self-energies
needed. In Sec. III, we identify the conditions necessary for
getting a satisfactory Z near half-filling. In Sec. IV, after
summarizing the self-consistency loop, we give a prescription
for modifying the earlier equations and give the new set. This
requires using a slightly different skeleton graph expansion,
where certain objects are evaluated exactly using the number
sum rule. The ECFL theory has some intrinsic freedom in

choosing the details of the skeleton expansion, more so than
in the standard Feynman graph based canonical models. That
freedom can be usefully employed here. We find that it is also
obligatory to introduce a high-energy cutoff, in order to recover
the known high-T entropy of the model. While the precise form
of the cutoff is not uniquely given by theory, we found that
several reasonable functional forms gave comparable results
at low energies and low T , provided that the parameters were
chosen to yield the high-T entropy. This cutoff also eliminates
weak tails in the spectral functions that otherwise extend to
large negative (i.e., occupied) energies.

In Sec. V, we present results for the T and n variation
of the chemical potential and the quasiparticle weight Z. We
also present the ω, T , and n variation of the self-energy and
spectral functions, where the quasiparticles, the asymmetry
of the spectral functions, and the thermal destruction of the
quasiparticles are highlighted. In Sec. VI, we present results for
the resistivity at low and intermediate T for various densities.
In Sec. VII, we provide a summary and discuss the prospects
for further work.

II. SUMMARY OF SECOND-ORDER ECFL THEORY

Let us begin by recounting the exact formal expression for
the Green’s function of the t-J model. In the ECFL theory,
this object is given exactly as

G(k,iωn) = g(k,iωn) × µ̃(k,iωn), (1)

a product of the auxiliary Green’s function g and the “ca-
parison” function [44] given in terms of a second self-energy
%(k,iωn) and the particle density n as µ̃(k,iωn) = {1 − n/2 +
%(k,iωn)}. The auxiliary Green’s function g(k,iωn) given by

g(k,iωn) = 1
iωn + µ − {1 − n/2} εk − '(k,iωn)

, (2)

where µ is the chemical potential and εk the band energy. In
the infinite-dimensional limit, it is demonstrated in [45] that
an exact simplification occurs with these equations, whereby
the momentum dependence is given by

%(k,iωn) = %(iωn), (3)

'(k,iωn) = χ (iωn) + εk%(iωn), (4)

where both % and χ are functions of only the fermionic Mat-
subara frequency ωn = (2n + 1)πβ, but not the momentum
k. These expressions can be used in Eq. (1) and upon using
the analytic continuation iωn → ω + i0+, we may express the
Green’s function in the standard Dyson representation

G(k,ω + i0+) = 1
ω + i0+ + µ − εk − +(ω + i0+)

, (5)

where the Dyson self-energy is now manifestly momentum
independent, and given by

+(ω + i0+) = µ + ω + χ (ω + i0+) − µ − ω

1 − n
2 + %(ω + i0+)

. (6)

This result demonstrates the momentum independence of the
Dyson self-energy of the t-J model in infinite dimensions. It
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is consistent with the analogous result for the Hubbard model
at any U [13–15].

Within the ECFL theory we rely upon a systematic λ
expansion to compute the two self-energies % and χ . This
λ expansion is described in detail in [2,46,47], in brief the
parameter λ lives in the range ∈ {0,1}, and plays the role of
the quantum parameter 1/(2S) in the large spin expansions
familiar in the theory of magnetism. A skeleton diagram
method can be devised for expanding the self-energies % and
χ in a formal power series in λ, with terms that are functionals
of g and the band energies εk . This expansion uses the full
g (rather than noninteracting propagators g0) as fundamental
units, or “atoms,” for the expansion. The procedure is in close
analogy with the skeleton diagram methods used in many-body
theory. Having the self-energies to a given order in λ, one
now reconstructs the Green’s functions self-consistently, the
scheme is to second order in the present case.

The explicit equations to second order are found to be

G(k,iωn) = g(k,iωn){aG + λ%(k,iωn)}, (7)

g−1(k,iωn) = iωn + µ′ − λ χ (k,iωn)

− {aG + λ%(k,iωn)}
(

εk − u0

2

)
, (8)

with

aG = 1 − λG(j,j−) = 1 − λ
∑

k

G(k,iωn) eiωn0+
, (9)

where µ′ = µ − u0
2 . In Eq. (9), the middle (last) term is

in space-time (wave-vector-frequency) variables, denoted re-
spectively in the compact notation j ≡ (R⃗j ,τj ),k ≡ (k⃗,iωn),
and denoting j− ≡ (R⃗j ,τj + i 0−). The two self-energy func-
tions % and χ are expanded formally in λ as % = %[0] +
λ%[1] + · · · and χ = χ[0] + λχ[1] + . . . . A systematic expan-
sion in λ is available to third order in [46], from the low-order
results [48] we find %[0] = 0,χ[0] = −

∑
p g(p)(εp − u0

2 ) and

%[1](k) = −
∑

pq

(εp + εq − u0)g(p)g(q)g(p + q − k),

(10)

χ[1](k) = −
∑

pq

(
εp+q−k − u0

2

)
(εp + εq − u0)

× g(p)g(q)g(p + q − k). (11)

In view of the explicit factors of λ in Eqs. (7) and (8), this leads
to an O(λ2) approximation for G; the recipe further requires
that the parameter λ is set to unity before computing. Here,
u0 denotes the second chemical potential. It enters the theory
as a Hubbard-type term with a self-consistently determined
coefficient u0, as described in [47]. This chemical potential
is essential in order to satisfy the shift invariance of the t-J
model order by order in λ, namely, tij → tij + c δij with an
arbitrary constant c. For instance, we see in Eq. (11) that a shift
of the energies εk → c + εk is rendered immaterial due to the
structure of the terms, the constant c can be absorbed into u0.
The two chemical potentials µ and u0 are determined through
the pair of sum rules on the auxiliary g and the standard number

sum rule on G:
∑

k

g(k) eiωn0+ = n

2
=

∑

k

G(k) eiωn0+
. (12)

In dealing with Eq. (9), the composite nature of the G on
view in Eq. (1) offers a choice for implementing the skeleton
expansion. Such a choice is absent in the more standard many-
body problems. On the one hand, we could use the sum rule
Eq. (12) for G giving

a
(I )
G → 1 − λ

n

2
, (13)

reducing to the exact answer aexact
G = 1 − n

2 as λ → 1.
Alternately, we could expand the G in powers of λ, a

procedure we followed in [6,49]. We expanded G out to
first order in λ from Eq. (7) since that already gives the
required O(λ2) correction. Thus, we set G = g(1 − λn/2) +
O(λ2), where the sum rule Eq. (12) was used for evaluating∑

k,ωn
g(k). As a result, we obtain the approximate result

a
(II )
G = 1 − λ

n

2
+ λ2 n2

4
+ O(λ3). (14)

Setting λ → 1, we thus get two alternate approximate skeleton
versions of Eq. (7):

G(I )(k,iωn) = g(I )(k,iωn){1 − n/2 + %(k,iωn)}, (15)

G(II )(k,iωn) = g(II )(k,iωn)

× {1 − n/2 + n2/4 + %(k,iωn)}, (16)

where both expressions involve the same approximate % given
in Eq. (10), and the auxiliary g(...) is also adjusted to have the
appropriate expression for aG in Eq. (8). This dichotomous
situation arises due to the composite nature of the physical
G, whereas in standard many-body problems the skeleton
expansion is unique.

In [6] as well as [49] we employed Eq. (16) to compute
the electron self-energy and spectral functions. It was argued
that this expression should be valid for low-particle density
n ! 0.7. In [6], the results were compared with the numerically
exact DMFT results for the same model. It was found that
the self-energy is indeed close to the exact answer in the
low-density limit. At the other end of high densities n ! 1,
it was found that the self-energy is also very close to the exact
result, provided we scale the frequencies by the quasiparticle
weight Z of that theory. This remarkable observation shows
that in ECFL theory, the Dyson self-energy (6) found by
compounding two simpler expressions χ and ψ , has the
correct functional form. Moreover, the unusual and important
feature of particle-hole asymmetry, i.e., the presence of a
strong ω3 term in the Im +, comes about “naturally” within
the scheme. This feature has been argued to be generic for
strongly correlated systems, as argued in [8] and in the closely
related [5] for the Anderson impurity model. The need for
rescaling the frequency arises because the computed Z(II )

using the approximate version (16) overestimates this variable
as n increases beyond the estimated limit of n ∼ 0.7. We see
in [6] (Fig. 16) that Z(II ) does not even vanish as n → 1, as
one expects in a Mott insulator.

045138-3

(224)



B. SRIRAM SHASTRY AND EDWARD PEREPELITSKY PHYSICAL REVIEW B 94, 045138 (2016)

Within the spirit of Eq. (16) one might expect that further
approximations involving higher-order terms in λ will enhance
the range of validity in density. Such a program is essentially
numerically intensive since beyond second order, one needs
to use other techniques, such as Monte Carlo generation and
evaluation of diagrams [50–52]. We are currently performing
these calculations, and have made formal progress towards this
goal in [46], by enumerating the nontrivial diagrammatic rules
in this model. The diagrams that we encounter include and
go beyond Feynman diagrams, as necessitated by the lack of
Wick’s theorem in the noncanonical theory.

On the other hand, the analytical ease of the second-order
theory offers considerable advantage relative to other contem-
porary methods. For low orders in λ most calculations can be
done by hand, and the remaining computations are modest in
scope. Analytical methods also have a much greater flexibility:
they can be applied in lower dimensions as well. Further, the
agreement with the other methods (DMFT [13–39], numerical
renormalization group [5]) and also experiments on ARPES
for the electron line shapes [7] is very good. In view of
these positive factors, it appears to be useful to examine
if the problem with the quasiparticle weight Z(II ) at n ! 1
can be understood and corrected, making other necessary
approximations along the way. This is indeed the purpose
of this paper; we will see below that the approximation (15)
provides us with the correct direction for such an approach.

III. SUM RULES NECESSARY FOR THE VANISHING
OF Z NEAR THE MOTT INSULATING STATE

Let us first understand the factors that make Z vanish as
we approach the Mott insulating limit. For this purpose, it
is useful to recall the local density of states of the Hubbard
model for the case of a sufficiently large U (see [53] for a useful
discussion). Here, we expect the formation and clear separation
of characteristic lower and upper Hubbard bands, as indicated
in the schematic Fig. 2. Specializing to T = 0 for simplicity,

ωµ

(a) (b) (c)

FIG. 2. A schematic depiction of the local spectral density
of states ρGLocal(ω) [popularly called ALocal(ω)] for the large-U
Hubbard model, where the correlation split Hubbard bands are clearly
separated. It shows three regions: (a) occupied electronic states, (b)
unoccupied lower Hubbard band states, and (c) unoccupied upper
Hubbard band states, with their respective weights as in Eq. (18). The
t-J model sends the region (c) off to infinity with weights given in
Eq. (19). The area in region (b) is exactly (1 − n), and preserving this
in an approximation is key to obtaining the correct low-energy scale.

we note that for the Hubbard model with n < 1, the spectral
weight for the local ρG(ω) of the physical electron satisfies the
unitary sum rule

∫
dω ρG(ω) = 1. We use a notation where

a sum over k⃗ is implied for unlabeled functions (without the
k⃗ argument), e.g., ρG(ω) ≡

∑
k ρG(k⃗,ω). The local Green’s

function itself is given by

G(ω + i0+) =
∫

dν
ρG(ν)

ω − ν + i0+ , (17)

and so the ω → ∞ asymptotic behavior is determined by this
sum rule as G(ω) →

∫
dνρG(ν)

ω
= 1

ω
. This can be partitioned

into three sum rules as depicted in Fig. 2:
∫ 0

−∞
dω ρG(ω) = n/2,

∫ $∗

0
dω ρG(ω) = 1 − n,

∫ ∞

$∗

dω ρG(ω) = n/2, (18)

where $∗ is an energy scale denoting the upper end of the
lower Hubbard band and hence is ∼O(W ); it is well defined
provided U ≫ W . As stated, these three integrals add up to 1,
ensuring that a full electron is captured. On the other hand, the
t-J model spectral function ρG(ω) satisfies

∫ 0

−∞
dω ρG(ω) = n/2,

∫ ∞

0
dω ρG(ω) = 1 − n, (19)

where the upper Hubbard band (and $∗) is pushed off to
+∞, and thus the occupied and unoccupied portions add up to
1 − n/2. This can be visualized clearly with the help of Fig. 2.
This argument also determines the ω → ∞ asymptotic form
limω→∞ G(ω) → 1−n/2

ω
, and gives us a relation of importance

to this study:
(

lim
ω→∞

G(ω) → 1 − n/2
ω

)
↔

(∫ ∞

0
dω ρG(ω) = 1 − n

)
.

(20)

To see its relevance, we note that as n → 1, the chemical
potential increases towards the top of the lower Hubbard band.
This implies that the unoccupied portion of the lower Hubbard
band shrinks to zero. Since roughly half of the quasiparticle’s
weight [54] resides in this shrinking energy domain of O(1 −
n) times the bandwidth, the quasiparticle residue Z must vanish
at least as fast as O(1 − n).

We may now refer back to Eq. (16); since from the defini-
tions (10) and (11) we can see that limω→∞ (%(ω),χ (ω)) → 0
and also limω→∞ g(ω) → 1

ω
, we combine these to obtain

lim
ω→∞

G(II )(ω) → 1 − n/2 + n2/4
ω

,

whereby the unoccupied region
∫ ∞

0 dω ρG(II ) (ω) = 1 − n +
n2/4, in conflict with the condition (20) for a vanishing Z,
as n → 1.

Having thus identified this weakness of the approximation,
we also see by the same argument that Eq. (15) would
automatically give us a vanishing Z, as n → 1; the factors
are now appropriate for the condition (20) to hold.
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IV. CUTOFF SECOND-ORDER ECFL THEORY

Motivated by the above discussion, we now implement a
skeleton graph expansion, where the basic atoms, or units, are
still g, but in static terms involving G, such as in Eq. (9), we
use the exact particle-number sum rule (12). This leads us to
study the equations in Eq. (15).

A. Full set of self-consistent equations

For convenience and future reference, we summarize the
full set of equations to be solved self-consistently. These are
similar to the ones used in [6,49] with all the necessary changes
for the present case made. The band density of states is taken
as the semicircular expression D(ϵ) = 2/(πD)

√
1 − (ϵ/D)2,

and thus 2D is the bare bandwidth. The complex frequency
is denoted as z = ω + i0+, the local Green’s function and its
energy moments are defined by

g−1(ϵ,z) = z + µ′ − (ϵ − u0/2)
(

1 − n

2
+ %[1](z)

)

−χ[1](z), (21)

gLoc,m(z) =
∫

dϵ D(ϵ)g(ϵ,z)ϵm =
∫

dν
ρgL,m(ν)
z − ν

. (22)

The chemical potential µ′ absorbs all constants such as χ[0],
leading to

µ = µ′ + u0

2

(
1 + n

2

)
−

∫
dω f (ω)ρgL,1(ω), (23)

where f (ω) = 1/(1 + exp βω) is the Fermi function and we
will need below f̄ = 1 − f . Equation (22) serves to introduce
the spectral functions ρgL,m(ν); these are most often computed
from the reversed relation

ρgL,m(ω) = − 1
π

ImgLoc,m(ω + i0+). (24)

The physical Green’s function is found from G(ϵ,z) = [1 −
n/2 + %(z)] × g(ϵ,z), and the Dyson self-energy from +(z) =
z + µ − ε − G−1(ϵ,z). We define its local version GLoc(ω) and
its density through a band integration

GLoc,m(z) =
∫

dϵ D(ϵ)ϵm G(ϵ,z),

ρGL,m(ω) = − 1
π

ImGLoc,m(ω + i0+). (25)

The physical momentum-integrated spectral function ρGL,0 is
an object of central interest. It is also needed for the number
sum rule below Eq. (30). The computation of g requires the
two complex self-energies %,χ . These can in turn be found
from expressions involving the fundamental convolution:

ρ
(I)
abc(u) =

∫

u1,u2,u3

δ(u + u3 − u1 − u2){f (u1)f (u2)f̄ (u3)

+ f̄ (u1)f̄ (u2)f (u3)}ρgL,a(u1)ρgL,b(u2)ρgL,c(u3),

(26)

where the right-hand side is conveniently computed from
the local densities ρgL,a , by using fast Fourier transforms.

This density is required for (a,b,c) = 0,1, and determines the
complex function

Iabc(z) = P
∫

dν
ρ

(I)
abc(ν)
z − ν

. (27)

From this object, the two self-energies can be found as the
combinations

%[1](z) = 2I010(z) − u0 I000(z),

χ[1](z) = 2I011(z) − u0[I010(z) + I001(z)] +
u2

0

2
I000(z).

(28)

In summary, we can compute g in terms of χ ,% from Eq. (21).
Having done so, we compute χ ,% in terms of the g from
Eq. (28), thus defining the second part of the loop. The two
chemical potentials µ and u0 are found from Eq. (23) and the
two particle-number sum rules:

∫
dωf (ω) ρgL,0(ω) = n

2
, (29)

∫
dωf (ω) ρGL,0(ω) = n

2
, (30)

thereby all variables can be self-consistently calculated
through a simple iterative scheme. The only inputs are the
density of particles n and the temperature T .

B. Considerations of high density n → 1 at low T ,
and the entropy at high T

Before discussing the results, we note an important
constraint that arises when we study the theory at high
temperatures. We need to make sure that the number of states
after the Gutzwiller projection has the correct value; this
requires that the chemical potential has the correct asymptotic
value at high T . When T ≫ t,J the chemical potential grows
linearly with T . From simple considerations of the atomic limit
t = 0 = J , one can calculate the partition function exactly,
from this one finds

µ ∼ kBT ln{n/[2(1 − n)]}, (31)

where Ns and n = N/Ns are the number of sites and the
density, respectively. This linear growth with T with the correct
coefficient also ensures that the entropy near the Mott limit
is correctly reproduced at high T . Upon using the Maxwell
relation (∂S/∂N )/T = −(∂µ/∂T )N , and the initial condition
S(n → 0) = 0, we find

S ∼ −kBNs{n ln n/2 + (1 − n) ln (1 − n)}, (32)

a well-known result. We must therefore also ensure that the
approximation satisfies this condition (31), in order to obtain
the correct entropy at high T .

Upon solving Eqs. (21)–(30) at high densities n # 0.8 as
T → 0, or high T ≫ D with moderated densities n $ 0.7,
we find that in each case the spectral function tends to flatten
out on the occupied side, extending in range to ω ≪ −D
with little weight in the tails. For the high-T case, a second
consequence is that the computed slope dµ/dT begins to
depart from Eq. (31). The flattening is consequence of the

045138-5

(226)



B. SRIRAM SHASTRY AND EDWARD PEREPELITSKY PHYSICAL REVIEW B 94, 045138 (2016)

growth of u0 which also increases linearly with T , becoming
larger than the bandwidth 2D, as seen in Fig. 5. This growth
enhances the coefficients in the self-energies Eq. (28) and
pushes one into a strong u0 regime, unless we impose some
cutoff. In the T → 0 limit, the exact numerical results for
spectral functions from DMFT [6] do confirm the expectation
of a compact support for the spectral function, and hence the
observed growth is artificial.

C. Cutoff scheme with a Tukey window

We saw above that two physically distinct regimes involving
different types of physics, namely, the high-T regime at any
density and the high-density regime at low T , share the
common problem of growing tails of the spectral function.

In order to control this unphysical growth in both cases, we
need to impose an appropriate high-energy cutoff. Higher-
order terms in the λ expansion are expected to eliminate
this growth in a systematic way, without needing an extra
prescription. A detailed analysis of the cutoff issue within
the λ expansion is underway currently, and we expect to
present the details in a forthcoming paper. However, at the
the level of the lowest-order approximations, it seems that
we do need to impose an extra cutoff, thereby introducing
one more approximation. A rough estimate of the cutoff can
be made by observing that the self-energy calculated by using
the bare g0 (setting χ → 0 and % → 0) in Eq. (26) would
give the spectral weights a width of maximum range ±3D;
by setting u1 = D, u2 = D, u3 = −D, we satisfy one of the
Fermi combinations with u ∼ 3D. By flipping signs we can
reach u = −3D, thus, a range of frequencies −3D " ω " 3D
is feasible. The region near |ω| ∼ 3D would then be in the tails
of the function. In a skeleton expansion, on the other hand, with
increasing interaction strength u0, we have the possibility of a
runaway growth since under first iteration, the computed ρgL

can now extend to ±3D as compared to the range ±D of the
bare density, and so forth. Hence, one plausible strategy would
be to limit the growth of the auxiliary spectral functions to a
range ±c0, with c0 ∼ 2D, with the physical spectral functions
possibly extending somewhat beyond this. Since two very
different regimes, that of high T and high density are involved,
we can test the additional approximations self-consistently,
and thereby avoid unduly biasing the results.

It appears reasonable to choose the high-energy cutoff
by requiring that we obtain the known high-T slope and
therefore the high-T entropy (32) at all densities. While it
might be possible to obtain the exact entropy by adjusting the
cutoffs at each density separately, we content ourselves by
finding a reasonable global fit instead, i.e., one set of density-
independent cutoffs yielding the roughly correct entropy at
relevant densities. The high-T entropy is estimated at T ! 1.
It should be noted that T ∼ 1 is not always in the high-T limit,
especially for the tricky region close to n ∼ 2/3 where we
know that dµ/dT vanishes at high T from Eq. (31), hence,
it is expedient to limit the high-T region to T ! 1. Having
chosen such a cutoff, one can then explore the other physically
interesting domain, and study the spectral functions at low
T in the energy range |ω| ! D. This is a low-energy scale
compared to the cutoffs, but already a very high-energy scale,
in comparison to the physically interesting regimes |ω| ! D

3

" " "
#

FIG. 3. Multiplication through the Tukey window WT (ω)
[Eq. (34)] is used for providing a cutoff in our scheme (33). It is
applied only to the auxiliary local Green’s function ρgL,m(ω), while
the physical spectral functions ρGL(ω) are unconstrained, apart from
an overall window |ω| " 5D used for numerical purposes. In this
work, the upper cutoff used is $(+)

c = 2D, and the lower cutoff
$(−)

c = 1.5D.

or even lower. We find below that the low-T spectra indeed
are better behaved with the cutoff. The low-energy results
presented here are quite insensitive to the details of the choice
for the cutoff, and hence one might be reasonably confident
that the answers are not unduly biased by the choice made.

The method employed for imposing the high-energy cutoff
was arrived at after some experimentation. We multiply the
local spectral function (24) by a Tukey window function used
in data filtering:

ρ̂gL,m(ω) = 1
V ρgL,m(ω)WT (ω), (33)

where the constant V is found from the normalization condition∫
ρ̂gL,0(ω) dω = 1. Here, the smooth Tukey window WT (ω)

is unity over the physically interesting, i.e., feature-rich
frequency domain |ω| " $(−)

c , where it starts falling off
smoothly, and vanishing beyond the high-frequency cutoff
|ω| = $(+)

c . It is defined as a piecewise function (see Fig. 3)

WT (ω) = 1 for $(−)
c $ |ω|

= 1
2

(
1 + sin

{
π/2

$(+)
c + $(−)

c − 2|ω|
$

(+)
c − $

(−)
c

})

for $(+)
c $ |ω| $ $(−)

c

= 0 for |ω| > $(+)
c . (34)

This procedure involves a single rescaling: after computing
the local spectral functions ρgL,m (with m = 0,1) from the
self-energies as in Eq. (24), we multiply with WT and rescale
as in Eq. (33) before sending the result back into the self-energy
calculation in Eq. (28). Note that the prescription (33) involves
the auxiliary local Green’s function gL,m which is the basic
building block in the theory. The cutoff is imposed only on ρg
in Eq. (24), and the other spectral functions are then computed
by the unchanged equations (21)–(30).

We chose the parameters $(+)
c = 2D, and the lower cutoff

$(−)
c = 1.5D after some experimentation. This choice of the

cutoffs is in accord with the discussion above where we
concluded c0 ∼ 2D. With this cutoff and rescaled auxiliary
Green’s function, the physical spectral function ρG is computed
as per the rules without any further assumptions. It typically
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n"increasing

!

FIG. 4. Left: The chemical potential at particle densities n = 0.4,0.5,0.6,0.7,0.75,0.775,0.8,0.825,0.85,0.875 increasing from bottom to
top. We confine ourselves to the limited regime T " 1.2 since higher T requires further adjustment of the cutoffs. Note that within this regime,
the µ(T ) curve turns around at a density around n ∼ 0.7. For lower densities, µ decreases monotonically with increasing T , whereas at higher
densities we have a shallow minimum followed by a regime of rising µ. This change of behavior is expected from Eq. (31), and has important
physical consequence of changing the sign of the Kelvin thermopower for correlated matter [55]. Right: The slope dµ/dT is calculated from
the µ(T ) curves at T = 1, and contrasted with the exact values from Eq. (31). The points are taken from the same set of particle densities n as
the figure on left, increasing from left to right. Since there is yet some curvature in the figures at left when T = 1, our procedure provides only
a rough estimate. We note that these are in fair correspondence, especially at low hole density (see top right quadrant).

does extend to about 4.5D or 5D on the occupied side, but
not beyond this scale. For numerical purposes, we also use an
upper cutoff for the physical spectral function range as ∼5D,
this energy corresponds to $∗ in Fig. 2.

V. RESULTS FOR CHEMICAL POTENTIAL,
QUASIPARTICLE WEIGHT, SELF-ENERGY,

AND SPECTRAL FUNCTIONS

A. Chemical potential and quasiparticle weight Z

With the chosen cutoff, we examine the chemical potential
as a function of density and T in Fig. 4. We observe in the left
panel of Fig. 4 that the chosen cutoff provides a reasonable
description of the µ versus T curves at different densities.
These exhibit an upturn between n = 0.6 and 0.7 in the T
domain that is computationally reliable within this scheme.
The right panel of Fig. 4 shows that the slope dµ/dT is also
in reasonable agreement with the exact answer for this slope,
apart from some error near the difficult regime of n ∼ 2

3 . Here,
we know from Eq. (31) that the slope is zero at high enough T
and this causes problems of convergence.

We examine the various pieces adding up to the chemical
potential in the right panel of Fig. 5. These curves also
show that the Mott-Hubbard physics of the upturn of µ(T )
is enforced by the u0 term, it is thus quite crucial within this
formalism. We also note that calculations without the cutoff
lead to much larger values of u0.

Overall, it seems that the results for µ are quite reasonable
in the hole-rich region n $ 0.75 (i.e., δ " 0.25) with the
global choice made, i.e., without requiring a fine tuning of
the cutoffs with the density. We therefore proceed to use this
for computing the spectral functions, and other physically
interesting variables, also evaluated in the complementary
low-T region.

Turning to the main objective of this work of calculating
the correct energy scale near the Mott limit, we display the
computed Z versus the hole density δ = 1 − n in the left
panel of Fig. 6. It is interesting that the values obtained are
significantly better than those reported in [6], we now find

Z vanishes as δ → 0. The solid line gives the numerically
exactly determined Z from DMFT, which is extremely well
fit by Z ∼ δ1.39. This latter behavior is noteworthy in that it
vanishes faster than linear in δ. The “mean field descriptions”
involving slave auxiliary particles as well as the Brinkman-
Rice theory [56] of the correlated metallic state give a linear
Z ∝ δ. Therefore, this result indicates the need to account for
fluctuations beyond the mean field description. It is interesting
that the present calculation also gives a nonlinear behavior,
with a slightly larger exponent than 1.39. We plan to return
to a closer analytical study of this interesting result, obtained
from the numerics of our solution.

B. Self-energy and spectral functions at low T

We have also studied the quasiparticle decay rate at T ∼ 0,
defined for |ω| " ZD through a Fermi liquid form with the
expected particle-hole asymmetric correction [8]

− Im+(ω) = ω2

$0

(
1 − ω

2

)
, (35)

whereby introducing two energies: $0, which determines the
magnitude of Im+ and 2 the asymmetry scale. In [6] and also
in [5], it was pointed out that $0 varies like Z2 near the Mott
insulating limit, leading to a scaling of the Green’s function
frequency with Z at low energies. In this work, the $0 is
computed by averaging Im+(ω) in the domain |ω| " ZD. In
the bottom right panel of Fig. 7, we show the variation of $0
versus Z2 and in the inset with δ2. Since we have seen nonlinear
corrections in Z as seen in Fig. 6, these two plots seem to
support more closely the scaling of $0 with Z2, rather than
δ2 at the lowest δ. It seems possible to improve the agreement
by choosing a density-dependent cutoff, however, the global
cutoff already achieves fair agreement.

In the top left panel of Fig. 7, we plot −Im+ versus
ω/Z at different densities. As already noted in [6], these
curves fall on top of each other quite well. The curves also
exhibit particle-hole asymmetry as noted before [2,8]. This
is exhibited by decomposing the Im+ into symmetric and
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FIG. 5. The T dependence of the chemical potential µ and its three additive contributions from Eq. (23) at two densities. The physical
chemical potential µ (I, red), the auxiliary part: µ′ (II, blue), the u0 contribution: (1/2 + n/4)u0 (III, purple), and the small part from the integral
−

∫
fρgL,1 (IV, magenta). The observed upturn in µ at high T for n = 0.8, reflecting the physics of Mott holes near half-filling, is predominantly

due to the upturn of the second chemical potential u0. Its growth, in turn, causes the numerical issues requiring the implementation of a cutoff
in this work.

antisymmetric components in the the top right and bottom left
panels. The antisymmetric part can be analyzed to read off the
energy scale 2 in Eq. (35). We find that 2 is proportional to
Z again, but with a weak density-dependent correction:

2(δ) = Z(δ){3.38 − 15.6δ + 27.1δ2}. (36)

The region beyond the straight line is captured on average, by
extending Eq. (35) to

− Im+(ω) = ω2

$0

(
1 − ω

2
√

1 + 2 ω2/Z2

)
. (37)

This expression is potentially useful for phenomenological
extensions of the theory.

In Figs. 8 and 9, we display the raw unscaled spectral
functions and the imaginary part of the self-energy for various
physical parameters. In Fig. 8, the low-T spectra are shown at
different densities. Note that the significant range of ω where
the spectral functions and self-energy vary, shrinks rapidly

FIG. 6. The computed quasiparticle weight Z (dots) versus the
hole density δ = 1 − n, compared with the exact numerical results
from DMFT ([6] solid curve), which fits very well to the formula Z ∼
δ1.39. We see that the present scheme accounts well the suppression
of Z near δ ∼ 0, even reproducing nonlinear vanishing near the Mott
limit seen in [6]. This nonlinear feature goes beyond the predictions
of both slave-boson mean field and Brinkman-Rice theory [56], and
signifies an important correction to the mean field behavior.

with increasing n; this is indirectly a reflection of variation of
the Z with density in Fig. 6 since the scale of variation of + is
set by Z. We also note that the spectral asymmetry in Im+ is
very clearly visible here.

C. Temperature variation of the self-energy
and spectral functions

In Fig. 9, we display the T dependence of the spectral
function and the self-energy. One of the advantages of our
computational scheme is the ease with which T variation can
be computed. We are thus able to obtain easily the crossover
from a coherent (extremely correlated) Fermi liquid regime
at low T to an incoherent nondegenerate correlated state.
The spectral function peaks rapidly broaden and shift as
the temperature is increased. We also note that the Fermi
coherence,signaled by a small magnitude of Im+ at small
ω, is rapidly lost on heating, leading to a flat and structureless
function. A comparison of the curves at n = 0.85 and 0.875
shows that in this range of densities, where the Z is already
very small, the effective Fermi temperature is also diminished
since the same (small) variation of T produces a relatively
large change in the damping.

VI. TEMPERATURE DEPENDENCE OF RESISTIVITY
AND RELATED QUANTITIES

Perhaps the single most important characterization of a
theory is via the resistivity. It is a notoriously hard object to
calculate reliably, and yet one that is most sensitive to the
lowest-energy excitations of the system. Since we have argued
that the present version of ECFL captures the low-energy
excitations of the electron, it is useful to examine its results
for resistivity for the t-J model in infinite dimensions, or
equivalently the U = ∞ Hubbard model. The resistivity has
been calculated numerically from DMFT quite recently in
two papers [42,43], and hence it is of interest to see how
our analytical calculation compares with these exact results.

We start with the Kubo expression for resistivity, with
the vertex correction thrown out, thanks to the simplification
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FIG. 7. Top left: −Im+(ω) versus ω/Z at several densities n = 0.7,0.725,0.75,0.775,0.8,0.825,0.85,0.875,0.9 from bottom to top. We
see that the frequency dependence scales well with Z, with better behavior on the occupied side ω " 0. Top right: The symmetrized function
[−+′′(ω) − +′′(−ω)]/2 exhibits the quadratic behavior at ω ∼ 0 expected from a Fermi liquid. Bottom left: The antisymmetric part is defined
as R = [+′′(ω) − +′′(−ω)]/[+′′(ω) + +′′(−ω)], so that if we assume Eq. (35) then R = −ω/2. We show the computed R multiplied by 2/Z

at the above densities versus ω/Z, with n = 0.9 at the top and n = 0.7 at the bottom for ω " 0. These collapse to a straight line with slope −1
in the range |ω| " Z, provided we allow for an additional mild density dependence of the ratio 2/Z, as in Eq. (36). Bottom right: The energy
scale $0 [Eq. (35)] determining the magnitude of the Im+ at T = 0 is shown versus Z2, and in the inset versus the hole density δ2. Here, $0

is seen to scale better with Z2 rather than with δ2.

arising from d → ∞:

σDC = 2π!e2

V

∑

k

(
vx

k

)2
∫

dω (−∂f/∂ω) ρ2
G(ϵk,ω), (38)

where the band velocity is given as !vx
k = ∂εk/∂kx . We wrap

the velocity into a useful function

'(ϵ) = 1
a0

1
Ns

∑

k

δ(ε − εk)
(
vx

k

)2
/a2

0

= 1
a0

D(ϵ)
〈

(vx
k )2

a2
0

〉

εk=ϵ

, (39)

where a0 is the lattice constant in the hypercubic lattice, and Ns

the number of sites and we use the Bethe lattice semicircular
density of states D(ϵ) = 2

πD

√
1 − ϵ2/D2. Deng et al. [42,57]

calculate that

'(ϵ)
'(0)

= 4(1 − ϵ2/D2) 3/2
√

1 − ϵ2/D2, (40)

where '(0) is absorbed into a constant σ0 = e2!'(0)/D,
which is identified with the Ioffe-Regel-Mott conductivity.
With this choice of the vertex we obtain

σDC = σ02πD

∫∫
dϵ dω (−∂f/∂ω)

(
'(ϵ)
'(0)

)
ρ2

G(ϵ,ω).

(41)

We write the (inverse) Green’s function at real ω as

G−1
± (ϵ,ω) = A(ω) − ϵ ± iB(ω), (42)

where the retarded case corresponds to G+, and

A(ω,T ) = ω + µ − Re +(ω,T ),

B(ω,T ) = πρ+(ω,T ) = −Im +(ω,T ), (43)

and + is the Dyson self-energy. Setting D = 1 and using the
identities ρG = i/(2π )(G− − G+) and G2

± = ∂ϵG±, and further
integrating by parts over ϵ we obtain

σ = σ0

∫
dω (−∂f/∂ω)ξ (ω),

ξ (ω) = 1
2π

∫
dϵ

{
i

B
(G+ − G−)

'(ϵ)
'(0)

+ (G+ + G−)
'′(ϵ)
'(0)

}
.

(44)

Using the explicit form of ' and G±, we reexpress ξ exactly
as

ξ (ω) = 1
π

∫ 1

−1
dϵ

√
1 − ϵ2 1 − 3ϵA + 2ϵ2

B2 + (A − ϵ)2
. (45)

The evaluation of this integral is straightforward, and leads to a
cumbersome result. A simple answer for the leading behavior
when B ≪ 1 can be found, provided (A − ϵ) goes through zero
in the interval of integration. Since we will see that |A| ≪ 1 for
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FIG. 8. The two figures on the left display the physical local spectral function ρGL,0 = − 1
π

ImGLoc,0(ω + i0+) from Eq. (25), and the two
figures on the right show the Dyson self-energy − 1

π
Im+(ω), plotted against the frequency ω/D. The figures are at low T for the six indicated

values of the density, and display a region that is somewhat greater than the one, where it is expected to be reliable |ω| ! ZD. One sees a
correlation between the quasiparticle weight Z (Fig. 6) and the scale of variation of the decay rate. Densities n > 0.875 have larger errors in Z

compared to the exact DMFT results (see Fig. 6), and therefore not shown. However, it is easy to picture them at low ω, using the observation
that scaling ω with Z collapses +′′.

all temperatures and frequencies of interest (ω ∼ 0, T
D

! 0.3),
this will always be the case. We may write ϵ = A + B tan(θ ),
retain the leading terms for small B, and set B → 0 in the
remainder. With this, we obtain the asymptotic approximation

lim
B≪1

ξ (ω) ∼ [1 − A2(ω)]3/2

B(ω)
4[1 − A2(ω)]. (46)

In Fig. 10, we use Eq. (46) to plot ρdc

ρ0
versus T

D
for 0.75 " n "

0.85, where ρ0 = 1
σ0

. These resistivity curves have both the
same shape and the same scale as those found through DMFT
(see Fig. (1a) of Ref. [42]). We find a Fermi liquid regime
[ ρdc

ρ0
∝ ( T

D
)2] for 0 < T < TFL, where TFL = (c D) × Z(T =

0), and c ≈ 0.05. Furthermore, ρdc

ρ0
is a function of T

DZ(T =0)
for T ! 2TFL [Fig. 10(c)]. An important scale emphasized
in DMFT studies [42,43] is the Brinkman-Rice scale (TBR =
Dδ), which is the renormalized bandwidth of the quasiparticles
rather than the quasiparticle weight. Since Z(T = 0) ∝ δα ,
with α > 1, the Fermi liquid scale is contained within the
Brinkman-Rice scale, and is smaller than the latter by some
power of δ. As T is increased above TFL, the Fermi liquid
regime is followed by a linear regime for TFL < T ! 0.01D.
In Fig. 10(a), the Fermi liquid regime is tracked using the
blue dashed parabola, while the linear regime is tracked
using the magenta dashed line. Finally, this linear regime
connects continuously to a second linear regime, existing for
T # 0.07D [displayed in Fig. 10(b)].

We now analyze more closely the low-temperature regime
(T ! 0.01D). For this range of temperatures, the Sommerfeld

expansion can be applied to Eq. (44). To leading order
[−∂f/∂ω = δ(ω)], and using Eq. (46), this gives

ρDC ∼ ρ0
−Im+(0,T )

[1 − {µ − Re+(0,T )}2]3/2
. (47)

The constituent objects −Im+(0,T ) and A(0,T ) are plotted
along with Z(T ) in the relevant temperature range in Fig. 11.
We first examine A(0,T ) = µ − Re+(0,T ), displayed in
Fig. 11(c). For TFL ! T ! 0.01D, it is linear, as tracked by
the dashed blue line. We also notice that A2(0,T ) ≪ 1, and
can therefore be neglected in Eq. (47). Equation (47) then
implies that the resistivity is proportional to [−Im+(0,T )]
in this low-temperature range. Accordingly, in Fig. 11(a), we
see that [−Im+(0,T )] is quadratic for T ! TFL (tracked by
the blue dashed parabola) and linear for TFL ! T ! 0.01D
(tracked by the magenta dashed line). Finally, in Fig. 11(b),
we see that Z(T ) is approximately constant for T ! TFL, and
grows linearly for TFL ! T ! 0.01D, with a slope on the order
of the bandwidth (tracked by the magenta dashed line). The
blue dashed curve tracks the functional form discussed below,
which approximates Z(T ) very well for T # TFL. As empha-
sized in [43], the temperature dependence of [−Im+(0,T )]
and Z(T ) lead to a quasiparticle scattering rate, defined as
[−Im+(0,T )] × Z(T ), which is quadratic well above TFL.

In Fig. 12, we plot the temperature dependence of these
objects in a broader temperature range. In Fig. 12(c), the blue
dashed line indicates the presence of a second linear regime
in A(T ) (with a slope slightly smaller than the first), meeting
the latter at a kink at T ≈ 0.01D. Figure 12(a) shows that for
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FIG. 9. The temperature variation with the frequency ω/D, of the spectral function ρGL,0 on the left and the Dyson self-energy − 1
π

Im+ on
the right, at density n = 0.875 (top), n = 0.85 (middle), and at n = 0.6 (bottom). With increasing T we note the rapid broadening and shifting
of ρGL,0. Here, − 1

π
Im+ displays a rapid destruction of the coherent Fermi liquid behavior observed at the lowest T , by the filling up of the

minimum at ω = 0. Comparing the top two sets shows that at the lowest hole density, a small change in T has a large effect, due to the low
effective Fermi temperature. We also observe here, as well as in Fig. 8, that − 1

π
Im+ has a strong asymmetric correction to the quadratic ω

dependence of the standard Fermi liquid, as highlighted in the bottom left panel of Fig. 7. This is in accord with one of the basic analytical
predictions of the ECFL theory, and also is found in the DMFT results.
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FIG. 10. (a), (b) ρdc

ρ0
vs T

D
for n = 0.75, 0.8, 0.85 from bottom to top. In (a), the blue dashed parabola tracks the FL regime 0 < T < TFL

where ρdc

ρ0
∝ ( T

D
)2. The magenta dashed line tracks the first linear regime TFL < T ! 0.01D. In (b), the blue dashed line tracks the second

linear regime T # 0.07D. (c) ρdc

ρ0
vs T

DZ(T =0) for n = 0.75, 0.8, 0.85 (red, orange, green). The blue dashed parabola tracks the Fermi liquid
regime, demonstrating that TFL = (c D) × Z(T = 0), with c ≈ 0.05, and that ρdc

ρ0
is a function of T

DZ(T =0) for T ! 2TFL.
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FIG. 11. (a) [−Im+(0,T )] vs T
D

for n = 0.75, 0.8, 0.85 from bottom to top. [−Im+(0,T )] is quadratic for T ! TFL (tracked by the
blue dashed parabola) and linear for TFL ! T ! 0.01D (tracked by the magenta dashed line). (b) Z(T ) vs T

D
for n = 0.75, 0.8, 0.85 from

top to bottom. Z(T ) is approximately constant for T ! TFL, and grows linearly for TFL ! T ! 0.01D, with a slope on the order of the

bandwidth (tracked by the magenta dashed line). The blue dashed curve is the fit to the functional form Z(T ) =
√

1+aT +bT 2

c+dT
using a broader

range of temperatures than the one shown here [Fig. 12(b)]. This form works well for T # TFL. (c) A(0,T ) = µ(T ) − Re +(0,T ) vs T
D

for
n = 0.75, 0.8, 0.85 from bottom to top. For TFL ! T ! 0.01D, it is linear, as tracked by the dashed blue line.

T > 0.01D, [−Im+(0,T )] continues to grow, until it finally
begins to saturate at higher temperatures. Finally, in Fig. 12(b),

we fit Z(T ) to the functional form Z(T ) =
√

1+aT +bT 2

c+dT
,

tracked by the blue dashed curve. This form works well for
T # TFL. For T ! 0.01D, it reproduces the behavior shown
in Fig. 11(b), while for T # 0.01D, it is consistent with the
behavior Z(T ) ∝

√
T . Therefore, Z2(T ) is linear in T over a

very wide temperature range starting with T ≈ 0.01D.

VII. CONCLUSIONS

In this work, we have presented an analytical calculation of
properties of the t-J model in infinite dimensions, and shown
that it provides a quantitative description of variables known
from exact numerical work in [42,43]. The results include the
quasiparticle weight, the self-energies, and spectral functions
with particle-hole asymmetry that have been argued to be
characteristic of very strong correlation [6,8]. Finally, we also
give a good account of the temperature variation of resistivity.
Results with the present technique at high T are less reliable
and are not presented. In the low- to intermediate-T results
reported here, we reproduce the main features of the exact
DMFT calculations, including a narrow regime with quadratic
T dependence followed by two distinct linear T -dependent
regimes. We are further able to identify the origin of these
regimes in terms of the parameters of the theory.

The t-J model studied here contains two essential
ingredients of strong correlations: the physics of Gutzwiller
projection to the subspace of single occupancy, and the
physics of the superexchange. The first is captured in the
present scheme, while the second is lost since we limit the
study to infinite dimension for the purpose of benchmarking
against known exact results. The scheme by itself has no
intrinsic limitations to the case studied, and is generalizable to
finite dimensions as well as finite superexchange. Thus, it may
be expected to yield interesting results in lower dimensions,
including transitions between different broken-symmetry
states. Such calculations are currently underway.

In this work, we have discussed the characteristics of the re-
sulting ECFL state. The state reported here is Fermi liquid like,
but only so at a surprisingly low temperature. Upon minimal
warming, this state devolves into one exhibiting linear resis-
tivity. Our calculation yields a reduction of the effective Fermi
temperature, due to extreme correlations, that far exceeds the
expectations [58] based on a simple estimate T eff

F ∼ δ TF .
Within the terms of its limitations of d → ∞ and J =

0, this work provides useful insights. At the density n ∼
0.85 relevant for cuprate superconductors, we obtain a state
displaying linear resistivity for T beyond ∼45 K as seen in
Fig. 1. A similar onset of linearity occurs at a slightly higher
T within DMFT, the difference is due to our Z (from Fig. 6)
being about half of the exact value. If we imagine that the
effects of reduced dimensionality and nonzero J can stabilize
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FIG. 12. Same plots as in Fig. 11 over a broader range of temperatures. (a) [−Im+(0,T )] continues to grow as T is increased beyond

0.01D, until it finally begins to saturate at higher temperatures. (b) The blue dashed curve is the fit to the functional form Z(T ) =
√

1+aT +bT 2

c+dT
,

which works well for T # TFL. For T # 0.01D, Z(T ) ∝
√

T . (c) The blue dashed line tracks the second linear regime in A(T ) (with a slope
slightly smaller than the first) for T # 0.01D.

045138-12

(233)



LOW-ENERGY PHYSICS OF THE t-J MODEL IN . . . PHYSICAL REVIEW B 94, 045138 (2016)

this smaller onset scale, then the possibility of observing the
asymptotic T 2 resistivity of a Fermi liquid would become
remote. Thus, the quadratic behavior, so essential for making
a formal distinction between Fermi liquids and the elusive
non-Fermi liquids [59], could be rendered unobservable in
practice as well as divested of any essential difference.
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We investigate the origin of ubiquitous low-energy kinks found in angle-resolved photoemission experiments in
a variety of correlated matter. Such kinks are unexpected from weakly interacting electrons and hence identifying
their origin should lead to fundamental insights in strongly correlated matter. We devise a protocol for extracting
the kink momentum and energy from the experimental data which relies solely on the two asymptotic tangents
of each dispersion curve, away from the feature itself. It is thereby insensitive to the different shapes of the
kinks as seen in experiments. The body of available data are then analyzed using this method. We proceed
to discuss two alternate theoretical explanations of the origin of the kinks. Some theoretical proposals invoke
local bosonic excitations (Einstein phonons or other modes with spin or charge character), located exactly at the
energy of observed kinks, leading to a momentum-independent self-energy of the electrons. A recent alternate
is the theory of extremely correlated Fermi liquids (ECFL). This theory predicts kinks in the dispersion arising
from a momentum-dependent self-energy of correlated electrons. We present the essential results from both
classes of theories, and identify experimental features that can help distinguish between the two mechanisms.
The ECFL theory is found to be consistent with currently available data on kinks in the nodal direction of cuprate
superconductors, but conclusive tests require higher-resolution energy distribution curve data.

DOI: 10.1103/PhysRevB.95.165435

I. INTRODUCTION

High-precision measurements of electronic spectral dis-
persions have been possible in recent years, thanks to the
impressive enhancement of the experimental resolution in
the angle-resolved photoemission spectroscopy (ARPES).
This technique measures the single-electron spectral function
A(k⃗,ω) multiplied by the Fermi occupation function; it can
be scanned at either fixed k⃗ as a function of ω or at fixed
ω as a function of k⃗. These scans produce, respectively, the
energy distribution curves (EDCs) and momentum distribution
curves (MDCs). The line shapes in both these scans are of
fundamental interest since they provide a direct picture of the
quasiparticle and background components of interacting Fermi
systems, and thus unravel the roles of various interactions that
are at play in strongly correlated Fermi systems. The dispersion
relation of the electrons can be studied through the location of
the peaks of A(k⃗,ω) in constant ω or constant k⃗ scans.

Recent experimental studies have displayed a surprising
ubiquity of kinks in the dispersion of strongly correlated matter
at low energies ∼50–100 meV. The kinks are bending-type
anomalies (see Fig. 1) of the simple ω = vF (k⃗ − k⃗F ), i.e.,
linear energy versus momentum dispersion that is expected
near k⃗F from band theory. The special significance of kinks
lies in the fact that their existence must signal a departure from
band theory. This departure could be either due to electron-
electron interactions or to interaction of the electrons with
other bosonic degrees of freedom. Either of them are therefore
significant enough to leave a direct and observable fingerprint
in the spectrum. The goal of this work is to elucidate the origin
of the observed kinks, and therefore to throw light on the
dominant interactions that might presumably lead to high-Tc

superconductivity.
The purpose of this paper is multifold: We (i) survey the

occurrence of the kinks in a variety of correlated systems of

current interest, (ii) provide a robust protocol for characterizing
the kinks which is insensitive to the detailed shape of the kink,
(iii) discuss how these kinks arise in two classes of theories,
one based on coupling to a bosonic mode and the other to
strong correlations, and (iv) identify testable predictions that
ARPES experiments can use to distinguish between these.

The 15 systems reporting kinks are listed in Table I: these
include (1) most high-Tc cuprates in the (nodal) direction
⟨11⟩ at various levels of doping from insulating to normal
metallic states in the phase diagram [1,2], (2) charge density
wave systems, (3) cobaltates, and (4) ferromagnetic iron
surfaces. The kinks lose their sharpness as temperature is raised
[2–4], and appear to evolve smoothly between the d-wave
superconducting state and the normal state.

The kinks above Tc are smoothed out as one moves away
from nodal direction [5]. Recent experiments [6] resolve this
movement of the kinks more finely into two subfeatures. Most
of the studies in Table I focus on MDC kinks; the EDC kinks
data are available for only eight systems so far. Bosonic modes
have been reported in six systems using different probes such
as inelastic x rays or magnetic scattering, with either charge
(phonons, plasmons) or spin (magnetic) character, while the
remaining nine systems do not report such modes. A few
theoretical studies of the kinks have implicated the observed
low-energy modes via electron-boson–type calculations; we
summarize this calculation in the Supplemental Material (SM)
[7]. We find, in agreement with earlier studies, that the boson
coupling mechanism yields kinks in the MDC dispersion,
provided the electron-boson coupling is taken to be sufficiently
large. In addition, we find in all cases studied this mechanism
also predicts a jump in the EDC dispersion. It also predicts an
extra peak in the spectral function pinned to the kink energy
after the wave vector crosses the kink. These two features are
experimentally testable and differ from the predictions of the
correlations mechanism discussed next.
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FIG. 1. A schematic MDC and EDC spectrum displaying typ-
ical features of experiments discussed below. Here, k̂ = (k⃗ − k⃗F ) ·
∇⃗εkF

/|∇⃗εkF
| is the momentum component normal to the Fermi

surface, and we label EDC variables with a star. [The sketch uses
parameters VL = 2 eV Å, VH = 6 eVÅ, r = 1.5, k̂kink = −0.03 Å

−1
,

#0 = 0.03eV, and $0 = 0.01eV in Eqs. (3) and (4).] The tangents in
the far zones identify the asymptotic velocities VL < VH and V ∗

L <

V ∗
H that characterize the MDC and EDC spectra. The intersection

of the extrapolated MDC tangents fixes the kink momentum k̂kink

and the ideal energy Eideal
kink . The dispersion is rounded with raising

T , as in the lower (red) curve. We define the MDC kink energy
EMDC

kink as E(k̂kink), i.e., the binding energy measured at the kink
momentum, and similarly the EDC kink energy. In all cases, VL = V ∗

L .
A testable consequence of the ECFL theory is that V ∗

H is fixed in
terms of the two MDC velocities by a strikingly simple relation:
V ∗

H = 3VH −VL

VH +VL
× VL [see Eq. (10)]. This easily testable prediction is

tried against experimental data in Fig. 2 where both EDC and MDC
data are available. In contrast, the electron-boson theory predicts
a jump in the EDC dispersion at the kink energy, followed by
V ∗

H = VH . Note that the difference between the EDC (MDC) kink
energy, EEDC

kink = Eideal
kink − $0 and EMDC

kink = Eideal
kink − $0

√
r

2−r
, and the

ideal kink energy is equal (proportional) to $0.

Since kinks are also observed in cases where no obvious
bosonic mode is visible, it is important to explore alternate
mechanisms that give rise to such features. In this context,
we note that a recent theoretical work using the extremely
strongly correlated Fermi liquid (ECFL) theory [8,9] cal-
culates the dispersion using low-momentum and frequency
expansions of the constituent self-energies. This calculation
[9] shows that both EDC and MDC energy dispersions display
qualitatively similar kinks, in particular, there is no jump in
either dispersion. In essence, this work implies that a purely
electronic mechanism with a strong momentum dependence of
the Dyson self-energy results in kink-type anomalies. In terms
of parameter counting, the calculation is overdetermined; it
can be represented in terms of four parameters which can be
fixed from a subset of measurements. With this determination
one can then predict many other measurables and testable
relations between these, as we show below. We show below
that the various predictions are reasonably satisfied in one

case (of OPT Bi2212 below), while in other cases, there are
insufficient experimental data to test the theories.

The ECFL theory incorporates strong Gutzwiller-type
correlation effects into the electron dynamics [7]. It produces
line shapes that are in close correspondence to experimental
results for the high-Tc systems [11,12]. The presence of a
low-energy kink in the theoretical dispersion was already
noted in Ref. [11]; this work substantially elaborates that
observation. In order to understand the origin of a low-energy
scale in the ECFL theory, it is useful to recall the predicted
cubic correction to Fermi liquid self-energy Im %(k⃗F ,ω) ∼
ω2(1 − ω

#0
) from equations (SM-42) and (8) and (9). Here,

#0 is an emergent low-energy scale; it is related to the
correlation-induced reduction of the quasiparticle weight Z.
It reveals itself most clearly in the observed particle-hole
asymmetry of the spectral functions, and therefore can be
estimated independently from spectral line-shape analysis. A
related and similar low value of the effective Fermi temperature
is found in recent studies of the resistivity [10]. Here and in
our earlier studies it is coincidentally found that #0 ∼ 20–50
meV, i.e., it is also roughly the energy scale of the kinks when
the bandwidth is a few eV.

II. ARPES SPECTRAL DISPERSIONS, KINKS, AND
A PROTOCOL FOR DATA ANALYSIS

A. Summary of variables in the theory

A few common features of spectral dispersions found in
experiments are summarized in Fig. 1. The schematic figure
shows a region of low spectral velocity near the Fermi level
followed by a region of steeper velocity; these are separated by
a bend in the dispersion, namely, the kink. While the kink itself
has a somewhat variable shape in different experiments, the
“far zone” is much better defined and is usually independent
of the temperature; we denote the velocities in the far zones
VL,VH for the MDC dispersion and the EDC dispersion
counterparts by V ∗

L,V ∗
H . In terms of the normal component

of the momentum measured from the Fermi surface

k̂ = (k⃗ − k⃗F ).∇⃗εkF
/|∇⃗εkF

|, (1)

the kink momentum k̂kink is uniquely defined by extrapolating
the two asymptotic tangents, and the binding energy at this
momentum defines the ideal kink energy Eideal

kink [see Eq. (7)],
which serves as a useful reference energy.

Our picture is that all lines of temperature-varying MDC
dispersion curves in near zone converges into one line in the
far zone in Fig. 1. We find that both the low and high velocities
are independent of the temperature while depending on the
doping levels. Lastly, the new laser ARPES data reveal that we
need low-temperature dispersion data to determine VL because
temperature effect strongly influences the spectrum near the
Fermi level.

We first define the important ratio parameter r (1 ! r ! 2)
from the MDC dispersion velocities as

r = 2VH

VH + VL

. (2)

The EDC dispersion relation E∗(k̂) locates the maximum of
the spectral function A(k⃗,ω) in ω at constant k̂, while the MDC
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TABLE I. Comprehensive survey for ARPES kinks.

Above Tc Below Tc Local bosonic mode

Name of the compounds MDC EDC MDC EDC Charge Spin Not reported

LSCO "[3,13] "[1,3,13,14] "[15] "[16–18] "[19]
Bi2201 "[3,5,13,20,21] "[23] "[5,21] "[24]
Bi2212 "[2–5,13,25,26] "[4] "[2–5,13,25,26] "[27] " [28,29]
Bi2223 "[5,30] "[5,30,31] "
YBCO "[32] "[33,34] "[35–38]
Hg1201 "[39] "[40] "[41–43]
F0234 "[44] "
CCOC "[45] "
LSMO "[46] "[46] "
2H-TaSe2 (CDW) "[47] "[48]
Iron (110) surface "[49] "
BiBaCo1 "[50] 5 K "[50] 5 K "
BiBaCo2 "[50] 5 K "[50] 5 K "
BiBaCo "[50] 200 K "[50] 200 K "
NaCoO "[50] 5 K "[50] 5 K "

dispersion and E(k̂) locates the maximum k̂ at a fixed energy
ω. These are found from the ECFL theory (see SM [7] and
Ref. [9]) as

E∗(k̂) =
(
r VLk̂ + #0 −

√
$2

0 + Q2
)
, (3)

E(k̂) = 1
2 − r

(
VLk̂ + #0 −

√
r(2 − r) $2

0 + Q2
)
, (4)

where we introduced an energy parameter related to r,VL and
k̂kink

#0 = k̂kinkVL(1 − r), (5)

and a momentum-type variable Q = (r − 1) VL (k̂ − k̂kink).
The variable $0 is temperaturelike

$0 = η + π{πkBT }2/(); (6)

η is an elastic scattering parameter dependent upon the
incident photon energy, and η is very small for laser ARPES
experiments and can be neglected to a first approximation.
Here, () is a self-energy decay constant explained further in
the SM [7]. The ideal kink energy VLk̂kink can be expressed in
terms of #0 scale as

Eideal
kink = − 1

r − 1
#0. (7)

It is important to note that these dispersion relation
equations (3) and (4) are different from the standard dis-
persion relations EFLT(k̂) = E∗

FLT(k̂) = VH k̂, which follow
in the simplest Fermi liquid theory (FLT) near the Fermi
energy AFLT(k⃗,ω) = 1

π
$0

(ω−VH k̂)2+$2
0
. The FLT dispersions are

identical in EDCs and MDCs, and are independent of the
temperaturelike variable $0, and do not show kinks. On the
other hand, Eqs. (3) and (4) do have kinks, as we show
below, and the temperaturelike variable $0 plays a significant
role in the dispersion. At $0 = 0 one has an ideal spectrum,
where the kinks are sharpest. When $0 ̸= 0, due to either finite
temperature or finite damping η, related to the energy of the
incoming photon, the kinks are rounded.

A few consequences of Eqs. (3) and (4) can be noted
for the purpose of an experimental determination of the
Fermi momentum. The chemical potential is usually fixed by
referencing an external metallic contact and is unambiguous.
Experimentally, the Fermi momentum is usually found from
the MDC, as the momentum where the spectral function is
maximum with energy fixed at the chemical potential, i.e.,
ω = 0. This corresponds to the generally wrong expectation
that E(k̂peak) = 0 implies k̂peak = 0. When $0 # 0, from
Eq. (4) we see that the condition E(k̂peak) = 0 gives k̂peak =√

#2
0+r2 $2

0−#0

rVL
, a positive number that equals zero only in the

ideal case $0 = 0. Thus, there is an apparent enlargement of the
Fermi surface due to a finite $0 that needs to be corrected. By
the same token, at the true (Luttinger theorem related) Fermi

momentum k̂ = 0, the MDC energy E(0) = #0−
√

#2
0+r(2−r)$2

0
2−r

,
a negative number when $0 ̸= 0. In recent laser ARPES
Bi2201 data [[21], panel (a) in Fig. 4], we see that E(k̂peak)
vanishes at increasing k̂peak as T is raised, as predicted in
our calculation. Recent laser ARPES experiment on OPT
Bi2212 compounds reports a similar temperature dependence
of momentum of MDC dispersion at the Fermi level in
Ref. [26], strongly supporting our picture of its origin.

Similarly, the EDC peak at the true Luttinger theorem
related Fermi surface k̂ = 0 is nonzero. We find E∗(0) =
(#0 −

√
#2

0 + $2
0) ! 0. Clearly, E∗(0) is negative unless $0 =

0, i.e., it is generically red-shifted. If we are tempted to
identify the Fermi momentum from the condition E∗(k̂∗

peak) =
0, a similar cautionary remark is needed. The condition

E∗(k̂∗
peak) = 0 gives k̂∗

peak =
√

#2
0+(2r−1)$2

0−#0

(2r−1)VL
, again a positive

number as in the MDC case, and thus a slightly different
enlargement of the apparent Fermi surface.

The above comments illustrate the difficulty of finding the
correct Fermi surface when $0 is non-negligible, as in the case
of synchrotron ARPES with substantial values $0 $ 50 meV.
On the other hand, the laser ARPES studies have a much
smaller η % 10 meV, where our analysis can be tested by
varying the temperature and the consequent change of the
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spectrum. In the following, we analyze the data from the
Bi2201 system where the laser data are available at various
T , and allows us to test the above in detail. Our analysis
below of two other synchrotron data, the OPT Bi2212 has
10 ! η ! 40 meV, while the low-T LSCO data are assumed to
be in the limit of η = 0 because of the lack of high-temperature
dispersion data.

The spectral function at low frequencies close to k⃗F is also
obtainable from these parameters; the relevant formula is noted
below. In terms of ξ

ξ = 1
#0

(ω − r VLk̂) (8)

the spectral function is

A(k⃗,ω) = z0

π

$0

(ω − VLk̂)2 + $2
0

{

1 − ξ
√

1 + caξ 2

}

. (9)

Here, z0 is the quasiparticle weight and ca ∼ 5.4 (see SM
[7]). We should keep in mind that these expressions follow
from a low-energy expansion, and is limited to small k̂ and ω;
in practical terms the dimensionless variable |ξ | % 4, so that
ω (or k̂) is bounded by the kink energy (or momentum), as
defined below. Finally, we note a strikingly simple relation
that relates the high velocity of the EDC spectrum to the
two velocities VH and VL in the MDC dispersion defined in
Fig. 1:

V ∗
H = 3VH − VL

VH + VL

× VL. (10)

The origin of this simple but key formula lies in the fact that
the entire ECFL spectrum is determined in terms of a few
parameters, and therefore one should expect inter-relationships
of this kind on general grounds. The details are provided in
the Supplemental Material [7] Eq. (SM-36).

III. OPT BI2212 ARPES DISPERSION DATA

In the well-studied case of optimally doped Bi2212
(BSCCO) superconductors, the kink has been observed in
both EDC and MDC. We summarize the ECFL fit parameters
in Table II obtained from literature [4]. We also display the
predicted energy and high velocity of the EDC dispersion.
The velocity ratio VH /V ∗

H ∼ 1.3 in this case is quite large and
measurable. In this case, the EDC dispersion has fortunately

already been measured, allowing us to test the prediction. From
Table II we see that the energy of the EDC kink and its velocity
are close to the predictions.

In Fig. 2(a), we plot the predicted EDC dispersion using the
parameters extracted from the MDC dispersion in Fig. 2(b),
and compare with the ARPES data measured [4]. It is
interesting that the predicted slope of the EDC dispersion from
Eq. (10) is close to the measured one. Indeed, the measured
EDC dispersion is close to that expected from the ECFL theory.
To probe further, in Fig. 2(c) we compare the theoretical EDC
line shape (solid blue line) given by the same parameters
through Eq. (9) with the ARPES line shape measured at
high temperature [4]. Figure 2(d) compares the theoretical
MDC curve with the data. The theoretical curves are from
the low-energy expansion and hence are chopped at the high
end, corresponding to roughly |ξ |max ∼ r VLk̂kink

#0
for MDC and

|ξ |max ∼ Eideal
kink
#0

for the EDC. With this cutoff, the momentum is
less than the kink momentum and the energy is less than the
kink energy. We used $0 = 40 meV since it provides a rough
fit for both EDC and MDC spectral functions.

This value is somewhat larger than the bound ∼10 meV
given in Table II; a smaller value leads to narrower lines
but with the same shape. In rigorous terms, the same $0
must fit the dispersion and also the spectral functions. Our
fit, requiring a different $0, is not ideal in that sense. However,
the resolution of the available data is somewhat rough, and
should improve with the newer experimental setups that have
become available. We thus expect that higher-resolution data
with laser ARPES should provide an interesting challenge
to this theory. We also stress that from Eq. (9), the MDC
line shapes look more symmetric than the EDC line shapes
at low energies. While many experimental results do show
rather symmetric MDCs, there are well-known exceptions.
For instance, MDCs asymmetry has indeed been reported for
nearly optimally doped Hg1201 (Tc = 95 K) at binding energy
very close to the Fermi level, ω ∼ −5 meV and ω ∼ −18 meV
in Fig. 5 in Ref. [39]. Note that the ω = 0 MDC plot of
the spectral function A(k,ω) from Eq. (9) locates the peak
momentum k̂peak > 0, i.e., slightly to the right of the physical
Fermi momentum k⃗F , and we consider this implies that the
experimental Fermi momentum determination is subject to
such a correction, whenever the spectral function Eq. (9)
has a momentum-dependent caparison factor (see caption in
Fig. 2).

TABLE II. Parameter table for ARPES kink analysis for OPT Bi2212 [4] in Fig. 2 presents three essential parameters: VL, VH , and k̂kink.
From the high- and low-temperature MDC dispersions, we measured $0 % 10 meV in Fig. 2(b). With the measured experimental parameters
and determining the velocity ratio r in Eq. (2), we are able to estimate the finite-temperature kink energy for EDC and MDC dispersions by
EEDC

kink = Eideal
kink − $0 and EMDC

kink = Eideal
kink − $0

√
r

2−r
and predict V ∗

H by V ∗
H = 3VH −VL

VH +VL
× VL in Eq. (10). The uncertainties for calculated variables

were determined by error propagation, and the uncertainties for experimental variables were given by the half of the instrumental resolution.

MDCs EDCs

OPT Bi2212 ARPES data EMDC
kink (meV) EEDC

kink (meV) V ∗
H (eV Å)

VL (eV Å) VH (eV Å) k̂kink (Å
−1

) Calculated Measured Calculated Measured Predicted Measured

1.47 ± 0.07 3.3 ± 0.3 −0.037 ± 0.005 67 ± 21 67 ± 8 63 ± 21 65 ± 8 2.60 ± 0.56 2.1 ± 1.1
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FIG. 2. ARPES kinks data for OPT Bi2212 from Ref. [4] compared to theoretical ECFL curves (solid lines) using parameters listed in
Table II. (a) The predicted EDC spectrum (blue) from Eq. (3) versus the experimental EDC data (magenta symbols) at T = 115 K. For reference
we also show the MDC data (red dashed curve) and the corresponding ECFL fit (green solid curve). (b) Experimental MDC spectra at 40 K
(below Tc in green dashed line) and 115 K (above Tc in red dashed line) yield common asymptotes shown in black lines from the far zone.
These determine the parameters displayed in Table II. (c) At low energy ±60 meV, the EDCs spectral function (blue solid line) from Eq. (9) is
contrasted with the corresponding ARPES data from [4]. (d) At ω = 0 we compare the MDCs spectral function (blue solid line) from Eq. (9)
with the corresponding ARPES data from Ref. [4]. The range of validity for the theoretical expansion is ± k̂kink(0.037 Å

−1
), the data points in

the range are shown in black circle symbols, while the light gray circle symbols are outside this range. The peak position of the theoretical curve
has been shifted to left by 0.007 Å

−1
, a bit less than the instrumental resolution. A similar shift is made in Fig. 3(l). For analogous reasons, the

EDC peak in A(k,ω) at k⃗F is shifted to the left, i.e., E∗(0) ! 0. A small shift to the right is made in Fig. 3(k), in order to compensate for this
effect. These shift effects are within the resolution with present setups, but should be interesting to look for in future generation experiments
since they give useful insights into the energy momentum dependence of the spectral function.

IV. LSCO LOW-TEMPERATURE DATA

Here, we analyze the LSCO data at low temperature
(20 K) and at various doping levels raging from the insulator
(x = 0.03) to normal metal (x = 0.3) from Ref. [1]. The
parameters are listed in Table III, where we observe that the
velocity VL is roughly independent of x, and has a somewhat
larger magnitude to that in OPT Bi2212 in Table II. The
kink momentum decreases with decreasing x, roughly as
k̂kink = −(0.37x − 0.77x2) Å

−1
, and the kink energies of EDC

and MDC dispersions are essentially identical. In the region
beyond the kink, the prediction for V ∗

H is interesting since
it differs measurably from the MDC velocity VH . We find
the ratio VH /V ∗

H ∼ 1.02–1.5 is quite spread out at different
doping.

Our analysis becomes unreliable as lower doping level x <
0.075 in Figs. 3(h)–3(j), where the dispersion kink is no longer
a simple bending kink, an extra curving tendency begins to
appear. To put this in context, recall that the line shape of
LSCO becomes extremely broad at small x [14], and so the
peak position of the spectral function becomes more uncertain
than at higher energy.

We should point out that in Fig. 3(k) the spectral function
has been shifted to right by 4 meV for a better fit. This shifting
is consistent with our argument that the Fermi momentum
determination has a possible small error of in order 0.006 Å

−1
,

arising from the k̂-dependent caparison factor, and hence the
peak position has an uncertainty VL × 0.006 ∼ 10 meV.

V. BI2201 LASER ARPES DATA

In this section, we present our analysis of the high-
resolution laser ARPES data of the single-layered compounds
Bi2201, at various different doping levels taken from a
recent study in Ref. [21]. In earlier studies of this compound
using synchrotron emitted high-energy photons, as also LSCO
[3], the ARPES kinks were observed to have only a weak
temperature dependence [5]. However, the new high-resolution
laser ARPES data enables us to observe clear and significant
temperature dependence of the ARPES kinks; it is comparable
to that of the double-layered Bi2212 compounds. In fact, we
find that the new data of Bi2201 compounds in Ref. [21]
seem to provide a textbook example of our ECFL kink
analysis.
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TABLE III. Data table for ARPES kink analysis for OPT LSCO (T = 20 K) [1] in Fig. 3. We were unable to reliably estimate $0 here due
to the lack of data at high temperature, and hence set it at zero. The uncertainties for measured values were given by half of the instrumental
resolution (10 meV, ∼0.005 Å

−1
). The uncertainties for the calculated values were determined by error propagation.

MDCs EDCs

LSCO low-temperature ARPES data EMDC
kink (meV) EEDC

kink (meV) V ∗
H (eV Å)

x (doping level) VL (eV Å) VH (eV Å) k̂kink (Å
−1

) Calculated Measured Calculated Measured Calculated Measured

0.3 2.4 ± 0.2 3.0 ± 0.3 −0.047 ± 0.005 113 ± 29 110 ± 10 113 ± 29 2.93 ± 0.45
0.22 2.0 ± 0.1 3.6 ± 0.2 −0.042 ± 0.005 84 ± 18 85 ± 10 84 ± 18 3.14 ± 0.35
0.18 1.7 ± 0.3 4.5 ± 0.6 −0.040 ± 0.005 68 ± 43 72 ± 10 68 ± 43 3.2 ± 1.2
0.15 1.75 ± 0.07 4.3 ± 0.1 −0.037 ± 0.005 65 ± 11 64 ± 10 65 ± 11 3.23 ± 0.20
0.12 2.0 ± 0.3 3.7 ± 0.5 −0.029 ± 0.005 58 ± 28 55 ± 10 58 ± 28 3.19 ± 0.89
0.1 1.8 ± 0.2 5.0 ± 0.7 −0.035 ± 0.005 63 ± 44 64 ± 10 63 ± 44 3.5 ± 1.4
0.075 1.9 ± 0.2 5.6 ± 0.8 −0.026 ± 0.005 49 ± 37 51 ± 10 49 ± 37 3.8 ± 1.7
0.063 1.8 ± 0.3 6.0 ± 0.5 −0.022 ± 0.005 40 ± 21 43 ± 10 40 ± 21 3.7 ± 1.1
0.05 1.7 ± 0.2 5.7 ± 0.6 −0.023 ± 0.005 39 ± 25 41 ± 10 39 ± 25 3.5 ± 1.3
0.03 2.0 ± 0.3 6.1 ± 0.4 −0.016 ± 0.005 32 ± 15 32 ± 10 32 ± 15 4.02 ± 0.85

In Table IV, we list the kink parameters corresponding
to different doping levels of Bi2201 and tabulate the kink
parameters. The entries are in correspondence to the panels
in Fig. 4. In Figs. 4(a)–4(f), we depict the measured MDC
dispersion and the predicted EDC dispersions at different
doping levels. The latter are found from Eq. (3) using the
variables in Table IV. Figures 4(g) and 4(h) of OPT Bi2201
are especially interesting. Combining the low T = 15 K
dispersion data and the finite-T value of $0, found from the
depression of the kink energy EMDC

kink = Eideal
kink − $0

√
r

2−r
, we

can reconstruct the entire MDC dispersion at a finite T . This
may be compared with the measured finite-T MDC data, thus
checking the validity of the formalism. This exercise is carried

out at T = 200 K in Fig. 4(g) and T = 100 K in Fig. 4(h),
where we find a remarkably good fit in all details. In Figs. 4(g)
and 4(h) we show the actual momentum (rather than k̂) to
facilitate a comparison with data. Figure 4(g) especially clearly
shows that E(k̂) vanishes at a k̂ that is different from 0. The
shift corresponds to ∼0.01 Å

−1
. We have commented above

that this apparent expansion of the Fermi surface with T is due
to the nontrivial physics underlying Eq. (4) lying beyond the
simple minded FLT.

Figure 4(i) plots the temperature dependence of $0 in
Fig. 4(a) in Ref. [21]. The measured $0 curve is fitted
with Eq. (6), and we estimate η = 5.3 ± 2 meV and () =
410 ± 100 meV.

FIG. 3. ARPES kinks data for LSCO data [1] compared to theoretical ECFL curves (solid lines) using parameters listed in Table III. The
doping level x varies between (normal metal) 0.3 ! x ! 0.03 (insulator) in (a)–(j). Each panel shows MDC nodal dispersion data (symbols),
whose uncertainties are ±10 meV. The blue dashed line is the theoretical prediction for EDC dispersion by Eq. (3). (k) We compare the spectral
line shape for EDCs at kF from Eq. (9) (blue solid line) in the range ± Eideal

kink ∼ 65 meV with the corresponding ARPES data (black circles)
[12]. (l) At ω = 0 we compare the MDCs spectral function (blue solid line) from Eq. (9) with the corresponding ARPES data from Ref. [12].
The range of validity for the theoretical expansion is ± k̂kink (0.037 Å

−1
), the data points in the range are shown in black circle symbols, while

the light gray circle symbols are outside this range. The peak position of the theoretical curve MDC has been shifted to left by 0.006 Å
−1

.
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TABLE IV. Parameter table for ARPES kink analysis for laser ARPES data of Bi2201 at various different doping levels [21] in Fig. 4.
From 0.1 < x < 0.16, we measured $0 ∼ 0. For x = 0.23 and 0.26, we measured $0 % 17 meV. For x = 0.16 data, we report variables for
high-temperature kinks data 200 K (g) and 100 K (h) in Fig. 4, and $0 values for 200 K and 100 K data are in corresponding panels (g) and
(h) in Fig. 4. The uncertainties for the calculated parameters were determined by error propagation, and the uncertainties for the experimental
parameters were given by half of the instrumental resolution.

MDCs EDCs

Bi2201 laser ARPES data EMDC
kink (meV) EEDC

kink (meV) V ∗
H (eV Å)

x (doping level) VL (eV Å) VH (eV Å) kkink (Å
−1

) Calculated Measured Calculated Measured Calculated Measured

0.1 1.47 ± 0.12 4.7 ± 0.3 −0.022 ± 0.002 32 ± 3 37 ± 0.5 32 ± 6 3.0 ± 0.3
0.11 1.34 ± 0.06 2.78 ± 0.06 −0.021 ± 0.002 28 ± 1 28 ± 0.5 28 ± 4 2.28 ± 0.12
0.13 1.37 ± 0.07 2.71 ± 0.18 −0.025 ± 0.002 38 ± 3 39 ± 0.5 37 ± 5 2.27 ± 0.17
0.16 1.5 ± 0.1 3.5 ± 0.2 −0.026 ± 0.002 39 ± 3 43 ± 0.5 39 ± 6 2.7 ± 0.2
0.23 2.1 ± 0.11 5.4 ± 0.3 −0.036 ± 0.002 98 ± 6 97 ± 0.5 89 ± 10 3.9 ± 0.3
0.26 2.17 ± 0.16 4.8 ± 0.4 −0.045 ± 0.002 123 ± 11 122 ± 0.5 114 ± 18 3.8 ± 0.4

0.16 (200 K) 1.61 ± 0.18 3.5 ± 0.3 0.364 ± 0.002 87 ± 11 89 ± 0.5 75 ± 11 2.8 ± 0.4
0.16 (100 K) 1.61 ± 0.18 3.5 ± 0.3 0.364 ± 0.002 69 ± 11 70 ± 0.5 62 ± 11 2.8 ± 0.4

FIG. 4. ARPES kink analysis for laser ARPES data of Bi2201 at various different doping levels in Ref. [21]. (a)–(f) We predict EDC
dispersions (blue dashed lines) using Eq. (3) for various different doping levels of Bi2201 laser ARPES data. (g), (h) First in (g), we present
ECFL MDC fit (green solid line) for low-temperature (15 K) laser ARPES dispersion data of OTP Bi2201 from in Fig. 4(a) in Ref. [21] (black
circles) and predict low-temperature EDC dispersion (green dashed line). Next, in (g) and (h), we predict high-temperature EDC (blue dashed
lines) dispersions (g) 200 K and (h) 100 K for laser ARPES data of OPT Bi2201 [Fig. 4(a) in Ref. [21]], and show the MDC dispersion fits
for two temperatures also, blue solid line for 200-K data (red squares) in (g) and brown sold line for 100-K data (yellow circles) in (h). We
estimate $0 from measuring the difference between the ideal kink energy and the MDC kink energy. In order to compare with experiments,
the x-axis representation in (g) and (h) is given by the physical k (rather than the momentum difference k̂). In (g), the MDC dispersion fit
(blue solid line) of 200 K vanishes at k = 0.404 ± 0.002 Å

−1
, very close to the measured k = 0.405 ± 0.002 Å−1 of the MDC dispersion

data at 200 K. Similarly, in (h) the MDC dispersion fit (brown solid line) at 100 K vanishes at k = 0.398 ± 0.002 Å−1, close to the measured
k = 0.4 ± 0.002 Å−1 of the MDC dispersion data at 100 K. Note that the true Fermi momentum as estimated from the low-T (15-K) data
is k = 0.394 ± 0.002 Å−1, so that the deviations are bigger than the momentum resolution #k ∼ 0.004 Å−1. (i) We plot the temperature
dependence of $0 in Fig. 4(a) in Ref. [21]. Here, the temperature dependence data of $0 are fitted with Eq. (6), and η is determined 5.3 ±
2 meV and () = 410 ± 100 meV.
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VI. CONCLUSION

The main goal of this work is to understand the physical
origin of kinks in the dispersion seen in ARPES studies of
a wide class of systems. For this purpose we have listed
15 systems of topical interest where ARPES kink data are
available. Our focus is on the nodal direction data since
the largest volume is available here. We have devised a
useful protocol to extract kink parameters from data, where
the asymptotic tangents of the kink are used. Using this
protocol we have analyzed in detail three families of systems:
two synchrotron and one laser ARPES data of cuprate
superconductors. The main parameters of the kinks are the
energy, momentum, and the dispersion velocities in EDC and
MDC scans; these provide a quantitative data set for testing
various theoretical proposals for explaining kinks.

We have outlined two competing theories for the origin
of kinks, and highlighted their distinctive predictions. One is
the electron-boson model, where an Einstein mode of either
spin or charge origin couples to the electrons, resulting in a
momentum-independent self-energy. This theory gives rise to
kinks in the electron dispersion. The other theory is the strong
or extreme correlation theory, where the interactions lead to
a momentum-dependent self-energy in two dimensions. This
theory also gives rise to kinks in the electron dispersion. We
expect that other contemporary theories of strong correlations,
such as the cellular dynamical mean field theory (CDMFT)
[22] method would give comparable results to those of
the ECFL theory presented here, which provides the extra
convenience of simple analytical expressions.

The predictions of the two theories differ significantly
and in experimentally testable ways. Let us summarize the
proposed tests.

The boson-mode theory [7] predicts the following:
(1) A kink in the continuous MDC dispersion, located at

the energy of the localized mode.
(2) A momentum-independent peak at the kink energy, in

the spectral function versus energy curve.
(3) A jump discontinuity (rather than a kink) in the EDC

dispersion.
(4) The EDC and MDC velocities are identical both above

and below the kink energy.
The (extremely) strongly correlated Fermi liquid theory [7]

predicts the following:
(1) A kink in the continuous MDC dispersion, located at a

(calculable) emergent energy.
(2) No peak in the spectral function at the kink energy.
(3) A kink (rather than a jump discontinuity) in the

continuous EDC dispersion.
(4) The EDC and MDC velocities are identical above the

kink energy.
(5) Below the kink energy, the EDC velocity is determined

by the two MDC velocities through a simple relation.
It is remarkable that a knowledge of the two MDC

dispersions (VH and VL) suffices to predict the EDC dispersion
below the kink V ∗

H , through the relation V ∗
H = 3VH −VL

VH +VL
× VL

[see Eq. (10)].

Thus, the parameters obtained from the MDC dispersion
enable us to reconstruct the spectral function at low momentum
and energy, in both MDC and EDC scans. We have carried out
this exercise in three cases above.

It is thus clear that EDC dispersions hold the key to
distinguishing between the two competing theories. EDC
dispersion data are sparse but exist, the work on OPT Bi2212
from Ref. [4] shown in Fig. 2 presents both EDC and MDC
dispersions at 115 K. Its resolution is presumably not optimal
since it was an early experiment. Nevertheless, we can use it to
make a first pass at comparing the two theories. This data set
plotted in Fig. 2 shows that the EDC dispersion is continuous,
i.e., has no jump. Further, the EDC higher velocity V ∗

H is close
to that predicted by the ECFL analysis. The measured spectral
function in EDC, overlooking the noise, seems not to have
any immovable feature at Ekink. Thus, all three characteristics
noted above appear to be consistent with the ECFL predictions
rather than the bosonic mode theory predictions. It is roughly
fit by the low-energy parametrized curves as well, where the
MDC is seen to be more symmetric than the EDC cuts.

As noted in Table I, the above case OPT Bi2212 is
particularly interesting. Low-energy bosonic modes have been
observed in neutron scattering [28,29] and in momentum-
resolved electron energy loss experiments [27]. In Ref. [27]
an MDC dispersion is presented using parameters taken from
the bosonic data. This leads to a rather detailed model, and is
shown to provide a reasonable fit to the MDC dispersion and
the observed kink, but the important EDC dispersion is not
displayed.

While we focused attention on dispersion kinks in the nodal
direction in this work, the ECFL theory is also valid for other
directions; it has a momentum dependence in the self-energy
both normal to the Fermi surface and also along the tangent.
The ECFL theory applied to the d-wave superconducting state
in the t-J model is expected to lead to further interesting
results in the future. For now, we note that the observed nodal
direction spectra are essentially unchanged at Tc, which makes
the nodal direction particularly interesting.

In conclusion, we have presented a current summary of
the physics of the kinks in dispersion of cuprate high-Tc

superconductors, and given a set of measurements that can
distinguish between competing theories. We believe that there
is urgent need for further high-resolution EDC data, and also
T -dependent scans to explore the rounding of kinks. Using
such data one should be able to check the predictions of
the theory more thoroughly, and thereby obtain definitive
understanding of the origin of low-energy ARPES kinks of
strongly correlated matter.
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In this supplemental note we provide (I) some details
of the doping dependence of the fit parameters (II) de-
tailed predictions of the electron-Boson coupling model
for kinks and (III) detailed predictions of the extremely
strong correlation theory for kinks. In the main paper,
we have discussed alternate mechanisms for generating
the low-energy kink observed in ARPES. Although both
mechanisms are capable of generating similar MDC dis-
persions, they produce EDCs and EDC dispersions which
are distinct from one another in several clearly identi-
fiable ways. These di↵erences, detailed below, can be
used to distinguish between the two mechanisms using
ARPES, especially as higher resolution data becomes
available in the future.

A. Fixing the parameters

The independent parameters in the ECFL expressions

for the kink can be taken as VH , VL, k̂kink and �0. These
can be fixed with four measurements as we indicate be-
low. While the first three can be measured with precision,
the variable �0 depends on the temperature and is also
quite sensitive to the various experimental conditions in-
cluding the incident photon energy, thus making it less
precisely known than the others; we will perforce be con-
tent with rough estimates of this variable. The remain-
ing parameters can be calculated using equation (MS-2)
and equation (MS-5) etc. As mentioned above, the the-
ory is overdetermined, in terms of these four parameters,
the theory predicts a number of other quantities: a) the
dispersion curves for both EDCs and MDCs, b) the loca-
tion of both EDC and MDC kinks at finite temperature,
and c) the spectral functions near the Fermi level ( up to
roughly the kink energy). Below we present an analysis
of the ARPES data of Bi2212, LSCO and Bi2201 taken
from literature, where we give the details of the fits and
the predicted EDC velocities for future experiments.

The asymptotic velocities VH , VL determine the ratio r
from equation (MS-2). The energy �0 and the ideal kink
energy are determined from equations (MS-5, SI-28). As
discussed in Fig. 1 EMDC

kink is found by measuring the dis-

persion at the kink wave vector E(k̂kink), and similarly

the EDC kink energy EEDC
kink is found from E⇤(k̂kink).

For understanding the finite temperature data, the the-
ory provides temperature dependent correction terms for

the two spectra, determined by the parameter �0,

EEDC
kink = Eideal

kink � �0, (SI-1)

EMDC
kink = Eideal

kink � �0

r
r

2 � r
. (SI-2)

Since �0 determines the non-zero T (or ⌘) correction,
we estimate from the di↵erence between low and high
temperature MDC dispersion curves

�0 = �Ekink =

r
2 � r

r

�
Eideal

kink � EMDC
kink

�
. (SI-3)

Clearly uncertainties in �0 are governed by those in the
MDC dispersion at the kink momentum.

As noted in Fig. 1, the ECFL theory predicts a kink,
rather than a jump in the EDC spectrum, quite analo-
gous to that in the MDC dispersion, but with a di↵erent
velocity on the steeper side, i.e. V ⇤

H 6= VH . In fact the
theory provides an experimentally testable expression re-
lating the two, V ⇤

H is expressed quite simply in terms of
measurable experimental variables,

V ⇤
H =

3VH � VL

VH + VL
⇥ VL. (SI-4)

As mentioned in the introduction the Boson-mode cou-
pled theories predict a jump in the EDC spectrum at the
kink energy. The velocity beyond the jump is the same in
EDC and MDC, i.e. V ⇤

H = VH , in contrast to Eq. (SI-4).
This velocity is reported in only a few cases, and provides
a ready test of the ECFL theory.

The theory also predicts VL = V ⇤
L , which is satisfied

by inspection in all reported cases and is common to the
Boson-mode theory. We use this protocol to analyze the
experiments on three well studied families of high Tc ma-
terials next.

B. Fit parameters

I. �0 FOR LSCO DATA IN THE MAIN TEXT

For the LSCO data discussed in the main text, we
quoted the ECFL theory parameters, velocity ratio r,
the ideal kink energy Eideal

kink and the small energy param-
eter �0, in Eqs (2,7,5) (see also Eq. (SI-28)). In Fig. 1,
we display the doping dependence of these parameters
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x = 1 � n. The size of the data point represents the
uncertainty for each data points. While r and �0 stay

almost constant, the ideal kink energy decreases linearly
with increasing x.
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FIG. 1: ( a ) The ratio of low and high velocities, r, as a function of doping levels, and ( b ) ideal kink energy, ( c ) ECFL
energy parameter �0 as a function of doping levels for LSCO data in the main text.

II. ELECTRON-BOSON COUPLING THEORY
OF KINKS

The electron Boson mechanism suggested in Ref. (1)
and others2,3, is the coupling of the electrons to Bosonic
modes (such as phonons), located at the kink energy.
To illustrate the basic idea, we first consider free elec-
trons coupled to an Einstein phonon mode of energy
!0 = .08 eV2,3, with coupling constant g. In this case,
the spectral function is expressed in terms of a momen-
tum independent self-energy ⌃(!), as

A(~k,!) = � 1

⇡

=m⌃(!)

(! � ⇠k �<e⌃(!))2 + (=m⌃(!))2
,

(SI-5)

where ⇠k ⌘ "k � µ, "k is the bare dispersion, and µ is
the chemical potential. The real and imaginary parts of
the self-energy due to the electron-phonon interactions
are given by the well known formulas:4,5

=m⌃(!) = �⇡g2
X

±
N(! + µ ± !0) ⇥

⇥
f⌥(! ± !0) + n(!0)

⇤
,

<e⌃(!) = � 1

⇡

Z
d⌫

=m⌃(⌫)

! � ⌫
, (SI-6)

where f�(⌫) ⌘ f(⌫), f+(⌫) ⌘ f̄(⌫) ⌘ 1 � f(⌫), f(⌫)
and n(⌫) are the Fermi and Bose distribution functions
respectively, and N(E) ⌘ 1

Ns

P
k �(E � "k) is the local

density of states for the free electrons. Since the rel-
evant frequency range for the self-energy is |!| ⇠ !0,

and !0 ⌧ W , where W is the bandwidth, we neglect
the frequency dependence in the density of states, i.e.
N(!+µ±!0) ⇡ N(µ) ⇡ N("f ), where "f is the Fermi en-
ergy. Furthermore, the strength of the electron-phonon
coupling is given by the dimensionless parameter6 � ⌘
2N("f )g2

!0
. Therefore, the imaginary part of the self-energy

is expressed directly in terms of � as

=m⌃(!) = �⇡�!0

2

X

±

⇥
f⌥(! ± !0) + n(!0)

⇤
.

(SI-7)

We initially choose a typical intermediate strength
value of � = 0.5. We also add a small broadening
⌘ = .01 eV to the imaginary part of the self-energy. In
Fig. (2), we display !�<e⌃(!) and �=m⌃(!) vs. ! (left
panel), the EDC and MDC dispersions (middle panel),
as well as the EDCs at several representative momenta
(right panel) at T = 10 K. The EDC and MDC dis-
persions as well as the EDCs can be understood directly
from the real and imaginary parts of the self-energy us-
ing Eq. (SI-5). From Eq. (SI-5), the the MDC at fixed
! is a Lorentzian of width �=m⌃(!) and peak position
⇠⇤(!) = ! � <e⌃(!)1. Therefore, the MDC dispersion
is obtained by inverting ⇠⇤(!) to obtain E(⇠). Since
! � <e⌃(!) is not one-to-one, E(⇠) is a multi-valued
function.

To understand the EDC dispersion, we first examine
the EDC curves in the right panel of Fig. (2). The mo-
mentum ⇠ associated with each curve is given by the lo-
cation of the corresponding horizontal dashed line along
the vertical axis in the left panel. The EDC at each mo-
mentum has two distinguishable features, a peak followed
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by a hump. In the left panel, the red and green dots indi-
cate the location of the peak and hump, respectively, at
each momentum, as determined directly from the EDC.

We partition the EDCs into three distinct momentum
regions, |⇠| < |⇠1|, |⇠1| < |⇠| < |⇠2|, and |⇠| > |⇠2|, where
the momenta ⇠1 and ⇠2 (the low-energy kink momentum)
are denoted by the dashed vertical lines in the middle
panel of Fig. (2). In the first region, |⇠| < |⇠1|, the peak
location, E⇤

p , disperses according to the equation ⇠ =
E⇤

p � <e⌃(E⇤
p), while the hump location, E⇤

h, remains
at a fixed frequency, displayed by the horizontal dashed

line in the middle panel. In addition, there is a sharp
dip between the peak and the hump which is pinned to
the phonon frequency, �!0. Since =m⌃(E⇤

p) is constant
throughout this region, the height of the peak does not
change. On the other hand, since |E⇤

h � ⇠ � <e⌃(E⇤
h)|

decreases as |⇠| is increased (and of course =m⌃(E⇤
h) is

constant), the hump height grows as |⇠| approaches |⇠1|.
Nevertheless, since the peak height remains greater than
the hump height throughout this region (as will be shown
below), the EDC dispersion is given by E⇤ = E⇤

p .
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FIG. 2: Results for free electrons coupled to an Einstein phonon mode of frequency !0 = .08 eV, with coupling strength � = 0.5,
at T = 10 K. Right panel: The EDCs at several representative momenta, the variable ⇠ = vf (k � kF ) = (1 + �)VL(k � kF )
here and in later figures. The dashed line indicates the phonon frequency, ! = �!0. Each EDC has two well-defined features, a
peak followed by a hump (separated by a sharp dip for low momentum EDCs). Middle panel: The MDC dispersion (magenta)
has no jump while the EDC dispersion (blue) shows a jump. The two vertical dashed lines partition momentum space into
three regions. The horizontal dashed line indicates the location of the hump in the EDCs in the first (low-momentum) region.
In the first two regions, the EDC dispersion follows the MDC dispersion (closest to zero frequency), while in the third (high
momentum) region, it stays pinned to the phonon frequency over a large range of momentum, until it discontinuously jumps
back down to the MDC dispersion. Note that VH = V ⇤

H . Left panel: !�<e⌃(!) and �=m⌃(!) vs. !. The horizontal dashed
lines indicate the momenta associated with the corresponding EDCs in the right panel. The red dots indicate the locations of
the peaks, and the green dots indicate the locations of the humps, as determined directly from each EDC.

In the second region, |⇠1| < |⇠| < |⇠2|, both E⇤
p and E⇤

h
disperse according to the equation ⇠ = E⇤

p,h�<e⌃(E⇤
p,h),

E⇤
p being the root closest to, and E⇤

h being the root far-
thest from, zero frequency. Since =m⌃(E⇤

p) continues to
remain constant and has the same value as in the first
region, so does the height of the peak. Moreover, since
=m⌃(E⇤

h) remains constant as well, the height of the
hump remains the one which it reached at ⇠ = ⇠1. Fi-
nally, since |=m⌃(E⇤

h)| > |=m⌃(E⇤
p)|, the peak height is

greater than the hump height, and therefore E⇤ = E⇤
p .

In the third region, |⇠| > |⇠2|, E⇤
p is pinned to the

phonon frequency �!0, while E⇤
h continues to disperse

according to the equation ⇠ = E⇤
h � <e⌃(E⇤

h). Since
=m⌃(E⇤

h) continues to have the same value as in the
second region, so does the height of the hump. Mean-
while, the peak height decreases, since |E⇤

p�⇠�<e⌃(E⇤
p)|

increases as |⇠| is increased. Although initially E⇤ =
E⇤

p = �!0, eventually, after |⇠| has been su�ciently in-
creased, the peak height falls below the hump height, and
E⇤ = E⇤

h. Accordingly, in the middle panel, we see that
in first two regions, the EDC dispersion follows the MDC
dispersion, E⇤ = E (closest to zero frequency). However,
in the third region, E⇤ stays fixed at �!0, until at su�-
ciently high momentum, it jumps back down to the MDC
dispersion. Since the MDC and EDC dispersions coincide
for large momentum, the velocities VH and V ⇤

H are equal.
We take these three features, a discontinuous jump in the
EDC dispersion, a peak pinned to the phonon frequency
in the EDC over a prolonged range of momentum, and
the equality VH = V ⇤

H , to be signatures of electron-Boson
coupling in ARPES experiments. Similar calculations to
the one above can be found in1,2, with analogous results.
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FIG. 3: To explore the e↵ects of raising �, we set � = 1 while leaving all other parameters unchanged from Fig. (2). As a
result, the kink momentum in the MDC dispersion becomes bigger, the hump in the EDCs is suppressed, the EDC dispersion
stays pinned to the phonon frequency over a larger range of momentum, and the magnitude of the jump in the EDC dispersion
grows.

To examine the e↵ects of raising �, we set � = 1 leaving
all other parameters unchanged, and plot the correspond-
ing results in Fig. (3). This causes several noticeable
changes to the results in Fig. (2). 1) The kink in the
real part of the self-energy becomes sharper, which leads
to a larger kink momentum, ⇠2, in the MDC dispersion.
2) �=m⌃(E⇤

h) becomes bigger, causing the height of the
hump to go down. 3) As a direct consequence of 2), the
range over which the EDC dispersion stays pinned to the
phonon frequency becomes more prolonged in momen-
tum space, and therefore the magnitude of the jump in

the EDC dispersion also becomes bigger.

Setting T ! 0 in Eq. (SI-7), and plugging it into
Eq. (SI-6), we find that to linear order in ! ⌧ !0,
<e⌃(!) = ��!. Therefore, � =

vf

VL
� 1 (see also7). Ac-

cording to the normal state data (T = 115 K) from3,8,9

(since T ⌧ !0, this zero temperature formula still ap-
plies), VL = 1.47eV Å and vf = 2.7eV Å, yielding � =
0.84. In principle, one might argue for the larger value
of vf ⇠ 5.4 eV Å from the ARPES observed width of the
band16, leading to � ⇠ 2.67, a very high value indeed.
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FIG. 4: We now use the experimentally relevant values of � = 0.84 and T = 115 K. The curves retain the same qualitative
features as in Fig. (2), which are less sharp in the present case due to the higher value of T .

However, we will assume, with several authors of the
Boson-coupling models, that the smaller estimate is over-
all more reasonable. Using these experimentally relevant
values, in Fig. (4), we plot !�<e⌃(!) and �=m⌃(!) vs.

! (left panel), as well as the MDC and EDC dispersions
(middle panel), and the EDCs at several representative
momenta (right panel). Due to the higher value of T ,
the self-energy curves have been rounded out somewhat
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as compared to Fig. (2), but retain the same features. We
see that the EDC dispersion once again follows the MDC
dispersion (closest to zero frequency) in the first two mo-
mentum regions, until it (nearly) flattens out in the third
region, where the peak is pinned to the phonon frequency,
�!0, in the corresponding EDCs. As the momentum is

increased such that the height of this peak shrinks be-
low the height of the hump, the EDC dispersion jumps
discontinuously down from the phonon frequency, to the
MDC dispersion. Consequently, we see that the veloci-
ties of the MDC and EDC dispersion coincide above the
kink; i.e. VH = V ⇤

H .
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FIG. 5: We explore the e↵ects of using the full frequency-dependence of the density of states in Eq. (SI-6), with � = 0.84
and T = 115 K. Due to the functional form of the density of states (displayed as an inset in the left panel), the MDC
dispersion acquires two additional branches which yield large frequency values. Below the low-energy kink momentum, the
EDC dispersion follows the lowest-frequency branch of the MDC dispersion. Above the low-energy kink momentum, the EDC
dispersion initially stays pinned to the phonon frequency, until it discontinuously jumps onto the highest-frequency branch of
the MDC dispersion (VH = V ⇤

H). A noticeable hump also develops at high-frequencies, in the corresponding EDCs.

We now examine how these results are a↵ected by retain-
ing the full frequency-dependence of the density of states
in Eq. (SI-6). Just as was done in3, we use the dispersion
tb2 from9. In this case, "f = 0 and N("f ) = 0.61 eV�1.
Retaining the same values of T = 115 K and � = 0.84,
we set g = 0.23 eV in Eq. (SI-6). We also set µ ⇡ "f = 0.
In Fig. (5), we plot !�<e⌃(!) and �=m⌃(!) vs. ! (left
panel), as well as the MDC and EDC dispersions (middle
panel), and the EDCs at several representative momenta
(right panel). Due to the functional form of the density
of states (see the inset of the left panel), the MDC disper-
sion acquires two additional branches which yield large
frequency values. In the first two momentum regions (be-
low the low-energy kink momentum), the EDC dispersion
follows the lowest-frequency branch of the MDC disper-
sion. As the momentum increases into the third region
(above the low-energy kink momentum), the peak stays
pinned to the phonon frequency in the corresponding
EDCs. Moreover, since |=m⌃ (E(⇠)) | � |=m⌃(�!0)|,
where E(⇠) can be any branch of the MDC dispersion,
the EDC dispersion stays pinned to the phonon frequency
as well. As the momentum is increased further and the
height of the peak decreases su�ciently, the EDC dis-
persion jumps discontinuously onto the highest-frequency
branch of the MDC dispersion, since this is the one with
the smallest value of |=m⌃ (E(⇠)) |, and hence VH = V ⇤

H .

This small value of |=m⌃ (E(⇠)) | leads to a noticeable
hump at high-frequencies in the corresponding EDCs.

Thus far, we have considered only free electrons cou-
pled to a Boson mode. We now include electron-electron
correlations. Following10, we assume that

=m⌃el�el(!) = � (⌧2 + !2)

⌦0
exp

�(⌧2 + !2)

⌫2
0

�
� ⌘,

(SI-8)

where ⌃el�el(!) is the self-energy due only to electron-
electron correlations, ⌧ ⌘ ⇡kBT , T = 115 K, ⌦0 =
.14 eV, ⌫0 = .5 eV, and we set ⌘ = .01 eV. This
phenomenological form for =m⌃el�el(!) reproduces the
correct Fermi-liquid behavior at low frequencies, and ex-
trapolates to high frequencies in a reasonable way. Fur-
thermore, we assume a flat band for "k of bandwidth
W , i.e N(E) = 1

W ⇥(W
2 � |E|), and set µ ⇡ "f = 0.

Retaining the same values of N("f ) = 0.61 eV�1 and
� = 0.84 as before, yields the values W = 1.64 eV and
g = 0.23 eV. The self-energy is now given by the sum
⌃(!) = ⌃el�el(!)+⌃el�ph(!), where the imaginary part
of the latter term is

=m⌃el-ph(!) = �⇡g2
X

±
Ael-el,loc(! ± !0) ⇥

⇥
f⌥(! ± !0) + n(!0)

⇤
, (SI-9)
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while the real part is as usual given by applying the
Hilbert transform to Eq. (SI-9). Here, Ael-el,loc(!) =
1

Ns

P
k Ael-el(~k,!), where Ael-el(~k,!) is given by Eq. (SI-

5) with the substitution ⌃(!) ! ⌃el-el(!). Eq. (SI-5)

continues to express A(~k,!) in terms of ⌃(~k,!), where
both objects now include electron-electron and electron-
phonon correlations.

In Fig. (6), we plot ! � <e⌃(!) and �=m⌃(!) vs.
! (left panel), as well as the MDC and EDC disper-
sions (middle panel), and the EDCs at several represen-
tative momenta (right panel), from this calculation. Due
to the specific form of the self-energy, ⌃el�el(!) (both
�=m⌃el�el(!) and Ael-el,loc(!) are displayed as an in-
set in the left panel), the highest-frequency branch of the
MDC dispersion yields very large values of the frequency.
Just as in the cases considered above, for momentum |⇠|
below the low-energy kink momentum, the EDC disper-
sion follows the lowest-frequency branch of the MDC dis-
persion, El(⇠). As the momentum |⇠| is increased above
the low-energy kink momentum, the rapid increase in

|=m⌃ (El(⇠)) | causes the peak in the EDC as well as the
EDC dispersion to stay pinned to the phonon frequency.
As the momentum is increased further, |=m⌃ (Eh(⇠)) |
becomes comparable to |=m⌃(�!0)|, where Eh(⇠) is the
highest-frequency branch of the MDC dispersion. At this
point, the EDC dispersion jumps discontinuously from
the phonon frequency onto the highest-frequency branch
of the MDC dispersion, and hence VH = V ⇤

H . This is
also reflected in the corresponding EDCs, which acquire
a hump at high-frequencies.

In conclusion, we find that in all of the above cases of
electrons interacting with a Boson mode, the EDCs are
characterized by three signatures: (1) a peak pinned to
the Boson-frequency over a large range of momentum,
(2) the EDC dispersion jumps discontinuously from the
Boson-frequency onto (the highest-frequency branch of)
the MDC dispersion, and (3) VH = V ⇤

H . These three
features are jointly present for most parameters explored,
and may be viewed as the signatures of kinks produced
by this mechanism.
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FIG. 6: We explore the e↵ects of Fermi-liquid-like electron-electron correlations (Eq. (SI-8)), with � = 0.84 and T = 115 K.
Due to the functional form of the self-energy, ⌃el�el(!) (both �=m⌃el�el(!) and Ael-el,loc(!) are displayed as an inset in the
left panel), the highest-frequency branch of the MDC dispersion yields very large values of the frequency. Below the low-energy
kink momentum, the EDC dispersion follows the lowest-frequency branch of the MDC dispersion. Above the low-energy kink
momentum, the EDC dispersion initially stays pinned to the phonon frequency, until it discontinuously jumps onto the highest-
frequency branch of the MDC dispersion (VH = V ⇤

H). This is also reflected in the corresponding EDCs, which acquire a hump
at high-frequencies.

III. EXTREMELY CORRELATED FERMI
LIQUID THEORY OF KINKS

In this section we present the theoretical details of the
ECFL calculation of kinks. We first show the results
of a low energy and momentum expansion of the ECFL
Greens function in terms of a few parameters. Earlier
studies11–13 show that the two self energies �, of the
ECFL theory are to a large extent similar to the self
energies of a standard intermediate coupling Fermi liq-
uid, and yet due to their specific combination that oc-

curs in Eq. (SI-10) and Eq. (SI-12) end up providing a
non trivial resulting theory. Indeed in Ref. (11) a similar
low energy expansion in high dimensions, was tested suc-
cessfully against the numerical results of the Dynamical
Mean Field Theory (DMFT). It should be noted that the
DMFT theory is designed for high dimensions, where the
momentum dependence of the Dyson self energy and  
self energy of the ECFL theory drops out. In this section
we allow for momentum dependence of both self energies
in the ECFL formalism, this is in-fact the only distinc-
tion between the present expansion and that in Ref. (11).
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We see below that this momentum dependence is essen-
tial for describing the low energy kinks in the occupied
part of the ARPES spectrum.

A. Low energy expansion of the ECFL theory

We start with the ECFL Greens function G expressed
in terms of the auxiliary Greens function g and the ca-
parison function eµ Ref. (14) and Ref. (15), we write

G(~k, i!) = g(~k, i!) ⇥ eµ(~k, i!), (SI-10)

and with the latter expressed in terms of the two self

energies �(~k, i!n), (~k, i!n) as:

eµ(~k, i!n) = 1 � n

2
+ (~k, i!n) (SI-11)

g�1(~k, i!n) = i!n + µ � (1 � n

2
)"k � �(~k, i!n),

(SI-12)

where n is the electron number per site, !n = (2n+1)⇡/�
the Matsubara frequency, which we analytically continue

i! ! ! + i0+. Let us define k̂ as the normal deviation
from the Fermi surface i.e. k̂ = (~k � ~kF ).~r"kF

/|~r"kF
|.

Our first objective is to Taylor expand these equations

for small ! and k̂, as explained above. We carry out a
low frequency expansion as follows:

1 � n

2
+ (~k,!) = ↵0 + c (! + ⌫ k̂ vf )

+iR/� + O(!3), (SI-13)

where the frequently occurring Fermi liquid function
R = ⇡{!2 + (⇡kBT )2}, vf = (@k"k)kF

is the bare Fermi
velocity, and the four parameters ↵0, c , ⌫ , � are coef-
ficients in the Taylor expansion having suitable dimen-
sions. Similarly we expand the auxiliary Greens function

g�1(k,!) = (1 + c�)
⇣
! � ⌫� k̂ vf

+iR/⌦� + O(!3)
�
, (SI-14)

where we have added another three coe�cients in the
Taylor expansion c�, ⌫�,⌦�.

To carry out this reduction we first trade the two pa-
rameters c , � in favor of parameters ⌦ and s by defin-
ing c = ↵0

⌦ 
and � = s⌦�

c 
, where the dimensionless

parameter 0  s  1. With these expansions and the
quasiparticle weight determined in terms of the expan-
sion parameters as Z = ↵0

1+c�
, we find

G =
Z

⌦ 

⌦ + ! + ⌫ k̂ vf + iR/(s⌦�)

! � ⌫� k̂ vf + iR/⌦�
. (SI-15)

Using A(k̂,!) = � 1
⇡=m G we find the spectral function

A(k̂,!) =
Z

⇡

R
⌦�

(! � ⌫� k̂ vf )2 + ( R
⌦�

)2
⇥ eµc(k̂,!)

(SI-16)

Here the caparison factor, (not to be confused with the
caparison function in Eq. (SI-10)), is found as

eµc(k̂,!) = 1 � ⇠(k̂,!)

⇠(k̂,!) =
1

�0
(! � ⌫0 k̂ vf ) (SI-17)

In Eq. (SI-17) we have introduced two composite param-
eters

�0 =
s

1 � s
⌦ , and ⌫0 =

1

1 � s
⌫� +

s

1 � s
⌫ 

.(SI-18)

This procedure eliminates the three old parameters s, ⌦ 
and ⌫ in favor of the two emergent energy scale �0 and
velocity ⌫0.

It is interesting to count the reduction in the number
of free parameters from the starting value of seven in
Eq. (SI-13) and Eq. (SI-14). Already in Eq. (SI-15) we
have a reduction to six, since the quasiparticle weight Z
combines two of the original parameters. Since Eq. (SI-
18) subsumes three parameters into two, the spectral
function in Eq. (SI-16) contains only five parameters: the
two velocities ⌫0 vf , ⌫� vf , and the two energies ⌦�,�0,
in addition to the overall scale factor Z.

We will see below that the parameters that are measur-
able from energy dispersions are best expressed in terms
of certain combinations of the velocities. In order to make
the connection with the experiments close, we will rede-
fine the two velocities in terms of an important dispersion
velocity at the lowest energies VL and a dimensionless ra-
tio r, on using the definitions:

⌫� vf = VL

⌫0 vf = r ⇥ VL. (SI-19)

In order to account for the di↵erence between laser
ARPES and synchrotron AREPS having di↵erent inci-
dent photon energies, we will make two phenomenological
modifications in Eq. (SI-16) following Ref. (16)

R(!)/⌦� ! R(0)/⌦� = ⇡{⇡kBT}2/⌦� + ⌘ ⌘ �0(SI-20)

where ⌘ represents an elastic energy from impurity scat-
tering, dependent upon the energy of the incident photon
in the ARPES experiments. In the spirit of a low energy
expansion R is evaluated at ! = 0. Thus �0 is a T depen-
dent constant, which subsumes the two parameters ⌘ and
⌦�, and thus the total parameter count is still five. Sec-
ondly for extension to higher energies, we “renormalize”
the parameter ⇠ in Eq. (SI-17) according to a recently
discussed prescription following from a theoretical calcu-
lation Ref. (17) as fµc ! {1 � ⇠p

1+ca⇠2
}, where ca ⇠ 5.4

near optimum doping � ⇠ 0.15 as estimated recently.
This correction ensures that the caparison factor exhibits
the correct linear behavior for small ⇠, and remains posi-
tive definite at high energies. Thus we write the spectral
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function in terms of the new variables as

A(~k,!) =
Z

⇡

�0

(! � VL k̂)2 + �2
0

⇥ {1 � ⇠p
1 + ca⇠2

},

(SI-21)

with ⇠ = 1
�0

(! � r VL k̂). We should keep in mind that
these expressions follow from a low energy expansion, and

is limited to small k̂ and !, so that the dimensionless vari-
able |⇠|max ⇠ O(1). Microscopic calculations of all these
parameters is possible in the ECFL theory. One impor-
tant parameter is the energy scale �0 which is found
to be much reduced from the band width, due to ex-
tremely strong correlations. A related energy is the e↵ec-
tive Fermi liquid temperature scale where the T 2 depen-
dence of the resistivity gives way to a linear dependence.
This scale is estimated in the limit of large dimensions
from Ref. (17) to be as low as 45 K near optimum doping,
i.e. much reduced from naive expectations.

For the present purposes we take a di↵erent track, we
note that the ARPES fits are overdetermined, so that
we can determine the few parameters of the low energy
theory from a fairly small subset of measurements. The
five final (composite) parameters defining the spectral
function Eq. (SI-21) are Z, VL, r,�0,�0, where ca ⇠ 5.4.
Of these Z is multiplicative, it is only needed for getting
the absolute scale of the spectral function, and ca does
not play a significant role near zero energy, it is required
only at high energies. Thus the spectra relevant to EDC
and MDC will require only four parameters VL, r,�0,�0.
These su�ce to determine the low energy theory and
thus to make a large number of predictions; i.e. implying
non trivial relationships amongst observables. Many of
the predictions rely only on the overall structure of the
theory and not its details.

B. The EDC and MDC dispersion relations and
kinks

Starting from Eq. (SI-21), we can compute the energy

dispersions for MDC (varying k̂ while keeping ! fixed)

and the EDC spectra (varying ! while keeping k̂ fixed).
In terms of a momentum type variable

Q(k̂) = �0 + (r � 1)k̂ VL (SI-22)

we can locate the peaks of Eq. (SI-21) using elementary
calculus since ca only plays a role at high energies, we set
ca ! 0 when performing the extremization and find the
MDC dispersion

E(k) =
1

2 � r

✓
k̂ VL + �0 �

q
r(2 � r)�2

0 + Q2

◆
,

(SI-23)

and the EDC dispersion

E⇤(k) =

✓
r k̂ VL + �0 �

q
�2

0 + Q2

◆
. (SI-24)

Using these two dispersions and expanding them in dif-
ferent regimes, we can extract all the parameters of the
kinks.

1. Kink momentum

As explained in the main paper, when we set T = 0 = ⌘
so that �0 = 0, both the EDC and MDC dispersions
contain an ideal kink at the kink momentum. Therefore,
using Eqs. (SI-23) and (SI-24), the condition Q = 0
locates the kink momentum for both dispersions:

k̂kink =
�0

(1 � r)VL
, (SI-25)

it corresponds to occupied momenta, i.e. k̂kinkvf < 0,
provided that r > 1. We thus can express �0 =

k̂kink VL(1 � r), enabling us to usefully rewrite

Q = (r � 1) VL (k̂ � k̂kink) = �0 {1 � k̂

k̂kink

}.

(SI-26)

As required by the ideal kink, Q changes sign at the kink
momentum,

sign(Q) = sign(k̂ � k̂kink). (SI-27)

2. Ideal Kink energies: T=0

Using Eq. (SI-23) and Eq. (SI-24), in conjunction with
Eq. (SI-25), the ideal kink energy is the same for both
dispersions, and is given by

Eideal
kink = � 1

r � 1
�0. (SI-28)

We can also usefully estimate this ideal kink energy from
the asymptotic velocities in the far zone, as explained in
the main paper.

3. The non-ideal i.e. T > 0 kink energy

The EDC and MDC kink energies for the non-ideal
case can be viewed in a couple of ways. We have argued
in the main paper that these are best defined by fixing

the momentum k̂ = k̂kink and reading o↵ the energy at
this value. This is an unambiguous method independent
of the detailed shape of the kink, since it only requires

knowledge of k̂kink, which can be found from an asymp-
totic measurement as we have argued in the main paper.

We can put Q = 0 and k̂ ! k̂kink in Eq. (SI-24) and
Eq. (SI-23) and read o↵ the kink energies:

EEDC
kink = Eideal

kink � �0, (SI-29)

EMDC
kink = Eideal

kink � �0

r
r

2 � r
. (SI-30)
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We observe that the MDC kink energy is real provided
2 � r � 1. Note also that at T = 0 and ⌘ = 0, the two
energies both reduce to the ideal kink energy.

4. The ideal energy dispersions

At T = 0 or for |Q| � �0, the two dispersions
Eq. (SI-24) and Eq. (SI-23) become:

E⇤(k) ⇠
h
r � (r � 1) sign(k̂ � k̂kink)

i
k̂ VL

+ 2�0⇥(k̂kink � k̂) (SI-31)

and

E(k) ⇠ 1

2 � r

h
1 � (r � 1) sign(k̂ � k̂kink)

i
k̂ VL

+
2�0

2 � r
⇥(k̂kink � k̂). (SI-32)

The velocities in the asymptotic regime |k̂| � k̂kink

can be found from the slopes of these, and are there-

fore temperature-independent. For k̂ � k̂kink we get the
“low” velocities

dE(k)

dk̂
= VL

dE⇤(k)

dk̂
= V ⇤

L = VL (SI-33)

and thus the EDC and MDC velocities are identical. For
k̂ ⌧ k̂kink we get the “high” velocities

VH =
dE(k)

dk̂
=

r

2 � r
VL, (SI-34)

V ⇤
H =

dE⇤(k)

dk̂
= (2r � 1)VL. (SI-35)

We may cast Eq. (SI-35) into an interesting form

V ⇤
H =

⇢
3VH � VL

VH + VL

�
VL, (SI-36)

it is significant since the EDC spectrum velocity is ex-
actly determined in terms of the two MDC spectrum
velocities. It is also a testable result, we show else-
where in the paper how this compares with known data.
Note that the four independent parameters VL, r,�0,�0

alluded to in the discussion below Eq. (SI-21), can
be determined from the directly measurable parameters

VL, VH , k̂kink,�0 (SI-34,SI-25,SI-3). Therefore, either set
of parameters gives complete knowledge of the EDC and
MDC dispersions, as well as the spectral function (up to
an overall scale).

5. Near Zone: Corrections to Energy dispersion due to
finite T.

In the regime dominated by finite T and e↵ects of ⌘
the elastic scattering parameter, we can also perform an

expansion in the limit when |Q| ⌧ �0, using Eq. (SI-23)
and Eq. (SI-24). The the first few terms are

E(k) =
�0

1 � r
�

r
r

2 � r
�0 +

VL

2 � r
(k̂ � k̂kink)

� (1 � r)2

2
p

r(2 � r)3
V 2

L

�0
(k̂ � k̂kink)2 + . . .(SI-37)

Similarly for the EDC dispersion

E⇤(k) =
�0

1 � r
� �0 + rVL(k̂ � k̂kink)

� (1 � r)2

2

V 2
L

�0
(k̂ � k̂kink)2 + . . . (SI-38)

These formulas display a shift in the energies due to �0

and also a �0 dependent curvature. Since the regime of
this expansion, |Q| < �0 is di↵erent from that of the
expansion in Eq. (SI-35) and Eq. (SI-33), we note that
velocities are di↵erent as well. Thus one must be careful
about specifying the regime for using the velocity formu-
lae.

Let us note that in this regime |Q| < �0 the two dis-
persions di↵er, with the EDC higher.

E⇤(k) � E(k) = {
r

r

2 � r
� 1}�0

� (1 � r)2

2 � r
VL(k̂ � k̂kink) + . . . (SI-39)

This equation gives a prescription for estimating �0 in
cases where the other parameters are known. Alterna-
tively in the MDC dispersion we expect to see a curva-
ture only near the location of the kink, this is su�cient
to fix �0: from Eq. (SI-37)

d2E(k)

dk̂2
= � (r � 1)2p

r(2 � r)3
V 2

L

�0
. (SI-40)

The curvature d2E(k)

dk̂2
can be estimated from the experi-

mental data to provide an estimate of �0.

C. The Dyson self energy

For completeness we present the low energy expansion
of the Dyson self energy, which gives rise to the spectral
function in Eq. (SI-21). We may define the Dyson self
energy from

⌃D = ! + µ � "k � G�1 (SI-41)

Using Eq. (SI-15) we obtain

=m⌃D = � 1

Z

R
⌦�

1 � 1
�0

(! � ⌫0 k̂ vf )

{1 + (! + ⌫ k̂ vf )/⌦ }2 + R2

s2⌦2
�⌦

2
 

(SI-42)
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The corresponding real part is given by

<e⌃D = µ � µ0 + ! � k̂ vf

� 1

Z

(! � ⌫� k̂ vf ) + 1
⌦ 

q2

{1 + (! + ⌫ k̂ vf )/⌦ }2 + R2

s2⌦2
�⌦

2
 

q2 = (! + ⌫ k̂ vf )(! � ⌫� k̂ vf ) +
R2

s⌦2
�

.

(SI-43)

The q2 term is quadratic (or higher) in the small variables

!, k̂ vf , however these small terms are needed if we want
to reproduce exactly Eq. (SI-16).

1. Useful identities and some Fermi Liquid parameters.

We list a few useful identities relating the various pa-
rameters

⌦ =
1 � s

s
�0,

s =
�0

�0 + ⌦ 

⌫0 =
⌫� + s ⌫ 

1 � s
= r ⌫�

⌫ =
r � 1 � rs

s
⌫�

r � 1 =
�0

⌦ 

✓
1 +

⌫ 
⌫�

◆
(SI-44)

Let us note the Fermi liquid renormalizations from
Eq. (SI-41)

d⌃D

dk̂

����
FS

= (
VL

Z
� vf )

d⌃D

d!

����
FS

= (1 � 1

Z
) (SI-45)

Therefore we write the Fermi liquid mass enhancement
that determines the heat capacity as:

m

m⇤ = Z

⇢
1 +

1

vf

d⌃D

dk̂

����
FS

�
= VL/vf = ⌫�. (SI-46)

Thus ⌫� is the inverse mass enhancement factor, obtain-
able from the ratio of the heat capacity and the bare
density of states. In this model we note that ⌫� is not
obliged to vanish as Z near the half filled limit n ! 1,
but may be a finite number of O(1). This is unlike the
Brinkman Rice “heavy metal’ type behavior m/m⇤ / Z,
which is prototypical of theories with a momentum inde-
pendent self energy.

Finally we note that the condition for the kink to occur
is, we recall, r > 1. From Eq. (SI-44) we see that this
requires a finite ⌦ (so that 1 > s > 0). We also need

�0 > 0 and
⇣
1 + ⌫ 

⌫�

⌘
> 0.
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Recent progress in extremely correlated Fermi liquid theory (ECFL) and the dynamical mean field theory
(DMFT) enables us to accurately compute in the d → ∞ limit the resistivity of the t − J model after setting
J → 0. This is also the U = ∞ Hubbard model. Since J is set to zero, our study isolates the dynamical effects
of the single occupation constraint enforced by the projection operator originally introduced by Gutzwiller. We
study three densities n = .75,.8,.85 that correspond to a range between the overdoped and optimally doped
Mott insulating state. We delineate four distinct regimes separated by three crossovers, which are characterized
by different behaviors of the resistivity ρ. We find at the lowest temperature T a Gutzwiller correlated Fermi
liquid regime with ρ ∝ T 2 extending up to an effective Fermi temperature that is dramatically suppressed from
the noninteracting value by the proximity to half filling, n ∼ 1. This is followed by a Gutzwiller correlated
strange metal regime with ρ ∝ (T − T0), i.e., a linear resistivity extrapolating back to ρ = 0 at a positive T0. At
a higher temperature scale this crosses over into the bad metal regime with ρ ∝ (T + T1), i.e., a linear resistivity
extrapolating back to a finite resistivity at T = 0 and passing through the Ioffe-Regel-Mott value where the mean
free path is a few lattice constants. This regime finally gives way to the high T metal regime, where we find
ρ ∝ T , i.e., a linear resistivity extrapolating back to zero at T = 0. The present work emphasizes the first two, i.e.,
the two lowest temperature regimes, where the availability of an analytical ECFL theory is of help in identifying
the changes in related variables entering the resistivity formula that accompanies the onset of linear resistivity,
and the numerically exact DMFT helps to validate the results. We also examine thermodynamical variables such
as the magnetic susceptibility, compressibility, heat capacity, and entropy and correlate changes in these with
the change in resistivity. This exercise casts valuable light on the nature of charge and spin correlations in the
Gutzwiller correlated strange metal regime, which has features in common with the physically relevant strange
metal phase seen in strongly correlated matter.

DOI: 10.1103/PhysRevB.96.054114

I. INTRODUCTION

The resistivity due to mutual collisions of electrons at low
temperatures reveals the lowest energy scale physics of charge
excitations in metallic systems and therefore is very important.
While it is fairly straightforward to measure experimentally,
it is also one of the most difficult quantities to calculate
theoretically, especially if electron-electron interactions are
strong. Motivated by the unexpected behavior of resistivity
and other variables in cuprate superconductors and related
two-dimensional experimental systems, some works have
postulated that the Fermi liquid theory—originally developed
and justified for weakly interacting systems—would break
down. In its place a zoo of non-Fermi liquids have been
postulated, without necessarily having a rigorous theoretical
underpinning. On the other hand the analytical framework of
the extremely correlated Fermi liquid theory (ECFL) [1] and
the well established dynamical mean field theory (DMFT) [2]
give a different type of result, where the strong interactions
compress the regime of Fermi-liquid type variation to a very
small temperature and frequency scale. This Fermi-liquid
regime is succeeded by a variety of regimes that display
unusual non-Fermi-liquid dependences on frequency and
temperature. The main goal of this work is to elucidate and
characterize the different regimes that arise in the ECFL
and DMFT theories and to provide a quantitative comparison
between the qualitatively similar results of these two theories,

as applied to the infinite-dimensional Hubbard model, with
the Hubbard charge repulsion parameter U taken to infinity,
U → ∞.

In earlier work [3] we have compared the ECFL and DMFT
results for the zero-temperature spectral functions, finding an
encouraging similarity. On scaling the frequency with the
respective quasiparticle weights Z of the two theories the
agreement is even close to quantitative. In the present work
we undertake the more ambitious comparison of the resistivity
and thermodynamic variables at finite temperatures.

In both the ECFL theory and the DMFT, the strong
interactions cause the quasiparticles of the lowest temperature
Fermi liquid to become fragile, i.e., the resulting quasiparticle
weight Z is very small, Z � 1. This is also arguably
the relevant regime in contemporary materials such as cuprate
superconductors, and hence interest in this problem is very
high.

In the problem studied here, namely U → ∞ and d → ∞,
the DMFT theory is formally exact. Further, the possibility
of computing the resistivity from the sole knowledge of the
single-particle Green’s function is enabled by the vanishing of
vertex corrections [4]. Despite these simplifications, obtaining
reliable results for the resistivity is technically formidable due
to the requirement of an impurity solver providing accurate
and reliable results for the self-energy function � on the real
frequency axis for both very low and very high temperatures.
This problem has only recently been solved in Ref. [5],

2469-9950/2017/96(5)/054114(13) 054114-1 ©2017 American Physical Society
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almost 25 years after the formulation of the DMFT theory.
The resistivity of the Hubbard model is now known for all
densities and all values of U, including U = ∞. This is a set of
exact results for the resistivity in interacting metallic systems
resulting from inelastic scattering and therefore represents
an important advance in the field. The DMFT results [5,6]
offer a unique opportunity to test a variety of techniques
and approximate methods for computing this variable. The
ECFL formalism, on the other hand, is in its early stages of
development and several technical innovations are ongoing so
as to enable reliable calculations in the challenging regimes of
the density n � 1 [3,7].

Lastly, in a recent work [8] our group has published a
voluminous high-temperature study using series expansion
techniques adapted for very strong correlations, thus extending
our understanding of the resistivity to the full range of
temperatures. This study is on the same model as the present
work and extends the results of Ref. [5] to much higher
temperatures. In these studies the effect the superexchange
J is absent due to the U = ∞ limit, and therefore there is no
superconducting regime that one might expect from a t − J

model in finite dimensions. By taking the limit of infinite U

we have also banished the static superexchange that the DMFT
includes for finite U [9–17]. However, these studies do capture
the notoriously difficult nonperturbative local Gutzwiller
correlation effects on the resistivity quantitatively. It seems
fair to say that our understanding of the strong correlation
problem has advanced significantly with these recent works.

In summary, at the lowest temperatures these earlier
studies [5–8] found a Fermi-liquid type resistivity with ρ ∝
T 2. This regime extends only up to TFL(δ), a Fermi-liquid
temperature scale dependent on the hole density (δ ≡ 1 − n).
We shall term this the Gutzwiller correlated Fermi liquid
(GCFL) regime. This regime is followed by three distinguish-
able regimes with linear in T resistivity having different slopes
and intercepts, which are separated by crossovers; a Gutzwiller
correlated strange metal (GCSM) followed by a “bad metal”
and finally a “high-T metal” regime, as discussed below (see
Fig. 1). The nomenclature stresses that these regimes originate
purely from Gutzwiller correlations (i.e., double occupancy
avoidance). In particular the regimes have no dependence
upon the superexchange energy J or other energy scales which
might be additionally involved in producing the related strange
metal found in cuprates [18,19].

In order to understand the low-temperature regimes, we
would like to throw light on the factors that lead to extraor-
dinarily low values of the Fermi temperature TFL(δ) that are
found. We also wish to provide a detailed understanding of the
behavior of constituent variables that lead to a linear resistivity
in the GCSM regime, starting at this low temperature. Here
the ECFL theory provides us with a great advantage since it is
largely analytical, and one can inspect the various constituents
in detail. It is also interesting to seek a possible causal
relationship between the linear temperature dependence of ρ

in the GCSM regime and the nature of incipient order (either
spin or charge) that might be present. For this purpose, it is
useful to compute, by using the techniques of Refs. [5,7],
the entropy and heat capacity, the magnetic susceptibilities
and compressibility. For completeness we also study the
thermoelectric transport, as well as a few dynamical quantities

FIG. 1. A schematic view of the different regimes of temperature
dependent resistivities found in the calculations of Refs. [5–8].
The various temperature scales are schematic. At the lowest T

we have a Gutzwiller-correlated-Fermi liquid regime (GCFL) with
ρ ∝ T 2. This quadratic variation terminates at a characteristic Fermi
temperature TFL(δ), which is found to be surprisingly small relative
to TBR = δD, the Brinkman-Rice temperature scale (2D is the
bandwidth). Upon warming we reach the Gutzwiller-correlated-
strange metal (GCSM) regime, which is the main focus of this
work. This gives way at higher T to the so-called bad-metal regime
with a resistivity that increases linearly beyond the Ioffe-Regel-Mott
value ρ0 characteristic of disordered metals. The temperature scale
of this regime is TBR discussed above. Finally at the highest T we
reach the high T regime with ρ ∝ T that can be extrapolated back
to pass through the origin. We thus find a total of four regimes
separated by three crossovers. It should be noted that in both theories
considered here, the approximate range of the temperatures scales
are TFL ∼ 0.004–0.01D, and the crossover to the bad-metal regime
occurs at T ∼ 0.04–0.06D for the densities considered (n = 0.75 to
n = 0.85).

such as the self energy of the electrons. In a following
paper we present other dyamical variables such as the optical
conductivity. These quantities provide a complete picture of
the metallic states having various temperature dependences
sketched in Fig. 1.

The lowest temperature Gutzwiller-correlated Fermi liquid
(GCFL) with ρ ∝ T 2 shows enhancements of certain static
susceptibilities that are similar to those of the normal state of
liquid 3He. The almost localized Fermi liquid theory (ALFL)
of these enhancements is discussed by Vollhardt, Wölfle, and
Anderson in Refs. [24,25] on the basis of Gutzwiller’s wave
function and its approximation to the Hubbard model, where
the variation of the Landau parameters with density at fixed
(large) U is considered. In particular Ref. [25] studies the
enhancements of Fermi liquid parameters leading to enhanced
effective mass m∗/m, magnetic susceptibility χspin/χ

0
spin, and

the bulk modulus (i.e., the inverse compressibility). Within the
ALFL all three stated enhancements are proportional to the
inverse of Z in that theory as well as in 3He. We check below
the extent to which this is true in the GCFL regime, to see how
it compares with the predictions of the ALFL theory, and find
that the behavior of the compressibility is somewhat different.
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Upon warming we reach the GCSM regime with a linear
temperature dependence of the resistivity ρ. This regime is
interesting since it is reminiscent of the strange metal regime
in the cuprate phase diagrams [18]. It is remarkable that this
linear resistivity regime extends to very low T , essentially the
TFL(δ), and one wants to know if this behavior is causally
linked to a change in entropy, i.e., to disordering. We aim at
correlating the GCSM regime with the extent of short ranged
spin or charge order in this regime. These should be reflected
in the heat capacity and the entropy gain. By computing these
variables, we show that upon warming from T = 0 substantial
entropy is released as we reach TFL. However in the entire
GCSM regime the magnetic susceptibility is Pauli like, i.e.,
with an approximately T independent behavior, and hence spin
entropy should be unchanged. From a high-T expansion and
on various general grounds, it is known that it changes into a
Curie-Weiss type behavior at the onset of the bad-metal regime.

The GCSM regime is followed by other subtly different T

dependences as described in Sec. III A which are obtained
in the bad-metal regime and the high-temperature regime.
The density dependences of the various crossover scales give
important insight into the physics of the resistivity. With one
exception, all calculations reported here are performed using
both ECFL and single-site DMFT methods. Using the two
methods is very important since it gives us the opportunity
to benchmark the mostly analytical and relatively new ECFL
technique with the established and largely numerical DMFT
method. The magnetic susceptibility is available only from
DMFT, and our presentation below seems to be the most exten-
sive result for this subtle variable reported to date [11,26,27].

The plan of the paper is as follows. In Sec. II we first
make some further technical remarks about the methods.
In Sec. III A we describe the various T dependences of
the resistivity which serve to define the GCFL and GCSM
regimes and also point to the higher T bad-metal and high-T
regimes. In Sec. III B we compare the chemical potential and
compressibility. In Sec. III C we discuss the frequently made
bubble approximation for the charge and spin susceptibilities
and show that the bubble susceptibility is exactly expressible as
an integral of the energy derivative of momentum distribution
function in d = ∞. We also note that it is a good approximation
to the exact result for the charge susceptibility but not so for the
spin susceptibility. In Sec. III D we illustrate the self energy
and local density of states from the two methods and find
that within ECFL the quasiparticles tend to have somewhat
smaller Z at the highest densities, as compared to DMFT. This
causes a few other differences described later. In Sec. III E we
examine further T dependent properties, the heat capacity and
entropy. Section III F discusses the magnetic susceptibility χ

from the DMFT calculations and lists some of the technical
difficulties that prevent its evaluation in the ECFL theory. In
Sec. III G we discuss the thermoelectric transport coefficients,
the Seebeck coefficient, and the Lorenz number as well as
the thermoelectric efficiency. In Sec. IV we discuss the salient
features of our results.

II. METHODS

In ECFL we have thus far used an expansion in the
parameter λ, which plays a role analogous to the quantum

parameter 1
2S

in quantum theories of magnetism, where S is
magnitude of the spin. In the first DMFT-ECFL comparison
paper [3], we used the second order terms in an expansion in
λ. This approximation led to a quantitatively reliable answer
for the quasiparticle weight Z at low temperature only in the
overdoped regime n � .75 but to a nonvanishing value of Z

for n → 1. In the more recent paper [7] this problem was
addressed using the exact, rather than the λ2, version of the
hole number sum rule, together with a cutoff for the tails of the
spectral function at very high energies. This procedure extends
the validity of the second order terms to higher density n �
0.85 so that the Z values at low T tend to zero as the insulating
state is approached and are comparable to, if somewhat smaller
than, the DMFT results. Due to this improvement, we found
that the resistivity is now on the same scale and exhibits
very similar crossover features as the results in Refs. [5,6], as
detailed below. In this work we report the comparison between
the T dependent resistivity and other thermodynamic variables
found from this cutoff scheme [28] and the exact results from
DMFT. We use the Bethe lattice semicircular density of states
D(ε) = 2

πD

√
1 − ε2/D2 in both theories.

The ECFL scheme used here has been described in detail
in Ref. [7] and consists of using the O(λ2) expansion with
the full number sum rule and the Tukey window used to
cut off the spectral width at very high energies. The DMFT
scheme has been described in detail in Ref. [3]. The NRG
calculations [29,30] in this work were performed with the dis-
cretization parameter 	 = 2, using the discretization scheme
from Refs. [31,32] with Nz = 16 interleaved discretization
grids. The truncation cutoff was set at 10ωN , where ωN is the
characteristic energy scale at the N th step of the iteration.
We used charge conservation and spin SU(2) symmetries.
The spectral functions were computed with the full-density-
matrix algorithm [33] and broadened with a log-Gaussian
kernel with α = 0.05, followed by a Gaussian kernel with
σ = 0.3T . The occupancy was controlled using the Broyden
method [34]. The self-energy was computed through the ratio
of correlators, 〈〈nσ̄ dσ ; d†

σ 〉〉/〈〈dσ ; d†
σ 〉〉 [35], corrected by the

term −wUHB/〈〈dσ ; d†
σ 〉〉, where wUHB is the spectral weight

of the upper Hubbard peak which was outside the NRG
energy window (we redid some calculations using the standard
approach that explicitly includes the UHB in the energy
window, using a very large but finite value of U ; we found
excellent agreement between the two computational schemes).

III. RESULTS

In this work we consider the temperature region T �
0.02D, which covers the range up to 200 K if we assume
D ∼ 10000 K , i.e. O(1) eV. Here D is the half bandwidth.
We study three densities (number of electrons per site)
n = 0.75,0.8,0.85. These are typical of the overdoped and
optimally doped cuprates.

A. DC resistivity

We begin with a summary of the results for the resistivity
which form the bedrock for this study. The findings in
Refs. [5–7] are extended in Ref. [8] to higher temperatures,
and from these we have a fairly complete understanding of
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FIG. 2. Comparison of the resistivity computed using the ECFL
(symbols) and the DMFT (dashed). σ0 = 1/ρ0 is the Ioffe-Regel-Mott
conductivity. As n gets closer to unity, the ECFL scheme employed
systematically underestimates Z relative to the exact DMFT values
(see Fig. 6 of Ref. [7]). This lowers the effective Fermi temperature
TFL and simultaneously enhances the magnitude of ρ for T > TFL,
a feature that is prominently visible above. It should be possible to
improve the quantitative agreement between the two theories in the
future [28].

the behavior of ρ at essentially all T . A cartoon of these
is sketched in Fig. 1. The resistivity exhibits a variety of
dependences on T upon warming from the absolute zero: (i)
the Gutzwiller correlated Fermi liquid (GCFL) regime with
a quadratic T dependence ρ ∝ T 2 up to a (hole) density-
dependent Fermi-liquid temperature TFL(δ) (δ = 1 − n); (ii)
the Gutzwiller-correlated-strange metal (GCSM) regime with
a linear T dependence ρ ∝ T + constant (constant < 0), (iii)
a “knee” connecting to the bad-metal (BM) regime with
again a linear T dependence ρ ∝ T + constant (constant > 0).
This regime is so named since the ρ crosses the fiduciary
Ioffe-Regel-Mott maximal resistance ρ0 at temperature on
the order of the Brinkman-Rice energy δD, followed by (iv)
a crossover to a high-temperature regime again with linear
T dependence ρ = AT , devoid of an offset so that the line
extrapolates back to pass through the origin.

In Fig. 2 we present the resistivity in the GCFL and GCSM
regimes. It is striking that the GC strange metal has a robust
linear T resistivity over a wide T scale. The linear resistivity
begins at TFL(δ) which can be driven to low values, ∼45 K (see
Ref. [7]), by the Gutzwiller correlations alone, even though the
bandwidth is of O(2) eV. We emphasize that this unexpectedly
drastic scale reduction yielding TFL � ZD � δD requires a
“hard” calculation for justification and can hardly be argued
from general principles. The slight difference in the TFL(δ)
between the two theories is due to the somewhat different
Z(δ) found in the two theories, for example Fig. 6 in Ref. [7]
shows that the ECFL gives a smaller Z than the DMFT [28].
We also note that using the standard value for ρ0 ∼ 300 μ

cm, the Ioffe-Regel-Mott resistivity [36], the absolute scale of
the resistivity computed in these approaches is quite similar to
that found in the experiments. For example, Fig. 1 in Ref. [7]
compares well on an absolute scale with the well-known
linear resistivity result of S. Martin et al. in Ref. [37] on
Bi2212, where the superconducting phase cuts off the region
T � 80 K.

Building on the analysis of Refs. [5–7], we derive a closed
form expression for the resistivity in terms of the chemical
potential and the real and imaginary parts of the single-particle
self-energy on the Fermi surface [Eq. (7)]. We begin with
the formula (Eq. (41) in Ref. [7]) for the conductivity on the
infinite-dimensional Bethe lattice:

σ = 2πD σ0

∫
dω

∫
dε

(
− ∂f

∂ω

)
φ(ε)ρ2

G(ε,ω), (1)

where σ0 = e2h̄�(0)/D (� is defined in Eq. (39) of Ref. [7]),
σ0 = 1/ρ0, and the transport function φ(ε) = �(ε)/�(0) is
given explicitly in Eq. (40) of Ref. [7] as φ(ε) = �(1 − ε2

D2 ) ×
(1 − ε2

D2 )
3
2 . The single-particle spectral function is

ρG(ε,ω) = 1

π

B(ω)

[A(ω) − ε]2 + B2(ω)
, (2)

where A(ω) ≡ ω + μ − �e �(ω), B(ω) = −�m �(ω), and
all objects depend implicitly on the temperature T . At low
temperatures and frequencies B(ω) � D, so that Eq. (1)
simplifies to

σ = σ0

∫
dω

(
− ∂f

∂ω

)
φ[A(ω)]

B(ω)
. (3)

Following [6], we perform a small-frequency expansion

φ[A(ω)] = φ[A(0)] + . . . ; B(ω) = B0 + B2 ω2 + . . . .

(4)

The linear order term in B(ω) as well as all higher order
terms in B(ω) and φ[A(ω)] make negligible contributions to
the conductivity in the temperature range considered and are
therefore neglected. The integral may be evaluated analytically
and yields

σ = σ0 φ[A(0)]

2πT
√

B2B0
ψ1

(
1

2
+ 1

2πT

√
B0

B2

)
, (5)

where ψ1(z) is the polygamma function, related to the
digamma function, �(z), through ψ1(z) ≡ d

dz
�(z) [38]. The

ratio B0
B2π2T 2 is weakly dependent on temperature and may be

replaced by its zero-temperature limit, see Fig. 3(b). In order
to find this limiting value, consider the GCFL regime where

B0 = B2π
2T 2 (GCFL). (6)

Substituting Eq. (6) into Eq. (5) and eliminating B2, we finally
obtain the simple formula

ρ = 12 ρ0

π2 φ[μ̄ − �e �̄(0)]
× B0, (7)

where we have used that ψ1(1) = π2

6 . Here, we denote the
zero-temperature limit of any variable Q as Q̄ and have used
that φ[A(0)] is practically temperature independent [Fig. 3(c)].
Hence, the resistivity is proportional to the imaginary part
of the self-energy on the Fermi surface. Moreover, the
proportionality constant is very weakly density dependent
(since this is true of φ[Ā(0)]). Equation (7) can be obtained
from Eq. (47) in Ref. [7] by multiplying the RHS of the latter
by the constant 12

π2 and setting T → 0 in the denominator.
The latter equation is obtained by retaining the leading order
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FIG. 3. ECFL calculation of the resistivity and related objects. Panel (a): The resistivity as a function of the temperature using the exact
formula, Eq. (1), compared with the approximation, Eq. (7), for n = 0.75, 0.8, 0.85 (bottom to top). Equation (7) is an excellent approximation
at all densities for all temperatures. Panel (b): Parameters resulting from a low-frequency expansion of the imaginary part of the self-energy
in the vicinity of the Fermi surface, plotted as a function of temperature, for n = 0.75, 0.8, 0.85 (bottom to top). B0 is the self-energy on
the Fermi surface, while B2 is the quadratic-frequency term. The ratio B2π2T 2

B0
→ 1 as T → 0 and is approximately constant as a function of

temperature. Panel (c): φ[A(0)] = φ[μ − �e�(0)], plotted as a function of the temperature, for n = 0.75, 0.8, 0.85 (bottom to top). φ[A(0)]
is practically independent of temperature and has very weak density dependence.

term in the Sommerfeld expansion of Eq. (3). In Fig. 3(a), we
plot the resistivity as a function of the temperature, using both
Eqs. (1) and (7), in the ECFL scheme. We find that Eq. (7) is
an excellent approximation at all densities and temperatures
considered, i.e., it holds in both the GCFL and GCSM regimes.

In the GCFL regime, substituting Eq. (6) into Eq. (7), and
using the fact that B2 is approximately constant, we find that

ρ = 12B̄2 ρ0

φ[Ā(0)]
× T 2 (GCFL). (8)

From Fig. 7 of Ref. [7], we know that B̄2 ∝ 1
Z̄2 , where Z is the

quasiparticle weight on the Fermi surface. Therefore, Eq. (8)
implies that ρ ∝ T 2

Z̄2 in the GCFL regime.
In Fig. 4, we plot the exact resistivity, together with

the approximation Eq. (7), both obtained using the DMFT
calculation [corresponding to Fig. 3(a) in the case of ECFL].
Once again, we find that Eq. (7) is an excellent approximation
at all densities and temperatures considered, i.e., it holds in
both the GCFL and GCSM regimes.

Finally, we note that the important effective Fermi tem-
perature TFL can be estimated as the temperature at which
the resistivity deviates from its low-temperature quadratic
behavior. We find at the three densities considered, the

0.000 0.005 0.010 0.015 0.020
0.00
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T D

ρ ρ 0
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Eq.1

FIG. 4. The exact resistivity [Eq. (1)] compared with the approx-
imation Eq. (7), using the DMFT calculation for n = 0.75, 0.8, 0.85
(bottom to top). Equation (7) is an excellent approximation at all
densities for all temperatures. [See Fig. 3(a) for the corresponding
figure in ECFL.]

so-determined effective Fermi temperature for ECFL is, in
agreement with Ref. [7], given by TFL ∼ .05Z̄D. In the case
of DMFT, we also find TFL ∼ .05Z̄D, where a slightly higher
value of Z̄ results in a slightly higher value of TFL, as compared
to ECFL.

B. Chemical potential and compressibility

The chemical potential in the ECFL theory is found
from the self-consistency condition of the Green’s func-
tion. The compressibility κ = n−2∂n/∂μ is determined by
numerical differentiation. The derivative is computed using
the finite difference formula ∂n/∂μ = [(n + δn) − n]/[μ(n +
δn) − μ(n)] with δn = 0.001. In the DMFT we used larger
δn = 0.01 and we performed two full DMFT runs for fillings
n and n + δn.

We see that the chemical potentials (Fig. 5) match well
apart from a constant shift [39]. The results obtained using

DMFT n=0.75 n=0.8 n=0.85
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0.4

0.6

0.8

1.0

1.2

1.4

1.6

T/D

E
C
FL

(
D
M
FT
,s
hi
fte
d)
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FIG. 5. Chemical potentials at n = 0.75, 0.8, 0.85 for ECFL
(symbols) and DMFT (dashed lines). The DMFT results are shifted by
a density-dependent constant. After the shift, the chemical potentials
almost coincide.
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two different impurity solvers (NRG and CT-HYB QMC) in
the DMFT are in agreement, thus the difference is not related
to some technical issue in the NRG but is an actual discrepancy
between DMFT and ECFL.

In our earlier work on the single impurity Anderson
model [40], using a scheme that is an adaptation of that in
Ref. [3], we studied the single impurity energy, which is a close
analog of the chemical potential in the present problem. There
we found that the location of the impurity energy found from
the second order ECFL equations matched very closely the
impurity energy found in the NRG (see Table 1 in Ref. [40]).
In view of that excellent agreement, the current discrepancy on
the absolute scale of the chemical potential between the DMFT
results (also from NRG) and the present second order scheme
is somewhat unexpected. It would appear that the different
hole number sum rule and the cutoff scheme used here relative
to the scheme in Refs. [3,40] influences this variable and needs
to be investigated more closely in the future.

We note that the compressibilities (Fig. 6) are also roughly
similar, and both theories show a suppression relative to the
free fermion theory. The free fermion theory shows a slight
monotonic decrease of the compressibility with T . In the
GCFL and GCSM regimes, the ECFL compressibility shows
an increase with T , followed by a slight fall with T in the
bad metal regime. In Fig. 6(b), we show that in the ECFL
theory Z/κ is a constant within numerical errors (∼±3.4%)
at T = 0.001D. This is not the case in the DMFT, where Z is
proportional to δ, while κ behaves approximately as κ ∝ δ0.2

close to the doping-driven Mott transition [3]. In the GCFL
regime, if we assume that the limit n → 1 follows the almost
localized Fermi liquid theory [24,25], we should expect the
compressibility to scale with Z. This is in accord with the
results of ECFL Fig. 6 panel (b) but not with the DMFT.

C. Bubble susceptibility

The knowledge of the Green’s functions and the nu-
merically determined exact compressibility and magnetic
susceptibility χspin [see below Sec. III F] enable us to check
a popular assumption of retaining only the bubble graphs and
throwing away the vertex correction for these quantities. We
write the charge susceptibility χc = dn/dμ as

χc = 1

βNs

d

dμ

∑
k,ωn,σ

eiωn0+
Gσ (k,iωn)

= − 1

βNs

∑
k,ωn,σ

G2
σ (k,iωn)

{
1 − d

dμ
�σ (k,iωn)

}
(9)

and similarly for χspin by replacing d
dμ

→ d
dB

, where B is the
magnetic field. The vertex corrections thus correspond to the
μ or B derivatives of the self energy. Approximating this by
dropping the derivative of the self energy, we get χc ∼ χspin ∼
χBubble where

χBubble = − 1

βNs

∑
k,ωn,σ

G2
σ (k,iωn). (10)
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FIG. 6. (a) Compressibility κ = n−2∂n/∂μ of ECFL (symbols),
DMFT (dashed lines), and free fermions (dotted lines). The DMFT
results give a systematically higher value of compressibility than the
ECFL theory. (b) Z/κ for the lowest temperature T = 0.001D at
the three densities considered for ECFL (blue) and DMFT (red). The
ECFL result for the compressibility is proportional to the quasiparticle
weight Z, unlike the DMFT result which displays some variation. The
difference in compressibility between the two theories seems related
to the density dependent shift in chemical potentials noted in Fig. 5.

As usual we can convert the sum to a contour integral using
the pole structure of the Fermi function f (ω) and write

χBubble = 2

Ns

∑
k

∫
�

dω

2πi
f (ω)G2(k,ω)

= 2

πNs

∑
k

∫
dωf (ω)�m G2(k,ω + i0+), (11)

where � is a closed contour encircling the imaginary
axis in a counterclockwise fashion, and we rotated the
axis to a pair of lines parallel to the real axis to obtain
the final line. Using the standard definition of the spec-
tral function ρG(k,ω) = − 1

π
�m G(k,ω + i0+) we may write

�m G2(k,ω + i0+) = (−2π )�e G(k,ω) ρG(k,ω) to express
χBubble = − 4

Ns

∑
k

∫
dωf (ω)�e G(k,ω)ρG(k,ω). In the limit
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FIG. 7. The momentum distribution curves at three densities n =
.75,.8,.85 (top to bottom at ε = −1) at T = .004 D [panel (a)] and
T = .02 D [panel (b)]. The ECFL curves are solid symbols and the
DMFT curves are dashed lines.

d → ∞ the Dyson self energy is independent of k, and
therefore we can write �m G2(ε,ω + i0+) = �m d

dε
G(ε,ω +

i0+) = −π d
dε

ρG(ε,ω), where we exchanged the two op-
erations in the last line. Using the definition of the sin-
gle particle momentum distribution function nk → n(ε) ≡∫

dωf (ω)ρG(ε,ω) we can perform the ω integration in Eq. (11)
and get a compact relation valid in high dimensions:

χBubble = −2
∫

dε D(ε)
d

dε
n(ε). (12)

Here D(ε) = 2
πD

√
1 − ε2/D2 is the band density of states per

site per spin, and D is the half bandwidth. For noninteracting
electrons the function n(ε) is a constant with a unit jump at εF ,
and we recover the standard result χ0 = 2D(εF ).

In the correlated problem, the jump at the Fermi energy is
Zk by Migdal’s theorem, and so its contribution to χBubble is Zk .
The background also contributes to the integral in Eq. (12), and
it is important to understand its behavior as n → 1. In Fig. 7
we display the momentum distribution at the three densities
considered at two temperatures. We note that the entire
variation of the monotonic function n(ε) is on the scale of δ;
it settles down to a flat function n(ε) = 0.5 at n = 1− and for
small departures from half filling, the occupied (unoccupied)
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FIG. 8. The charge susceptibilities χc = dn/dμ, which are re-
lated to compressibility κ as χc = n2κ . The numerically exact values
versus bubble estimates [Eq. (12)] in panel (a) DMFT (full and dashed
lines) and in panel (b) from ECFL (empty diamonds and solid circles).

region is enhanced (depleted) by an area that is proportional
to δ = 1 − n. Thus we see that as n → 1, the background
contribution is at most as large as δ, and thus χBubble is a
suitably weighted average of δ and Z. In the density regimes
we are considering, the δ variation of Z is close to δ1.39 rather
than δ (see discussion in Ref. [3]), and hence this balance can
only be determined by a numerical evaluation. From Eq. (12)
we can evaluate χBubble, and the results are shown from both
theories at the three densities δ = .25,.2,.15 in Fig. 8. Within
ECFL it appears that χBubble is dominated by the Migdal jump
contribution; the spacing between the three relatively constant
lines increases at lower δ. Within DMFT the situation appears
to be reversed and χBubble seems to scale with δ. In Fig. 6 we see
that the DMFT results for Z/κ have a distinct positive slope
relative to the ECFL results, and this is consistent with the
above discussed differences in the computed χBubble as well.

D. Self-energy and local density of states

In this section we study the imaginary part of the
self energy ρ�(ω) = − 1

π
�m�(ω) and the (local) spectral
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FIG. 9. Single particle decay rates, i.e., the spectral functions of
self-energy [ρ�(ω) = −π−1�m�(ω)] of ECFL (symbols) and DMFT
(dashed lines) for a range of temperatures.

function integrated over the band energies ρ loc
G (ω) =

− 1
π
�m

∫
dε D(ε) G(ε,ω). The results of the two theories,

including the magnitudes and their variation, are very close
at low energies. The ECFL self-energy misses a maximum in
ρ�(ω) found in DMFT between ω ∼ −0.1D and ω ∼ −0.2D,
see Fig. 9. This feature was already noted in Ref. [3] and it
is expected to influence the results of various quantities, such
as the optical conductivity and dynamical Hall constant, but

T=0.002 D
n=0.75

n=0.8

n=0.85

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
0.0
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0.4
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0.6

0.7

/D

Glo
c (

)

FIG. 10. Local density of states ρ local
G (ε) of ECFL (symbols) and

DMFT (dashed lines) at T = 0.002D.

only at a fairly large energy. The imaginary part of the self
energy in both theories shows a significant ω3 type (i.e., odd
in frequency) correction to the simple-minded expectation of
a ω2 behavior from Fermi liquid theory. This type of a skew
has been argued in Ref. [41] to be responsible for the unusual
and distinctive spectral functions in real materials such as the
cuprates.

The local spectral functions of the two theories, shown in
Fig. 10, are similar. They exhibit a sharpening of the maximum
as n increases. Let us note that this object is relevant for
angle integrated photoemission studies as well as STM studies,
where one would also have to correct for the one electron
density of states showing structure beyond that in the present
theory.

E. Entropy and heat capacity

The heat capacity is computed in the ECFL theory
by numerically differentiating the internal energy as CV =
∂EK/∂T on a fine T grid. From its numerical integration∫ T

0 dT ′CV (T ′)/T ′ we find the entropy. A similar procedure is
used in the DMFT: The kinetic energies were computed on
an equally spaced temperature grid (step size �T = 10−3D),
numerically differentiated, smoothed using a Gaussian filter to
obtain the heat capacity CV , then interpolated using second-
order polynomials, and finally integrated to obtain the entropy.

The heat capacity CV is displayed in Fig. 11(a). We note
that CV has a Schottky peak near T ∼ TFL which becomes
sharper as the density increases. At lower densities (n = 0.7,
0.75), a linear-T behavior is resolved, as we expect for a
Fermi liquid. In Fig. 11(b) we display CV /T , from which
we see that for densities closer to half-filling (n = 0.8,0.85),
the linear behavior of heat capacity is not clearly resolved due
to the small TFL scale, and also due to increasing numerical
uncertainties near half filling. Consequently, we find CV /T

appears to be growing as T decreases, instead of saturating.
In Fig. 11(c) we show the product of the heat-capacity slope
γ = CV (T )/T and the quasiparticle residue Z at a low T

corresponding to the GCFL regime. This product is expected
to be a constant for localized Fermi liquids [24]. At δ = 0.15,
we see however some variation in both ECFL and DMFT
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FIG. 11. (a) Specific heat computed from the kinetic energy
by differentiation as CV = ∂EK/∂T for ECFL (symbols), DMFT
(dashed lines), and free fermions (dotted lines). For n = 0.8 and
n = 0.85 the heat capacity shows a gentle maximum at a characteristic
T . (b) The ratio CV /T versus T of ECFL (symbols) and DMFT
(dashed lines). Taking the ratio with T wipes out the maximum seen
in (a). (c) γ × Z at T = 0.001D.

results. For higher hole densities δ = 0.2,0.25, it is indeed
almost a constant.

In Fig. 12 we plot the entropy of the two theories, which
give very similar results, and that of the free Fermi gas
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FIG. 12. The entropy versus T computed as
∫ T

0 dT ′CV (T ′)/T ′

for ECFL (symbols), DMFT (dashed lines), and free fermions (dotted
lines).

with a much lower entropy recovery at these temperatures.
It is revealing to compare the heat capacity curve at n =
0.8 in Fig. 11(a), with the resistivity results in Fig. 2 at
the same densities. Both theories show a broad maximum
in the heat capacity near the corresponding Fermi liquid
temperature TFL(δ); this is the temperature where the GCFL
quadratic behavior of resistivity gives way to a linear be-
havior of the GCSM. At this temperature the entropy per
site [see Fig. 12] is ∼0.2 kB , compared to the high T

(T = ∞) value of 1.0119 kB , obtained from Sideal ≡ ST =∞ =
kB{n log 2 − n log n − (1 − n) log(1 − n)}. This corresponds
to about 20% release of the entropy. For comparison, the Fermi
gas on the Bethe lattice releases much less, about 1–2% entropy
at a comparable T/D. At lower particle densities n = 0.8,0.75
we again see that a ∼15–20% release of the entropy occurs at
the corresponding Fermi liquid temperature TFL(δ), however
the heat capacity has a more rounded behavior.

In order to explore this further, in Fig. 13 we display the
resistivity and the entropy recovery on the same T scale. We
may thus take as a rule of thumb that at TFL, the GCFL entropy
release is ∼15–20% relative to the maximum. This implies a
substantial loss of coherence relative to the Fermi gas, i.e., the
disordering of either the configurational (i.e., charge) degrees

TFL
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FIG. 13. Resistivity (blue circle), specific heat (light blue square),
and entropy (red triangle) as percentage of the ideal entropy at infinite
temperature Sideal. The (Schottky) peak in the heat capacity is close
to TFL, the onset point of the linear-T resistivity, or the end of the
crossover region.
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FIG. 14. Magnetic susceptibility (DMFT results). We note that
the Stoner enhancement grows as δ → 0 and its T dependence is
Pauli like but with a somewhat enhanced T dependence at higher n.
The crossover to linear resistivity occurs (see Fig. 2) at fairly low
T � .005D at these densities but has no reflection on the variation
of χspin. We may thus infer that spin disordering is not relevant to the
linear resistivity seen here.

of freedom or to the spins. Below we study the magnetic
susceptibility to explore which of these is responsible. We find
that the spins are largely unaffected when we go through TFL,
thereby implicating the charge degrees of freedom.

F. Magnetic susceptibility

The uniform magnetic susceptibility close to the Mott
transition, n � 0.75, is one of the more difficult variables to
compute reliably by any technique, since it is highly enhanced
by Stoner factors χspin/χ

0
spin ∼ 10. In the ECFL theory we

found the numerical precision required for computing the
susceptibility hard to achieve with the scheme outlined in
Ref. [7]. Although the local spectral functions for either
spin are confined to a compact region in frequency, it is
their difference that is needed for the susceptibility. This
difference is numerically very small and smeared over a
large frequency range making it very difficult to control. The
magnetic susceptibility χ is a sensitive variable also within
the DMFT using the NRG as the impurity solver, in particular
away from half filling at low temperatures, thus it is seldom
studied using this approach (see, however Refs. [11,26] for
some very early DMFT results, and Ref. [27] for a more recent
study using the DMFT(NRG) of the half-filled Hubbard model
in magnetic field at T = 0). With some effort we have found it
possible to estimate its temperature dependence. We used the
method of finite field [2,42] with H = 10−4D � T , which is
small enough for the system to remain well inside the linear
response regime but sufficiently large to be little affected by
numerical noise. As a further test, we redid some calculations
for H = 10−3D, finding good consistency of the results.

In Fig. 14 we present the DMFT Stoner enhancement of
the susceptibility χspin/χ

0
spin as a function of T . Here the spin

susceptibility is denoted by χspin and for the noninteracting
band case it is given by χ0

spin = 2μ2
BD(εF ), where D is the

band density of states per spin per site defined earlier. The scale
of the Stoner enhancement is rather large, ∼10. We find that
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FIG. 15. (a) Thermopower of ECFL (symbols) and DMFT
(dashed lines). Both amplitudes and temperature derivatives are
similar for T � .005 but depart at higher T. (b) Electronic thermal
resistivity κ−1

e of ECFL (symbols) and DMFT (dashed lines).

the T → 0 value is roughly consistent with 1/Z, as expected
for an almost localized Fermi liquid [24].

It is interesting that the Stoner factor and hence χspin is
Pauli-like in the temperature range studied here, i.e., the GCFL
and the GCSM regimes. It does not reflect the change in the
resistivity behavior from quadratic to linear. Thus the magnetic
contribution to the entropy change in Fig. 11 is very small, and
we must infer that the GCSM regime continues to have a
quenched spin entropy, as in the Fermi liquid. It would appear,
by inference, that the entropy released at TFL is charge related
and the crossover from the Fermi liquid to the GCSM may be
viewed as partial charge disordering. This is to be contrasted
to the crossover from GCSM to the higher temperature bad
metal regime, where the spin degrees of freedom do become
partially unscreened [43,44].

G. Thermoelectric transport

For completeness we present the results for the ther-
mopower St , the electronic thermal conductivity κe, and the
Lorenz number L, as well as the thermoelectric figure of merit
in Figs. 15 and 16. We record the expressions following from
standard transport theory [45]; the thermopower St and elec-
tronic thermal conductivity κe are expressed in terms of three
Onsager transport coefficients L11, L12 = L21, and L22 as
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FIG. 16. (a) Lorenz number of ECFL (symbols) and DMFT
(dashed lines). The Lorenz number saturates to a constant (�2.1)
which is typically expected for a Fermi liquid at low temperatures.
(b) Figure of merit for ECFL (symbols) and DMFT (dashed lines).
The low values of ZT found here are typical of normal metals.

follows:

σxx = e2L11, (13)

St = − kB

|e|T
L12

L11
, (14)

κe = k2
B

T

(
L22 − L2

12

L11

)
. (15)

In infinite dimensions, these can be found in a straightforward
way from the spectral functions due to vanishing vertex
corrections:

Lij = σ0

e2

∫
dω(−f ′(ω))ωi+j−2

∫
dε �xx(ε)A2(ω,ε). (16)

The Lorenz number is

L = e2

k2
B

κe

σxxT
, (17)

and the electronic thermoelectric figure of merit

ZT = T σxxS
2
t /κe (18)

In the usual Fermi liquid theory, the electronic thermal
conductivity κe ∼ T −1 and the thermopower St ∼ γ T . The

classic Lorenz number for a gas of particles with constant
relaxation time is L0 = π2/3 when we set kB = |e| = 1, while
for Fermi liquid one expects LFL = L0/1.54 ≈ 2.13 [46].
In previous DMFT studies [45,47–49], thermal transport
coefficients were studied focusing on the very high temperature
regime of the bad metals. While our results qualitatively
agree with the previous studies, the crossover of thermal
transport coefficients from GCFL to GCSM in the low-T
regime (relative to the very high-T bad metal regime) are
resolved. Both the thermopower and thermal resistivity of
ECFL change slope near TFL. In DMFT calculation, only the
thermal resistivity shows similar crossover behavior, while the
thermopower seems to be insensitive to the crossover from
GCFL to GCSM. The Lorenz number of both ECFL and
DMFT converges to L � 2.1 in the low-T limit, as expected
for a Fermi-liquid ground state. The low values of ZT , shown
in Fig. 16(b), are typical of normal metals.

IV. CONCLUSIONS

This work achieves two goals. On one hand, we explored
the low-temperature transport regimes of lattice fermions with
the constraint of no double occupancy (Gutzwiller projection)
in the limit of infinite dimensions. We focus on the temperature
range where the Fermi-liquid quadratic resistivity gives way to
the first T linear regime that we dubbed Gutzwiller correlated
strange metal; this crossover occurs on the temperature scale
which is much lower compared with the bandwidth (and
the Brinkman-Rice scale) but which actually corresponds to
the experimentally most relevant range of order 100 K. On
the other hand, this work had a further methodological goal
of comparing the results for a number of transport, spec-
troscopic, and thermodynamic quantities obtained using the
mostly analytical extremely correlated Fermi liquid (ECFL)
theory and the accurate numerical results from the dynamical
mean field theory (DMFT) approach based on the numerical
renormalization group as the impurity solver. We found that
at the crossover temperature scale both techniques indicate a
change of behavior in most of the quantities we investigated.
The two methods have generally good agreement, which
improves upon lowering either the temperature or the density.

The origin of the crossover in the resistivity has been tracked
down to the temperature dependence of −�m�(0,T ), the
imaginary part of the self-energy on the Fermi surface, which
starts to deviate from its low-temperature asymptotic behavior
on the scale TFL (Fermi-liquid temperature). This low-energy
scale is produced by purely local Gutzwiller correlation
effects, i.e., it is a direct consequence of the constraint of
no double occupancy of the lattice sites. We managed to
show that ρ(T ) ∝ −�m�(0,T ) [Eq. (7)], which accounts well
for the ρ(T ) dependence in the (GCFL)-Fermi-liquid and
(GCSM)-strange metal regimes. As a result, we are able to
explain the temperature dependence of the resistivity in terms
of the temperature dependence of the imaginary part of the
self-energy on the Fermi surface.

The charge compressibility of the DMFT theory at infinite
U is seen to differ somewhat from that of the ECFL and also
from the almost localized Fermi liquid. Developments in ECFL
are underway in order to resolve the difference from DMFT.
The compressibility shows a kink on the scale of TFL and the
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heat capacity has a weak peak. The magnetic susceptibility,
however, shows no change across this crossover. The crossover
hence seems to be related to the charge degrees of freedom,
while the spin entropy is quenched in both Fermi liquid and
strange metal regimes. It thus seems that the GCSM regime
has a highly unusual composition, with some disordering of
the charges, presumably in anticipation of the incipient Mott
insulating state, without the participation of the spins.

In a following paper, Ref. [50], we present results for the
dynamical Hall constant and Hall angle indicating that the
two-relaxation-time behavior in transport properties observed
in a number of cuprates emerges upon entering the GCSM
regime. Finally we note a recent paper, Ref. [51], where the
results of a two-dimensional version of the equations studied
here are presented.
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Abstract
Low energy properties of themetallic state of the two-dimensional t-Jmodel are presented for second
neighbor hoppingwith hole-doping ( -¢t 0) and electron-doping ( ¢ >t 0), with various super-
exchange energy J.We use a closed set of equations for theGreens functions obtained from the
extremely correlated Fermi liquid theory. These equations reproduce the known low energies features of
the largeUHubbardmodel in infinite dimensions. The density and temperature dependent
quasiparticle weight, decay rate and the peak spectral heights over the Brillouin zone are calculated.
We also calculate the resistivity, Hall conductivity, Hall number and cotangentHall angle. The spectral
features display high thermal sensitivity atmodestT for density 2n 0.8, implying a suppression of the
effective Fermi-liquid temperature by two orders ofmagnitude relative to the bare bandwidth. The
cotangentHall angle exhibits aT 2 behavior at lowT, followed by an interesting kink at higherT. The
Hall number exhibits strong renormalization due to correlations. Flipping the sign of ¢t changes the
curvature of the resistivity versusT curves between convex and concave. Our results provide a natural
route for understanding the observed difference in the temperature dependent resistivity of strongly
correlated electron-doped and hole-dopedmatter.

1. Introduction

The t-Jmodel in 2-dimensions (2d) has been argued to be of fundamental importance for understanding
strongly correlatedmatter, including the highTc superconductors [1, 2]. Due to the difficulties inherent in the
strong coupling problem, very few techniques are available for extracting its low temperature physics. Towards
this endwe have recently developed the extremely correlated Fermi liquid (ECFL) theory [3, 4]. It is an analytical
method for treating very strong correlations of lattice Fermions, employing Schwinger’s technique of functional
differential equations togatherwith several important added ingredients.While further details can be found in
[3, 4], a brief summary of themain idea behind the ECFL theory seems appropriate.We consider theHubbard
model with a large interaction l ¥U , and hence the name of the theory. Awell known expansion in the
inverse powers ofU leads to the t-Jmodel (defined below [2]). Taking the infiniteU limit forces one to abandon
the conventional Feynmandiagrambased perturbation theory inU, and tomake a fresh start. The ECFL theory
starts with the graded Lie-algebra of theGutzwiller projected, i.e. infinite-U limit Fermi operators equations (2),
(3). This leads to an exact functional differential equation for theGreens functions, known as the Schwinger
equation ofmotion equation (18) or (22). In this equation, a parameterλ is introduced;λ is bounded in the
rangeÎ [ ]0, 1 and represents the evolution from the free Fermi limit.We then use a systematic expansion in the
parameterλ, for solving the Schwinger equations perturbatively inλ. In this schemewe start with the
uncorrelated Fermi gas at l = 0 and end up at the fully correlated projected Fermion problem at l = 1. The
scheme thus represents a generalization of the usual perturbation theory for canonical Fermionicmodels, in
order to handle a non-canonical Fermionic problem such as the t-Jmodel. The context of interacting Bosons
provides a useful parallel. In thewell knownproblemof representing spin S variables in terms of canonical
Bosons, one uses the expansion parameter

S

1

2
with a similar range Î [ ]0, 1

S

1

2
.Wemay think ofλ as being
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analogous to the parameter
S

1

2
as shown in [4]. The introduction of the parameterλ and theλ-expansion scheme

thus enabled are among themain technical advances introduced in the ECFL theory.
This approach has been recently benchmarked [5–7] against the numerically exact results from the single

impurity Andersonmodel, and the = ¥d Hubbardmodel fromdynamicalmeanfield theory (DMFT) [8, 9].
These tests provide quantitative support to our general scheme described below, especially for low energy
response. Our scheme has no specific limitation to = ¥d , and is expected to be reasonably accurate in any
dimension >d 1, including 2 dimensions, a case of great experimental importance due to theHighTc cuprate
materials. It is applied here to probe themetallic state of the t-Jmodel in 2d.We present results for the electron
self energy, the spectral functions, the resistivity theHall constant and theHall angle at various temperatures and
electron density =n N Ns (number of electrons per site).We also frequently use the notation of hole density
d = -( )n1 (in addition to n), following the convention used in several experimental studies of dopedMott
systems.

We explore various values of the parameters of the t-Jmodel, including the second neighbor hopping, which
turns out to play a very important role in determining the effective Fermi liquid (FL) temperature scale.We
investigate the resistivity due tomutual collisions of electrons at low temperatures, and its dependence on the
parameters of themodel.We pay special attention to the resistivity since this easilymeasured—but notoriously
hard to calculate object, reveals the lowest energy scale physics of charge excitations inmetallic systems, and
therefore is of central importance.

2.Methods

In this sectionwe summarize the equations used in the present calculation, together with the arguments leading
to them- further detailsmay be found in earlier papers on this theory [3, 5–7]. In section 2.1 themodel is defined
and the exact Schwinger–Dyson equations ofmotion (EOM) are written out. In section 2.2 theλ parameter is
introduced and the exact factorization of theGreens function into an auxiliary Greens function and a caparison
function are noted. In section 2.3we summarize the shift identities of the t-Jmodel. The shift transformation is a
simple and yet important invariance of the t-Jmodel leading to important constraints on possible
approximations.Within theλ expansion, this invariance obligates the introduction of a second chemical
potential u0, which is then treated as a Lagrangemultiplier to befixed through sum-rules. In section 2.4we
collect the equations of the second order theory. In section 2.5we summarize the rationale for a high energy
cutoff of the equations given in section 2.4.

2.1. The t-Jmodel preliminaries
The t-Jmodel is a two component Fermi systemon a lattice, defined on the restricted subspace of three local
states, obtained by excluding all doubly occupied configurations. The allowed states at a single site are ñ∣a with
= ³ ma 0, , , and the double occupancy state ³mñ∣ is removed by the (Gutzwiller) projection operator
= P - ³ m( )P n n1i i iG .We use theHubbard operators = ñá∣ ∣X a bi

a b, , which are expressible in terms of the usual
Fermions s s

†C C,i i and theGutzwiller projector PG as:

= = =s
s

s
s

ss
s s

¢
¢ ( )† †X P C P X P C P X P C C P; ; . 1i i i i i i i

0
G G

0
G G G G

These obey the anti-commutation relations

d d s s= -s s
s s

s s{ } ( ) ( )¯ ¯X X X, 2i j i j i j i
0 ,0

, ,
,i j

i j
i j

and the commutators

d d d d= = -s s s
s s

s s s s
s s

s[ ] [ ] ( )X X X X X X, ; , . 3i j ij i i j ij i
0 0 0 0i j k

i j
k i j k

i k
j

TheHamiltonian of the general t-JmodelHtJ is

å å åm

= +

=- - = -s s ss ss s s¢ ¢G G
⎜ ⎟⎛
⎝

⎞
⎠ ( )

H H H

H t X X X H J S S X X

,

;
1

2
.

1

4
, 4

tJ t J

t
ij

ij i j
i

i J
ij

ij i j i j
0 0

wherewe sumover repeated spin indices. Herem is the chemical potential and the spin is given in terms of the
Fermions and the Paulimatrices tG as usual t= s

ss
s

¢
¢G G

S X Xi i
1

2
0 0 .Wewill restrict in the following to nearest

neighbor exchange J, andfirst (t) and second neighbor ( ¢t ) hopping on a square lattice.
For the purpose of computing theGreen’s functionswe add Schwinger sources to theHamiltonian; the

commuting (Bosonic) potential . couples to the charge as well as spin density. These sources serve to generate
compact Schwinger EOM, and are set to zero at the end. The zero source equations are usually termed as the
Schwinger–Dyson equations. In that limit we recover spatial and temporal translation invariance of theGreens

2
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function. Explicitly wewrite

� � � .òå t t t t t= =
b

s s s s¢ ¢ˆ ˆ ( ) ˆ ( ) ( ) ( ) ( )i i X, d ; , 5S
i

S S i i
0

and all time dependences are as in t = t t-( )Q Qe eH HtJ tJ . The generating functional of Green’s functions of the t-J
model is

. �º b
t

- -[ ] ( ) ( )ˆ
Z TTr e e . 6tJ

HtJ S

It reduces to the standard partition function on turning off the indicated source terms theGreen’s functions for
positive times - -t b0 j , are defined as usual:

� �t t t t= -á ñss t
s s

¢
- ¢( ) ( ( ) ( )) ( )ˆ

i f T X X, e , 7i f i i f f
0 0S

where for an arbitrary) we define

) )�á ñ º b
t

- -( ) ( )ˆ
Z

T
1

Tr e e . 8tJ
HtJ S

Wenote that sn , the number of particles per site, is determined from the number sum rule:

� t t=s ss
-( ) ( )n i i, 9

andm the chemical potential isfixed by this constraint. By taking the time derivative of equation (7)we see that
theGreen’s function satisfies the EOM

� ��d t t d g t t t t¶ = - - - - á + ñt s s s s t
s s-( ) ( ) ( ( )) ( [ ˆ ( ) ( )] ( )) ( )ˆ

i f i T H i X X, 1 e , , , 10i f if i tJ S i i i f f
0 0

i i f i f
S i f

where the local Green’s function is defined as

�g t s s t t=s s s s
-( ) ( ) ( )¯ ¯i i i, , 11i a b i ia b b a

with the notation

s s= -¯ ( ). 12i i

Using theHamiltonian equation (4) and canonical relations equations (2), (3)we find

å å åm s s s s= + - +s s s

s

s s s s s s

¹

[ ] ( ) ( ) ( )¯ ¯ ¯ ¯H X t X X t X X J X X,
1

2
13tJ i

j
ij j i

j
ij i j i j

j i
ij i j j i

0 0 0 0 0i i i

j

i j j i j j

and

� .t = -s s s s[ ˆ ( ) ] ( )i X X, . 14S i i i i
0 0i i j j

Substituting into equation (10) and using the free Fermi gasGreen’s function:

.mt t d d d t d t t= - ¶ + - -s s s s t
s s- ( ) { [ ( ) ] ( )} ( ) ( )i j tg , , 15i j ij ij ij i i i j0, ,

1
i j i j i

i j

we obtain

�

å å

t t t t d t t d g t

s s t t t s s t t t

= - -

- á ñ + á

s s s s s s

s
t

s s s s

s
t

s s s s

- ( ) ( ) ( ) ( ( ))
( ) ( ( ) ( ) ( )) ( ) ( ( ) ( ) ( )) ( )¯ ¯ ¯ ¯

i j j f i

t T X X X J T X X X

g , , 1

1

2
. 16

i j j f i f if i

j
ij i j i i j i f f

k
ik i j k i i i f f

0, ,
1

0 0 0 0

i j j f i f

j

i j j f

j

i j j f

Wenext ‘reduce’ the higher orderGreen’s function to a lower one using the identity (valid for any operator)):

) )
.

)t t
d

d t
á ñ = á ñ á ñ - á ñt

ss
t

ss
t ss t

¢ ¢
¢

( ) ( ) ( ) ( )T X T X T T 17i i
i

and rearranging termswe obtain the fundamental Schwinger EOM:

�t t t t t t t t d d t t d g t- - ´ = - -s s s s s s s s s s s s
-( ( ) ˆ ( ) ( )) ( ) ( )( ( )) ( )i j X i j Y i j j f ig , , , , , 18i j i j i j j f if i f i0, ,

1
1

i j i j i j j f i f i f

wherewe defined the functional derivative operator at site i and time ti

.
t s s

d
d t

=s s s s( ) ( ) ( )¯ ¯D i , 19i i j
i i

i j i j

the composite derivative operator

åt t d t t t d t= - ´ - +s s s s s s

⎛
⎝⎜

⎞
⎠⎟

ˆ ( ) ( ) ( ) ( ) ( )X i j t D i J D k,
1

2
20i j i j ij i ij

k
ik ii j i j i j
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and correspondingY1 as

åt t d t t g t d g t= - - ´ - +s s s s s s

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( ) ( )Y i j t i J k,

1

2
. 21i j i j ij i ij

k
ik i1 i j i j i j

By considering the spin, space and time variables as generalizedmatrix indices, we can symbolically write
equation (18) as

�� d g- - = --( ˆ ) ( ) ( )X Yg . . 220
1

1

2.2. Theλ expansion and the auxiliaryGreens function
Themain task is to compute solutions of the Schwinger–Dyson equation, i.e. the functional differential
equation (18) or (22). If symmetry-breaking, such asmagnetism or superconductivity is ignored, then a liquid
state ensues, wherewewould like the solution to connect continuously with the Fermi gas. For this purpose we
seek guidance from standard Feynman–Dyson perturbation theory for canonicalmodels. The repulsive
Hubbardmodel is an ideal example, where the corresponding Schwinger–Dyson equation can be schematically
written as:

�.d d d- - =-( ) ( )U UG Gg . . 230
1

Comparingwith equation (22), we see that the left-hand sides are of the same form, but the right-hand sides
differ, in equation (22) the local Greens function γmultiplies the delta function. In turn this extra termoriginates
from the second (non canonical) term in the anti-commutator in equation (2), and is therefore the signature
termof extremely strong correlations.

Within the Schwinger viewpoint of equation (23), we can view the skeleton graph perturbation theory
(Feynman–Dyson) as an iterative scheme inU, i.e. using the nth order results to generate the +( )n 1 th order
terms by functional differentiation. In the ECFL theory the iterative scheme used is defined by generalizing
equation (22) to

��l l d lg- - = --( ˆ ) ( ) ( )X Yg . . 240
1

1

The explicit solutions in the ECFL theory start from this basic equation.More explicitly, in equation (24) the
exact equation (18) is generalized to include theλ parameter1 by scaling

g l l lgls s s s s s s s s s s s
ˆ ˆX Y X Y, , , ,i ii j i j i j i j i j i j

. The starting point for the iteration is l = 0, corresponding to the
Fermi gas. Aswe iterate towards l = 1, equation (24) reduces to the exact equation equation (22). The
Gutzwiller projection is fully effective only at the end point of the iterative scheme l = 1, while for intermediate
values ofλ, we have only a partial reduction of the number of doubly occupied sites. The role ofU in
equation (23) is roughly similar, atU=0we have the Fermi gas, which evolves into an interacting theory with
increasingU, giving us the Feynman–Dyson perturbation theory. The range ofλ (Î[ ]0, 1 ) in equation (24) is
bounded above, as opposed to that of Î ¥[ ]U 0, in equation (23). Therefore the ECFL theory avoids dealing
with amajor headache of the canonical theorywhenever a coupling constant becomes large. Recall that realistic
interactions in correlatedmatter usually involve a large coupling parameterU. For this purpose one is forced to
make hard-to-control approximations, such as summing specific classes of diagrams in different parameter
ranges. The introduction ofλ into the ECFL equations opens the possibility that a low order calculationmight
suffice to give accurate results at low excitation energies. This possibility is in-fact realized for important strong
coupling problems as shown earlier [5].

We found in [3] that an efficientmethod for proceeding with the iterative scheme is tofirst perform a
factorization of theGreens function into two parts. Thefirst is an auxiliary Greens function g satisfying a
canonical equation, thus admitting aDysonian expansionwith its attendant advantage of summing a geometric
series with every added termof the denominator. There remain some terms that cannot be pushed into the
denominator, these are collected together as the caparison function mi. In thematrix notation used abovewefirst
decompose theGreens function as:

� m= i ( )g . , 25

this implies a product in the w
G
k , domain as written below in equation (32). The differential operatorX in

equation equation (24) is distributed over the two factors of equation (25) using the Leibniz product rule, as

ð26Þ

1
In [4]wehave noted an important generalization of these commutators to include a continuous parameter l Î [ ]0, 1 , thus defining the so

calledλ fermions. Using themone can systematically obtain theλ expansion encountered below from these relations directly. Herewe stick
to a simpler descriptionwithλ introduced by hand, in the EOMbelow.

4
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where the contraction symbol indicates the termbeing differentiated by the functional derivative terms inX,
while thematrix indices follow the dots. Using �=-g g.1 equation (24) is nowwritten as

ð27Þ

This equation factors exactly into two equations upon insisting that g has a canonical structure:

ð28Þ

and

ð29Þ

Wecan then use �=-g g. 1 to simplify the term giving rise to aDyson self-energy expressed
in terms of aDyson vertex function. The idea then is to iterate the pair of equations (28), (29) jointly inλ. Details
of the skeleton expansion nature can be found in [3, 5, 6]. Themain point to note is that while m- ig ,1 in
equations (28) and (29) are expanded in powers ofλ, the function g is kept unexpanded as a basis term (or
‘atom’) of the skeleton expansion, temporarily ignoring its relationship as the inverse of -g 1. The equal time
value of the variable γ in equation (11) is taken from the exact sum-rule for � in equation (9). The initial values
at l = 0 are =g g0 and �m =i , andwemust remember to use the product form equation (25) to determine the
local Greens function γ in equation (11).We should note that when the source is turned off . l 0we recover
space and time translation invariance so that equation (25) is simply � w w m w=

G G G
i( ) ( ) ( )k i k i k ig, , . ,j j j , with the

Matsubara frequency w p= +( )j k T2 1j B . At lowT, the leading singularities of � are co-locatedwith those of g ,
provided the caparison function mi is sufficiently smooth- this situation is realized in all studies done so far.

2.3. The shift identities and second chemical potential u0
Before proceedingwith the iterative scheme, it is important to discuss a simple but crucial symmetry of the t-J
model—the shift invariance,first noted in [10]. In an exact treatment shifting dl +t t cij ij t ij with ct arbitrary, is

easily seen to be innocuous, itmerely adds to equation (4) a term- ås sˆc Nt whereby the center of gravity of the
band is displaced. (Here sN̂ is the number operator for electronswith spin s.)However in situations such as the
λ expansion, theGutzwiller constraint is released at intermediate values, here it has the effect of adding terms
derivable from a local (i.e. Hubbard type) interaction term.2 To see this consider the fundamental commutator
term s[ ]H X,tJ i

0 i in equation (13), here under the shift dl +t t cij ij t ij, the third term gives rise to an extra term
s s s¯ ¯c X Xt i i

0i i i. This term vanishes only in aGutzwiller projected state, the EOMby themselves do not eliminate it.
Its appearance is tantamount to adding aHubbard like term å ss ss¯ ¯X Xc

i i i2
t to theHamiltonianHtJ. As argued in

[10]wewould like the EOM for theGreens functions to be explicitly invariant under the above shift of tij to each
order inλ. Enforcing this shift invariance to each order in theλ expansion plays an important ‘watchdog’ role on
theλ expansion.

An efficientmethod to do so is to explicitly introduce an extra Lagrangemultiplier u0 through a term
l å ³ mu N Ni i i0 to theHamiltonian equation (4). This amounts to replacing dl +t tij ij ij

u

2
0 in all terms other

than in the bare propagator g0. The u0 termmakes no difference whenλ is set at unity in the exact series, since
double occupancy is excluded. In practice, we set l = 1 in equations that are truncated at various orders ofλ,
and themagnitude of u0 isfixed through a second constraint.We thus have two variables tofix, namely u0 andm.
We also have two constraints, the number sum-rules t t=s ss

-( )n i ig , , and � t t=s ss
-( )n i i, (equation (9)).

In the absence of amagnetic field the number densities nσ reduce as lsn n

2
, where n is the number of particles

per site.
After turning off the sources, in themomentum–frequency spacewe can further introducing two self

energies wY( )k i, j , and wF( )k i, j with

m w l l w= - + Y
G G

i ( ) ( ) ( )k i
n

k i, 1
2

, , 30j j

w w l e l w= + + - F- -
G G G

⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( ) ( )( )k i k i

n n
J k ig g, ,

2 4
, . 31j j k j

1
0

1
0

Here ek and Jk are the Fourier transforms of-tij and Jij. In the right hand side of equation (31), the second and
third terms arise respectively from the equal-time limit of lY1 and in equation (28) respectively. The two
self energies F Y, are explicitlyλ dependent, they vanish at infinite frequency for anyλ. Thuswewrite

2
Similarly we note that shifting dl +J J cij ij J ij with arbitrary cJ also adds a similar unphysical local interaction term, as discussed in greater

detail in [10].
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� w w m w= ´ i( ) ( ) ( ) ( )k i k i k ig, , , . 32j j j

The auxiliaryGreens function satisfies a second sum-rule that is identical to equation (9), bothmaywritten in
the Fourier domain:

�å w = =w
ss s

+( ) ( ) ( )k T G k i n G ge , ; for both and . 33B
k j

i
j

,

0j

Equation (25) can nowbewritten explicitly in the non-Dysonian formproposed in [3]

� w
l l w

w l e l l w
=

- + Y

+ + - F-

G
G

G G( ) ( )
( ) ( ) ( )( )k i

k i

k i J k ig
,

1 ,

, ,
. 34j

n
j

j
n

k
n

j

2

0
1

2 4 0

Weobserve that simple FL-type self energiesΨ andΦ can, in the combination above, lead to highly asymmetric
(in frequency)Dyson self energy wS( )k, obtainable from theGreens function throughS = -- -G G0

1 1

[3, 5, 6, 10]. Finally we note that our calculations are performed in terms of spectral function obtainable from
analytic continuation of theMatsubara frequencies into the upper complex half plane of frequencies:

�

�

�

�ò

r w
p

w w

w
r w

w w

=- l +

=
-

+
G G

G
G

( ) ( )

( ) ( ) ( )

Ik m k i i

k i
k

i

,
1

, 0 ,

,
,

35

j

j
j

and similarly defined spectral functions for variables F Yg, , etc. Note that the physical spectral function

�r w
G( )k , is identical to w

G( )A k , , a notation used inmuch of experimental literature.

2.4. Summary of equations to second order inλ
In the following, we use theminimal second order equations [5–7] obtained by expanding equations (28) and
(29) to second order inλ. The calculation is straightforward and a systematic derivation is detailed in [6], which
is followed here.We use the abbreviation3 wº

G( )k k i, n , and also redefine c eF = + Y( ) ( ) ( )k k kk , keeping in
mind that one set of terms inΦ have an external common factor of ek multiplied by all terms inΨ.We next
collect the answers below in terms of the two self energies c Y,

mw e l e l l lc= + - + - - + Y --
N ⎜ ⎟⎛

⎝
⎞
⎠( ) ( ) ( )k i nJ

n
kg

1

4 2
, 36n k k

1
0

the tag below the band energy eNk can be ignored after the next paragraph.Wenow expandΨ andχ from

equations (28) and (29) in powers ofλ. To the lowest two orders wefind l lY = Y + ( )[ ] O1
2 and

c c lc l= + + ( )[ ] [ ] O0 1
2 , where c e= -å + -( )[ ] Jgp p p k p0

1

2
.

The next step is to introduce u0 explicitly: wewrite e e el ¢ = -k k k
u

2
0 in every occurrence of ek, except in

the bare band energy term eNk in equation (36).

mw l m e lc l c= + + - - ¢ - -- i( ) ( ) ( ) ( ) ( )[ ] [ ]k i nJ u k k kg
1

4

1

2
. 37n k

1
0 0 0

2
1

Note that the shift with u0 also applies to the term c[ ]0 , it now reads c e= -å ¢ + -( )[ ] Jgp p p k p0
1

2
.We note the

expressions for c Y[ ] [ ],1 1 from [6] equations (65)–(67):

åc e e e= - ¢ + ¢ + + ´ ¢ + + -- - + - -⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] k J J J p q p q kg g g

1

2
, 38

pq
p q k p k q p q k q k1

å e eY = - ¢ + ¢ + + --( ) ( ) ( ) ( ) ( ) ( )[ ] k J p q p q kg g g . 39
pq

p q k p1

Wenow set l = 1and record the final equations:

å åmw e m e c= + + - - + + - ¢ -- i
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( ) ( ) ( ) ( )[ ]k i n J u u

J
p k kg g g

1

4

1

2 2
cos , 40n

p
p p

k

p
p x k

1
0 0 0 1

m = - + Yi ( ) ( ) ( )[ ]k
n

k1
2

, 411

wherewe used a nearest neighbor Jij and cubic symmetry in the simplifications.We can verify that the above
expressions obey the shift invariance: if we shift e el + ck k 0, the arbitrary constant c0 can be absorbed by
shiftingm ml + c0 and l +u u c20 0 0, and is thus immaterial. The band energy is given explicitly as

3
Wedenote wº

G( )k k i, n , w p= +( )n k T2 1n B theMatsubara frequencies,Ns the number of sites and å º å wk
k T

N k k, ,
B

s x y n
. Jk is the Fourier

transformof the exchange.
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e = - + - ¢( ( ) ( )) ( ) ( )t k a k a t k a k a2 cos cos 4 cos cosk x y x y0 0 0 0 , where t and ¢t are thefirst and second neighbor
hopping amplitudes.

2.5.High energy cutoff scheme
The self consistent solution of the second order equations of equations (38)–(41) plus the number sum-rules,
can be found numerically by discretizing themomentum and frequency variables on a suitable grid. This
procedure can be carried out in a straightforwardway for low 1T t and high hole densities 2d 0.3 (low
particle densities 1n 0.7). At lower hole densities or at high temperature �T t , the equations run into
convergence problems. The origin of this problem is the formation of weak and featureless tails of the spectral
functions extending to quite high energies. These tails are known to be artificial, since they do not occur in the
exact numerical solutions where available. Thus the second order theory seems insufficient in the regime of low
hole densities 1d 0.2, wheremuch of the current interest lies. A technically rigorous resolution of the problem
ofweak tails seems possible. However it requires the non-trivial calculation of higher order terms in theλ
expansion. Such higher order terms oscillate in sign and hence cancellations at high energies are expected.

In view of the substantialmagnitude of the programof summing theλ series to high orders, it seems
worthwhile to investigate simpler and physicallymotivated approximations for improving the lowest order
scheme. It turns out that there are a few interesting alternatives in this direction. In [5]we showed one
convenient way to handle the high energy tail problempractically, through the introduction of a high energy
cutoff. The choice of an objective cutoff was rationalized by considering two physically different limits, that of
high particle density ln 1 and the simpler high temperature limit, where related tails are found. The cutoff is
chosen using the analytically available highT limit results and then applied to all densities andT.

The cutoff schemeof [5] is not rigorous, but enables us to extractmeaningful results for lowenergy excitations
fromthe secondorderλ equations, out to fairly lowhole densities 1d 0.2. It is benchmarked in the caseof = ¥d ,
where the cutoff schemequantitatively reproduces the spectralweights in themost interesting regimeof lowenergies
w �∣ ∣ t , while erring somewhat at energies above the scale of quarter bandwidth. In [5, 7] the resultingphysical
quantities such as resistivity are shown tobe in good correspondence to the exact results fromDMFT. In viewof this
successweuse a similar cutoff scheme for 2dbelow,with the expectation that the physics of the lowenergy excitations
is captured. In thepresent 2d casewe employ a single (re)-normalization the spectral function for each

G
k as

&
r w w e r w= -
G Gˆ ( ) ( ¯ ) ( ) ( )k W k,

1
, , 42

k
T kg g

whereWT is a smoothwindow (even) function shown infigure 3 [5]. It is centered on ēk, the self-consistent
location of the peak in r w( )k,g , determined iteratively. It has width D4 , where D2 is the bandwidth (~ t8 in this

case). The constant &k isfixed by the normalization condition ò r w w =
Gˆ ( )k , d 1g . In the present case of 2dwe

can impose this cutoff window at each
G
k individually, so that only

G
k states very far from the chemical potential

are affected by the cutoff.
The two chemical potentialsm and u0 are determined through the number sum rules written in terms of the

Fermi function w = + bw -( ) ( )f 1 e 1 and the spectral functions:

�ò òå år w w w r w w w= =ˆ ( ) ( ) ( ) ( ) ( )k f
n

k f, d
2

, d . 43
k k

g

The set of equations equations (38)–(43) constitute the final set of equations to be computed. These are valid in
any dimension, and reduce to the ones benchmarked in = ¥d after setting lJ 0 [5, 7].

After analytically continuing w wl + +i i0n wedetermine the spectral function of the interacting electron
spectral function ��r w w= -

p

G G( ) ( )Ik m k, ,1 . The set of equations (1)–(5)was solved iteratively on L×L
lattices with =L 19, 37, 61and a frequency gridwith =wN 2 , 214 16 points.Wefind that L=61 produces the
most accurate results at low temperature, while different L do notmake a difference at high temperature. Also,

=wN 2 , 214 16 lead to the same result in the relevant range of parameters. Therefore, we only display the result
computed at L=61 and =wN 214 in this paper. Other details are essentially the same as in our recent study of
the = ¥ ld J, 0 case in [5, 7].

3. Results

Band Parameters:The t-Jmodel is studied on the square lattice with hopping parameters t and ¢t forfirst and
second neighbors. The hopping parameter >t 0, while ¢t is varied between- t0.4 and t0.4 , thereby changing
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the Fermi surface (FS) fromhole-like to electron-like. Parameters relevant to cuprateHighTcmaterials are
summarized in [2, 11] 4. Following [2]we assume ~t 0.45 eV, giving a bandwidth∼3.6 eV.

Single-particle spectrum:The quasiparticle energy
G( )E k and quasiparticle weight

G( )Z k are found from � as
usual [5]. Infigure 1we display the hole density δ and ¢t dependence of the low temperature ( )Z kF , along the
nodal (i.e. á ñ11 ) direction. The typicalmagnitudes ofZ are comparable or lower than those reported in = ¥d
[5]. Anew and important feature is the strong sensitivity of ( )Z kF to the sign andmagnitude of ¢t t . Both
decreasing ¢t (atfixed δ) and decreasing δ (atfixed ¢t ) reduceZ. This feature is basic to understanding ourmain
results.We next study the decay rate of the electrons

G = - ´ S
G G G G( ) ( ) ( ( )) ( )Ik Z k m k E k, , 44

found as the half-width at half-maximumof the spectral function �r w
G( )k , atfixed

G
k .We display theT variation

ofΓ and- SIm at the Fermi surface for three representative values of ¢t t infigure 2. Both variables display
considerable variationwithmodest change ofT. The case of ¢ >t 0 shows a distinct quadratic T dependence, but
for -¢t 0we note the strong reduction, or absence, of such a quadratic dependence. Belowwe note a closely
parallelT and ¢t dependence of the resistivity.

Infigure 3we display the photoemission accessible peak heights of the spectral function � �r w
G{ ( )}t k , max

over the BZ at three representative values of ¢t t , at three temperatures =T 63, 210, 334K.The peaks locate the
interacting Fermi surface and its thermal sensitivity. The Fermi surface closely tracks the non-interacting FS,
changing fromhole-like in panels (a)–(c) to strongly electron-like in panels (g)–(i). This implies that the
momentumdependence of theDyson self energy ismild. In contrast a strongmomentumdependence would
distort the Fermi surface shape significantly—while retaining the Luttinger–Ward volume. Several features are

Figure 1.Hole density δ, and ¢t t variation of the nodal ( )Z kF atT=63 K. The ratio ¢t t ismarked at the top. Decreasing ¢t has a
similar effect to decreasing δ.

Figure 2. d = 0.15: the decay rate equation (44) and (inset) the nodal- S( )Im kF . The ratio ¢t t ismarked at top.While ¢ =t t0.4
has a positive curvature for both variables, ¢ = -t t0.4 displays a prominent negative curvature in- SIm , and an almostflatΓ.

4
In highTc systems [2] estimate 1¢ -t .27 for BSCCO,while for LSCO ¢ ~ -t t0.16 . NCCO ismodeledwith ¢ >t 0 after invoking a

particle hole transformation. In this casewemustflip the sign of the calculatedRH andQH to compare with data.
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noteworthy. The peaks are higher in the nodal relative to the anti-nodal direction at lowT.We observe the high
sensitivity towarming, in going fromT=63 K toT=334 K a small (~0.7%) change inT relative to the
bandwidth causes a five tofifteen-fold drop in the spectral peaks at the Fermi surface. This is correlated to the
thermal variation of- SIm at the same set of ¢t , shown in the inset offigure 2, since the intensity at kF is
essentially the inverse of this object.Meanwhile the background spectral weight rises rapidly in all cases, to a
roughly similarmagnitude. Thefigure shows that at lowT the curvewith ¢ >t 0 hasmuch higher peaks than
-¢t 0, giving the impression of weaker correlations.However the drop onwarming is the largest in this case,

which signifies another facet of strong correlations. The heights of the spectral peak and that of the background
is predicted quantitatively infigure 3. Their ratio is straightforward tomeasure in angle resolved photo emission
studies, andwe suggest it should be interesting to closely study this ratio experimentally, as a check of the
theoretical understanding of the temperature dependence of S( )Im kF and the decay rate G( )kF .

Resistivity:Wenow study the behavior of the resistivity from electron–electron scattering.We use the
popular bubble approximation, factoring the current correlator as �á ñ ~ å( ) ( ) ( )J t J v k0 k k

2 2 , where the bare

current vertex is the velocity � =a e¶
¶ a

vk k
k . In tight binding theory avk oscillates in sign, resulting in a vanishing

average over the Brillouin zone. This oscillation is expected to reducemagnitude of the vertex corrections [12].
For a 3dmetal havingwell separated sheets in the c direction (c0 the separation of the sheets), with each sheet
represented by the 2d t-Jmodel, theDC resistivity rxx can bewritten in terms of the electron spectral function as
follows.We define a dimensionless resistivity r̄xx whose inverse is given by

Figure 3.The spectral function w
G( )A k , peak heights over the zone at afixed hole density d = 0.15, ¢t increasing from top to bottom

andT increasing from left to right. At afixedT, the peak heights increase on proceeding down any column (i.e. increasing ¢t t ),
signifying sharper quasiparticles. Proceeding across any row (i.e. increasingT) illustrates the dramatic thermal sensitivity in all cases.
Recalling that our bandwidth is∼3.6 eV,we observe that uponwarming from 63K to 210K, a tiny variation (~0.35%) of temperature
relative to the bandwidth, the peak height drops by a factor between 5 and 10, followed by amore gentle fall to 334K. This
extraordinary thermal sensitivity is characteristic of our solution of the t-Jmodel, it is also reflected in other variables discussed here,
such as the resistivity.
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�s = á¡ ñ
G¯ ( )( ) ( )k v a , 45xx k

x
k

2
0
2

where á ñ º å
G

G ( )A A kk N k
1

s
, while themomentum resolved relaxation scale is:

òp w w r w¡ = -¶ ¶
-¥

¥G G( ) ( ) ( ) ( ) ( )k f k2 d , , 462
G
2

and bwº +( )f 1 1 exp is the Fermi function.This object resembles the spectral peaks infigure 3, losingheight
andbroadening rapidlywithT. Thephysical 3d resistivity is givenby r r r= ´ ¯xx xx0 ,where r º c h e0 0

2

(∼1.71mΩ cm) serves as the scale of resistivity5, andusing themeasured values of the lattice constantswe can express
our results in absoluteunits. Forunderstanding themagnitudeof the inelastic scattering it canbeuseful to convert the
resistivity into thedimensionless parameter lá ñkF m of an effective 2d continuumtheory,wherelm is themean-free-
path andwhere á ñkF is an (angle averaged) effectiveFermimomentum.Wecanuse a relation argued for in 6[13, 14]

l
r r

á ñ = = ¯ ( )k
hc

e

1
. 47F m

xx xx

0
2

In [13, 14] (see footnote 6) the authors note that in ametallic system this parameter is expected to be greater than
unity, and its least value is lá ñ =k 1F m for the case of unitary (impurity) scattering. Thuswe expect that

-r rxx 0, i.e. -r̄ 1xx in a goodmetal. The Ioffe–Regel–Mott resistivity scale used in [5, 7, 8] provides a similar
measure for quantifying themagnitudes of the resistivity found in strongly correlatedmetals. However we
should keep inmind that both estimates suffer from ambiguities in defining a precise threshold value of
resistivity, since factors of 2 (or of p2 ) cannot be ruled out in equation (47).

Figure 4.The resistivity at three typical densities. The lowestT region is expected to be cutoff by superconductivity. For a fixedT the
curvature changes frompositive (concave) to negative (convex) as ¢t t varies upwards in each panel, and also slightly as δ increases
across the panels—resembling the experimental findings of [15–19]. The Fermi liquid r µ T 2 regime is suppressed as ¢t becomes
more negative, and is difficult to discern here with ¢ = -t t .4. Panel (b) (inset) is the local approximation from equation (48). It
illustrates the ¢t dependence of rLocal from the spectral functions, or equivalently the self energies. The ¢t dependence of the velocities,
included in the result from equation (45) in themain panel (b), exhibits an enhanced convexity of the resistance. Themagnitude of rxx
increases with decreasing δwithin the displayed range ofT. The electron-doped case ¢ >t 0 shows a somewhat smaller resistivity than
the hole-doped case -¢t 0. In the latter, rxx approaches the unitarity value W1.71 m cmonly at the lowest δ and highestT.

5
The numerics assume a bct unit cell ( )a a c, , with �=a 3.79 0 and �=c 13.29 0. In the expression for r0, c0 corresponds to the interlayer

separation =c c 20 . In equations (50) and (51)weuse = ´ - -∣ ∣v e .596 10 cm C0
3 3 1 and F F = 14400 with =B 10 T.

6
See equation (6) in [13]. The origin of this formulais simple to understand, 3d conductivity is written in terms of the two dimensional

density as s = tn e

c m
d2

2

0
, andwriting p= ( )/n k 2d F2 and �l t= /k mm F we obtain s l= ( )/e hc kF m

2
0 .
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Figure 4 shows the temperature dependence of the resistance at three densities, and their strong variation
with ¢t t . J is taken as 900 Khere, varying J between 0 and 1500 Kmakes almost no difference at these
temperatures.We see that the scale of the resistivity for -¢t 0 exceeds the (approximately estimated)unitarity
value 1.71 mΩ cm for the lowest δ and the highest displayedT. On the other hand ¢ >t 0 shows a considerably
smaller resistivity atmost densities.

In all curveswe see that the curvature changes frompositive (for .¢t 0) tonegative (for ¢ <t 0) at say 150 K.To
understand the role of ¢t t wenote that the resistivity in equation (45)depends on ¢t t through the velocity vk

x, in
addition to adependence through the self energies equations (38), (39). To gauge their relative importance it is useful
to examine a local approximationof equation (45)where the two functions are averaged separately overmomentum:

�s = á¡ ñ ´ á ñ
G¯ ( ) ( ) ( )k v a . 48xx k k

x
k

local 2
0
2

The velocity squared average is independent of the sign of ¢t , therefore the local approximation, shown in
figure 4, inset of panel (b), probes only the dependence through equations (38), (39). Comparing the inset and
mainfigure in panel (b), we see that at ¢ =t t0.4 both resistivity curves display a positive curvature. At
¢ = -t t0.4 we see that rLocal is essentially linear inT, while rxx shows a negative curvature. The difference is
therefore related to the velocity factors, which are very different effect between ¢ <t 0 and ¢ >t 0. These cause
the integrals to have very different thermal variation.

Hall response:Within the bubble scheme, wemay also calculate theHall conductivity [9, 20, 21] as
s p r s= - ´ ´F

F( ) ¯2xy xy
2

0
0

, the dimensionless conductivity:

òs
p

w w r w h= -¶ ¶ á ñ
-¥

¥¯ ( ) ( ) ( ) ( )f k k
4

3
d , 49xy k

2

G
3

and �h = -e e¶
¶

¶
¶ ¶{ }( ) ( ) ( )k v v v

a k
x

k k
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y

k k
2 k
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k

x y

2

0
4

2

2

2

. Here F = Ba0
2 is the flux (see footnote 5) and F = ( ∣ ∣)hc e20 is

theflux quantum. In terms of these we can compute theHall constantRH andHall angleQH from

p
s r= - ´∣ ∣ ¯ ¯ ( )c R

v

e

4
, 50xy xxH

2
0 2

p
s
s

Q = - ´
F
F

( ) ¯
¯ ( )cot

1

2
, 51xx

xy
H 2

0

with = ( )v a c0 0
2

0 (see footnote 5).We also define theHall number as

p
s
s

=-

=

∣ ∣
¯
¯ ( )

n
v

e cR

1

4
, 52xx

xy

H
0

H

2

2

where the definition ensures that in the limit of a circular Fermi surface without interactions, ln nH , where n is
the number of electrons per copper in the effective single band t-Jmodel (see footnote 8). The tight binding Fermi
surface in the presence of ¢t is not circular, but rather resembles the surfaces shown infigure 3.Under these
conditionswe can evaluate the conductivities in equations (45) and (49), using an approximate Lorentzian
spectral function peaked at the bare Fermi surface7: The resulting ‘bare’Hall number nH

0 contains the corrections
due to the curvature of the Fermi surface, including the change in sign in going fromopen to close surfaces as ¢t
becomes negative. It is therefore helpful to compare our computedHall number nH, containing the effects of
interactions and a complicated scattering rateΓ, with nH

0 containing only the band effects. This helps us to gauge
the effects of interactions, left out in the formula for nH

0 . The computed nH, bareHall number n0H and their ratio
n nH H

0 are shown in table 1.We see that strong correlation generally suppresses nH from the bare value n0H, in
some cases by asmuch as 40%. The nH

0 itself differs from n quite substantially, depending on doping,
temperature and ¢t , and therefore onemust exercise great care in extracting carrier densities fromHall numbers.

Infigure 5we display the computedHall variables. In panel (a) Qtan H is shown for two values of ¢t t
displaying hole-like and electron-like behavior. A decrease in hole density reduces themagnitude in either case.
In panel (b)wedisplay the computed Q( )cot H versusT2 with three values of ¢t giving an electron-like FS.We
note that Qcot H is approximately linear withT2 [22–24] and is strongly affected by themagnitude of ¢t . The two
distinct Q µ( ) Tcot H

2 regimes seen infigure 5(b) are also seen inmany experiments but seem to have evaded
attention so far. In [24] it is noted that the bending temperature corresponds to a crossover from the Fermi liquid

7
These definitions lead to intuitive results in simple cases. For 2-d electrons with �e = ( )k m2k

2 2 , and a Lorentzian r w =( )k,G

p w e e
G

G + + -( )
1

F k

0

0
2 2 , upon setting thewidth G l 00 , we recover theDrude result s t= nq mxx e

2 and �s =
G( )¯ nxy ma2

22

0
2 0

with �t = G( )2 0 .
Thus = -∣ ∣e R c v n1H 0 in equation (50), and w tQ = -( ) ( )cot 1H c in equation (51)where w º ∣ ∣ ( )e B mcc . If on theother handwe take
ek fromtheFourier transformof-tij , the limit G l 00 yields the “bare”Hall number nH

0 , incorporating the effects of a non-circular band
structure.
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to a strangemetal, and is therefore of fundamental importance. In panel (c)we show theHall constantRH at
three densities for representative values of ¢t t . Its sign is electron-like for ¢ >t 0 and hole-like for -¢t 0,
tracking the change in topology of the Fermi surface infigure 2. Themagnitude ofRH is substantially affected by
changing ¢t . This is a strong correlation effect, and discourages envisaging any simple relationship between the
Hall number and hole density.

Table 1.TheHall number nH from equation (52), the bareHall number n0H, and their ratio n nH H
0 . nH is

computed at lattice size 61×61 atT=63 K and nH0
0 is computed in the bare bandwith lattice size 4000×4000

atT=0.Note that the ratio n nH H
0 varies from .6 to .8. This substantial correction is due to strong correlations.

Therefore the inverse problemof deducing the carrier density n from theHall number nH is quite complex. Finite
temperature effectsmake this evenmore complicated, as seen infigure 5.

Electron density Hall number ¢ = -t 0.4 ¢ = -t 0.2 ¢ =t 0 ¢ =t 0.2 ¢ =t 0.4

nH −0.819 −2.514 1.119 0.679 0.675
n=0.82 n0H −1.163 −3.389 1.51 0.879 0.823

nH/n
0
H 0.704 0.742 0.741 0.773 0.82

nH −.768 −1.918 1.249 0.67 0.65
n=0.85 n0H −1.137 −2.448 1.774 0.927 0.855

nH/n
0
H 0.676 0.783 0.704 0.722 0.76

nH −.706 −1.479 1.436 0.67 0.637
n=0.88 n0H −1.109 −1.963 2.148 0.977 0.884

nH/n
0
H 0.637 0.754 0.669 0.686 0.721

Figure 5.Panel (a) Qtan H forB=10 T at three densities versus T.The setwith ¢ = -t t0.4 have a hole-like FSwhile the setwith ¢ =t 0
an electron-like FS. In both caseswe see a rapid fall-offwithT, and a decreasingmagnitudewith δ. Panel (b) forB=10 T at d = 0.15
shows Q∣ ( ) ∣cot H for three values of ¢t t . It is approximately linearwithT2 over the range. In fact it is linear onboth sides of a bend,
which is also seen indata [17, 19, 22–27] but seems tohave evaded comment in literature. Panel (c) gives theTdependentRH for three
densities, eachwith four values of ¢t t . Themagnitude of cRH at lowestT is related to theHall numbersnH in table 1 via the relation
equation (52) = - ∣ ∣cR v n eH 0 H , where = -∣ ∣v e .596 mm C0

3 1. The sign change resembles the change seen in experiments [28].
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4.Discussion

Using the recently developed second order equations of the ECFL theory in [5], we have presented results for the
2d t-Jmodel at low and intermediate temperatures. In keepingwith our recent findings for the = ¥d solution
of the same equations, we note that the quasiparticle weight ( )Z kF is non-zero, but remarkably small. This fragile
FL therefore has an extremely low effective Fermi temperature, abovewhich it displays characteristics of a
Gutzwiller correlated strangemetal, as listed in [5, 7], including a resistivity that is linear inT.

By varying ¢t , the second neighbor hopping at afixed t and J, we found infigure 1 a remarkable variation of
the quasiparticle weight ( )Z kF that is characteristic of the 2d square lattice, with no simple analog in = ¥d .We
found ¢ <t 0 leads to a considerable reduction in itsmagnitude, while ¢ >t 0 leads to a larger value and thus a
more robust FL. A direct calculation of the single particle spectral width G = - S´Z confirms this observation
infigure 2, andwhen studied as a function of the temperature, shows amuch largermagnitude, and hence
broader spectral lines.

Infigure 3we present the Fermi surface, as found from the peaks of the spectral function. The shapes of the
Fermi surfaces are quite close to those implied by the bare band parameters. This implies that themomentum
dependence of the self energy, while non-zero, is fairly small. This also suggests that the vertex corrections,
neglected here in 2d,may actually be quite small as well. Two key results concern the spectral heights over the
Brillouin zone, and the resistivity as a function ofT at various densities and ¢t . The spectral height is the peak
value of �r w

G( )k , scanned overω, and equals the inverse of the leastmagnitude of wS
G( )Im k , . Infigure 3we

present both theT evolution (going horizontally) and the ¢t evolution (going vertically) of this important object
visible in ARPES.Wenote that ¢ <t 0 model with a very smallΓ also displays a rapid loss of coherence on
warming. The quasiparticle peaks drop rapidly, while the valleys, representing the background spectral weight in
photoemission, catch upwith the peaks inmagnitude. A similar variation happens for ¢ =t 0 but the drop of the
peak heights ismore pronounced. The case of ¢ >t 0 has the largest drop of peak heights, while its effective
Fermi temperature is the largest of the three cases. It follows that the electron doped case has amore robust FL
appearance forT lower than its Fermi scale. Our study provides absolute scale values for these observable
heights, and it should be interesting to study these experimentally for comparison. Towards that objective we
note that ¢ >t 0 maps to the electron dopedHighTc superconductors, while -¢t 0maps to the hole doped
cases, as wemay also deduce from the shapes of the Fermi surfaces in the abovefigure.

The other key result concerns the resistivity.We are able to calculate the longitudinal resistivity rxx on a
doubly absolute scale, both themagnitude of rxx and that ofT are given in physical units by using reasonable
values for the basic parameters of the t-Jmodel and the lattice constants figure 4.Wefind essentially the
experimentally observed scales for both axes, and there is room for further adjustments of bare scales if needed.
Themainfinding is that as δ is varied towards halffilling, the regime of linear resistivity increases in the hole-like
cases ( -¢t 0) and the quadratic dependence regime shrinks to very lowT scales, falling below the known
superconducting transition temperatures. The other important finding is that the concavity (convexity) of
resistance versusT, usually taken to denote a (non) FL behavior, requires an enlarged viewpoint; we find that the
sign of ¢t flips the two cases. As an example, the case -¢t 0 has a pronounced convex regime at lowT. This could
be naively ascribed to a non-FL behavior, but in reality is a crossover range to the strangemetal regime.

We also present results infigure 5 for theHall constant and theHall angle. These are calculated using simple
versions of theKubo formula, found by neglecting the vertex corrections, in the same spirit as the longitudinal
resistivity. This approximation is as yet untested against exact results and hence requires some caution.Wefind
that theHall angle changes signwith ¢t . The Q( )cot H is found to be roughly linear withT2, in agreementwith the
experimental situation. As noted above, the Q µ( ) Tcot H

2 regime is followed at higherT by a bend (or kink)
corresponding to a crossover from the Fermi liquid to a strangemetal, and is therefore important. A similar bend
is also seen inmany experiments [17, 19, 22–27], but seems to have evaded comment so far. In [24] this kink is
discussed further and its connection to the crossover is explained.

In table 1, we present theHall number nH obtained from theHall constant for various n and t′/t. It is
comparedwith the corresponding nH

0 obtained fromanon-interacting theory that incorporates the band-
structure effects of changing curvaturewhen t′< 0.Wenote that the nH

0 already captures the changes in sign due
to varying t′. However, there are substantial quantitative corrections even at the lowestT, originating in strong
correlations. Thismakes the inference of electron density n from nH quite non-trivial; table 1 provides an
estimate of the errors involved in this inversion.

5. Conclusions

In this work, we employed a recently developed scheme from the ECFL theorywhere the second orderλ
expansion terms are supplementedwith a high energy cutoff. This scheme has been benchmarked in = ¥d
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against DMFT [5, 7] for computing transport and other low energy excitations, giving good agreementwith
exact numerical results. As detailed in [5] themagnitude of the quasiparticle weightZ is somewhat lower in this
scheme as compared to the exactDMFT values for hole density 1d 0.8. In this work the same equations are
applied to the 2-d tJmodel.While the close agreement found in the = ¥d casemight not guarantee the
accuracy of these results in d= 2, it is plausible that the variations of resistivity andHall constant, induced by the
magnitude and sign of ¢t found here, will persist inmore exact (future) results. Hence it seems thatwe can draw
some useful conclusions already, especially with regard to the difference between hole and electron doping.

We have shown a range of results for the 2d t-Jmodel, obtained by varying different parameters within our
scheme. It is interesting that themagnitudes of various transport variables, presented here in physical units8, are
roughly on the scale of reportedmeasurements [15, 25, 16–19, 26, 27]. Although it is not our primary aimhere to
produce exact fits, we note that the agreement can be improved inmany cases with suitable changes of the bare
(band) parameters.

In the range of parameters considered here, ametallic state has been posited, and therefore the role of the
exchange J is limited; we find very little variation of the transport quantities with a change in J. The transport
parameter variationwith density seems very similar to that found in = ¥d in [5, 7, 8]where a large variety of
Gutzwiller correlatedmetallic states were shown to arise [7], with their origin in the = ¥U orGutzwiller
correlation rather thanwith J. The added feature in d=2 is the important role played by ¢t , as stressed here.We
expectmagnetic, superconducting and possibly other broken symmetry states at the lowestT and δ to arise,
largely due to the effect of J. Further work is necessary tofind reliable calculational schemes for these broken
symmetry states.

A few broad conclusions suggest themselves. The parameter ¢t t plays a key role in determining the low-
energy scales. Infigure 1we see that the quasiparticle weightZ has a large variationwith ¢t . The origin of this
sensitivity lies in the self energies in equations (39), (38), where combinations of the band energies ek play the
role of an effective interaction. Varying ¢t t therefore changes the self-energies strongly, in contrast to the usual
weak change via the band parameters in equation (37).

Ourmain findings are as follows. (I)The spectral functions are highly sensitive to thermal variation; in
figure 3we observe afive tofifteen fold drop in intensity with a variation of kBT about 1/100th the bandwidth
∼3.6 eV. This is in severe conflict with expectations from conventional theories ofmetals. (II)Wenote from
figure 4 thatwith -¢t 0, a FL resistivity r µ T 2 is seen only at very lowT. The very lowT (FL) regime is followed
by a ‘strangemetal’ regime, also at lowT, wherewefind a r Tversus curve, with zero or negative curvature. This
regime parallels theGutzwiller-correlated strangemetal regime reported in = ¥d [7], the negative curvature
making it even stranger. (III) For the electron-doped case ¢ >t 0,figure 4 shows that the curvature is positive
and the FL regime extends to higher temperatures.

It is significant that the ECFL theory captures the diametrically opposite resistivity behaviors of hole doped
[15–17] and electron dopedmaterials [18, 19]within the same scheme, only differing in the sign of ¢t t . The
resistivity curvaturemapping of [15] can also be viewed in terms of a variation of this ratio and the temperature,
as infigure 4. In conclusion this work provides a sharp picture of the differencemade by the second neighbor
hopping ¢t in the presence ofGutzwiller correlations. It also yields quantitative results for several famously hard
to compute variables in correlatedmatter, that are in rough agreement with a variety of experiments.

Acknowledgments

We thank Edward Perepelitsky and Sergey Syzranov for helpful comments on themanuscript. Thework at
UCSCwas supported by theUSDepartment of Energy (DOE), Office of Science (BES) under Award#DE-
FG02-06ER46319. Computations reported here used theXSEDEEnvironment [29] (TG-DMR160144)
supported byNational Science Foundation grant number ACI-1053575.

References

[1] Anderson PW1987 Science 235 1196
[2] OgataMand FukuyamaH2008Rep. Prog. Phys. 71 036501
[3] Shastry B S 2011Phys. Rev. Lett. 107 056403
[4] Shastry B S 2014Ann. Phys. 343 164–99

Shastry B S 2016Ann. Phys. 373 717–8 (erratum)
[5] Shastry B S and Perepelitsky E 2016Phys. Rev.B 94 045138

Žitko R,HansenD, Perepelitsky E,Mravlje J, Georges A and Shastry B S 2013Phys. Rev.B 88 235132
Shastry B S, Perepelitsky E andHewsonAC2013Phys. Rev.B 88 205108

8
From [5, 7]wemay infer that theZ in the present calculation is a bit too low for ¢ =t 0 and - -d.12 .15. This is expected to result in

overestimating rxx by a factor∼3 atT=450 K.

14

New J. Phys. 20 (2018) 013027 B S Shastry and PMai
(282)



[6] Perepelitsky E and Shastry B S 2015Ann. Phys. 357 1
[7] DingW,Žitko R,Mai P, Perepelitsky E and Shastry B S 2017 arXiv:1703.02206v2
[8] DengXY,Mravlje J,Žitko R, FerreroM,Kotliar G andGeorges A 2013Phys. Rev. Lett. 110 086401
[9] XuW,HauleK andKotliar G 2013Phys. Rev. Lett. 111 036401
[10] Shastry B S 2013Phys. Rev. B 87 125124
[11] Markiewicz R S, Sahrakorpi S, LindroosM, LinH andBansil A 2005Phys. Rev.B 72 054519
[12] Shastry B S and ShraimanB 1990Phys. Rev. Lett. 65 1068
[13] AndoY 2007HighTc Superconductors andRelated TransitionMetal Oxides ed ABussman-Holder andHKeller (Berlin: Springer)
[14] AndoY, BoebingerG S, Passner A, Kimura T andKishioK 1995Phys. Rev. Lett. 74 3253
[15] AndoY,Komiya S, SegawaK,Ono S andKurita Y 2004Phys. Rev. Lett. 93 267001
[16] Martin S, Fiory AT, FlemingRM, Schneemeyer L F andWaszczak J V 1988Phys. Rev.B 60 2194
[17] TakagiH, IdoT, Ishibashi S, UotaM,Uchida S andTokura Y 1989Phys. Rev.B 40 2254
[18] Onose Y, Taguchi Y, IshizakaK andTokura Y 2004Phys. Rev.B 69 024504
[19] Li Y, TabisW, YuG, BarišićNandGrevenM2016Phys. Rev. Lett. 117 197001
[20] Voruganti P, Golubentsev A and John S 1992Phys. Rev.B 45 13945

FukuyamaH, EbisawaH andWada Y 1969Prog. Theor. Phys. 42 494
KohnoHandYamadaK 1988Prog. Theor. Phys. 80 623

[21] Arsenault L-F andTremblay AMS 2013Phys. Rev.B 88 205109
[22] Chien TR,WangZZ andOngNP1991Phys. Rev. Lett. 67 2088
[23] OngNP andAnderson PW1997Phys. Rev. Lett. 78 977
[24] DingW,Žitko R and Shastry B S 2017Phys. Rev. B 95 115153
[25] AndoY,Kurita Y, Komiya S,Ono S and SegawaK 2004Phys. Rev. Lett. 92 197001
[26] HwangHY, Batlogg B, TakagiH, KaoHL, Kwo J, Cava R J, Krajewski J J and PeckWF Jr. 1994Phys. Rev. Lett. 72 2636
[27] Balakirev F F, Betts J B,Migliori A, Tsukada I, AndoY andBoebingerG S 2009Phys. Rev. Lett. 102 017004
[28] Takeda J,Nishikawa T and SatoM1994PhysicaC 231 293
[29] Town J et al 2014XSEDE: accelerating scientific discoveryComput. Sci. Eng. 16 62–74
[30] HansenD and Shastry B S 2013Phys. Rev. 87 245101

15

New J. Phys. 20 (2018) 013027 B S Shastry and PMai
(283)



PHYSICAL REVIEW B 96, 115153 (2017)

Strange metal from Gutzwiller correlations in infinite dimensions:
Transverse transport, optical response, and rise of two relaxation rates
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Using two approaches to strongly correlated systems, the extremely correlated Fermi liquid theory and the
dynamical mean field theory, we compute the transverse transport coefficients, namely, the Hall constants RH

and Hall angles θH , and the longitudinal and transverse optical response of the U = ∞ Hubbard model in the
limit of infinite dimensions. We focus on two successive low-temperature regimes, the Gutzwiller-correlated
Fermi liquid (GCFL) and the Gutzwiller-correlated strange metal (GCSM). We find that the Hall angle cot θH

is proportional to T 2 in the GCFL regime, while upon warming into the GCSM regime it first passes through
a downward bend and then continues as T 2. Equivalently, RH is weakly temperature dependent in the GCFL
regime, but becomes strongly temperature dependent in the GCSM regime. Drude peaks are found for both the
longitudinal optical conductivity σxx(ω) and the optical Hall angles tan θH (ω) below certain characteristic energy
scales. By comparing the relaxation rates extracted from fitting to the Drude formula, we find that in the GCFL
regime there is a single relaxation rate controlling both longitudinal and transverse transport, while in the GCSM
regime two different relaxation rates emerge. We trace the origin of this behavior to the dynamical particle-hole
asymmetry of the Dyson self-energy, arguably a generic feature of doped Mott insulators.

DOI: 10.1103/PhysRevB.96.115153

I. INTRODUCTION

In a recent study [1] we have presented results for the
longitudinal resistivity and low-temperature thermodynamics
of the Hubbard model (with the repulsion parameter U = ∞)
in the infinite-dimensional limit. In this limit, we can obtain
the complete single-particle Green’s functions using two
methods: the dynamic mean field theory (DMFT) [2–5] and the
extremely correlated Fermi liquid (ECFL) theory [6,7], with
some overlapping results and comparisons in Ref. [8]. These
studies capture the nonperturbative local Gutzwiller correla-
tion effects on the longitudinal resistivity ρxx quantitatively
[4–6]. A recent study by our group addresses the physically
relevant case of two dimensions [9], with important results for
many variables discussed here.

The present work extends the study of Ref. [1], using the
ECFL scheme of Ref. [6], to the case of the Hall conductivity
σxy and the finite-frequency (i.e., optical) conductivities. One
goal is to further test ECFL with the exact DMFT results for
these quantities which are more challenging to calculate. More
importantly, however, by combining the various calculated
conductivities we are able to uncover the emergence of two
different transport relaxation times. In cuprate superconduc-
tors, various authors [10–14] have commented on the different
temperature (T ) dependence of the transport properties in
the normal phase. The cotangent Hall angles, defined as
the ratio of the longitudinal conductivity σxx and the Hall
conductivity, cot(θH ) = σxx/σxy , is close to quadratic as in
conventional metals. Meanwhile, the longitudinal resistivity
has unusual linear temperature dependence [15]. Understand-
ing the ubiquitous T 2 behavior of cot(θH ) in spite of the
unconventional temperature dependence of the longitudinal
resistivity is therefore quite important.

In Ref. [1] we found that at the lowest temperatures the
system is a Gutzwiller-correlated Fermi liquid (GCFL) with

ρxx ∝ T 2. Upon warming one finds a regime with linear
temperature dependence of the resistivity ρxx [1], which
is reminiscent of the strange metal regime in the cuprate
phase diagrams [15]. It is termed the Gutzwiller-correlated
strange metal (GCSM) regime [1]. Previous studies [4,5]
established the GCFL and GCSM regimes using the longi-
tudinal resistivity. Here we focus instead on the Hall constants
RH = σxy/σ

2
xx and the Hall angles [5], as well as on the optical

conductivity [4] and optical Hall angles. In the GCFL regime,
the primary excitations are coherent quasiparticles that survive
the Gutzwiller correlation, and there is a single transport
relaxation time, as one would expect for a conventional
Fermi liquid. Upon warming up into the GCSM regime, the
longitudinal and transverse optical scattering rates become
different. It appears that the existence of two separate scattering
times is a generic characteristic of the GCSM regime.

This work is organized as follows. First we summarize the
Kubo formulas used to calculate the transport coefficients in
Sec. II. We then revisit in Sec. III the familiar Boltzmann
transport theory from which two separate relaxation times can
be naturally derived. The results for the dc transport properties
are presented in Sec. IV and those of optical conductivities in
Sec. V. In Sec. VI we interpret the two scattering times found
in the GCSM regime through the particle-hole asymmetry
of dynamical properties (spectral function) of the system. In
conclusion we discuss the implication of this work for strongly
correlated matter.

II. KUBO FORMULAS

The transport properties of correlated materials can be
easily evaluated in the limit of infinite dimensions because the
vertex corrections are absent [16]. For dimensions d > 3, the
longitudinal conductivity σxx is straightforwardly generalized
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as the electric field remains a d-dimensional vector. The
generalization is less clear for the transverse conductivity and
Hall constants, because the magnetic field is no longer a vector
but rather a rank-2 tensor defined through the electromagnetic
tensor. Nevertheless, σxy can still be defined through suitable
current-current correlation functions.

The input to the transport calculation is the single-particle
Green’s function G(ω,k), calculated in the following within
either ECFL or DMFT. The Kubo formulas can be written as
[17,18]

σxx = 2πq2
e

∑

k

&xx
k

∫
dω

(
−∂f (ω)

∂ω

)
ρ2

G(ω,k), (1)

σxy/B = 4π2q3
e

3

∑

k

&
xy
k

∫
dω

(
−∂f (ω)

∂ω

)
ρ3

G(ω,k), (2)

where ρG(ω,k) = −Im G(ω,k)/π is the single-particle spec-
tral function and qe = −|e| is the electron charge. &xx

k = (ϵx
k )2

and &
xy
k = (ϵy

k )2ϵxx
k − ϵ

y
k ϵx

k ϵ
xy
k are called transport functions,

with ϵα
k = ∂ϵk/∂kα and ϵ

αβ
k = ∂2ϵk/∂kα∂kβ, ϵk being the

energy dispersion. We set h̄ to 1.
It is more convenient to convert the multidimensional k

sums into energy integrals:

σxx = σ02πD

∫
dϵ

&xx(ϵ)
&xx(0)

∫
dω

(
−∂f (ω)

∂ω

)
ρ2

G(ω,ϵ),

(3)

σxy/B = σ0
4π2Dqe

3

∫
dϵ

&xy(ϵ)
&xx(0)

×
∫

dω

(
−∂f (ω)

∂ω

)
ρ3

G(ω,ϵ), (4)

where &xx(xy)(ϵ) =
∑

k &
xx(xy)
k δ(ϵ − ϵk), σ0 = q2

e &
xx(0)/D

is the Ioffe-Regel-Mott conductivity, D is the half-bandwidth,
and ρG(ω,ϵ) = ρG(ω,k) such that ϵ = ϵk . In d dimensions the
transport functions on the Bethe lattice are [19]

&xx(ϵ) = 1
3d

(D2 − ϵ2)ρ0(ϵ), (5)

&xy(ϵ) = − 1
3d(d − 1)

ϵ(D2 − ϵ2)ρ0(ϵ), (6)

where ρ0(ϵ) = 2
πD2

√
D2 − ϵ2,(D − |ϵ|) is the noninteract-

ing density of states on the Bethe lattice and D is the
half-bandwidth. Even though the transport function results
indicate that σ vanishes as d → ∞, we can redefine the
conductivities in this limit as the sum of all components: σL =∑

α σαα, σT =
∑

α ̸=β sgn[α − β]σαβ with α(β) = 1,2, . . . ,d.
More importantly, the d dependence directly drops out when
we compute the Hall constant RH = σxy/σ

2
xx . For the rest

of this work, we shall redefine σxx and σxy via σL and σT

considering that all components of σL(T ) are equal so that both
the d factor and the constant factor drop out from the transport
functions:

σxx = 3σL, &xx(ϵ) = (D2 − ϵ2)ρ0(ϵ), (7)

σxy = 3σT , &xy(ϵ) = −ϵ(D2 − ϵ2)ρ0(ϵ). (8)

III. TWO-RELAXATION-TIME BEHAVIOR
IN THE BOLTZMANN THEORY

In Boltzmann theory, the transport properties can be
obtained by solving for the distribution function in the presence
of external fields from the Boltzmann equation [20]:

∂ δf

∂t
− qe

h̄c
v × B · ∂ δf

∂k
+ v · qe E(t)

(
−∂f 0

∂ϵ

)
= L̂ δf, (9)

where f is the full distribution function that needs to be solved,
f 0 is the Fermi-Dirac distribution function, δf = f − f 0, and
L̂δf represents the linearized collision integrals.

In the regime of linear response, we expand δf E,B in powers
of the external fields to second order as

δf E,B = δf E,0 + Bδf E,1, (10)

where δf E,0 is the solution in the absence of magnetic fields,
and both δf E,0 and δf E,1 are linear in E. In the relaxation-time
approximation (RTA) [21] we replace the collision integrals
as L̂kδf → −δf/τ where τ is assumed to be k independent.
However, L̂δf E,0 and L̂δf E,1 are in principle governed by
different relaxation times, as pointed out by Anderson [10,14].
Writing

L̂δf E,0 → −δf E,0

τtr

, L̂δf E,1 → −δf E,1

τH

, (11)

we obtain

σxx(ω) =
ω2

p

4π

τtr

1 − iωτtr

, (12)

σxy(ω)/B =
ω2

pωc/B

4π2

τH

1 − iωτH

τtr

1 − iωτtr

, (13)

where

ω2
p

4π
=

∫
ddk

(2π )d
2q2

e v
2
x(−∂ϵf

0), (14)

ωc

B
= ω−2

p

∫
ddk

(2π )d
2q3

e

(
v2

x∂ky
vy − vxvy∂kx

vy

)
∂ϵf

0; (15)

va = ∂ka
ϵ(k) is the velocity in direction a, ϵ(k) is the energy

dispersion of the electrons, and B = ẑB. Then the Hall angle
is

tan θH (ω) = ωc

π

τH

1 − iωτH

. (16)

Therefore, the optical conductivities can be cast in the
Boltzmann-RTA form as

σxx(0)
Re[σxx(ω)]

= 1 + ω2τ 2
tr , (17)

σxy(0)/B
Re[σxy(ω)]/B

= 1 + ω2(τ 2
tr + τ 2

H

)
+ τ 2

trτ
2
H ω4, (18)

θH (0)
Re[θH (ω)]

= 1 + ω2τ 2
H . (19)

The dc and ac transport coefficients of a microscopic theory
do not necessarily take the form of the Boltzmann RTA theory.
In the rest of this work, we study both the dc and the real part
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of the ac transport coefficients, and consider them as

Re[σxx(ω)] = σxx(0)
1 + τ 2

trω
2 + O(ω4)

, (20)

Re[tan θH (ω)/B] = tan θH (0)/B
1 + τ 2

H ω2 + O(ω4)
. (21)

The relaxation times τtr and τH are extracted from the low-
frequency part of Re[σxx(ω)] and Re[tan θH (ω)/B] by fitting
to the above expressions. Although computing Re[θH (ω)]
requires both real and imaginary parts of the optical con-
ductivities, we can make the approximation Re[θH (ω)] ≃
Re[σxy(ω)]/Re[σxx(ω)] when ω of concern is small. We expect
τtr and τH to have temperature and density dependence similar
to those of σxx(0) and tan θH (0)/B.

IV. DC TRANSPORT

We now use the Kubo formulas to compute the transport
coefficients within the ECFL and DMFT approaches. We plot
the ECFL results as solid symbols and the DMFT results as
dashed lines using the same color for each density unless
specified otherwise. As we shall demonstrate, the agreement
between the DMFT and ECFL results follows the same
qualitative trend for all quantities considered: it is better
at lower temperatures, lower frequencies, and lower density
(higher hole doping).

We identify the GCFL and GCSM regimes, as well as the
crossover scale TFL separating them, from the T dependence
of the longitudinal resistivity ρxx , shown in Fig. 1. Figure 1(a)
shows resistivity for all densities and temperatures considered
for ECFL (symbols) and DMFT (dashed lines) in this work.
In Fig. 1(b), we use the resistivity of n = 0.8 from ECFL as
an example of how we determine TFL with the help of the
T 2 fit at low temperatures (blue dashed line) and the linear-T
fit from the GCSM regime (purple dashed line). We identify
the Fermi liquid temperature TFL using the resistivity, rather
than the more conventional thermodynamic measures, such
as heat capacity. The latter variables do actually give rather
similar values, but the resistivity seems most appropriate for
this study. Our definition is that up to and below TFL, the
resistivity ρxx ∼ T 2, while above TFL, ρxx displays a more
complex set of T dependencies as outlined in Ref. [1]. The
Fermi liquid temperature has been quantitatively estimated in
Ref. [6]:

TFL ≃ 0.05 × DZ ≃ 0.05 × Dδα, (22)

where δ is the hole density δ = 1 − n. The exponent α ∼
1.39 within DMFT [8]. The value of α determined for ECFL
within the current scheme [6] is somewhat larger than that
from DMFT. As a consequence TFL given by DMFT is slightly
higher than that by ECFL (see [22] for exact numbers), as can
also be seen in Fig. 1. Consequently as n increases, the ECFL
curves for ρxx lie above those from DMFT.

A. Hall constant

In Fig. 2, we show RH as a function of temperature at
different densities for low temperatures T < 0.02D [Fig. 2(a)],
and as a function of the hole density δ = (1 − n) at T =
0.002D, 0.005D, 0.01D [Fig. 2(b)]. The Hall constant is

FIG. 1. Temperature dependence of the dc resistivity ρxx (a) of
the U = ∞ Hubbard model from DMFT (dashed lines) and ECFL
(solid symbols) for a range of electron densities n. The horizontal
axis corresponds to absolute temperatures. Using the resistivity of
n = 0.8 from ECFL (b) as an example, we show how we determine
TFL with the help of the T 2 fit at low temperatures (blue dashed line)
and the linear-T fit from the GCSM regime (purple dashed line).

weakly temperature dependent for T ≪ TFL, but it starts to
decrease upon warming, as seen in Fig. 2(a).

As a function of hole density δ the Hall constants from
the two theories agree quite well, and are roughly linear with
δ. The extrapolation to δ → 0 is uncertain from the present
data. One might be tempted to speculate that it vanishes,
since the lattice density of states is particle-hole symmetric.
This question deserves further study with different densities
of states that break the particle-hole symmetry.

B. Cotangent of the Hall angle

The theoretical results for cotangent of the Hall angle
(cot θH )B = (σxx/σxy)B are shown as a function of T 2 in
Fig. 3(a). We see that in DMFT as well as ECFL, the cot(θH )
is linear in T 2 on both sides of a bend (or kink) temperature,
which increases with increasing hole density δ. However this
kink is weaker in DMFT than in ECFL. This bending was
already noted in Fig. 5(a) of Ref. [9], within the 2-d ECFL
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FIG. 2. Temperature dependence of the Hall constants RH (a) and RH at T = 0.002D,0.005D,0.01D as a function of the hole density
δ = 1 − n (b) for both DMFT (dashed lines) and ECFL (solid symbols). RH is weakly T dependent below TFL and develops stronger T

dependence in the GCSM regime. RH varies roughly linearly on δ at all three temperatures shown in (b).

theory. We may thus infer that cot(θH ) goes as QFLT 2 in the
Fermi liquid regime, passes through a slight downward bend,
and continues as QSMT 2 in the strange metal regimes, such that
QFL > QSM . The difference, QFL − QSM , becomes smaller
as δ decreases.

In order to characterize this kink more precisely, we define
the downward-bending regime by its onset temperature T −

B ,
the crossing temperature of the two different T 2 lines TB ,
and its ending temperature T +

B . The temperatures T
−(+)
B are

determined by 5% deviation from the T 2 fitting well below
(above) TFL, and TB is well defined as the crossing point of
the two T 2 fittings. We illustrate the kink and the determination
of TB, T −

B , and T +
B at n = 0.7 for both ECFL in Fig. 3(b) and

DMFT in Fig. 3(c). In Fig. 3(d), we show TB, T −
B , T +

B , and
TFL obtained from ECFL as functions of δ. We see that T −

B is
identical to TFL, while TB and T +

B are TFL plus some constants
with weak δ dependence. We plot cot θH

cot θH (T =TFL) as functions of
(T/TFL)2 for ECFL in Fig. 3(e) and DMFT in Fig. 3(f) to
show the systematic evolution of the kinks when the density is
varied.

In Fig. 3(a) we note that with n ! 0.8 the ECFL and DMFT
curves separate out at modest T 2, unlike lower densities where
the agreement is over a greater range. This may be ascribed
to the limitations of the second-order scheme in ECFL used
here, which underestimates Z at high densities.

C. Kink in cotangent of the Hall angle

There has been much interest in the quadratic T dependence
of cot(θH ) in the literature [10,14]. Going beyond the much
discussed low-T quadratic correlation, we would like to point
out that a bending anomaly, or kink, is seen in the plot of
cot(θH ) versus T 2, in almost all experiments. A kink is clearly
seen in the experimental curves Fig. 2 of Ref. [10], Fig. 4 of
Ref. [23], and Fig. 3(c) of Ref. [11]. This intriguing feature
and its significance, noted here, seems to have escaped mention
earlier.

From Fig. 3(c) of Ref. [11] we estimate TB ≃
100 K,80 K,70 K for LSCO at δ = 0.21, 0.17, 0.14, respec-

tively. These are comparable with the ECFL results TB = 70 K,
60 K, 40 K at δ = 0.2, 0.175, 0.15, if we set D = 104 K.
The trend of TB and the prefactor difference QFL − QSM

also agree with what we find; i.e., both TB and QFL − QSM

decrease as δ is lowered. An increase of QSM at even higher
temperatures is also observed in Ref. [24], similarly to what
we find in Fig. 3(a) above the GCSM regime. It is notable that
the bending temperatures TB in theory and in experiments are
on a similar scale.

From the (shared) perspective of the ECFL and DMFT
theories Ref. [1], the scale TFL represents a crossover between
the GCFL and GCSM regimes. In the present work, we have
argued that the cot(θH ) versus T 2 curve further shows a bend at
temperature TB . This bending temperature scale TB is related
to the effective Fermi liquid scale TFL. In Figs. 3(b)–3(d)
this relationship is made clear through the identification of
T ±

B and TB . It should be possible to extract these scales
from experiments following the same protocol. In view of
our clear-cut prediction, it would be of considerable interest
to experimentally explore the bending anomaly (i.e., kink) in
cot(θH ) versus T 2 and to test the proposed correlation with
TFL.

V. OPTICAL RESPONSE

A. Optical conductivity and the longitudinal scattering rates !t r

In Fig. 4 we show the optical conductivity σxx(ω) as well
as the quantity σxx(0)/σxx(ω) − 1, which better presents the
approach to the zero-frequency limit and is to be compared
with the Boltzmann RTA form (Drude formula) in Eq. (17). We
display plots obtained from both ECFL (symbols) and DMFT
(dashed lines) for fixed n = 0.8 and for three temperatures to
show the generic behavior at T < TFL, T ≃ TFL, and T >
TFL: T = 0.002D [Fig. 4(a)], T = 0.005D [Fig. 4(b)], and
T = 0.01D [Fig. 4(c)]. ECFL results agree well with the exact
solution of DMFT within this temperature range.

σxx(ω) shows a narrow Drude peak below TFL which
broadens as T increases and finally takes a form well approxi-
mated by a broad Lorentzian at T = 0.01D. Correspondingly,
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FIG. 3. Temperature dependence of the cotangent Hall angle cot θH B of both ECFL (symbols) and DMFT (dashed lines) shown as a
function of T 2 (a). The Hall angle cot θH B ∝ T 2 in the GCFL regime passes through a slight downward bend (i.e., a kink) and continues as T 2

within the temperature range studied. The downward bending regime is characterized by its onset T −
B , the crossing of the two different T 2 lines

TB , and its ending T +
B . We illustrate the kink and the determination of TB, T −

B , and T +
B at n = 0.7 for both ECFL (b) and DMFT (c). TB, T −

B ,
and T +

B obtained from the ECFL are shown as a function of δ in (d). We plot cot θH

cot θH (T =TFL) as a function of (T/TFL)2 for ECFL (e) and DMFT
(f) to show the systematic evolution of the kinks when the density varies.

[σxx(0)/σxx(ω) − 1] is quadratic in frequency and can be fitted
to τ 2

trω
2 to extract the relaxation time τtr . The ω2 regime

has a width ∝ τ−1
tr . The fitting is performed at very small

frequencies well within this quadratic regime. At higher fre-
quency, [σxx(0)/σxx(ω) − 1] flattens out and creates a kneelike

feature in between. The flattening tendency decreases as T
increases, and 1/σxx(ω) grows monotonically. This kneelike
feature thus becomes smoother as T increases and eventually
is lost for T > TFL. This trend is illustrated in Fig. 4(d),
where we normalize all curves of [σxx(0)/σxx(ω) − 1] by their
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FIG. 4. σxx(ω) and σ (0)/σ (ω) − 1 for n = 0.8 at T = 0.002D (a), T = 0.005D (b), and T = 0.01D (c) for DMFT (dashed lines) and
ECFL (solid symbols). The cyan solid lines are ω2 fitting near ω → 0. In (d) we normalize σ (0)/σ (ω) − 1 curves computed from ECFL for
various temperatures by τ 2

tr with τtr obtained from the fits at small frequencies to the Drude formula. The solid blue line is a ω2 curve.

corresponding τ 2
tr , while the ω2 curve is shown as a solid blue

line. All curves fall onto the ω2 line at small frequencies, and
peal off at a frequency which increases as T increases.

These scattering rates are shown as a function of temper-
ature in Fig. 6(a). The scattering rate . has a temperature
dependence similar to that of the resistivity, i.e., a quadratic-T
regime at low temperatures followed by a linear-T regime at
higher temperatures.

B. Optical Hall angle and the transverse scattering rates !H

In Fig. 5, we show the optical tangent Hall angle tan θH (ω)
and the quantity tan θH (0)/ tan θH (ω) − 1. We display plots
obtained from both ECFL (symbols) and DMFT (dashed
lines) for fixed n = 0.8 and for three temperatures to show
the generic behavior at T < TFL, T ≃ TFL, and T > TFL:
T = 0.002D [Fig. 5(a)], T = 0.005D [Fig. 5(b)], and T =
0.01D [Fig. 5(c)]. The ECFL results agree well with those
from DMFT within this temperature range.

Just like σxx(ω), tan θH (ω) possesses a narrow Drude peak
below TFL that broadens in a similar way with increasing
temperature. [tan θH (0)/ tan θH (ω) − 1] is quadratic in fre-
quency and we fit τ 2

H ω2 to extract the transverse relaxation
time τH . The ω2 regime, however, has a very narrow, weakly
T -dependent width which is about 0.003D. The relaxation
time τH is extracted by fitting within this very low frequency
range. Above this energy a flattening behavior, similar to that

in the optical conductivity, takes place at low temperatures.
At higher temperatures and lower hole density, a power-law
behavior with an exponent that increases with T gradually
replaces the flattening out behavior. Such a tendency is visible
in Figs. 5(d) and 5(e), where all [tan θH (0)/ tan θH (ω) − 1]
curves are normalized by their corresponding τ 2

H .
In Fig. 6(b) we show .H (defined as .H ≡ τ−1

H ) for various
densities and temperatures obtained from the Drude formula
fitting. Their T dependence is quadratic for both GCFL and
GCSM regimes.

C. Emergence of two relaxation times

In Fig. 6(c), we show .H/.tr as a function of temperature.
At all densities considered this ratio behaves differently for
T below and above TFL. Below TFL, the ratio .H/.tr ≃ 0.5
remains essentially constant, and hence the optical transport
is dominated by a single scattering rate. Once TFL is
crossed, however, .H/.tr becomes strongly T dependent.
This indicates that there are two relaxation times in the GCSM
regime. This is possible since the quasiparticles are no longer
well defined for T > TFL, and different frequency regimes
present in the spectral functions contribute differently to the
two relaxation times. In Fig. 6(d), we plot .H/.tr versus the
rescaled temperature T/TFL to illustrate the clearly distinct
behavior below and above TFL.
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FIG. 5. Optical Hall angles tan θH (ω) (blue) and tan θH (0)/ tan θH (ω) − 1 (red) shown for n = 0.8, T = 0.002D (a), T = 0.005D (b), and
T = 0.01D (c) for DMFT (dashed lines) and ECFL (solid symbols). The cyan solid lines are ω2 fitting near ω → 0. [tan θH (0)/ tan θH (ω) −
1]/τ 2

H obtained from ECFL shown for n = 0.7 (d) and n = 0.8 (e). Drude peaks are found to be narrow (note the different horizontal axis scale
compared to Fig. 3).

VI. ANALYSIS

We begin by analyzing the exact formulas for the con-
ductivities σxx,σxy of Eqs. (3) and (4), following Refs. [18]
and [6] within ECFL theory where more analytic insight is
available.

It has long been noted that the particle-hole asymmetry
of the spectral function is one of the characteristic features of
strongly correlated systems [25,28–33]. The dynamic particle-
hole transformation is defined by simultaneously inverting the
wave vector and energy in ρG(k,ω) relative to the chemical
potential µ as (k̂,ω) → −(k̂,ω), with k̂ = k − kF [25]. In the
limit of d → ∞, we ignore the k̂ part of the transformation.
Consequently, the dynamic particle-hole asymmetry solely
stems from the asymmetry of the self-energy spectral function
ρ/(ω,T ) = −Im /(ω,T )/π . Instead of analyzing ρG, we can

simply focus on ρ/ since

ρG = ρ/

(ω + µ − ϵ − Re /)2 + π2ρ2
/

(23)

= 1
π

B(ω,T )
[A(ω,T ) − ϵ]2 + B2(ω,T )

, (24)

where

A(ω,T ) = ω + µ − Re /(ω,T ), (25)

B(ω,T ) = πρ/(ω,T ) = −Im /(ω,T ). (26)

Then we approximate the exact equations (3) and (4) by
their asymptotic values at low enough T, following Ref. [6].
The idea is to first integrate over the band energy ϵ viewing one
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FIG. 6. Longitudinal relaxation rate .tr extracted by fitting σxx(ω) by the Drude formula (a), transverse relaxation time .H extracted from
θH (ω) (b), and their ratio .H /.tr as a function of T (c) and as a function of scaled temperature T/TFL (d). All the relaxation rates are extracted
from the ECFL optical response results.

of the powers of ρG as a δ function constraining ϵ → A(ω,T ).
This gives

σxx = σ0D

&xx[0]

∫
dω(−f ′)

&xx[A(ω,T )]
B(ω,T )

, (27)

σxy = σ0Dqe

&xx[0]

∫
dω(f ′)

×
(

∂2
ω&xy[A(ω,T )]

3
+ &xy[A(ω,T )]

2[B(ω,T )]2

)
. (28)

The first term in Eq. (28) turns out to be negligible compared
to the second, and hence we will ignore it. Next, we track down
the electronic properties that give rise to a second relaxation
time using the above asymptotic expressions.

To the lowest order of approximation at low temperatures,
we can make the substitution f ′(ω) → −δ(ω) in Eq. (27) and
(28), which gives

cot θH,0/B = 2B(0,T )
qeA(0,T )

. (29)

We show cot θH,0 in Fig. 7. When plotted as a function
of T 2 as shown in the main panel of Fig. 7, cot θH,0
(solid symbols) is in good agreement with the exact results
(dashed lines) both qualitatively, i.e., showing a kinklike fea-
ture, and quantitatively except for relatively high temperatures
and densities. However, when it is plotted as a function of T
(inset of Fig. 7), we find that the “kink” is actually the crossover
from a T 2 behavior to a linear-T behavior and cot θH,0 follows

the T dependence of ρxx . The lowest order approximation is
insufficient to capture and to understand the second T 2 regime.
Therefore, we pursue more accurate asymptotic expressions
of Eqs. (27) and (28). Following Refs. [5] and [1], we do the

FIG. 7. Zeroth-order asymptotic cotangent Hall angle cot θH,0

plotted as a function of T 2 (main panel, symbols) compared with
the exact results (dashed lines) and as a function of T (inset).
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FIG. 8. Coefficients of the small frequency expansion of the ECFL Dyson self-energy 0/ (a) and 1 (b) plotted as functions of temperature.

following small-frequency expansion:

&xx(xy)[A(ω,T )] = &xx(xy)[A0] + &xx(xy)′[A0]A1 ω

+ · · · , (30)

B(ω,T ) = B0 + B1ω + B2ω
2 + · · · , (31)

where A0 and A1 are given by the expansion

A(ω,T ) = A0 + A1ω + · · · . (32)

Recall that A1 = Z−1; it is therefore large. In order to provide
further context to these coefficients Bn and to connect with
earlier discussions of the self-energy, it is useful to recall a
suggestive expression for the imaginary self-energy exhibiting
particle-hole asymmetry at kF at low ω (e.g., see Eq. (28) in
Ref. [8]):

− Im /(ω,T ) ∼ π
(ω2 + π2T 2)

0/(T )

(
1 − ω

1

)
, (33)

where 0/ behaves as ∼Z2 in the low-T Fermi liquid regime.
The scale 1 breaks the particle-hole symmetry of the leading
term.

The variation of 0/ and 1 in the GCSM regime is
illustrated in Fig. 8. Expanding this expression at low ω we
identify the coefficients B0 = π π2T 2

0/ (T ) , B1 = −B0
1

, B2 = π
0/

,
all of which are numerically verified to be valid for all
temperatures we study in this work. The negative sign of B1 is
easily understood.

Now we keep B(ω,T ) to O(ω2) and A(ω,T ) to O(ω), which
are the lowest orders required to capture all important features
of the exact results. Then Eqs. (27) and (28) can be simplified as

σxx ≃ σ0F
0
1

D2B0

(
D2 − A2

0

)3/2

(

1 − 3π2F 2
2

F 0
1

T 2A0A1

1
(
D2 − A2

0

)
)

,

(34)

σxy/B ≃ σ0qeF
0
2

2D2B2
0

A0
(
D2 − A2

0

)3/2

×
[

1 +
π2F 2

3

F 0
2

T 2A1

1A0

(
1 −

3A2
0

D2 − A2
0

)]
. (35)

The coefficients are defined as [26]

Fn
m = π

4

∫ ∞

−∞

dx

cosh2(πx/2)

xn

(1 + x2)m
. (36)

Using Eqs. (34) and (35) and note [26], we can write

σxx ≃ σxx,0(1 − αxx), (37)

σxy ≃ σxy,0(1 − αxy), (38)

with

σxx,0 = σ0

(
D2 − A2

0

)3/2

D2

0.822467
B0

, (39)

σxy,0/B = σ0qe

A0
(
D2 − A2

0

)3/2

D2

0.355874
B2

0

, (40)

αxx = A1A0

D2 − A2
0

3.98598 × T 2

1
, (41)

αxy = −A1

(
1
A0

− 3A0

D2 − A2
0

)
2.12075 × T 2

1
. (42)

σxx,0 agrees with previous works [1,6]. αxx(xy) are relative
corrections due to 1 and A1 comparing to σxx(xy),0. Numerical
results of αxx and αxy are shown in Fig. 9(a). We find that |αxx |
is less than 5% even at the highest temperature. However, αxy

becomes O(1) in the GCSM regime. Therefore, we obtain the
following asymptotic tan θH by omitting αxx :

cot(θH ) ≃ cot θH,0

(1 − αxy)
, (43)

cot θH,0/B = qe

B0

0.432691A0
. (44)

We show ρxx and cot(θH ) computed from the asymptotic
expressions (37) and (38) in Fig. 9. The asymptotic values
are denoted by crosses whereas the results of Eqs. (3) and (4)
are denoted by solid circles. The numerical results of Eq. (43)
recover the second T 2 regime.

Therefore, we find that the αxy term due to the higher order
terms of A(ω,T ) and B(ω,T ) gives rise to the second T 2

regime of cot(θH ). Typically such correction is small, such
as is the case of αxx . The significant difference between αxx
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FIG. 9. αxx (dashed lines) and αxy (solid symbols) (a), ρxx (b), cot(θH ) (c) computed from Eqs. (37) and (38) using ECFL results. The
asymptotic values are denoted by crosses whereas the ECFL results of Eqs. (3) and (4) are denoted by solid circles.

and αxy is understood by examining Eqs. (41) and (42) more
closely. Both αxx and αxy are ∝ A1T

2/1 with slightly different
constant factors. Since A0 ≪ D and almost independent of T ,
we can ignore the 3A0(D2 − A2

0)−1 term of αxy . Hence the
difference is mostly determined by a factor

αxy/αxx ∼ A−2
0 , (45)

which greatly enhances αxy .
In the GCFL regime, αxy is negligible, and the coefficient

of the T 2 behavior is

QFL = B cot(θH )
T 2

≃ π3

0.432691 × qeA00/(T → 0)
. (46)

0/(T ) is almost a constant in the GCFL regime hence
approximated by its zero-temperature value 0/(T → 0) [27].
In the GCSM regime, both 0/ and 1 become linear in T :

0/(T ) ≃ 00(T + T0), (47)

1(T ) ≃ 10(T + T1), (48)

FIG. 10. Equations (46) and (49) (crosses) compared with QFL

and QSM (solid circles) obtained by fitting the exact cot(θH ).

where 00(10) and T0(1) are fitting parameters [27]. By
keeping only the constant term we obtain

QSM ≃ π3

0.432691 × qeA000(T1 + T0)
. (49)

We compare the actual QFL and QSM with Eqs. (46) and (49)
in Fig. 10.

According to the above analysis, the second T 2 behavior of
cot(θH ) is due to the combination of two things:

(1) The dynamic particle-hole antisymmetric component
of ρ/(ω) characterized by the energy scale 1. Its contribution
to transport becomes important when πT becomes comparable
to 1.

(2) The particular form of the transverse transport function
&xy(ϵ) that causes &xy′[A0]/&xy[A0] ∝ A−1

0 . Without this
factor, αxy would be negligible as αxx . This particular form
of &xy(ϵ) is due to the particle-hole symmetry of the bare
band structure.

VII. DISCUSSION

We have shown that Hall constants, Hall angles, optical
conductivities, and optical Hall angles calculated by ECFL
agree reasonably well with the DMFT results. The differences
tend to increase at higher densities and higher temperatures as
noted earlier [6].

We focused on the differences in the behavior above and
below the Fermi liquid temperature scale TFL, i.e., from the
GCFL regime to the GCSM regime. Below TFL, both ρxx and
cot(θH ) ∝ T 2. Equivalently, RH has very weak T dependence
since RH = ρxx/ cot(θH ). When T > TFL, however, cot(θH )
passes through a slight downward bend and continues as T 2

whereas ρxx ∝ T . The significance of the downward bend is
that it signals the crossover to the strange metal regime from
the Fermi liquid regime.

We explored the long-standing two-scattering-rate problem
by calculating both the optical conductivities and optical Hall
angles, and the corresponding scattering rates. Below TFL,
both σxx(ω) and tan θH (ω) exhibit Drude peaks, which is a
manifestation of transport dominated by quasiparticles. The
corresponding scattering rates can be extracted by fitting to
the Drude formula in the appropriate frequency range. Above
TFL, the Drude peak for σxx(ω) becomes broadened; i.e.,

115153-10

(293)



STRANGE METAL FROM GUTZWILLER CORRELATIONS IN . . . PHYSICAL REVIEW B 96, 115153 (2017)

σxx(0)/σxx(ω) − 1 ∼ ω2 for an even larger range that keeps
growing with increasing temperature. In this case, fitting to
the Drude formula is still valid, and the scattering rate shows
trends as a function of temperature similar to those of the dc
resistivity. For θH (ω), the Drude peak range is very narrow,
but nonetheless persists for all temperatures that we study in
this work. Similarly, the extracted scattering rate .H shows
trends as a function of temperature similar to those of the
dc Hall angle. At lower dopings and higher temperatures, it
seems possible that the Drude peaks of θH (ω) would disappear
and the fractional power law would stretch down to nearly
ω = 0.

By comparing the two optical scattering rates through their
ratio, .H/.tr , we clearly demonstrated that .H and .tr are
equivalent below TFL, but that they quickly become two
distinguishable quantities when the system crosses over into
the strange metal region.

By carefully examining the asymptotic expressions of
σxx and σxy we established that the different temperature
dependence of cot(θH ) in the GCSM regime is governed
by a correction caused by both the dynamical particle-hole

antisymmetric component of ρ/(ω) and the particle-hole
symmetry of the bare band structure. This correction is turned
on when T becomes comparable to 1, the characteristic energy
scale of the antisymmetric components of ρ/(ω).

It would be useful to examine the bend in cot(θH ) more
closely in experiments in cuprate materials, where such a
feature is apparently widely prevalent but seems to have
escaped comment so far. In particular, one would like to
understand better whether the longitudinal resistivity and
the cotangent Hall angle show simultaneous signatures of a
crossover, as our theory predicts in this work.
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We study the one-dimensional t-t ′-J model for generic couplings using two complementary theories, the
extremely correlated Fermi liquid theory and time dependent density matrix renormalization group over a broad
energy scale. The two methods provide a unique insight into the strong momentum dependence of the self-energy of
this prototypical non-Fermi liquid, described at low energies as a Tomonaga-Luttinger liquid. We also demonstrate
its intimate relationship to spin-charge separation, i.e., the splitting of Landau quasiparticles of higher dimensions
into two constituents, driven by strong quantum fluctuations inherent in one dimension. The momentum
distribution function, the spectral function, and the excitation dispersion of these two methods also compare well.

DOI: 10.1103/PhysRevB.98.035108

I. INTRODUCTION

In varying dimensions the t-J model continues to attract
attention owing to its relevance in cuprates and other important
strongly interacting electronic systems. The model embodies
very strong correlations, which lie outside the regime of valid-
ity of perturbation theory, and thus pose a challenging problem.
Our main goal in this work is to obtain an understanding of the
properties in one dimension (1D), over a wide energy range.

At low energies the bosonization technique has been widely
applied to the (closely related) Hubbard model [1–5]. For
large U several nonperturbative methods have been devised
to study the t-J model for general dimensions, including the
study of finite clusters [6,7] and large-N based slave particle
mean-field theories [8]. In 1D we also have exact results using
Bethe’s ansatz [9–14] at special values of the parameters of
the model, and also for long-ranged versions [15] of the t-J
model, using techniques developed in the Haldane-Shastry
models. Photoemission experiments [16] have been carried
out to study the spectral properties of several quasi-1D metals,
relevant to the t-J model.

To study a wider energy range, including the low to
intermediate and high energy regimes, we employ and compare
the results from two complementary techniques. In 1D, the
density matrix renormalization group (DMRG) [17] provides
nearly exact results for the ground state and can also be used
for finite temperature and spectral properties. Ground state
DMRG has been used to give the phase diagram of the t-J
model over a broad range of parameters in Ref. [18]. Here
we study dynamics using the time dependent density matrix
renormalization group (tDMRG). tDMRG [17,19] has been
used to obtain virtually exact spectral functions for spin chains,
but only a few times for doped Fermi systems. One such time
was a tDMRG treatment of the t-J model, obtaining spectral
functions for the system at finite temperature [20]. In this

*pemai@ucsc.edu
†srwhite@uci.edu
‡b.sriram.shastry@gmail.com

work we use tDMRG only at T = 0, but we have pushed
much farther in terms of system size, accuracy, and frequency
resolution than in Ref. [20]. This accuracy is needed to resolve
the detailed features of the self-energy, which has not been
done before with tDMRG.

The other technique used is the extremely correlated Fermi
liquid (ECFL) theory [21]. This analytical theory, which can
treat a large class of large U problems, including the t-J
model, uses Schwinger’s functional differential equations for
the electron Green’s function. These equations are systemati-
cally expanded in a parameter λ ∈ [0,1], representing partial
Gutzwiller projection. The O(λ2) theory leads to a closed set
of coupled equations [21,22] for the Green’s function. This
treatment has been benchmarked in high dimensions and in 2D.
In infinite dimensions, dynamical mean field theory (DMFT)
[23] provides a solution to the Hubbard model, and ECFL has
been benchmarked recently [24,25] against exact results from
the single impurity Anderson model, and DMFT in d = ∞
[26,27]. The limiting case U = ∞ has been explored in detail
in Ref. [28]. The agreement at low energies is good enough to
yield accurate results for the low T resistivity, a highly sensitive
variable. In 2D, ECFL has been applied recently to cuprate
superconductors [29,30]. It is therefore interesting to see how
well this scheme deals with the physics of 1D. The equations
used here have the character of a skeleton graph series. We have
checked that the second order skeleton graphs for the Hubbard
model in 1D already displays characteristics of spin-charge
separation and non-Fermi liquid spectral functions, while the
nonskeleton, i.e., bare perturbation theory does not.

Understanding the extent of momentum dependence of the
Dysonian self-energy � in various dimensions is one of the
goals of the present paper. While the d = ∞ models have a
momentum independent self-energy, momentum dependence
of � is inevitable in lower dimensions. However there is a
scarcity of reliable information on its extent and location. In
most published work, the self-energy in 1D is rarely presented
[31], or even calculated, since standard solutions directly deal
with the Green’s function. In contrast we focus on unraveling
the (�k,ω) dependence of the Dysonian self-energy in 1D and
comparing with its higher dimensional counterparts.
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II. OVERVIEW

In the present paper we solve the d = 1 t-t ′-J model for
generic parameters using the same set of ECFL equations as in
higher dimensions. We calculate from the two theories the mo-
mentum distribution function, self-energy, spectral function,
and excitation dispersion over a broad energy scale.

In the low k,ω regime exhibiting non-Fermi liquid behavior,
reasonable agreement is found between the two and the exact
diagonalization (ED) data in the velocities of spinons and
holons [6], as well as the Tomonaga-Luttinger liquid (TLL)
theory in anomalous exponent [18]. Extending the O(λ2)
ECFL equations to higher orders holds the promise of a better
agreement. At higher energies, where few studies exist, the
agreement between the two theories is quite good already. A
valuable insight gained at low energies is the close relationship
between a momentum dependent ridge in the Im �(k,ω) and
the spin-charge separation.

III. MODEL AND PARAMETERS USED

The Hamiltonian of the 1D t-t ′-J model is

HtJ = −t
∑
〈ij〉

Xσ0
i X0σ

j − t ′
∑
〈〈ij〉〉

Xσ0
i X0σ

j − μ
∑

i

Xσσ
i ,

+ J
∑
〈ij〉

(
�Si.�Sj − 1

4
Xσσ

i Xσ ′σ ′
j

)
, (1)

where repeated spin indices are summed, Xσ0
i = PGC

†
iσ PG,

X0σ
i = PGCiσPG, Xσσ ′

i = PGC
†
iσCiσ ′PG with PG = �i(1 −

ni↑ni↓) as the Gutzwiller projection operator. 〈ij 〉 and 〈〈ij 〉〉
refers to summing over first and second neighbor pairs,
respectively.

For this model [21,29] we compute the results from the two
theories at density n = 0.7, second nearest neighbor hopping
t ′/t = 0,0.2 and J/t = 0.3,0.6. We avoid the special cases of
t ′ = 0 = J since this leads to a degenerate spectrum, with a
charge sector that is isomorphic to the spinless Fermi gas. The
ECFL results are shown at various T while the tDMRG results
are at T = 0 where most reliable calculations are possible.
t = 1 is the energy unit and will be neglected below.

The tDMRG methods used are very similar to those used
in Ref. [32]. We start by obtaining the ground state |0〉 using
DMRG on a rather long but finite chain, withL = 400, and then
apply ĉ0 or ĉ

†
0 to a site 0 near the center, forming |ψ(t = 0)〉. We

use a Trotter based time evolution algorithm, with fermionic
swap gates to handle next-nearest neighbor terms. We specify
a density matrix eigenvalue truncation cutoff of 3 × 10−8

during the evolution, subject to a constraint on the maximum
number of states kept of m = 3000. (Results were checked by
comparing to m = 2000.) We evolve out to a time t = 50. At
t = 50, the normalization of |ψ(t)〉 had decreased by a few
percent, a small error affecting primarily the widths of any
sharp peaks. The space and time dependent Green’s function

FIG. 1. Momentum distribution nk for ECFL (yellow) at T = 0.005 and tDMRG (blue) at T = 0 with n = 0.7, J = 0.3, 0.6, and t ′ = 0, 0.2.
In all cases these two methods agree well especially in the occupied region and both give a power law singularity at kF . The small discrepancy
in the unoccupied region corresponds to the 3kF feature in the exact solutions discussed in Ref. [9]. This subtle singularity is missed by the
O(λ2) equations.
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FIG. 2. n = 0.7, J = 0.3, t ′ = 0: Imaginary self-energy ρ�(k,ω) at low ω and k − kF from both methods. Both give a dominant (k,ω)
dependent ridge running from left to right, and a less prominent feature running from top-left to bottom-right. Both of them pass through the
k = kF ,ω = 0 region. The dominant ridge is responsible for the appearance of the twin peaks structure in the spectral functions which represents
the spin-charge separation. The peaks for k < kF ,ω < 0 are seen in the left half of the electronic spectral function in Fig. 6 panels (a) and (b),
while the peaks for k > kF ,ω > 0 are seen in the right half of the same figures. As seen in Fig. 5 panel (c), the peak in the self-energy ρ�

directly leads to a dip in the electronic spectral function ρG, provided the real part is small.

is obtained by sandwiching ĉi or ĉ
†
i between the ground state

and |ψ(t)〉 for all i. Linear prediction is used to extend the
time dependent Green’s function out to t = 100, after which
the data is windowed and Fourier transformed. This calculation
represents the most accurate and detailed study to date of the
spectral properties of the model at T = 0.

IV. MOMENTUM DISTRIBUTION FUNCTION

In 1D t-J model, nk shows a power law singularity at
kF [2,5], a signature of the TLL, unlike a jump in higher
dimensions as Fermi liquid behavior. This feature is observed
from both methods in Fig. 1 for different t ′ and J . Due to the
second order approximation, the weak 3kF singularity related
to shadow band [9,12] is not observed in ECFL results. Besides
this weak effect, nk from both methods agrees well, especially
in the occupied side, showing that ECFL describes the correct
t ′ and J dependent behaviors.

V. SELF-ENERGY

Next we present the Dysonian self-energy in terms of its
spectral function ρ� defined as

ρ�(k,ω) = − 1

π
Im �(k,ω). (2)

It is derived separately from the Green’s functions in ECFL
and tDMRG methods. In tDMRG, � can be found from G

by inverting the Dyson relation G−1 = G−1
0 − �. The ECFL

theory produces two (non-Dysonian) self energies 
,� [21],
and the resulting G can again be inverted to find the standard
Dysonian �. Both ECFL (T = 0.005) and tDMRG (T = 0)
self-energies are shown in Fig. 2 for comparison.

In Fig. 2, the two theories have a similar pattern of k

dependence, a dominant ridge running from left to right, and
a less prominent feature running from top-left to bottom-right.
They pass through the k = kF ,ω = 0 region. The ridge leads
to the appearance of twin peaks in the spectral functions
representing spin-charge separation. In the higher energy

region in Fig. 3, both theories agree well and are similar to
their higher dimensional counterparts.

A powerful feature of ECFL theory is that it allows us
to vary temperature without extra effort, at least in the low
to intermediate temperature region. In Fig. 4, ρ� at kF is
presented in several temperatures. The bump becomes higher
with increasing temperature though no obvious change in
larger scale [panel (b)]. This is expected because warming
softens the peak height of spectral function at kF , which is
ρG(kF ,0) = 1/(π2ρ�(kF ,0) in panel (c). The central peak
height ρ�(kF ,0) scales as T α with α ≈ 1.1, as opposed to
α = 2 expected for a Fermi liquid. Although T = 0.005 is the
lowest temperature in the current numerical scheme for second
order ECFL due to the finite lattice size (up to L = 2417 and
Nω = 217), we extrapolate the curve to T = 0.

The peak at kF disappears at zero T and is replaced by a
minimum at the origin corresponding to a singular peak in
the spectral function, consistent with earlier studies [2,12].
The self-energy approaches zero as |ω|γ , where γ ≈ 1.3.
This behavior is difficult to observe in our present tDMRG
implementation, because the finite time cutoff, leads to a
broadening. The peak and its k dependence is recovered on
moving away from kF , causing spin-charge separated peaks at
T = 0.

FIG. 3. n = 0.7,J = 0.3: ρ�(k,ω) vs ω at marked k/kF ’s, from
ECFL at T = 0.005 (a) and tDMRG at T = 0 (b) in a large scale.
The two sets of results are similar on a broad energy scale, and are
comparable to higher dimensional results. The low energy behavior
is discussed below.
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(a) (b)

(c)

FIG. 4. ρ�(kF ,ω) from ECFL is shown in (a) for several T at
J = 0.3,t ′ = 0. The central peak ρ�(kF ,0) scales as T 1.1, in contrast
to Fermi liquid behavior T 2. Extrapolating to T = 0 the double
minimum structure disappears, leaving behind a ∼|ω|1.3 dependence.
(b) displays the self-energy in larger scale where changing T barely
makes a difference. (c) shows the spectral function softened by
warming.

VI. SPECTRAL FUNCTION

We also compare the spectral functions from both methods.
In Fig. 5 panels (a) and (b) both show a single peak at kF and
double peaks away from kF representing spinons and holons,

respectively. Panel (c) puts together the spectral function away
from kF and different parts of its formula:

ρG(k,ω) = ρ�(k,ω)

[ω + μ − εk − Re�(k,ω)]2 + π2ρ2
�(k,ω)

.

(3)

It shows that ω + μ − εk − Re�(k,ω) is very small in the
frequency range that spans the two peaks and confirms that the
visible twin peaks result from a peak in ρ� in the middle. Thus
the location of the ridge lies in the minimum between spinon
and holon peaks in the spectral function in panels (a) and (b),
and in fact the ridge causes the twin peaks. The exponents
in panel (d) match reasonably with those from the TLL at
J = 0.3 and also at 0.6 (where ζ ′ ∼ −.49 versus ζ ′ ∼ −0.46
from Ref. [18]). We take the Luttinger parameter Kρ ≈ 0.53
at J = 0.3,t ′ = 0 from Fig. 4 in Ref. [18]. Then we calcu-
late ζ = γρ = (Kρ + K−1

ρ − 2)/8 ≈ 0.05 [1,4]. Therefore the
anomalous exponent is ζ ′ = ζ − 1

2 = −0.45. The calculation
is similar forJ = 0.6 withKρ ≈ 0.56 from Fig. 4. The tDMRG
spectral function in panel (b) is too soft to extract the anomalous
exponent, because its finite time cutoff leads to the broadening
of spectral peaks in the low ω region.

FIG. 5. Energy distribution curves (EDCs) at t ′ = 0, J = 0.3: (a) and (b) (same legends marking k/kF ) displaying the spinon and the holon
for k �= kF . Panel (c) at k = .9kF shows that the peak in (πρ�)2 (dashed black) coincides with the dip in the spectral function ρG(ω) (solid
gold), while (ω + μ − εk − Re �)2 (magenta dots) is small everywhere. This implies that the twin peaks originate in the intervening peak of
self-energy. Panel (d) also at k = .9kF shows the fitting procedure for finding the anomalous exponent ζ ′ ≡ ζ − 1

2 for the spinon [1,4], we fit
to .59(ω − ωpeak)ζ

′
(dashed blue), the best fit value is ζ ′ ∼ −0.44, close to the TLL result −0.45 [18].
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FIG. 6. J = 0.6,t ′ = 0. The spectral function of the tDMRG (T = 0) with an intrinsic time window (a) and the ECFL (T = .005) with
(b) and without (c) a comparable time window. The introduction of a time window brings the two theories to the same scale. The central peak
and the spinon peaks are of comparable height while the holon peak of ECFL is less prominent due to second order approximation.

FIG. 7. Dispersion of excitations from both ECFL at T = 0.005 (gold dots) and tDMRG at T = 0 (blue dots), and the available ED data
(red) [6]. The error bars in the tDMRG estimates are from the time window broadening. The tDMRG results are consistent with the ED results,
while the ECFL holon dispersion deviates somewhat.
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Nonresonant Raman scattering in extremely correlated Fermi liquids
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We present theoretical results for the optical conductivity and the nonresonant Raman susceptibilities for three
principal polarization geometries relevant to the square lattice. The susceptibilities are obtained using the recently
developed extremely correlated Fermi liquid theory for the two-dimensional t-t ′-J model, where t and t ′ are the
nearest- and second-neighbor hopping. Our results sensitively depend on t, t ′. By studying this quartet of related
dynamical susceptibilities, and their dependence on t, t ′, doping, and temperature, we provide a useful framework
of interpreting and planning future Raman experiments on strongly correlated matter.

DOI: 10.1103/PhysRevB.98.115101

I. INTRODUCTION

Inelastic or Raman scattering of electrons by photons (e-γ )
in strongly correlated systems is of considerable current inter-
est. The scattering intensity, given by the Kramers-Heisenberg
formula [1], consists of a resonant and a nonresonant piece. The
nonresonant piece depends only on the energy transfer. In con-
trast, the resonant piece also depends on the incident energy,
and it is the focus of this work. In typical weakly correlated
metals, this contribution is confined to a small energy window
of a few meV [2,3]. Raman scattering theory, if based solely
on density fluctuations, would give a vanishing contribution
as q → 0 due to the conservation law in that limit. The early
works of Refs. [2,4] showed that nonparabolic bands lead to
the coupling of light to a nonconserved operator (the stress
tensor operators discussed below), rather than the density.
These operators are exempt from conservation laws that govern
the density, and therefore they can lead to nonresonant Raman
scattering.

Recent experiments [5–17] in strongly correlated metallic
systems such as high-Tc superconductors have added further
complexity to challenge to our understanding. It is found
that the scattering is q-independent and extends over a much
larger energy range O (eV), and it is also observed to have
a complex T dependence [5–7,10,14]. To explain these, a
systematic reformulation of light scattering in narrowband
systems was developed in [18–23]. Shastry and Shraiman (SS)
[18,19] developed a theory of Raman scattering in Mott-
Hubbard systems using the Hubbard model, where nonparabol-
icity of bands is built in correctly, so that the conservation
law concerns are taken care of. However, the large energy
spread of the nonresonant signals remains unaccounted for.
It cannot arise from quasiparticles in Fermi liquids, and
hence SS argued that a large contribution from the incoher-
ent background of the electron spectral function is required
to explain the data (see, e.g., [5,6]). This qualitative argu-
ment is not fine enough to explain or predict differences
in backgrounds in different geometries. The latter remains
an unresolved problem, and it is the focus of the present
work.

Progress toward a solution at the microscopic level has
been slow since a suitable theory in two dimensions displaying
such a phenomenon has been lacking so far. In this work, we
apply the recently developed extremely correlated Fermi liquid
theory (ECFL) [24,25] to calculate the Raman cross sections
using the k-dependent bare vertices of Refs. [18,19]. This
theory provides a framework for controlled calculations in the
t-Jmodel, a prototypical model for very strong correlations,
and a limiting case of the Hubbard model. The theory has been
successfully benchmarked against essentially exact results in
d = 0 [26], d = 1 [27], as well as d = ∞ [28]. A recent
application of the theory to the physically important case of
d = 2 in Refs. [29,30] gives detailed results for the spectral
functions and the resistivity ρ in the t-t ′-J model, with nearest-
and second-neighboring hopping. The state obtained in ECFL
at low hole densities has a very small quasiparticle weight
Z � 1. A significant result is that the temperature dependence
of resistivity is nonquadratic already at T ∼ 100 K for low
hole doping.

In this work, we apply the solution found in Refs. [29,30] to
compute the Raman scattering, in three standard polarization
configuration channels A1g, B1g, B2g defined below [31]. The
results are applicable to either electron doping or hole-doped
cuprates by choosing the sign of t ′, and they may apply
to other strongly correlated systems as well. Following SS,
we also compare the Raman conductivities with the optical
conductivity, and we shall focus on the quartet of these results
on various values of material parameters.

The utility of comparing the optical conductivity with the
Raman response requires a comment. SS [18,19] suggested
that this comparison is useful, since these are exactly related
in a limiting situation of d = ∞. Further, in d = 2, 3, . . .

one often calculates the response within the bubble diagrams,
where again these are related. In the bubble approximation, also
used in the present work, one evaluates the current-current and
related correlation functions by retaining only the lowest-order
χJJ ∼ ∑

k (γk )2G(k)G(k) (i.e., bubble) terms with dressed
Green’s functions and suitable bare vertices γ . While this
calculation misses a contribution due to the renormalization
of one of the bare vertices γ → �, it is hard to improve on
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FIG. 1. Electrical and Raman resistivities from Eq. (5) at t ′ = −0.2 with varying hole doping δ, as marked. The T dependence of electrical
resistivity and the A1g resistivity are concave-down at small δ, while the B1g and B2g resistivity are flat or concave-up. Inset: The displayed
Fermi surfaces at δ = 0.12, 0.24 locate the maxima of ϒ(k, ω). The relevant squared vertices from Eq. (2) are shown as a heat map. The hot
spots are movable by varying t ′ and t .

this already difficult calculation for strong correlations, since
G is highly nontrivial. An exception is the special case of
d → ∞, where the vertex corrections vanish. Within the bub-
ble scheme, the bare Raman and current vertices are different
while everything else is the same. Therefore, one should
be able to relate the two experimental results and explore
the differences arising from the bare vertices. The “pseudo-
identity” of the transport and Raman resistivities has been
explored experimentally in Ref. [8] and finds some support.
In this work, we use the correct bare vertices in the different
geometries to explore the various Raman resistivities to refine
the theory. These different bare vertices have a different
dependence on the hopping parameters t, t ′, and the calcu-
lations reflect these in specific and experimentally testable
ways.

The neglect of vertex corrections also leads to a relationship
between various Raman susceptibilities at finite ω. In the
experiments of Ref. [6], the same quartet of susceptibilities
has been studied and found to have a roughly similar scale
for their ω dependence, although the curve shapes are distinct.
On the theoretical side, one interesting aspect of the results
of Refs. [29,30] is that the Fermi surface shape remains very
close to that of the noninteracting tight-binding model, while
of course conserving the area. Thus the Dyson self-energy is
a weak function of �k, unlike the strong dependence in one

dimension [27]. This fact implies that the vertex corrections,
while nonzero, are modest.

II. THE RAMAN AND CURRENT VERTICES

We use the t-t ′-J model with a tight-binding dispersion
[29] on the square lattice ε(k) = −2t[cos(kx ) + cos(ky )] −
4t ′ cos(kx ) cos(ky ), and we set the lattice constant a0 → 1.
The photons modulate the Peierls hopping factors as tij →
tij exp{ie/h̄ ∫ j

i
d�r. �A}, and the second-order expansion coeffi-

cients define the scattering operators. In this case, they are

Ĵα,q =
∑
kσ

Jα (k)C†
k+ 1

2 q,σ
Ck− 1

2 q,σ , (1)

where α is a composite index determined by the in-out
polarizations of the photon. With that the vertices Jα for the
three main Raman channels are

A1g : JA1g
(k) = 2t (cos kx + cos ky ) + 4t ′ cos kx cos ky,

B1g : JB1g
(k) = 2t (cos kx − cos ky ),

B2g : JB2g
(k) = −4t ′ sin kx sin ky,

xx : Jxx (k) = 2 sin kx (t + 2t ′ cos ky ). (2)

The definition of α = xx corresponds to the particle current
along x. It integrates the charge current into the same scheme
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FIG. 2. Shaded region for estimating the average scale of the
vertices.

as the Raman scattering. It is interesting that the B2g vertex is
independent of t , and is solely governed by t ′. The vertex B1g is
complementary given its independence of t ′. These geometries

sample different parts of k space in interesting ways due to their
different �k dependences.

We next define the calculated variables, and we display
the results for them from computations based on the spectral
functions found in Refs. [29,30]. Results in the ω = 0 dc limit
and also at finite ω are shown. Finally, we discuss the results
and their significance.

III. RAMAN AND CHARGE SUSCEPTIBILITIES

We summarize the formulas for the (nonresonant) Raman
susceptibility, and in the spirit of Refs. [18,19] we also define
a Raman conductivity and resistivity in analogy as follows:

χα (q, z) =
∑
nm

pn − pm

εm − εn − z
|(Ĵα,q )n,m|2, (3)

where pn is the probability of the state n. For visible light,
qa0 � 1 and therefore we set q → 0. The (nonresonant)
Raman intensity Iα [1–3,18,19] and the Raman conductivities
[18,19] are given by

Iα (0, ω) = χ ′′
α (0, ω)

(1 − e−βω )
, σα (ω) = ζα

χ ′′
α (0, ω)

Nsω
, (4)

with Ns the number of sites, and ζxx = e2 accounting for the
electric charge in the conductivity with all other ζα = 1. In the

FIG. 3. Dimensionless ρ̄xx (taken from Ref. [29]), ρ̄A1g
, ρ̄B1g

, and ρ̄B2g
at δ = 0.15 with varying second-neighbor hopping t ′, as marked

(same legend for all subfigures). Reference [8] displays data corresponding to the B1g geometry.
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FIG. 4. Dynamical conductivities σ̄α and susceptibilities χ̄ ′′
α (inset) for the hole-doped case t ′ = −0.2, T = 63 K at different δ, as marked.

In the experiments in Ref. [6] (Fig. 1), the same quartet of results is shown for LSCO. At the highest energy of over 1000 K, as in the data, the
susceptibility shows no sign of dropping off.

dc limit we define the Raman resistivities

ρα (0) = Ns

ζα

kBT

Iα (0, 0)
, (5)

where for α = xx, ρα is the usual resistivity.
The “pseudo-identity,” a statement of universality relating

electrical transport and the dc limit of Raman intensities noted
by SS in Refs. [18,19], is arrived at if we assume that ρα has a
similarT dependence for allα:Iα (0, 0) ∼ Cα

T
ρxx (T ) , whereCα

is an α-dependent constant. Thus ρ ∼ T σ behavior would give
rise to T 1−σ behavior for the Raman intensity in all channels.
We see in Fig. 1 that this suggestion is true for theA1g resistivity
at hole dopings, but it needs to be adjusted to the different k-
dependent filters that make the B1g and B2g channels different
from the others. Thus we limit the universality of the pseudo-
identity in this work, and we quantify the effects of the bare
vertices in the relationship between the members of the quartet
of susceptibilities.

Proceeding further using the bubble scheme we get the
imaginary part of the dimensionless susceptibility χ̄ ′′

α (0, ω) ≡
c0h
Ns

χ ′′
α (0, ω) as

χ̄ ′′
α (0, ω) = ω

〈
ϒ(k, ω)J 2

α (k)
〉
k
, (6)

where c0 ∼ 6.64 Å is a typical interlayer separation [29]. The
angular average is 〈A〉k ≡ 1

Ns

∑
k A(k) and the momentum

resolved relaxation scale is

ϒ(k, ω)

= 4π2

ω

∫ ∞

−∞
dy ρG(k, y)ρG(k, y + ω)[f (y) − f (ω + y)].

Here ρG(k, ω) is the electron spectral function. With ρ1,α ≡
c0h
ζα

, the corresponding dimensionless conductivity σ̄α (ω) ≡
ρ1,α × σα (ω) is given by

σ̄α (ω) = 〈
ϒ(k, ω)J 2

α (k)
〉
k
. (7)

From Eqs. (6) and (7), we can see χ̄ ′′
α (0, ω) = ω ∗ σ̄α (ω)

IV. PARAMETER REGION

We explore how the variation of second-neighbor hopping
t ′, doping δ, and temperature T affects the quartet of con-
ductivities and susceptibilities in the normal state. We focus
on optimal doping or slightly overdoped cases from electron-
doped (positive t ′) to hole-doped (negative t ′) systems. Our
temperature region starts from 63 K to a few hundred degrees
Kelvin.
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FIG. 5. Dynamical conductivities σ̄α and susceptibilities χ̄ ′′
α (inset) for the electron-doped case t ′ = 0.2, T = 63 K at different δ, as marked.

V. DC LIMIT AND ELECTRICAL RESISTIVITY RESULTS:

Using the spectral function from the second-order ECFL
theory, we calculate the dimensionless dc (ω → 0) electrical
and Raman conductivities σ̄α from Eq. (7). The corresponding
dimensionless resistivities are

ρ̄α = 1

σ̄a

= 1〈
ϒ(k, 0)J 2

α (k)
〉
k

. (8)

The electrical resistivity in physical units is given by ρxx =
ρ̄xx × ρ1,xx , with ρ1,xx = c0

h
e2 ∼ 1.71 m � cm [29].

We calculate typical quantities for the three Raman geome-
tries and the electrical conductivity from Eq. (2) as a set of
quartets below. The comparison of the figures in each set is of
interest, since the different functions in the bare vertices pick
out different parts of the k-space. In this paper, t = 1 serves
as the energy unit; for the systems in mind, we estimate [29]
t ∼ 0.45 eV.

In Fig. 1, we plot dc resistivity ρ̄xx and Raman resistivities
in the dc limit ρ̄A1g

, ρ̄B1g
, ρ̄B2g

varying hole doping δ and fixing
t ′ = −0.2. The four figures have a roughly similar doping
dependence, as suggested by the pseudo-identity. They all
decrease when the doping increases, although the curvature
changes more in ρ̄xx and ρ̄A1g

than the other two cases. This can
be understood from Eq. (6) since they arise from the same ker-
nel ϒ(k, 0) with different filters. The quasiparticle peak in ρG,

contributing most to ϒ(k, 0), is located along the Fermi surface
and gets broadened when warming up. The inset shows the cor-
responding squared vertex J 2

α in the background and the Fermi
surfaces at the lowest and highest dopings. The B1g vertex
vanishes along the line kx = ky while the B2g vertices vanish
near {π, 0} and {0, π} points. In our calculation, both B1g and
B2g overlap well with the peak region of the spectral function,
whereas A1g and the resistivity do not. This results in the dif-
ference between the T dependence of them and the other two in
Fig. 1. It would be of considerable interest to study this pattern
of T dependences systematically in future Raman studies.

Although all ρ̄α increase when reducing doping δ approach-
ing the half-filling limit due to the suppression of quasiparti-
cles, their magnitudes at high temperature vary considerably
as a result of different vertices filtering the contribution from
ϒ(k, 0). We can understand this scale difference by evaluating
the average of vertices over the shaded region in Fig. 2. The
shaded region covers the Fermi surface for all chosen δ and
t ′, and therefore it contains the most significant contribution
to ρα .

At t ′ = −0.2, 〈J 2
xx〉s ≈ 2.41, 〈J 2

A1g
〉s ≈ 0.56, 〈J 2

B1g
〉s ≈

1.30, 〈J 2
B2g

〉s ≈ 0.20, where 〈〉s represents the k average over
the shaded region. They not only explain the relation ρ̄xx <

ρ̄B1g
< ρ̄A1g

< ρ̄B2g
, but they also capture the ratio among them

rather closely at high enough T . The structure at low T is more
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FIG. 6. Dynamical conductivities and (inset) susceptibilities for the electron-doped case with t ′ = 0.2, δ = 0.15 for various T ’s as marked.
Part (d) with B2g symmetry is comparable to the high-resolution experimental result in Fig. 2 of Ref. [10] at a comparable set of T ’s. The
theoretical curve reproduces well the quasielastic peaks and their T evolution.

subtle, and it carries information about the magnitude of t ′ that
cannot be captured by the above high-T argument.

Although all ρ̄α increase as δ decreases in general, their t ′

dependence can be rather different, as shown in Fig. 3. ρ̄xx and
ρ̄B1g

decrease monotonically in general as t ′ increases from
hole-doped (negative) to electron-doped (positive), while ρ̄A1g

and ρ̄B2g
decrease only as |t ′| increases and their monotonicity

with respect to t ′ changes upon sign change of t ′. An-
other interesting observation is that ρ̄α (t ′ = −0.2) > ρ̄α (t ′ =
0.2) and ρ̄α (t ′ = −0.4) > ρ̄α (t ′ = 0.4) are generally true for
α = xx, B1g and B2g , but for the A1g case, ρ̄α (t ′ = −0.2) <

ρ̄α (t ′ = 0.2) in general and ρ̄α (t ′ = −0.4) ≈ ρ̄α (t ′ = 0.4).
In Eq. (8), the resistivities depend on t ′ through ϒ(k, 0)

and J 2
α . To estimate their t ′ dependence, we can look at

their average over the shaded region 〈ϒ(k, 0)〉s and 〈J 2
α 〉s .

While 〈ϒ(k, 0)〉s rises monotonically as t ′ increases, 〈J 2
α 〉s

(α = xx,A1g, B2g) is a quadratic function of t ′ that behaves
differently at positive and negative t ′, as shown in Eq. (2).

In the simplest B1g case, J 2
B1g

is independent of t ′. Then t ′

only affects ρ̄B1g
through ϒ(k, 0) and therefore ρ̄B1g

increases
almost monotonically as t ′ decreases (the crossing between
t = 0.2 and 0.4 is due to the fact that the change in Fermi
surface geometry leads to a different filtering result when
coupling to J 2

B1g
). In the charge-current case, the t ′ dependence

of ϒ(k, 0) still dominates since ρ̄xx behaves similarly to ρ̄B1g

and the contribution from J 2
xx mostly modifies the curvature

without affecting the relative scale.
The different behaviors in the other two cases indicate

the quadratic t ′ dependence in J 2
α (α = A1g, B2g) becomes

dominant. In the simpler B2g case, J 2
B2g

∝ t ′2 provides the
dominant t ′ dependence in ρ̄B2g

, explaining σ̄B2g
(t ′ = 0) = 0

and ρ̄B2g
(|t ′| = 0.2) > ρ̄B2g

(|t ′| = 0.4) regardless of the sign
of t ′. Similarly, due to the quadratic t ′ dependence of J 2

A1g
,

ρ̄A1g
(t ′ = 0) > ρ̄A1g

(|t ′| = 0.2) > ρ̄A1g
(|t ′| = 0.4).

Typically negative t ′ leads to stronger correlation and
suppresses the quasiparticle peak [29] and hence for a certain
|t ′|, ρ̄α (t ′ < 0) > ρ̄α (t ′ > 0) is generally true except for the
A1g case. In this exception, the negative linear t ′ term in J 2

A1g

shifts the stationary point away from t ′ = 0 and counters this
effect from ϒ(k, 0) for small |t ′| leading to ρ̄A1g

(t ′ = −0.2) <

ρ̄A1g
(t ′ = 0.2) and ρ̄A1g

(t ′ = −0.4) ≈ ρ̄A1g
(t ′ = 0.4).

Besides, ρ̄A1g
shows rather different T -dependent behaviors

between electron-doped t ′ � 0 and hole-doped t ′ < 0 cases. At
negative t ′, ρ̄A1g

increases almost linearly with temperature.
But at zero or positive t ′, ρ̄A1g

first increases sharply up
to a certain temperature scale depending on t ′ and then
crosses over to a region where the growth rate becomes much
smaller.
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FIG. 7. Optical conductivity σ̄xx (ω) and the Raman conductivities σ̄A1g
(ω), σ̄B1g

(ω), σ̄B2g
(ω) at t ′ = −0.2, δ = 0.15 and varying T , as

marked (same legend for all subfigures). The corresponding dimensionless susceptibility is plotted in the inset with the same x axis. References
[6,7,10] show data that correspond to these variables.

VI. FINITE ω RESULTS

Next we present the ω-dependent optical and Raman con-
ductivities defined in Eq. (7). In Figs. 4 and 5, the set of four
ω-dependent conductivities are displayed for the hole-doped
system at t ′ = −0.2 and the electron-doped system at t ′ = 0.2,
respectively, for a set of typical densities at low T . In the insets
we display the corresponding imaginary part of susceptibility,

related through Eq. (6). In most cases, the quasielastic peak gets
suppressed and shifts to higher frequency when reducing the
carrier concentration. The only exception is χ̄ ′′

A1g
at t ′ = 0.2.

Its quasielastic peaks are considerably smaller than other
geometries due to the fluctuation in the specific vertex, and
they get higher and broader as doping increases.

In Fig. 6 we focus on the electron-doped case of varying T

at t ′ = 0.2, δ = 0.15, where high-quality experimental results

FIG. 8. Optical conductivity σ̄xx (ω) and the Raman conductivities σ̄A1g
(ω), σ̄B1g

(ω), σ̄B2g
(ω) at δ = 0.15, T = 63 K, and varying t ′, as

marked (same legend for all subfigures). The corresponding dimensionless susceptibility is plotted in the inset with the same x axis. References
[6,7,10] show data that correspond to these variables.
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FIG. 9. Relaxation rates (half-widths at half-maximum) of σα (ω) in units of t , at t ′ = −0.2 at various marked δ. The optical rate shows less
convexity than the corresponding dc resistivity of Ref. [29]. The rates in (a,b) and (c,d) have similar orders of magnitude, for reasons discussed
in Fig. 1.

are available for the B2g Raman channel in Ref. [10]; see
particularly Fig. 2. We evaluate the susceptibility at T values
corresponding to those in this experiment. There is a fair
similarity between the theoretical curve [panel (d)] and the
experiment. In particular, the theoretical curve reproduces the
quasielastic peak and its T evolution. The other three panels
in Fig. 6 are our theoretical predictions, and they are equally
amenable to experimental verification.

In the xx, B1g, B2g geometries, the quasielastic peaks in
susceptibility get slightly higher and quite broader upon warm-
ing. The A1g case is different. Its quasielastic peaks are much
less obvious (too broad) except for the lowest temperature, and
the peak magnitude is rather sensitive to temperature increase.

We also vary T at hole doping t ′ = −0.2 in Fig. 7. Compar-
ing with the electron-doped case in Fig. 6, we note that the hole-
doped optical and Raman objects share a greater similarity
in shape dependence on T if we ignore the scale difference.
As T increases, the quasiparticle peaks get softened, and
hence it generally suppresses the conductivities as well as the
quasielastic peak in susceptibilities.

For completeness, the t ′ variation in σ̄α (ω) and χ̄ ′′
α (ω)

is plotted in Fig. 8, and it looks rather different among
various geometries. This can be understood as arising from
the competition among various factors. We have a quadratic
t ′ dependence in the squared vertices, and a monotonic t ′
dependence in the magnitude and geometry of ϒ(k, ω). The t ′
dependence of the shape of σ̄α has more commonality. Another
interesting observation is that, unlike the dc case when σ̄xx

and σ̄B1g
are similarly affected by t ′, at finite frequency their

behaviors depend on t ′ rather differently. This difference is
more obviously observed in terms of χ̄ ′′.

From the optical and Raman conductivities σ̄α we can ex-
tract a frequency scale �α , as the half-width at half-maximum,

in units of t . These are plotted against T in Fig. 9 for varying δ

and Fig. 10 for varying t ′. It is remarkable that despite a bare
bandwidth of ∼ 3.6 eV, these frequency scales appear close
to linear in T down to very low T . This is closely related to
the observation in Ref. [29] that the resistivity departs from
a T 2 behavior at extraordinarily low T ’s, i.e., the effective
Fermi temperatures are suppressed from the bare values by two
or more orders of magnitude. Although the magnitude of the
optical and Raman conductivities differs a lot, their relaxation
rates describing the shape turn out to be much closer, as a result
of a similarT -dependent line shape of the spectral function [29]
in the normal state.

VII. CONCLUSION AND DISCUSSION

We have presented calculations of the electrical and Raman
resistivities in the dc limit, the optical conductivity, the Raman
susceptibilities, and related objects based on the second-order
ECFL theory in Ref. [29]. We computed the susceptibilities
(using the leading-order approximation) with the shown re-
sults. Experiments on different geometries can test and put
some bound on this hypothesis of weak vertex corrections for
the Raman operators. This is clearly of theoretical importance,
since going beyond the bubble graphs brings in a formidable
level of complexity.

The ECFL theory leads to a very small quasiparticle weight
Z and a large background extending over the bandwidth, and
it has a very small effective Fermi temperature leading to an
interesting T dependence of the resistivity, as discussed in [29].
The line shape of the calculated Raman susceptibility is close
to that for the case of electron-doped NCCO [10] in terms of
the T and ω dependences, and therefore it is promising. Our
calculation also gives the Raman susceptibility in two other

FIG. 10. The half-width at half-maximum for optical conductivity and Raman conductivities at δ = 0.15 and varying t ′, as marked.
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geometries, and this prediction can be checked against future
experiments that are quite feasible. We note that the data [6]
from Sugai et al. for this quartet of variables in the case of
LSCO seem to be roughly consistent with our results, and a
more detailed comparison is planned.

The focus on the T dependence in the ω → 0 limit, i.e., on
resistivities, can be quite a fruitful goal for future experiments,
since this limit gets rid of all excitations and measures the “pure
background.” It is an important exercise since the different
geometries probe different combinations of t, t ′ as they occur in
the bare vertices [Eq. (2), as stressed above. We are predicting
that the Raman resistivity in each channel can be found from
the intensity at low T , and broadly speaking it is similar to
resistivity. In further detail, it is predicted to be (a) channel-
specific and (b) t ′/t-dependent. These clear-cut predictions can
be tested in future experiments.

Finally, although such a measurement is not commonly
done, a systematic measurement of the ratios of the scattering

cross sections in different geometries should be feasible.
This measurement, and a comparison between the quartet of
susceptibilities presented here, can be profitably compared
with recent theories of strongly correlated systems to yield
material parameters. Most importantly, it can yield physical
insights into the mechanism underlying the broad nonresonant
Raman signals that have remained quite mysterious so far.

ACKNOWLEDGMENTS

We thank Tom Devereaux, Lance Cooper, and Girsh Blum-
berg for helpful discussions. The computation was done on
the comet in XSEDE [32] (TG-DMR170044) supported by
National Science Foundation Grant No. ACI-1053575. The
work at UCSC was supported by the U.S. Department of
Energy (DOE), Office of Science, Basic Energy Sciences,
under Award No. DE-FG02-06ER46319.

[1] H. A. Kramers and W. Heisenberg, Z. Phys. 31, 681 (1925).
[2] P. A. Wolff, Phys. Rev. 171, 436 (1968).
[3] P. A. Wolff and P. Platzmann, Solid State Physics (Academic

Press, New York, 1973), Suppl. 13; W. Hayes and R. H. Loudon,
Scattering of Light by Crystals (Wiley, New York, 1978).

[4] A. A. Abrikosov and V. M. Genkin, Sov. Phys. JETP 38, 417
(1974).

[5] S. Sugai, S. I. Shamoto, and M. Sato, Phys. Rev. B 38, 6436
(1988).

[6] S. Sugai, Y. Takayanagi, N. Hayamizu, T. Muroi, J. Nohara, R.
Shiozaki, K. Okazaki, and K. Takenaka, Physica C 470, S97
(2010).

[7] S. Sugai, J. Nohara, R. Shiozaki, T. Muroi, Y. Takayanagi, N.
Hayamizu, K. Takenaka, and K. Okazaki, J. Phys.: Condens.
Matter 25, 415701 (2013).

[8] R. Hackl, L. Tassini, F. Venturini, C. Hartinger, A. Erb, N.
Kikugawa, and T. Fujita, in Advances in Solid State Physics,
edited by B. Kramer (Springer-Verlag, Berlin, Heidelberg,
2005), Vol. 45, pp. 227–238.

[9] M. M. Qazilbash, A. Koitzsch, B. S. Dennis, A. Gozar, H. Balci,
C. A. Kendziora, R. L. Greene, and G. Blumberg, Phys. Rev. B
72, 214510 (2005).

[10] A. Koitzsch, G. Blumberg, A. Gozar, B. S. Dennis, P. Fournier,
and R. L. Greene, Phys. Rev. B 67, 184522 (2003).

[11] C. Sauer and G. Blumberg, Phys. Rev. B 82, 014525 (2010).
[12] M. V. Klein and S. B. Dierker, Phys. Rev. B 29, 4976 (1984).
[13] M. V. Klein, S. L. Cooper, A. L. Kotz, R. Liu, D. Reznik, F.

Slakey, W. C. Lee, and D. M. Ginsberg, Physica C 185, 72
(1991); G. Blumberg and M. V. Klein, J. Low Temp. Phys. V
117, 1001 (1999).

[14] F. Slakey, S. L. Cooper, M. V. Klein, J. P. Rice, and D. M.
Ginsberg, Phys. Rev. B 39, 2781 (1989).

[15] S. L. Cooper, D. Reznik, A. Kotz, M. A. Karlow, R. Liu, M. V.
Klein, W. C. Lee, J. Giapintzakis, D. M. Ginsberg, B. W. Veal,
and A. P. Paulikas, Phys. Rev. B 47, 8233 (1993).

[16] S. L. Cooper, F. Slakey, M. V. Klein, J. P. Rice, E. D. Bukowski,
and D. M. Ginsberg, J. Opt. Soc. Am. B 6, 436 (1989).

[17] S. L. Cooper, M. V. Klein, B. G. Pazol, J. P. Rice, and D. M.
Ginsberg, Phys. Rev. B 37, 5920 (1988).

[18] B. S. Shastry and B. I. Shraiman, Phys. Rev. Lett. 65, 1068
(1990).

[19] B. S. Shastry and B. I. Shraiman, Int. J. Mod. Phys. B 5, 365
(1991).

[20] J. K. Freericks and T. P. Devereaux, Phys. Rev. B 64, 125110
(2001); J. K. Freericks, T. P. Devereaux, M. Moraghebi, and S. L.
Cooper, Phys. Rev. Lett. 94, 216401 (2005).

[21] T. P. Devereaux and R. Hackl, Rev. Mod. Phys. 79, 175
(2007).

[22] L. de Medici, A. Georges, and G. Kotliar, Phys. Rev. B 77,
245128 (2008).

[23] J. Kosztin and A. Zawadowski, Solid State Commun. 78, 1029
(1991).

[24] B. S. Shastry, Phys. Rev. Lett. 107, 056403 (2011).
[25] B. S. Shastry and E. Perepelitsky, Phys. Rev. B 94, 045138

(2016).
[26] B. S. Shastry, E. Perepelitsky, and A. C. Hewson, Phys. Rev. B

88, 205108 (2013).
[27] P. Mai, S. R. White, and B. S. Shastry, Phys. Rev. B 98, 035108

(2018).
[28] R. Žitko, D. Hansen, E. Perepelitsky, J. Mravlje, A. Georges, and

B. S. Shastry, Phys. Rev. B 88, 235132 (2013); E. Perepelitsky
and B. S. Shastry, Ann. Phys. (N.Y.) 338, 283 (2013).

[29] B. S. Shastry and P. Mai, New J. Phys. 20, 013027 (2018).
[30] P. Mai and B. S. Shastry, arXiv:1808.09788 (2018).
[31] Parabolic bands leads to an exact cancellation, whereby the

A1g scattering is unobservable. References [3,4,18,19] show
that the cancellation is inoperative with nonparabolic bands, or
with disorder. Experimentally, Fig. 2 of Ref. [6] shows an A1g

contribution similar in scale to the other two geometries.
[32] J. Towns et al., Comput. Sci. Eng. 16, 62 (2014).

115101-9

(309)



PHYSICAL REVIEW B 98, 161121(R) (2018)
Rapid Communications

Reversal of particle-hole scattering-rate asymmetry in the Anderson impurity model

R. Žitko,1,2 H. R. Krishnamurthy,3 and B. Sriram Shastry4

1Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
2Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia

3Department of Physics, Center for Condensed Matter Theory, Indian Institute of Science, Bengaluru 560012, India
4Physics Department, University of California, Santa Cruz, California 95064, USA

(Received 30 July 2018; revised manuscript received 10 October 2018; published 29 October 2018)

We study the particle-hole asymmetry of the scattering rate in strongly correlated electron systems by
examining the cubic ω3 and ωT 2 terms in the imaginary part of the self-energy of the Anderson impurity
model. We show that the sign is opposite in the weak-coupling and strong-coupling limits, explaining the
differences found in theoretical approaches taking the respective limits as the starting points. The sign change
in fact precisely delineates the crossover between the weak- and strong-correlation regimes of the model. For
weak interaction U the sign reversal occurs for small values of the doping δ = 1 − n, while for interaction of
order U ≈ 2�, � being the hybridization strength, the crossover curve rapidly shifts to the large-doping range.
This curve, based on the impurity dynamics, is genuinely different from other crossover curves defined through
impurity thermodynamic and static properties.

DOI: 10.1103/PhysRevB.98.161121

In contemporary strongly correlated quantum materials,
such as the cuprate superconductors and sodium cobaltates,
one finds that spectral line shapes from angle-resolved pho-
toemission spectroscopy (ARPES) differ qualitatively from
those in simple Fermi liquids. The origin of the difference
has been traced to a large correlation-induced asymmetry in
the imaginary part of the self-energy [1,2], which can be
expanded as

Im �(ω, T ) = a(ω2 + π2T 2) + bω3 + cωT 2 + · · · . (1)

For context, note that the usually quoted Fermi-liquid self-
energy, namely, the first two terms in this expression, is even
in ω. While this is dominant at the lowest energies, the higher-
order odd in ω terms become important when their coefficients
(b, c) become sufficiently large. This is found to happen in the
strong-correlation models, while in weakly correlated systems
these coefficients are very small. The signs of (b, c) are of
particular importance: They determine whether particles or
holes have the shorter lifetime. Since a < 0, if b < 0, the
particlelike excitations scatter more strongly on the impurity
(are more damped) than the holelike excitations with the same
excitation energy (absolute value of ω), and vice versa for
b > 0. Understanding the asymmetry of the self-energy is a
problem of great current interest. The asymmetry of Im �

is relevant to transport coefficients such as the thermopower,
where the entropy and charge are carried by both particlelike
excitations above the Fermi level and holelike excitations
below it. However, in the low-T thermopower there are other
competing factors (asymmetry of the density of states, asym-
metry of the quasiparticle velocities), hence the situation is
not solely controlled by the sign of the scattering asymmetry.

The single-impurity Anderson model (SIAM) is a “labora-
tory example” of an exactly solvable many-body problem. It
is simpler but has many similarities to the lattice many-body
problems such as the Hubbard model. It is therefore a natural

place to understand the magnitude and signs of the asymmet-
ric corrections to the lowest-order Fermi-liquid theory result
mentioned above. The goal of this Rapid Communication is to
explore this asymmetry by using the numerical renormaliza-
tion group (NRG), and to contrast it with various approximate
theories. We report a surprising result in this well-studied
problem: We find a line in the U -n plane where the asymmetry
changes sign. Here, U is the interaction strength and n the
impurity occupancy. Along this one-dimensional line in the
U -n plane, the particle-hole (p-h) symmetry of the scatter-
ing rate is exactly fulfilled up to the fifth- and higher-order
terms. This change of sign demarcates the border between
the qualitatively different regimes of weak and strong cor-
relations. Indeed, this Rapid Communication was motivated
by the puzzling observation that weak-coupling approaches
(e.g., perturbation theory in the interaction strength U ) and
strong-coupling techniques [e.g., the extremely correlated
Fermi-liquid (ECFL) theory [2–4]] give opposite signs for the
asymmetry, as illustrated in Fig. 1.

The SIAM is defined by the Hamiltonian

H = εd (n↑ + n↓) + Un↑n↓

+
∑

kσ

εkc
†
kσ ckσ +

∑

kσ

(tkc
†
kσ dσ + H.c.), (2)

where εd is the impurity level, dσ are impurity operators,
nσ = d†

σ dσ and n = 〈n↑ + n↓〉, and ckσ are operators for
conduction-band electrons with energy εk that couple with the
impurity with amplitude tk . The hybridization strength is � =
π

∑
k |tk|2δ(ω − εk ); we will assume it to be a constant func-

tion in the domain −D < ω < D. In the following we will
make use of the Hartree-Fock parameter Ed = εd + U 〈nσ 〉
with Ed = 0 corresponding to the p-h symmetric n = 1 case.
We also define the dimensionless interaction u = U/π�. We
will limit our consideration to n < 1, since the results for
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FIG. 1. Imaginary parts of the self-energy in (a) weak-coupling
theory and in (b) strong-coupling theory have the opposite sign of the
particle-hole asymmetry. The second-order perturbation theory result
corresponds to Ed/� = 1 in Fig. 2 of Ref. [5], and the extremely
correlated Fermi-liquid theory result to n = 0.6 in Fig. 5 of Ref. [4].

n > 1 can be obtained by the p-h transformation dσ → d†
σ ,

ckσ → −c
†
kσ , which takes ω to −ω.

Second-order perturbation theory in U for the SIAM [5]
[e.g., Fig. 1(a) for Ed/� = 1] predicts b to be of constant sign
as a function of n in the full domain 0 < n < 1, with zero
value at n = 1. Specifically, b < 0, i.e., the particlelike excita-
tions scatter more strongly. At nonzero but low temperatures,
the asymmetry of Im �(ω) at low ω will be controlled by the
ωT 2 term. Due to conformal symmetry of the FL fixed point,
c = bπ2, thus the sign of the asymmetry does not depend on
T at low enough temperatures [6].

By extending the perturbative expansion to third order, we
find that the third-order contributions tend to have the opposite
sign of the second-order ones for small ω, i.e., they reduce
the scattering. Furthermore, the asymmetry of the third-order
contribution is such that the ω > 0 part is dominant (for
n < 1), thus the third-order reduction in scattering is stronger
for particlelike excitations [see Fig. 2(a)]. There is thus a
competition between the second- and third-order contribu-
tions which may lead to a change in sign of the asymmetric
terms. The contributions b(2) and b(3) to the coefficient b

actually follow very similar qualitative Ed dependence [see
Fig. 2(b)], except for the sign and evidently a different power
of u = U/π�. Based on these results, the change of sign in b

should occur for u ∼ 1, i.e., U ∼ π�. Since the perturbation
theory also breaks down at u ∼ 1, we cannot make a precise
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FIG. 2. (a) Second-order and third-order imaginary part of the
self-energy for a range of the Hartree-Fock parameters Ed = εd +
U〈nσ 〉. The y axis is scaled as 1/(�un), where n is the expansion
order and u = U/π�. T = 0. (b) Coefficient b of the ω3 term in
Im �(ω, T = 0) at second and third order in perturbation theory.

statement about the details of this sign change within the bare
perturbative approach.

We therefore solved the impurity problem numerically
using the numerical renormalization group (NRG) [7–12].
This nonperturbative approach is based on logarithmic dis-
cretization of the continuum, mapping onto a tight-binding
chain with exponentially decreasing hopping constants, and
iterative diagonalization of the resulting Hamiltonian [7,8,12].
Through various refinements over the years [11,13–20] the
technique has developed into a powerful tool for computing
the dynamical properties of impurity models. Comparisons
with quantum Monte Carlo simulations indicate that the re-
sults of the NRG, when taken to full convergence, may be
considered as essentially exact (up to very small systematic
errors due to discretization and truncation). We performed
the NRG calculations with a narrow broadening kernel by
averaging over Nz = 32 interleaved discretization grids with
the discretization parameter � = 2, and increasing the trun-
cation cutoff until convergence [20]: These steps reduced the
oscillatory artifacts and allowed a reliable extraction of the
cubic term in the self-energy function in the limit of small
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FIG. 3. Top: Sign (red negative, blue positive) and magnitude
(color saturation) of the ω3 term in Im �(ω, T = 0). The quan-
tity shown is the coefficient k in the fit of the antisymmetrized
and normalized combination [Im �(ω) − Im �(−ω)]/[Im �(ω) +
Im �(−ω)] with the linear function kω. The fit is performed in an
energy interval ω ∈ [−ξ : ξ ]; here, ξ is the low-energy scale of the
problem defined as the temperature where the impurity moment is
screened (and is equivalent to the Kondo temperature in the Kondo
regime of the model). Notice that k ≈ b/a and that a < 0. The three
magenta points joined by a line are considered in Fig. 4. The dashed
lined at n = 1 indicates a further zero crossing of the coefficient
k at the particle-hole symmetric point of the Hamiltonian itself.
Bottom: Cross sections at constant interaction U/� = 5 and constant
occupancy n = 0.6.

ω. The results, shown in Fig. 3, reveal a change of sign of
the coefficient b in Im � along a curve in the U -n plane
(black line in the figure). At low U 
 �, the sign reversal
occurs close to half filling. For U of order �, the sign-change
point rapidly moves away from half filling. At still higher U ,
the slope of the black curve in the U -n plane redresses and
becomes increasingly vertical for U � π�.

These results are fully consistent with our perturbative
analysis. For very small U , the third-order term is negligibly
small and the sign is constant in essentially the full 0 < n < 1
interval. In this regime, the curve separating the different signs
in the U -n plane is almost vertical and close to n = 1. At some
value of U of order π�, the perturbation theory predicts that
the third-order contribution will overtake the second-order
contribution for most Ed at almost the same value of u,
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FIG. 4. Spectral function and imaginary part of self-energy for
n = 0.6 and three values of U/π� across the sign-reversal line
(magenta line in Fig. 3). (a) Spectral functions computed using the
NRG, and (b) closeups on the low-ω range. (c) Im � computed using
the NRG and two weak-coupling approaches. Here, � = 0.01D,
T = 0. b for the NRG calculations has the sign of the slopes of the
dashed lines in the figures.

and b will thus change in a wide n interval. Indeed, this
seems to correspond to U ≈ 2� where the curve in the U -n
plane abruptly changes slope and becomes almost horizontal.
Around the same u, however, we enter the strong-coupling
regime where the perturbation theory breaks down. Note that
for large u = U/� the crossover (as n increases from 0) to
the “strong-coupling” domain with b > 0 already takes place
in the mixed valent regime of the impurity model; the deep
Kondo limit is confined to values of n close to 1.

We also performed the skeleton expansion to second or-
der, which is a self-consistent calculation where the dressed
Green’s function is used as the propagator in the second-
order term of the self-energy. This corresponds to an infinite
resummation of a certain class of diagrams, which for small
U reduces to the bare perturbation theory in U . The results
show that the coefficient b has the same sign for any value of
U and n, i.e., the sign associated with the weak-coupling limit
(see Fig. 4). This can also be shown analytically by invoking
the Friedel sum rule [21]—for the skeleton expansion this
leads to b/a ∝ sin(nπ )/�, which makes b negative for all n.
The absence of sign change seems to imply that the skeleton
expansion is not able to describe the transition to the dynamics
expected in the strong-coupling regime, presumably because
its starting point is still the noninteracting limit. On the other
hand, the extremely correlated Fermi-liquid theory produces
the correct sign of the scattering-rate asymmetry because it is
constructed as a strong-coupling approach by projecting out
the double-occupancy from the outset.

Next, we compare the crossover curve with other quantities
sensitive to the magnetic behavior of the impurity. The local-
moment fraction fLM = n − 2〈n↑n↓〉 is equal to the expecta-
tion value of the projection operator to the singly occupied
impurity state (the state which carries the spin degree of
freedom). It behaves as fLM = n in the U � � limit, while the
small-U dependence is shown in Fig. 5. None of the contours
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FIG. 5. Local-moment fraction fLM = n − 2〈n↑n↓〉.

(isocurves) resembles the sign-reversal curve from Fig. 3.
Most notably, the contours in fLM approach the n = 1 line
with zero slope and do not curve down. Other thermodynamic
quantities, such as the characteristic low-energy scale of the
problem defined by the temperature where the impurity en-
tropy and the effective moment become small (i.e., the Kondo
temperature in the Kondo regime), also correlate with the
dependence of fLM on U and n (not shown). The scattering
asymmetry is thus not simply related to the degree of local-
moment formation, but requires a calculation of dynamical
properties.

We now discuss the relevance of these results to the low-
temperature thermopower in correlated systems. Two cases
need to be distinguished. In quantum dots that are directly
described by the SIAM, the thermopower is determined by
the asymmetry of the spectral function around the Fermi
level, i.e., its Fermi-level slope [22–24]. The asymmetry of
the particle-hole scattering is not important as such, as it
only enters as one factor that affects the spectral-function
slope. The situation is different for bulk systems described

by the Hubbard model that map within the dynamical mean-
field theory (DMFT) approximation to a SIAM with a self-
consistently defined hybridization function [25–31]. There,
the thermopower is given by the “leading” term proportional
to the Fermi-level slope of the transport function that is “cor-
rected” by a term proportional to the coefficients of the cubic
terms in Im �. This is actually an order 1 correction [29,30],
which may become dominant close to half filling. Due to the
DMFT self-consistency, this term has a complex dependence
on specific details of the problem [shape of the noninteracting
density of states (DOS), doping level, strength of the interac-
tion compared to the critical Uc2 of the Mott metal-to-insulator
transition]. We plan to present a study of these in a separate
publication.

In conclusion, we uncovered a crossover line in the phase
diagram of the single-impurity Anderson model with a flat hy-
bridization function which corresponds to a change in the scat-
tering dynamics. On one side of this line the impurity behaves
as a weakly renormalized resonant level, and on the other side
as a magnetic impurity. On the weakly correlated side, the
particlelike excitations scatter more strongly than the holelike
excitations, while the opposite is the case on the strongly
correlated side. This crossover might be directly observable
in quantum dot experiments [32,33] provided that the spectral
function can be measured in a sufficient energy window so
that the reconstruction of the full Green’s function G(ω) is
possible via the Kramers-Kronig transformation: Assuming
that the hybridization function is approximately constant close
to the Fermi level, the particle-hole scattering asymmetry can
be easily extracted from Im[G(ω)−1]. The predicted almost
exact particle-hole symmetry of the scattering rate along the
crossover line in the U -n plane should make it an interesting
feature to test for in experiments on magnetic adsorbates and
quantum dots.
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a b s t r a c t

Three Fermion sumrules for interacting systems are derived
at T = 0, involving the number expectation N̄(µ), canonical
chemical potentials µ(m), a logarithmic time derivative of the
Greens function γk⃗σ and the static Greens function. In essence
we establish at zero temperature the sumrules linking:

N̄(µ) ↔

∑
m

Θ(µ − µ(m)) ↔

∑
k⃗,σ

Θ
(
γk⃗σ

)
↔

∑
k⃗,σ

Θ

(
Gσ (k⃗, 0)

)
.

Connecting them across leads to the Luttinger and Ward sumrule,
originally proved perturbatively for Fermi liquids. Our sum-
rules are nonperturbative in character and valid in a consid-
erably broader setting that additionally includes non-canonical
Fermions and Tomonaga–Luttinger models. Generalizations are
given for singlet-paired superconductors, where one of the sum-
rules requires a testable assumption of particle–hole symmetry
at all couplings. The sumrules are found by requiring a continu-
ous evolution from the Fermi gas, and by assuming a monotonic
increase of µ(m) with particle number m. At finite T a pseudo-
Fermi surface, accessible to angle resolved photoemission, is
defined using the zero crossings of the first frequency moment
of a weighted spectral function.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

The Luttinger–Ward (LW) sumrule [1] for interacting electrons expresses the number of electrons
in terms of the static limit of the imaginary frequency Greens function [2–4] for T → 0 as

N̄(µ) =

∑
k⃗,σ

Θ

(
Gσ (k⃗, ω = 0|µ)

)
, (1)

E-mail address: sriram@physics.ucsc.edu.
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with Θ(x) =
1
2 (1 + sgn(x)). Since the static Greens function is negative outside the Fermi surface, its

volume is fixed by the number of particles [1,4,5], independent of the magnitude of the interaction.
This interaction independence is a fundamental result in Landau’s theory of the Fermi liquid [6,7].
In condensed matter physics, field theory and statistical mechanics, the origin of this sumrule and
its ramifications have been very influential [4,7–11]. It has continued to receive much attention
to recent times [12–24], partly motivated by the search for novel phases of matter that might
violate this sumrule. The present work provides a physically transparent derivation of the sumrule,
and extends it in several directions. The extended version includes non-Fermi liquids, such as the
1-d Tomonaga–Luttinger model (TLM). It is also valid for non-canonical Fermions, such as U = ∞

Gutzwiller projected electrons in the t-J model, in treatments where continuity with the Fermi gas
is maintained [25], but not otherwise [23,26]. Our extension also includes singlet pairing supercon-
ductors. These include the s-wave BCS–Gor’kov–Nambu case and d-wave cuprate superconductors.
While analyticity in the coupling is lost in these extensions, they do evolve continuously from the
non-interacting limit, which suffices for our purposes. Exotic superconductors, where one hollows
out the k-space [27], provide an interesting counter-point where continuity with the gas limit is
discarded; we need to exclude them here too.

Since the static Greens function entering Eq. (1) is not directly measurable, one needs to relate
it to other directly visible signatures for using it. This work provides a new and experimentally
accessible sum-rule Eq. (79), which is equivalent to Eq. (1) at T = 0 in the cases considered. It also
allows one to define a pseudo Fermi surface at any T. This surface carries useful information on the
real part of the on-shell selfenergy.

1.1. Methods used

The technique used here is non-perturbative, it relies on isothermal continuity in some parameter
λ connecting the interacting and non-interacting systems. Since this type of continuity has not been
explicitly discussed in literature, a few words are in order. As some parameter in the Hamiltonian
is varied, the variation is required to be isothermal, i.e. at each intermediate value of the parameter,
the system is allowed to repopulate energy levels according to the thermal distribution. This is in
contrast to adiabatic variations where the population of the energy levels is frozen at their starting
values. By continuity we imply that the expectation of the energy and other observables change
without discontinuity, i.e. we rule out first order transitions. Illustrating the distinction we note
that the change of shape of the Fermi surface for anisotropic systems is allowed by isothermal
continuity, but not by adiabatic continuity. Finally our method does not require analyticity in a
coupling, isothermal continuity is sufficient for our purpose.

Our other main assumption is that the canonical ensemble (CE) chemical potentials µ(m)
increase monotonically with the particle numberm, whereby the canonical free energy is a concave-
up function of m. This is tantamount to ruling out phase separation. We argue in Section 2 that such
a monotonic behavior could be regarded as a defining feature of repulsive interactions.

In each case covered by our argument, at non-zero T we construct an effective particle density
neff (T ), and pseudo-Fermi surface, whose temperature variation reveals lowest lying characteristic
energy scales in the system. The pseudo-Fermi surface has the potential to be studied using angle
resolved photoemission (ARPES) technique, and hence is discussed in some detail in Section 7

1.2. Organization of the paper

The paper is organized as follows. I first establish in Section 2 a basic thermodynamic number
sumrule for electrons with repulsive interactions;

N̄(µ) =

Nmax−1∑
m=0

Θ(µ − µ(m)), (2)

where the CE chemical potential µ(m) = Fm+1 −Fm is the difference of the canonical free energies F
with m+1 and m particles. We will assume a hard-core set of particles, and therefore the maximum
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number of particles is limited by Nmax. In Section 3 I next introduce γ , the temporal log-derivative
of the Greens function:

γk⃗σ (µ, T ) = lim
τ=β/2

∂τ logGσ (k⃗, τ |µ), β =
1

kBT
. (3)

Setting τ = β/2 sandwiches each Fermionic operator of G symmetrically by factors that project
all contributing states to the ground state as T → 0. While the study of Gσ (k⃗,

β

2 |µ) is popular in
quantum Monte-Carlo studies [28], the log-derivative, playing a key role in this work, has not been
discussed earlier. Its physical content at low T , as µ minus a k⃗-weighted average over µ(m) becomes
clear later (see Eq. (32)). In Section 3 we make an important distinction between two ways of taking
the zero temperature and thermodynamic limits, in Limit-I we take T→0 first and L → ∞ later,
while in Limit-II we take L → ∞ first and T → 0 later.

In Section 4 the T = 0 limit is taken first (i.e. in the limit Limit-I), and shown to lead to the
sumrule∑

k⃗,σ

Θ
(
γk⃗σ (µ, 0)

)
=

∑
m

Θ(µ − µ(m)). (4)

This is demonstrated for the Fermi liquid and also for the 1-d case of a Tomonaga–Luttinger model.
In Section 5 the L → ∞ limit is taken first (i.e. in the limit Limit-II), whereby we obtain

a continuous frequency variable in terms of which a spectral function can be defined. Here the
sumrule∑

k⃗,σ

Θ
(
γk⃗σ (µ, 0+)

)
=

∑
k⃗,σ

Θ

(
Gσ (k⃗, ω = 0|µ)

)
, (5)

is established for Fermi liquids in Section 5.1 and for 1-d TLL systems in Section 5.2.
Assuming unbroken symmetry, powerful theorems on the uniqueness of the ground state [29,30]

are applicable, these allows us to equate the two zero temperature limits

γk⃗σ (µ, 0) = γk⃗σ (µ, 0+). (6)

Upon using Eqs. (2), (7), (4), (5) (or Eqs. (8), (75)) then imply the sumrule Eq. (1). In the infinite
volume limit, the k⃗ sums are replaced by integrals as usual.

In Section 6 a systematic development of the volume theorem for a singlet superconducting state
is provided. This broken symmetry state not accessible by the methods of L–W. In Section 6.1 we
study the canonical chemical potentials µe(2m) ≡

1
2 (F2m+2 − F2m) constrained to the even particle

sector. The µe(2m) are taken to be monotonically increasing in m, reflecting the inherent repulsion
between pairs of electrons. In this ensemble we study the effects of adding or removing a particle
and thence the Greens function, leading to the sumrule

N̄SC (µ) = 2

1
2Nmax∑
m=0

Θ(µ − µe(2m)), (7)

which replaces Eq. (2) in the normal state.
In Section 6.2 the Greens function and γk⃗ are studied at T = 0, (i.e. in the Limit-I) in the

superconducting state, subject to the assumptions of particle–hole symmetry and of the repulsion
between the Cooper pairs of electrons. Here one finds∑

k⃗σ

Θ(γk⃗σ (µ, 0)) = 2
∑
m

Θ(µ − µe(2m)) = N̄(µ), (8)

a sumrule corresponding to Eqs. (4).
In Section 6.3 the Greens function and γk⃗ are studied at L = ∞, (i.e. in the Limit-II) in the

superconducting state. Here we use the Nambu–Go’rkov [31–35] formalism together with the
formally exact quasiparticle representation [34] of the diagonal Greens function. This yields the
sumrule Eq. (75), and completes the set of links giving the number sumrule Eq. (1). In summary the
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sumrules corresponding to Eqs. (4), (5) for a superconductor are Eqs. (8), (75) in Sections 6.2 and
6.3.

In Section 7 details of the applications of the sumrules at finite T to angle resolved photoemission
(ARPES) are given. The main finding is that one can use a first moment of the frequency with respect
to the weight function

W(k⃗, ω, T ) = W0
A(k⃗, ω)

cosh( 12βω)
(9)

where W0 is a normalization constant and A(k⃗, ω) is the electronic spectral weight measured in
experiments. It is denoted in the rest of the paper by the theoreticians favorite symbol ρG(k⃗, ω).
The first moment with respect to W of the frequency ⟨ω⟩k⃗ is found to be equal to −γk⃗(µ, 0+) at
T = 0, and in view of the theorems proved here, can be used as a proxy for the inverse static
Greens function. It can be found from photoemission at any T, and thereby permits us to define
an observable pseudo-Fermi surface (PFS), which becomes the true Fermi surface (FS) at T → 0.
Section 7.1 examines the T dependence of the pseudo FS and notes that it can be used to unravel
the often sensitive T dependence of the real part of selfenergy. In Section 7.2 the pseudo FS for a
singlet superconducting state is discussed in some detail.

In Section 8 I summarize the paper and discuss the results.

1.3. The Hamiltonian

Consider a two component Fermion Hamiltonian

H =

∑
k⃗σ

ε(k⃗) C†
k⃗σ
Ck⃗σ + U × interaction − µN (10)

in the grand canonical ensemble (GCE), where N is the number operator, µ is the (running
i.e. varying) chemical potential, ε(k⃗) the energy dispersion. We take the interaction as a short-
ranged Hubbard type interaction, possibly with a few further neighbor terms. The initial discussion
assumes U > 0, and later we allow for pairing i.e. U < 0. We assume a finite lattice in d-dimensions
with Ns = Ld sites (L the linear dimension) and take the limit of an infinite system at the end.

2. A number sumrule at T = 0

We derive a new and useful sumrule Eq. (2) for the electron number at T = 0 for electrons
with repulsive interactions. It is of thermodynamic origin and is based on an assumption of
‘‘good behavior’’ of the chemical potentials of repulsive finite systems. Let us define the common
eigenstates of N ,H as |m, a⟩ with eigenvalues m, Ea(m)−mµ as the respective eigenvalues. In the
canonical ensemble (CE) m particle sector, we will denote E0(m) and Fm as the ground state energy
and free energy Fm = −kBT log Zm. We define the CE chemical potentials µ(m) using

µ(m) = Fm+1 − Fm, for 0 ≤ m < Nmax, (11)

where T dependence is implied in all variables. The value of Nmax is twice the number of sites for
the prototypical spin- 12 Hubbard model. The set of free energies Fm is conveniently extended by
defining F0 and FNmax+1 satisfying the conditions F0 > 2F1 − F2 and FNmax+1 > 2FNmax − FNmax−1 but
are arbitrary otherwise. By inversion we obtain for m ≥ 1

Fm − F0 = µ(m − 1) + µ(m − 2) + · · · + µ(0). (12)

Our essential assumption is that of a positive definite CE compressibility, i.e. a strictly concave-up
free energy,

Fm+1 + Fm−1 − 2Fm > 0,
or µ(m) > µ(m − 1). (13)

(318)



B.S. Shastry / Annals of Physics 405 (2019) 155–175 159

In a very large system, if we replace differences by derivatives, Eq. (13) becomes the more
familiar condition of a positive physical compressibility. We can use it to order the CE chemical
potentials as a monotonically increasing set

µ(0) < · · · < µ(j) < · · · < µ(Nmax). (14)

From the interesting example of the Hubbard model on a buckyball cluster, we learn that this
condition can be violated by ostensibly repulsive interactions [36], leading to phase separation and
related phenomena. Therefore the ordering in Eq. (14) seem to us to be no more than a robust
characterization of truly repulsive interactions.

We introduce a useful set of weight functions

ξn = eβ{µ−µ(n)}. (15)

Using these we may write pµ(m) the probability of finding m particles in the GCE. With pµ(m) ≡

expβ(mµ − Fm)/Z(µ), and the grand partition function Z(µ) =
∑

m eβ(µm−Fm), we obtain

pµ(m) = Z−1(µ) ξ0ξ1 . . . ξm−1 (16)

Z(µ) = 1 + ξ0 + ξ0ξ1 + ξ0ξ1ξ2 + ξ0ξ1ξ2ξ3 + · · · (17)

The CE chemical potentials µ(m) are computed at low T from the ground state energies E0(m).
When T ≪ 2π h̄v/(LkB) where v ∼ vF the band velocity, the free energies Fm can be replaced by

the ground state energies Fm → E0(m), and the canonical chemical potentials µ(m) computed from
the ground state energies E0(m). We note that

lim
T→0

ξj →

⎧⎨⎩
∞, if µ > µ(j),
1, if µ = µ(j),
0, if µ < µ(j).

(18)

Let us consider the case when µ is in the jth (open) interval Ij defined as

Ij = {µ | µ(j − 1) < µ < µ(j)}. (19)

When µ ∈ Ij at very low T , the j particle sector is occupied while j + 1 and higher sectors are
unoccupied. To see this, when T → 0 we observe that ξ0, ξ1 . . . ξj−1 grow while ξj, ξj+1 . . . decrease
towards zero. Therefore for µ ∈ Ij, Z is dominated by a single term

Z = ξ0ξ1 . . . ξj−1 × Y (20)

Y =

(
1 +

1
ξj−1

+
1

ξj−1ξj−2
+ · · · + ξj + ξjξj+1 + · · ·

)
→ 1,

and therefore

pµ(j) → 1 (21)

while the probabilities with lower and higher indices vanish:

pµ(j − r) →
1

ξj−1ξj−2 . . . ξj−r
∼ 0

pµ(j + r) → ξj . . . ξj+r−1 ∼ 0. (22)

Therefore at T = 0 it follows that the system has j, and no more than j particles, i.e.

lim
T=0

pµ(j) = Θ(µ − µ(j − 1)) − Θ(µ − µ(j)). (23)

The number of particles can be found using Eq. (23) and N̄(µ) =
∑Ns

m=1 mpµ(m). Shifting the sum
in one of the terms and simplifying, we deduce the T = 0 thermodynamic number sumrule Eq. (2).
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Note the crucial role played by concavity of the free energy, it implies a 1 ↔ 1 relationship
between m and µ(m). This rules out double bends �, i.e a non monotonic relation which prevents
inversion. The assumed monotonicity allows the relationship to be inverted, yielding m from µ(m)
uniquely and hence giving the sum-rule. In order to deal with degeneracies of µ(m), usually arising
from discrete symmetries (spin, parity, rotation, . . . ), we relax the strictly increasing condition
Eq. (13) to the weaker

µ(m) ≥ µ(m − 1), (24)

we obtain a second form of the sumrule:

N̄(µ) =

′∑
m

gmΘ(µ − µ(m)), (25)

where gm is the degeneracy of the particular µ(m), and the primed sum is over unequal µ(m)’s.

3. Log-derivative of the Greens function

The log-derivative in Eq. (3) can be written as a ratio

γk⃗σ = βk⃗σ /αk⃗σ , (26)

where

αk⃗σ (µ, T ) = −Gσ (k⃗,
β

2
|µ) (27)

βk⃗σ (µ, T ) = − lim
τ→

1
2 β

∂τGσ (k⃗, τ |µ). (28)

In terms of the convenient variable

f(m, a, b) ≡ eβ

(
µ(m+

1
2 )−

1
2 (Ea(m)+Eb(m+1))

)
/Z(µ),

we find

αk⃗σ (µ, T ) =

∑
m,a,b

f(m, a, b)|⟨m, a|Ck⃗σ |m + 1, b⟩|2, (29)

and

βk⃗σ (µ, T ) =

∑
m,a,b

f(m, a, b) (µ + Ea(m) − Eb(m + 1))

|⟨m, a|Ck⃗σ |m + 1, b⟩|2 (30)

These spectral representations imply that at low T both initial and final states are limited to their
ground states in their respective number sectors.

We take the low temperature limit and the thermodynamic limit in two distinct ways, by
comparing kBT with an energy scale ∆E representing the excited state energy level separation in
gapless systems:

∆E ∼
2π h̄v

L
, (31)

where v∼vF the band velocity. We distinguish between two ways of taking the limit

• Limit (I) : ∆E > kBT ≳ 0, or equivalently {
1
L → 0, T → 0}

• Limit (II): kBT > ∆E ≳ 0, or equivalently {T → 0, 1
L → 0}.

The two limits can be taken with different sets of tools, Limit(I) leads to Eq. (4), and can be taken
employing ideas and tools relevant to finite size systems, while Limit(II) leading to Eq. (5) allows
the use of electronic spectral functions that are continuous functions of ω. The results of [29,30]
imply Eq. (6), i.e. that the two limits coincide asymptotically.
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4. Zero temperature Limit (I), i.e. { 1
L → 0, T → 0}

In this section we consider Fermi liquids of TLM systems and take the T = 0 limit in Eqs. (26),
(29), (30). Upon taking the stated limit, we project the sum over the intermediate states a, b to the
ground state, and write eβ(µm−E0(m))

→ pµ(m) × Z(µ), whereby

αk⃗σ (µ, 0) =

∑
m

Φm(k⃗σ ),

βk⃗σ (µ, 0) =

∑
m

Φm(k⃗σ ) × {µ − µ(m)} ,

γk⃗σ (µ, 0) = µ −

∑
m

Φ̃m(k⃗σ )µ(m), (32)

the normalized weight function Φ̃m = Φm/
∑

r Φr is normalized to unity
∑

m Φ̃m = 1) and its
un-normalized counterpart

Φm(k⃗σ ) = pµ(m)e
1
2 (β−µ(m)) ZσNs (k⃗,m), (33)

ZσNs (k⃗,m) = |⟨m, 0|Ck⃗σ |m + 1, 0⟩|2. (34)

ZσNs is the ground state CE quasiparticle weight of a state with m particles in Ns. In Eq. (32) by
writing µ(m)⟨m, 0|Ck⃗σ |m+1, 0⟩ = ⟨m, 0|[Ck⃗σ ,H]|m+1, 0⟩ and evaluating the kinetic piece explicitly,
we obtain

γk⃗σ (µ, 0) = µ − ε(k⃗) − M(k⃗σ , µ), (35)

M(k⃗σ , µ) =

∑
m

Φ̃m(k⃗σ )

Z
1
2 (k⃗,m)

⟨m, 0|[Ck⃗σ , V ]|m + 1, 0⟩. (36)

We require Z in Eq. (34) to be non-zero at finite Ns, although it could vanish as Ns → ∞, in such
a way that the normalized Φ̃ and M involving the ratios of Z-like objects remain non-zero. Let
us also observe that M vanishes on turning off interactions. We comment on its relation to the
conventional Dyson selfenergy below after Eq. (45).

We next argue that Eq. (32) implies Eq. (4) provided the interacting system is continuously
connected to the gas limit. For the strictly monotonic case µ(m) < µ(m + 1), there is a 1 ↔ 1
map between the k⃗σ and the µ(m), extending the obvious map in the gas. Hence Φ̃m = δm,m0 for
some m0, whereby γk⃗σ = µ − µ(m0). Summing over all k⃗σ leads to Eq. (4). This property of a sum
over all k⃗σ recovering the sum over all µ(m) follows from the completeness of Fermi operators with
the k⃗σ labels, i.e. there is no state in the Hilbert space that is inaccessible by a combination of these
operators.

We might relax strict monotonicity of µ(m) and allow for the merging of a set of µ(m) at different
m with say µ(m0). In this case Φ̃(m) are non-zero for the set of m with non vanishing matrix
elements in ZσNs (k⃗,m). Summing over these m’s we again get γk⃗σ = µ − µ(m0). Further summing
over all k⃗σ gives us back Eq. (4), with a suitable degeneracy factor, provided we use completeness of
the sum. We verify completeness in the noninteracting case (including shell type degeneracies) by
using the representation Eq. (35), with M = 0. In an interacting theory this completeness requires
invoking isothermal continuity.

5. Zero temperature Limit (II), i.e. {T → 0, 1
L → 0}

We now consider the log-derivative γk⃗(µ, T ) for Fermi liquids as well as 1-d TLM. We are
interested in calculating the T → 0+ limit of γk⃗(µ, T ) near its root.

In order to calculate α (Eq. (27)) and β (Eq. (28)) (dropping the explicit spin label below) we use
the spectral function representations for the time dependent G detailed in Appendix A. We start
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with Eq. (A.4) where we put τ =
1
2β so that

αk⃗(µ, T ) =

∫
∞

−∞

dω
2 cosh(βω/2)

ρG(k⃗, ω), (37)

βk⃗(µ, T ) = −

∫
∞

−∞

ω dω
2 cosh(βω/2)

ρG(k⃗, ω), (38)

γk⃗(µ, T ) = βk⃗/αk⃗. (39)

5.1. Fermi liquids

The spectral function in a Fermi liquid can be expressed for low T , |ω| ≪ TF as a Lorentzian [4]

ρG(k⃗, ω) ∼
Z(k⃗)
π

Γk

Γ 2
k + (ω − E(k⃗, T ))2

, (40)

where the quasiparticle weight

Z−1(k⃗) = 1 − ∂ωΣ(k⃗, ω)
⏐⏐
ω→0, (41)

and the width of the peak Γk = −Z(k⃗)Σ ′′(k⃗, 0, T ), these are implicitly functions of k, T , µ etc. Note
that Γk ∼ T 2 is the standard Fermi liquid result for this object. The quasiparticle energy is defined
as usual from the root of the nonlinear equation

E(k⃗, T ) = ε(k⃗) + Σ ′(k⃗, E, T ) − µ(T ), (42)

and Σ ′ (Σ ′′) denotes the real (imaginary) part of Σ . From Eq. (B.7) and Eq. (B.5) and using the
convenient symbol

W (k⃗, T ) =
1
2

+
Γk + iE(k⃗, T )

2πT
(43)

we deduce that

αk⃗(µ, T ) =
Z(k⃗)
π

ℜe ξ (W )

βk⃗(µ, T ) = −E(k⃗, T )αk⃗(µ, T ) −
Z(k⃗)Γk

π
ℑm ξ (W )

γk⃗(µ, T ) = −E(k⃗, T ) − Γk
ℑmξ (W )
ℜeξ (W )

. (44)

In the limit T → 0+ the width Γk vanishes and we obtain

γk⃗(µ, 0+) = −E(k⃗, 0). (45)

Comparing the relations Eqs. (42), (45) with Eqs. (35), (36), we observe that the variable M is
essentially the selfenergy Σ ′ from the perspective of Limit-I. A change in the sign of γk⃗ therefore
occurs at the zero of E(k⃗, 0). Close to this root, i.e. with small E Eq. (42) and the Dyson expression
for the Greens function give us

Θ(γk⃗(µ, 0+)) = Θ(G−1(k⃗, ω = 0|µ)), (46)

and by replacing the static Greens function G−1
→ G we obtain the sumrule Eq. (5). We return to

these expressions later in Section 7, where we carry out a detailed analysis of the volume of the
Fermi surface in connection with ARPES experiments.

5.2. Non-Fermi liquids in 1-d

In this section we apply our method to the case of Tomonaga–Luttinger systems. This is an
extensively studied area where many methods for exact solution are available [37–39]. In these
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systems the quasiparticle weight Z vanishes, in parallel to the discussion for Limit (I) after Eq. (36).
We show below that as T → 0 in Limit(II), αk⃗ vanishes as well, and so does βk⃗ in such a way that
γk⃗ remains finite and switches sign at the true Fermi wave-vector.

For the canonical example of a spinless model, the spectral function is severely constrained by
the Lorentz invariance of the theory and conformal invariance of the effective 2-d classical theory
at finite T [37,38,40]. It can be expressed as a scaling function valid at low T , ω and k̂ defined as
k̂ = k − ζk∗ near the left (ζ = −1) and right (ζ = 1) Fermi points ∓k∗ [37,39,40]

ρG(k, ω) =
1
Tα0

∑
ζ=±1

F(
ω − ζV k̂

T
), (47)

where V the renormalized Fermion velocity is related to the bare Fermi velocity VF by a non singular
scaling factor, and we set kB = 1 in this section. Here and in the following we should retain only
one of the two terms of the ζ sum, where k̂ is small. Although we did not specify the value of k∗

yet, it will turn out that k∗ = kF below, thanks to the sumrule. The exponent α0 < 1, both α, V
depend on the interaction strength, and the positive definite scaling function is peaked at the origin.
It satisfies F(0) = 1 and F(ξ ) → 1/|ξ |

α0 for |ξ | ≫ 1. As T → 0+ we obtain

ρG(k, ω) ∼

∑
ζ=±1

A
|ω − ζV k̂|

α0
, (48)

with A > 0. From the above spectral function and Eq. (A.5) we can calculate the Greens function
near zero frequency close to the Fermi points with T → 0+ as

G(k, 0|µ) = −B
ζV k̂

|V k̂|
α0+1 , (49)

where B > 0, and ζ = ±1 for the right and left Fermi points.
We next calculate Eqs. (37) and (38) using Eq. (47). The cosh( 12βω) factor in Eq. (37) cuts off

frequencies with |ω| > T , and if we restrict |V k̂| ≲ T as well, then the dimensionless argument of
the scaling function F in Eq. (47) is at most of O(1), and we get no contribution to the integrals
from a regime where F(ξ ) → 1/|ξ |

α0 . We can therefore reasonably replace F by a Lorentzian

F ∼
CT
π

CT
(CT )2 + (ω − ζV k̂)2

, (50)

where C is a positive constant. This enables the convenience of an explicit evaluation of the integrals.
If needed it can be supplanted by a more lengthy and tedious argument that avoids this replacement,
giving the same answer.

We therefore use the results Eq. (B.7) and Eqs. (B.8), (B.9) to explicitly perform the integrals and
write down at low T the results when V k̂ is small;

αk⃗(µ, T ) =
C
π

T 1−α0 ℜe ξ

(
1
2

+
CT + iV k̂

2πT

)
(51)

γk⃗(µ, T ) = −ζV k̂ − CT
ℑm ξ

(
1
2 +

CT+iζV k̂
2πT

)
ℜe ξ

(
1
2 +

CT+iV k̂
2πT

) (52)

and βk⃗(µ, T ) = γk⃗(µ, T )αk⃗(µ, T ). Here ζ = ±1 for the right and left Fermi points. Note that these
equations closely resemble Eq. (44). At finite T both terms in Eq. (52) vanish when V k̂ vanishes. As
T → 0+ the second term in Eq. (52) drops out identically, and we get

γk(µ, 0+) = −ζV k̂. (53)
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Comparing with the static Greens function Eq. (49) we obtain

lim
T→0+

Θ(γk⃗(µ, T )) = Θ (G(k, 0|µ)) (54)

we get the sumrule Eq. (5).
We note that the vanishing of the quasiparticle weight Z in this model is reflected in the

vanishing of αk⃗ in Eq. (51) at T → 0. Away from the Fermi points βk⃗ also vanishes but their ratio
γk⃗ in Eq. (52) is finite. It follows that

2
∑
k

Θ (G(k, 0|µ)) = 2
∑
k

Θ (G0(k, 0|µ)) (55)

since each side equals the number of particles and therefore equates the Fermi diameter of the
interacting and non interacting theories. Therefore the unspecified k∗ can now be identified with
the bare Fermi momentum kF .

6. Sumrules in the singlet superconducting state

The volume theorem can be generalized to singlet superconductors. Our work is inspired by
an observation regarding Gor’kov’s (diagonal) Greens function describing the superconducting
state [32] (see Eq. (14))

G(k⃗, ω) =
1
2

u2(k⃗)

ω − E(k⃗) + i0+
+

1
2

v2(k⃗)

ω + E(k⃗) + i0+
, (56)

u2(k⃗) =
1
2

(
1 +

ε(k⃗) − µ

E(k⃗)

)
and v2(k⃗) =

1
2

(
1 −

ε(k⃗) − µ

E(k⃗)

)
. (57)

Here ε(k⃗) is the band energy, E(k⃗) =

√
ε2(k⃗) + ∆2(k⃗) the (positive) quasiparticle energy and ∆(k⃗) the

gap function. It is remarkable to note that this expression contains in its innards, a precise encoding
of the (submerged) normal state Fermi surface. Setting ω = 0 we find

G(k⃗, 0) =
µ − ε(k⃗)

E2(k⃗)
. (58)

Therefore in system exhibiting superconductivity, the submerged normal state Fermi surface is
revealed by a change in sign of G(k⃗, 0) occurring at

ε(k⃗) = µ, (59)

and at the root,

u(k⃗F ) = v(k⃗F ). (60)

The latter condition expresses an emergent particle–hole symmetry on the Fermi surface of the
weak coupling BCS solution. While the above relations are true at the mean-field (BCS) level of
description, it is not clear if this encoding survives the effects of strong interactions, and further
refinements of the theory. It is also not entirely clear as to how one might probe this encoding,
since there is no known method for probing the static G directly. The first question is treated here
with an affirmative answer for a fully gapless superconductor. For a partially or fully gapped case,
it is subject to the survival of the particle–hole symmetry as at least an approximate symmetry for
arbitrary coupling. The second is answered in Section 7, where we relate an observable first moment
of frequency with a suitable weight function to this observation, thereby suggesting a potentially
useful photoemission experiment.

The strategy used for the normal state is extended to the superconductors as follows. We first
establish the thermodynamic sumrule Eq. (7), under the assumption that (Cooper) pairs of electrons
exhibit mutual repulsion, when viewed as composite particles. We then take the T = 0 limit to
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obtain the sumrule Eq. (8). The main assumption here, used without a direct proof, is that of nearly
particle–hole symmetric matrix elements for the interacting system, analogous to Eq. (60) for the
free case. Finally we take the L → ∞ limit and using results from the Nambu–Gorkov formalism,
obtain Eq. (75) and hence the sumrule Eq. (5). This completes the set of sumrules needed to establish
Eq. (1) for the superconducting state as well.

6.1. Superconducting phase: Thermodynamic sumrule

We next study the thermodynamic sumrule for a superconducting state, using the canonical
ensemble. This approach is familiar from the nuclear physics context [41,42] and has been recently
applied in the context of mesoscopic superconductivity [43]. Our treatment initially assumes a finite
gap such as s-wave BCS superconductors, and later generalized to include d-wave case relevant for
cuprate superconductors. We define the CE chemical potentials remaining within the even-canonical
ensemble [41,43]:

µe(2m) ≡
1
2
(F2m+2 − F2m), (61)

and require the monotonic property µe(2m + 2) > µe(2m) leading to an ordering

µe(0) < µe(2) < · · · µe(2j) · · · < µe(Nmax). (62)

This clearly implies a concavity condition on the free energies 2F2n < F2n−2 + F2n+2, arising from
represents repulsion between pairs, so that further clusters of electrons are forbidden, i.e. the pairing
stops with pairs. This results in a homogeneous many-body eigenstate of pairs, qualitatively similar
and continuously connected to a gas of (repulsive) Bosons as envisaged in Ref. [44,45]. Assuming
the ordering Eq. (62) we may repeat the discussion leading to Eq. (2), yielding Eq. (7), the number
sum-rule for paired superconductors at T = 0, with the extra factor of 2 from skipping odd fillings.

6.2. Superconducting phase: T = 0 sumrule

We now consider the low T log-derivative Greens function as in Eq. (3) with Fm ∼ E0(m). For
this we also need the odd sector energies F2n+1, these are expressed in terms of the even energies
and a gap function ∆[41–43,46–54]:

E0(2n + 1) =
1
2
(E0(2n) + E0(2n + 2)) + ∆(2n + 1). (63)

Here ∆ playing the role of the BCS gap is assumed non-zero initially. It is interpretable as the
energy of an unpaired electron in an otherwise paired state. It is essentially the lowest energy
Bogoliubov–Valatin [55] quasiparticle in the CE.

We consider the Limit(I) of α, β of Eqs. (11), (12), (13), (14) of the main paper. We proceed to
calculate Eqs. (13), (14) by grouping pairs of terms {2m, 2m+ 1}, rewriting pµ’s using Eqs. (27) and

(29) as pµ(2m) = eβ(2mµ−F2m)/Z(µ) and pµ(2m + 1) = e−β∆(2m+1)p
1
2
µ (2m)p

1
2
µ (2m + 2). We further

define the matrix elements:

V ab
k⃗σ
(2m + 1) = ⟨2m + 1, a|Ck⃗σ |2m + 2, b⟩,

Uab
k⃗σ
(2m + 1) = ⟨2m, a|Ck⃗σ |2m + 1, b⟩. (64)

The ground state |2m + 1, 0⟩ has one unpaired quasiparticle (with 2-fold degeneracy), while
|2m, 0⟩ and |2m + 2, 0⟩ are the fully paired non-degenerate ground states. These matrix elements
are therefore analogs of the familiar GCE coefficients (uk, vk) =

√
1
2 (1 ±

ξk
Ek
) of the BCS–Gor’kov

theory [32,55,56] noted in Eq. (57), with ξ = ε − µ. Recall that ξk = 0 at the Fermi momentum,
therefore the relation ukF = vkF noted in Eq. (60) holds good in weak coupling [32,55,56]. This
relation also underlies the Majorana zero modes discussed in [57], and is often viewed as expressing
an emergent particle–hole symmetry. Following this we assume the more general ground states
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matrix elements satisfy |U00
k⃗σ

| ∼ |V 00
k⃗σ

|, for the correct bridging momentum. For finite systems we
require it to hold within a tolerance that is discussed below.

We closely follow the procedure in the Fermi liquid case, and express α, β in terms of the matrix
elements U, V .

βk⃗(µ, T ) =

∑
m

e
1
2 β(µ−µe(2m)−∆)p

1
2
µ (2m)p

1
2
µ (2m + 2) B(m),

and

αk⃗(µ, T ) =

∑
m

e
1
2 β(µ−µe(2m)−∆)p

1
2
µ (2m)p

1
2
µ (2m + 2) A(m), (65)

where

A(m) =
{
(U00

kσ (2m + 1))2 + e−β(µ−µe(2m))(V 00
kσ (2m + 1))2

}
, (66)

B(m) = (µ − µe(2m))A(m) +

∆(2m + 1)
{
(U00

kσ (2m + 1))2 − e−β(µ−µe(2m))(V 00
kσ (2m + 1))2

}
. (67)

In computing γk⃗(µ, T ) as T → 0, our calculation proceeds similar to the non-superconducting case
but with the role of Z(k⃗,m) now played by the matrix elements U, V . Assuming continuity from
the Fermi gas via the weak coupling BCS–Gor’kov theory, the given wave vector k⃗ picks out a single
particle number m contributing to both α, β . In the gapless case for the given k⃗, ∆ vanishes as an
inverse power of L. Thus B/A = µ − µe(2m) with negligible corrections. If the gap is non-zero the
ratio B/A = µ − µe(2m) + ∆ C where on dropping indices:

C =
eβ(µ−µe(2m))U2

− V 2

eβ(µ−µe(2m))U2 + V 2 .

We require the correction ∆ C to be small relative to the separation between µe(2m) and µe(2m+2).
If particle–hole symmetry were exactly true then U = V , ∆ C = 0 and the node in γ is situated
exactly at µ = µe(2m) even if ∆ ̸= 0. In practice an approximate equality between U and V suffices
for this condition with a specified tolerance. If we require that

|U2
− V 2

|

U2 + V 2 <
|µe(2m ± 2) − µe(2m)|

∆(2m + 1)
, (68)

the node in γ at µ ∼ µe(2m) is essentially unshifted. Assuming this relation and summing over k⃗,
it follows that∑

k⃗σ

Θ(γk⃗σ (µ, 0)) = 2
∑
m

Θ(µ − µe(2m)) = N̄(µ),

as noted in Eq. (8), where the factor of 2 comes from the equal contribution from k⃗σ and its time
reversed partner −k⃗σ̄ .

6.3. Superconducting phase: T → 0+ sumrule using Nambu–Gor’kov formalism

We next take the limit {T → 0, 1
L → 0} in the superconducting state. In order to go

beyond the mean-field treatment in the Gor’kov’s paper [32], we use the formally exact Nambu
formalism [31]. It contains all possible many body effects, including those neglected in mean field
theory. We start with the Nambu–Gor’kov [31–33] four component theory where the selfenergy in
the superconducting state is expanded as

Σ(k⃗, z) = (1 − Zk⃗(z))z 1 + φ(k⃗, z) τ1 + χ (k⃗, z) τ3, (69)
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with z = iωn where the Nambu selfenergies Z, χ, φ are even functions of z. In this notation for
superconductors Z ∼ 1−∂ωΣ , i.e the inverse of the normal state convention where Z ∼ (1−∂ωΣ)−1.
From this the matrix Greens function G is written as

G(k⃗, z|µ) =
zZk⃗(z)1 + τ3(ε(k⃗) − µ + χk⃗(z)) + τ1φk⃗(z)

z2Z2
k⃗
(z) − E2

k⃗
(z)

. (70)

We are only interested in the diagonal Greens function G11, which we shall denote by G below. This
is the component of the Greens function relevant to the volume theorem and also to photoemission
studies. It can be found within the quasiparticle approximation by expanding Eq. (70) near the
poles of the Greens function [31,33–35]. The poles of G(k⃗, ω) are located at the Bogoliubov–Valatin
(B–V) [55] quasiparticle energies ω = ±Erk⃗ where

Erk⃗ = ℜe(Ek⃗(ηk⃗)/Zk⃗(ηk⃗)), with ηk⃗ = Erk⃗ + i0+, (71)

and have a width

Γk⃗ = Z−1
k⃗

ℑm{ηk⃗Zk⃗(ηk⃗) −
1
Ek⃗

(ε̃k⃗χk⃗(ηk⃗) + φk⃗φk⃗(ηk⃗))},

expressed in terms of the following set of real constants (Eq. (2.25,2.26,2.27) of [34]).

ε̃k⃗ = ε(k⃗) − µ + ℜeχk⃗(ηk⃗), φk⃗ = ℜeφk⃗(ηk⃗)

Ek⃗ = (ε̃2
k⃗
+ φ2

k⃗
)
1
2 , Zk⃗ = ℜeZk⃗(ηk⃗). (72)

In the above expression φk⃗ plays the role of a gap function, ε̃k⃗ the dispersion of a gapless underlying
Fermi liquid renormalized with selfenergy χk⃗, and Ek⃗ is proportional to the quasiparticle energy Erk⃗.

For energies close to the BV quasiparticle energies, the quasiparticle Greens function is given by
the asymptotic expressions

G(k⃗, iωn|µ) ∼

∑
α=±1

{
1
2

+ α
ε̃k⃗

2Ek⃗

} Z−1
k⃗

iωn − αErk⃗ + iΓk⃗
, (73)

ρG(k⃗, ω) ∼
1
π

∑
α=±1

{
1
2

+ α
ε̃k⃗

2Ek⃗

} Z−1
k⃗

Γk⃗

(ω − αErk⃗)2 + Γ 2
k⃗

(74)

The spectral function has a similar status for superconducting systems as Eq. (40) for Fermi liquids;
both expressions capture the various many-body renormalizations in terms of a few parameters.

We calculate αk⃗, βk from Eqs. (37), (38) using the spectral function Eq. (74) in greater detail
below in Eq. (92) in Section 7.2. However as T → 0+ it is known [34] that Γk⃗ → 0, i.e. one has
sharp poles, and ρG is a sum over two delta functions. In this case we easily calculate

αk⃗ ∼
1

Zk cosh( 12βErk⃗)
, βk⃗ ∼

−ε̃k⃗

Z2
k⃗
cosh( 12βErk⃗)

therefore γk⃗(µ, T ) → −
ε̃k⃗
Zk⃗
. Now G(k⃗, 0|µ) = −

ε̃k⃗
E2
k⃗

from Eq. (73), and therefore

Θ
(
γk⃗(µ, 0+)

)
= Θ

(
G(k⃗, 0|µ)

)
, (75)

and therefore by summing over k⃗ we obtain the sumrule Eq. (5). This result is argued to be valid
for all flavors of singlet pairing, including the gapless d-wave case. We combine Eq. (75) or Eq. (5)
with Eq. (8) and infer the sumrule Eq. (1) in the superconductor.
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7. The pseudo Fermi surface at finite T

Extending the ground state sum-rule to finite T , we define a ‘‘pseudo-Fermi surface’’ and an
effective density neff (T ) from the changes in sign with k⃗ of γk⃗σ (µ, T ). These tend to the true Fermi
surface and particle density when T → 0, and can be extracted from experimental photoemission
data as follows. In terms of a dipole matrix-element M and the Fermi function f (ω) = (expβω +

1)−1, the photoelectron intensity is given by I(k⃗, ω) = M(k⃗)ρG(k⃗, ω)f (ω). From Eqs. (3), (37), (38) it
follows that γ is a suitably weighted first moment of frequency:

γk⃗σ (µ, T ) = −⟨ω⟩k⃗, (76)

where

⟨ω⟩k⃗ =

∫
dω I(k⃗, ω)e

1
2 βωω

/∫
dω I(k⃗, ω)e

1
2 βω, (77)

=

∫
ρG(k⃗, ω)

ω dω
cosh( 12βω)

/∫
ρG(k⃗, ω)

dω
cosh( 12βω)

, (78)

the two expressions Eqs. (77), (78) are equivalent since the k⃗ dependent matrix element and other
factors cancel out. This weight function was already mentioned in Eq. (9) in Section 1. In averaging
over ω, the weight factors provide exponential cutoffs for high |ω|. By replacing ω by ωm in Eq. (76),
one can generates the mth moment ⟨ωm

⟩k⃗. This novel set of moments characterize the low energy
excitations of the spectral function, unlike the moments without the T dependent weight functions,
and seem promising for further study.

From γ we define the effective density

neff (T ) = 1/Ns

∑
k⃗σ

Θ
(
γk⃗σ (µ, T )

)
. (79)

We can now define the pseudo-Fermi surface at any T; it is defined as the set of Fermi points k⃗
satisfying

⟨ω⟩k⃗ = 0. (80)

The sign changes of γ with k⃗ occur on this surface, and neff (T ) counts the number of particles within
this surface from Eq. (79). It reduces to the true Fermi-surface at T = 0. We next discuss the content
of this sum-rule at finite T for two important cases.

7.1. Finite T volume sumrule: Fermi liquids

We note that Eqs. (76), (77) are identical to Eq. (39) in Section 6.3. Therefore for Fermi liquids
at finite (but low) T, we can use the quasiparticle approximation for the spectral function Eq. (40),
so that

⟨ω⟩k⃗ = E(k⃗, T ) + Γk
ℑmξ ( 12 +

Γk+iE(k⃗,T )
2πT )

ℜeξ ( 12 +
Γk+iE(k⃗,T )

2πT )
, (81)

following Eq. (44). In order to deduce the pseudo Fermi points, we observe that when E(k⃗, T )
vanishes in Eq. (39), the imaginary part of ξ vanishes as well. Thus at any T the pseudo Fermi
point is located by

E(k⃗, T ) = 0, (82)

where E(k⃗, T ) is defined in Eq. (42). At T = 0 it reduces to

E(k⃗F , 0) = ε(k⃗F ) + Σ ′(k⃗F , 0, 0) − µ(0) = 0, (83)
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where we set k⃗ = k⃗F , the corresponding T = 0 Fermi momentum upon using the volume theorem.
In Eq. (42) we expand the selfenergy at low ω and write E as

Z−1(k⃗, T )E(k⃗, T ) = ε(k⃗) + Σ ′(k⃗, 0, T ) − µ(T ) (84)
= ε(k⃗) + (Σ ′(k⃗, 0, T ) − Σ ′(k⃗, 0, 0)) + Σ ′(k⃗, 0, 0) + (µ(0) − µ(T )) − µ(0) (85)

The vanishing of the right hand side locates the pseudo FS. Using Eq. (83) we obtain

(µ(T ) − µ(0)) = (ε(k⃗) − ε(k⃗F )) + (Σ ′(k⃗, 0, T ) − Σ ′(k⃗, 0, 0))
+ (Σ ′(k⃗, 0, 0) − Σ ′(k⃗F , 0, 0)). (86)

As expected this equation is satisfied identically by setting k⃗ = k⃗F at T = 0. At low T we perturb
by expanding k⃗ about k⃗F ,

k⃗ = k⃗F + δk⃗, (87)

and linearize in δk⃗ to find

δk⃗.V⃗k⃗F
= (µ(T ) − µ(0)) − (Σ ′(k⃗F , 0, T ) − Σ ′(k⃗F , 0, 0)), (88)

where V⃗k⃗ = ∇⃗k⃗[ε(k⃗)+ Σ ′(k⃗, 0, 0)] is related to the Fermi velocity. The variation δk⃗ is normal to the
true (i.e. T = 0) FS, and can be determined from this relation. Proceeding further we may write the
change in FS area with T as a line integral over the true FS in 2-d

δA(T ) =

∮
FS
dk⊥

(µ(T ) − µ(0)) − (Σ ′(k⃗F , 0, T ) − Σ ′(k⃗F , 0, 0))

|V⃗k|
, (89)

where dk⊥ is the wave-vector element tangential to the FS.
The effective density at T differs from the true particle density by the usual counting rules

leading to

neff (T ) − n = 2 × δA(T )/(2π )2. (90)

The variation Eq. (89) is driven by the T dependent shifts of µ(T ) and of the real part of the
selfenergy Σ ′(kF , 0, T ). The shift of µ with T is the smaller of the two, and can in principle be
estimated experimentally. For example in ARPES the apparent change of excitation energy with
T of some fixed (T independent) feature, such as a band edge can be used for this purpose. The
variation δA(T ) is amplified when the quasiparticle Fermi velocity is reduced from the bare one, as
it often happens in strongly correlated matter. An example of the T dependence of neff in the t-J
model is shown in Ref. [58], where the variation with T is quite significant due to strong correlations.
revealing emergent low-energy scales in the problem.

The expression Eq. (89) allows us to explore the T dependent shift of the real part of Σ . This
object is of great interest in strongly correlated materials. In the strange metal regime of the d =

∞ Hubbard model, it has been reported in Ref. [59] (Fig (12.c)) to have a strong T dependence,
which in turn leads to a linear T resistivity

7.2. Finite T volume sumrule: Superconductors

In parallel to the treatment of the normal case above, we calculate the first moment Eq. (78)
in the superconducting phase, using the quasiparticle spectral function in Eq. (74), and the useful
integrals noted in Eq. (B.7). Canceling common factors we write

⟨ω⟩k⃗ = N/D,

N =

∑
α=±1

{
1
2

+ α
ε̃k⃗

2Ek⃗

}[
αErk⃗ ℜe ξ

(
1
2

+
Γk⃗ + iαErk⃗

2πT

)
+ Γk⃗ ℑm ξ

(
1
2

+
Γk⃗ + iαErk⃗

2πT

)]
D =

∑
α=±1

{
1
2

+ α
ε̃k⃗

2Ek⃗

}
ℜe ξ

(
1
2

+
Γk⃗ + iαErk⃗

2πT

)
(91)
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We now use the properties of the ξ function Eqs. (B.8) and (B.9) to simplify Eq. (91). This gives the
final formula for the first moment:

⟨ω⟩k⃗ =
ε̃k⃗

Ek⃗

⎛⎝Erk⃗ + Γk⃗

ℑm ξ

(
1
2 +

Γk⃗+iErk⃗
2πT

)
ℜe ξ

(
1
2 +

Γk⃗+iErk⃗
2πT

)
⎞⎠ . (92)

The Γk⃗ term in the above expression is expected to be exponentially small for the gapped states
and a power law for gapless singlet paired states. This expression resembles Eq. (81) for the Fermi
liquid state with the energy dispersion ε̃k⃗ replacing the quasiparticle energy E(k⃗, T ). The vanishing
of the first moment locates the pseudo-FS for the superconductor through the condition

ε̃k⃗ = ε(k⃗) − µ + ℜeχk⃗(Erk⃗) → 0, (93)

which replaces the simple relation of Gor’kov’s theory Eq. (59). This implies that the shift in the
chemical potential from the noninteracting value due to pairing effects is exactly canceled by the
selfenergy term ℜeχk⃗(Erk⃗). This cancellation is analogous to exact cancellation in the normal state.

Our treatment of the pseudo FS of the superconducting state has a few precedents. The closely
related papers [60,61] discuss the surface formed by k⃗ with G(k⃗, 0) = 0, using a phenomenological
model of G for superconductors in strongly correlated cuprate materials. The model uses a ‘‘renor-
malized’’ mean field theory [62] for this calculation. This method incorporates effects of strong
correlations through a rescaled version of the BCS effective Hamiltonian with density dependent
scale factors. The area of the above surface in these works is found to be only approximately the
number density, even at T = 0. Their results are in contrast to the findings of the present work,
where the pseudo FS area must match the particle density exactly at T = 0. The discrepancy could
be due to missing a cancellation between the shifts of the selfenergy and the chemical potential, or
due to a lack of the (unproven) particle–hole symmetry at strong coupling. Experimental checks of
the particle–hole symmetry, as suggested in this work would be of considerable interest.

In the present work we propose a new suggestion for probing the pseudo-Fermi surface for
superconductors. It differs from the signatures proposed earlier [60,61], advocating either locating
the maxima of the spectral weight, or the maxima of the gradient of the momentum distribution
function |∇knk|. Our proposal involves studying the first moment of the frequency ⟨ω⟩k⃗, defined
in Eq. (78). Its vanishing as in Eq. (80) defines the pseudo FS. As explained above this moment
can be constructed from the dynamical information in ARPES. For singlet superconductors such as
the cuprates, the pseudo-Fermi surface is definable on both sides of the superconducting transition
using the moment in both phases Eqs. (81), (92). Apart from (usually small) T dependent corrections,
its area is the same in both phases, being related to the number of particles.

8. Discussion

Given the importance of the Fermi volume theorem, and the attendant complexities of deriving
it, a fresh approach seems relevant. This work presents a non-perturbative derivation of the volume
sum-rule Eq. (1) in a broad setting. We avoid using the traditional number sum-rule

N̄(µ) =

∑
kσ

Gσ (k⃗, τ = 0−
|µ); (94)

instead we use different ways to compute the zero T limit of the log-derivative γk⃗. This is a major
departure from the L–W route, where the introduction of the Luttinger–Ward functional is an
essential second step. This functional can only be defined in perturbation theory, and leads to
difficulties for strong coupling problems, as explicitly demonstrated in recent work [63].

In 1-d Ref. [17] uses adiabatic evolution of the system with a magnetic flux parameter, to give a
non-perturbative argument for the invariance of Fermi diameter. Ref. [16] extends this to arbitrary
dimensions d > 1 assuming that the system is a Fermi liquid. In contrast to the 1-d result, Ref. [16]
also requires adiabatic evolution through a large number O(Ld−1) of level crossings, arising from a
large accumulation of phase with increasing flux.
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More generally the use of adiabatic theorem in gapless situations, particularly for d > 1 is risky,
and often requires extra symmetry for justification. A well known example is provided by a gapless
metal for d > 1, with a varying interaction strength. When the symmetry is less than circular (or
spherical), k-space redistribution always occurs upon varying the interaction constant. This results
in a change of shape of the Fermi surface [7,64,65], implying that adiabaticity is violated.

We note a few points regarding perturbative arguments. The T = 0 Brueckner–Gammel–
Goldstone formalism [66] is based on the adiabatic theorem and uses the non-interacting Greens
function G0 as the foundation for the perturbation expansion. Therefore the invariance of the
Fermi volume, as well as its shape, are automatic byproducts, we get back what we initially put
in. A critique of this method by Kohn and Luttinger [67] led to the L–W work. They used finite
T perturbation theory instead, allowing for a k-space redistribution of occupied states [7,64,65].
However the problem of strong coupling remains. It is hard to see how the L–W method can
be justified in strong coupling, recalling that it is predicated on the existence of the Luttinger–
Ward functional, defined term by term in powers of the coupling. Recent work explicitly displays
pathologies of the L–W functional in Hubbard type models at strong coupling [63].

The present work utilizes continuity, instead of perturbation, to bypass the strong coupling
problem. Isothermal continuity breaks down at level crossing transitions with tuning, and is signaled
by a jump in expectation values. Therefore the guarantor of isothermal continuity is the absence
of jump discontinuities in expectation values. In summary we may assume isothermal continuity
within a continuously connected phase of matter, thus requiring the absence of first order quantum
transitions. As our example of the superconductor shows, the isothermal argument works through
the normal to superconducting transition, where the dependence on coupling is non-analytic (but
continuous). Here the adiabatic methods seem to fail.

We use continuity in a parameter for linking the interacting system with the Fermi gas. The
parameter used is most often, but not necessarily, the coupling constant in the Hamiltonian. In the
case of the t-J model with extreme coupling U = ∞, a more general interaction type parameter
λ ∈ [0, 1] is invoked [25]. Continuous evolution with λ ensures the volume theorem for the t-J
model [25].

Our extension of the volume theorem to singlet superconductor is based on two assumptions.
Firstly we assume that pairs of electrons act repulsively with respect to other pairs, thereby giving
a monotonically increasing chemical potential µe(m) in Eq. (62). This is certainly true in the BCS
theory and in exactly solvable models [46,48] for superconductivity in finite size systems. It would
break down if an as yet undiscovered glue were to result in say Cooper-quartets, instead of Cooper-
pairs. The other main assumption is that of an approximately valid particle–hole symmetry Eq. (68)
for the case of fully or partially gapped superconductors. This leads to U∼V in the correlated
superconductors, extending the known result Eq. (60) in the weak coupling BCS–Gor’kov case. This
symmetry has been assumed to be true in other contexts, e.g. for the recently discussed Majorana
Fermions [57]. For strongly coupled systems, this symmetry is hard to establish analytically.
However numerical tests of the condition Eq. (68) involving ground-state to ground state matrix
elements of the Fermi operators may be feasible for small systems using exact diagonalization, and
are planned for future work. Finally since we establish a direct connection with observable variables,
one could test the resulting sumrule experimentally in a variety of superconducting materials. The
results would indicate if this symmetry holds good, and how widely, if so.

The present work leads to the notion of a pseudo-Fermi surface defined finite T. This surface is
shown here to be accessible to ARPES studies from moments of the observed intensities. It seems
well worth exploring this object and its T dependence experimentally to throw light on interesting
issues in strongly correlated matter. For superconductors such measurements could complement
information from the high magnetic field setups used to study the same submerged normal state
Fermi surface by destroying the superconducting order using strong magnetic fields [68].
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Appendix A. Spectral function and its relation to the Greens function

With −β < τ ≤ β , we recall the (Matsubara) imaginary time Greens function [2–4]

Gσ (k, τ ) = −
1

Z(µ)
Tr e−βH

(
TτCkσ (τ )C

†
kσ

)
, (A.1)

where the time dependence is Q (τ ) = eτHQe−τH. Using the usual antiperiodicity G(τ ) = −G(τ +β)
we define the Fourier version as usual G(iωn) =

1
2

∫ β

−β
G(τ )eiωnτdτ . We may express G as

G(k⃗, iωn) =

∫
dω

ρG(k⃗, ω)
iωn − ω

, (A.2)

where the spectral function ρG(k⃗, ω) can be conveniently found from the analytic continuations
iωn → z followed by z → ω + i0+ as ρG(k⃗, ω) = −

1
π

ℑmG(k⃗, ω + i0+).
The spectral function has a further representation [4]

ρG(k, ω) = (1 + e−βω)
∑

n,m,a,b

pµ(n)|⟨n, a|Ck⃗|m, b⟩|2

× δ(ω + Ea(n) − Eb(m) + µ)e−βEa(n)+βFn , (A.3)

where Fn is the n-particle free energy.
In terms of ∆E ∼ |Ea(n) − Ea′ (n)|, i.e. a typical excitation energy at a fixed number for a finite

system, we may distinguish between two regimes. At zero T, or more generally for ∆E/kB ≳ T , the
spectral function is a sum over separated delta functions and hence is very grainy. On the other
hand provided (T , ω) ≳ ∆E/kB, the sum over the delta functions is taken over several states and
hence the resulting spectral functions are smooth functions of ω. This is therefore a complementary
regime to the earlier one.

In terms of the spectral functions we may write the time dependent functions as

G(k⃗, τ ) =

∫
∞

−∞

dω ρG(k⃗, ω)e−τω
(
f (ω)θ (−τ ) − f̄ (ω)θ (τ )

)
(A.4)

with the Fermi functions f (ω) =
1

eβω+1 and f̄ = 1 − f . We will need the following relation for the
real part of the Greens function

G(k, 0) = −P
∫

dω
ω

ρG(k, ω), (A.5)

where P denotes the principal value.

Appendix B. Some useful integrals arising in the sum-rule Eq. (78)

We outline the calculation of integrals that arise in Eq. (78):

Jm =
1
2π

∫
∞

−∞

dω
(−ω)m

cosh( 12βω)
Γ

Γ 2 + (ω − E)2
, (B.1)

for real parameters Γ , E with m = 0, 1. A simple way to do these integrals is to use the
Mittag-Leffler expansion

1
cosh(πz)

=
2
π

∞∑
n=0

(−1)n(n +
1
2 )

z2 + (n +
1
2 )

2
, (B.2)
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so that we can integrate term by term using the simple result for convolution of two Lorentzians.
This yields

J0 =
1
π

∞∑
n=0

(−1)n
Γ /(2πT ) + n +

1
2

E2/(2πT )2 + (Γ /(2πT ) + n +
1
2 )

2

J1 = −
1
π

∞∑
n=0

(−1)n
(n +

1
2 )E

E2/(2πT )2 + (Γ /(2πT ) + n +
1
2 )

2
. (B.3)

These sums can be performed using the digamma function

Ψ (z) =
d
dz

logΓ (z) = lim
M→∞

(
logM −

M∑
n=0

1
z + n

)
. (B.4)

We define a meromorphic function ξ (z) via the alternating infinite sum

ξ (z) =

∞∑
n=0

(−1)n

z + n
=

1
2

(
Ψ (

1
2

+
z
2
) − Ψ (

z
2
).
)

, (B.5)

In the complex z plane ξ (z) has a pole at the origin and at every negative integers, and is analytic
everywhere else. Writing z = x + iy we record the useful corollaries

ℜe ξ (x + iy) =

∞∑
n=0

(−1)n
x + n

(x + n)2 + y2

ℑm ξ (x + iy) = −

∞∑
n=0

(−1)n
y

(x + n)2 + y2
. (B.6)

Using these we can perform the required summations in Eq. (B.3) analytically as

J0 =
1
π

ℜe ξ

(
1
2

+
Γ + iE
2πT

)
J1 = −

E
π

ℜe ξ

(
1
2

+
Γ + iE
2πT

)
−

Γ

π
ℑm ξ

(
1
2

+
Γ + iE
2πT

)
. (B.7)

From the series defining ξ (z) in Eq. (B.5), it is real for real z. Using the Schwarz reflection principle
we deduce relations needed in the text; for α = ±1

ℜe ξ

(
1
2

+
Γ + iαE
2πT

)
= ℜe ξ

(
1
2

+
Γ + iE
2πT

)
(B.8)

ℑm ξ

(
1
2

+
Γ + iαE
2πT

)
= α ℑm ξ

(
1
2

+
Γ + iE
2πT

)
. (B.9)
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We study the two-dimensional t-J model with second-neighbor hopping parameter t ′ and in a broad range
of doping δ using a closed set of equations from the extremely correlated Fermi liquid theory. We obtain
asymmetric energy distribution curves and symmetric momentum distribution curves of the spectral function,
consistent with experimental data. We further explore the Fermi surface and local density of states for different
parameter sets. Using the spectral function, we calculate the resistivity, Hall number, and spin susceptibility.
The curvature change in the resistivity curves with varying δ is presented and connected to intensity loss in
angle-resolved photoemission spectroscopy experiments. We also discuss the role of the superexchange J in the
spectral function and the resistivity in the optimal to overdoped density regimes.

DOI: 10.1103/PhysRevB.98.205106

I. INTRODUCTION

The t-J model where extreme correlations are manifest
plays a fundamentally important role in understanding the
physics of correlated matter, including high-Tc superconduc-
tors [1,2]. Despite the large progress [3–10] made in numer-
ically solving the t-J model and the related Hubbard model,
very few analytical techniques are reliable to obtain the low-
temperature physics in this model for a broad range of dopings
due to its inherent difficulties including noncanonical algebra
for Gutzwiller projected fermions and the lack of an obvious
small parameter for perturbation expansion.

To tackle this challenge, we have recently developed the
extremely correlated Fermi liquid (ECFL) theory [11,12]. It
is a nonperturbative analytical theory employing Schwinger’s
functional differential equations of motion to deal with lattice
fermions under extreme correlation U → ∞. The ECFL the-
ory uses a systematic expansion of a bounded parameter λ ∈
[0, 1], analogous to the expansion parameter 1

2S
in the Dyson-

Maleev representation of spins [13] via canonical bosons, and
therefore provides a controlled calculation for the t-J model.
With recent advances in the theory [14], it is possible to
represent the ECFL equations to any order in λ in terms of
diagrams which are generalizations of the Feynman graphs,
without having to consider previous orders.

The second-order O(λ2) ECFL theory gives a closed set
of equations for the Green’s function and has been described
in detail in Ref. [15]. It has been benchmarked successfully
[16,17] against the exact results from the single-impurity
Anderson model and the dynamical mean field theory
(DMFT) [3,18–20], in the case of the infinite-dimensional
large-U Hubbard model. The benchmarking has also been
carried out in the one-dimensional t-J model, where k-
dependent behavior is inevitable, against the density matrix
renormalization group (DMRG) technique. ECFL and DMRG
compare well [21] in describing the spin-charge separation
in a Tomonaga-Luttinger liquid and the relevant strongly k-
dependent self-energy.

Recently in Ref. [15], we have applied the second-order
ECFL theory to studying the 2D t-J model with a second-

neighbor hopping parameter t ′. We calculated the spectral
function peak, quasiparticle weight, and resistivity from hole
doping (t ′ � 0) to electron doping (t ′ > 0). The high thermal
sensitivity in the spectral function and small quasiparticle
weight indicate a suppression of an effective Fermi liquid
temperature scale. The curvature of resistivity vs T changes
between concave and convex upon a sign change in t ′, imply-
ing a change of the effective Fermi liquid temperature [17].
We also compute the optical conductivity and the nonresonant
Raman susceptibilities in Ref. [22].

In the present work, we perform a more detailed study
in the 2D t-J model. Apart from the spectral function peak
height, we compute the energy distribution curves (EDCs) and
momentum distribution curves (MDCs) which are measured
in angle-resolved photoemission spectroscopy (ARPES) [23].
For the first time from a microscopic theory, we obtain an
asymmetric EDC line shape and a rather symmetric MDC line
shape, which are consistent with experimental observation
[23]. The self-energy is also calculated. It is independent
of k in the infinite-dimensional limit [16] and has strong
k-dependence in 1D [21]. In 2D our calculation gives a weakly
k-dependent self-energy in the normal (metallic) state. For
this reason, we expect the vertex correction to be modest.
Then we compute the resistivity within the bubble scheme
neglecting the vertex corrections. Unlike Ref. [15], here we
focus on the doping dependence of resistivity vs T curves
at different t ′, corresponding to experimental observation
[24]. Spin susceptibility and the NMR spin-lattice relaxation
rate are also calculated with the ECFL Green’s function and
related to experiment [25,26]. At the end, we discuss the
effect of the superexchange interaction and justify our choice
of J .

This work is organized as follows: First we summarize the
ECFL formalism to calculate the electron Green’s function
and introduce the parameter region in Sec. II. In Sec. III,
we discuss the ECFL spectral properties, resistivity, Hall
response, and spin susceptibility at a fixed typical superex-
change J , as well as the effect of changing J . Section IV
includes a conclusion and some remarks.

2469-9950/2018/98(20)/205106(20) 205106-1 ©2018 American Physical Society

(336)



PEIZHI MAI AND B. SRIRAM SHASTRY PHYSICAL REVIEW B 98, 205106 (2018)

FIG. 1. EDC line shapes at different fixed values of momentum k in nodal direction (� → X). All figures including insets share the same
legend. The parameters are set as δ = 0.15, T = 105 K or 400 K (inset) and t ′ as specified. The line peak and width in the vicinity of the Fermi
surface depends strongly on temperature. The peak magnitude at ω = 0 goes down as t ′ decreases due to stronger correlation. (a) t ′ = 0.4.
(b) t ′ = 0.2. (c) t ′ = 0. (d) t ′ = −0.2. (e) t ′ = −0.4.

II. METHOD AND PARAMETERS

A. Summary of second-order ECFL theory

In the ECFL theory [11] the one-electron Green’s function
in momentum space is expressed as the product of an auxiliary
Green’s function g and a caparison function μ̃:

G(k) = g(k) × μ̃(k), (1)

where k ≡ (�k, iωn) and ωn = (2n + 1)πkBT is the Matsubara
frequency. Here g(k) is a canonical fermion propagator van-
ishing as 1/ω as ω → ∞, and μ̃(k) plays a role of adaptive
spectral weight due to the noncanonical nature of the problem.

In the minimal version of second-order theory [16] including
superexchange J , they can be written explicitly as

μ̃(k) = 1 − λ
n

2
+ λ�(k), (2)

g−1(k) = iωn + μ − u0

2
+ λ

4
nJ0 − μ̃(k)ε′

k − λχ (k), (3)

where μ is the chemical potential, and ε′
k = εk − u0

2 . Here
u0 is a Lagrange multiplier [27] guaranteeing the shift in-
variance of the t-J model at every order of λ. To elab-
orate, u0 absorbs any arbitrary uniform shift of the band
εk → εk + c, a constant shift which should not change

205106-2
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FIG. 2. EDC line shapes at different fixed values of momentum k in antinodal direction (� → M). All figures including insets share the
same legend. The parameters are set as δ = 0.15, T = 105 K or 400 K (inset), and t ′ as specified. The line peak and width in the vicinity
of the Fermi surface depend strongly on temperature. The peak magnitude at ω = 0 goes down as t ′ decreases due to stronger correlation.
(a) t ′ = 0.4. (b) t ′ = 0.2. (c) t ′ = 0.

the results. The band dispersion including next-nearest-
neighbor hopping is εk = −2t[cos(kxa0) + cos(kya0)] −
4t ′ cos(kxa0) cos(kya0), and � and χ are two self-energy
parts. These are given by [16]

�(k) = −
∑
pq

(ε′
p + ε′

q + Jk−p )g(p)g(q )g(p + q − k), (4)

χ = χ0 + λχ1 with χ0 = −∑
p g(p)(ε′

p + 1
2Jk−p ), and

χ1(k) = −
∑
pq

[
ε′
p + ε′

q + 1

2
(Jk−p + Jk−q )

]
× (ε′

p+q−k + Jk−q )g(p)g(q )g(p + q − k), (5)

where
∑

k ≡ kBT
Ns

∑
kx ,ky ,ωn

, Ns is the number of sites, and
Jk = 2J (cos kxa0 + cos kya0) is the nearest-neighbor ex-
change.

Denoting the particle and hole density per site by n and
δ = 1 − n, respectively, the two chemical potentials μ and u0

are determined through the number sum rules∑
k

g(k) eiωn0+ = n

2
=

∑
k

G(k) eiωn0+
. (6)

After analytically continuing iωn → ω + i0+ we deter-
mine the interacting electron spectral function ρG (�k, ω) =
− 1

π
ImG(�k, ω). The set of equations (1)–(6) was solved it-

eratively on L × L lattices with L = 61, 131, 181 and a

frequency grid with Nω = 214 points. L > 61 is usually for
t ′ � 0 at low temperatures where the spectral function peak
is higher and sharper than the negative t ′ cases; therefore it
requires better k resolution.

B. Parameters in the programs

In this calculation, we set t = 1 as the energy scale and
t ′ is varied between −0.4 and 0.4. We fix the superexchange
to J = 0.17 unless otherwise specified because J usually is
estimated to be in the region from 0 to 0.4, and has a small
effect on the k-dependent behavior and barely influences the
averaged physical quantities like resistivity, since the calcula-
tion includes a summation in k space. This argument will be
further justified in the last part of Sec. III. Besides, we also
explore a large region of doping δ from 0.11 to 0.3, where
the second-order ECFL theory is reliable [16], and present the
δ-dependent behavior at different t ′. If not specified, ω is in
units of t . According to Ref. [2], we assume t = 0.45 eV when
using the absolute temperature scale.

C. The sign of t ′

The significance of the sign of t ′ should be kept in
mind, and the case t ′ > 0 is believed to correspond to
electron-doped cuprate superconductors whereas t ′ < 0 is the
hole-doped cuprates. The hole-doped case appears highly
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FIG. 3. (a)–(e) The negative imaginary part of self-energy ρ� at different k in nodal (� → X) direction with several t ′. Here δ = 0.15,
T = 105 K and 400 K (inset). In all cases, ρ� has a weak k dependence and differs mostly at high energy on the unoccupied side. Increasing
temperature raises the bottom of the self-energy while leaving its high-energy part almost unchanged. (f) ρ� at fixed k = kF in nodal direction
varying t ′. Increasing t ′ lowers the bottom of ρ� and makes its low-energy part more rounded (Fermi-liquid-like). (a) t ′ = 0.4. (b) t ′ = 0.2.
(c) t ′ = 0. (d) t ′ = −0.2. (e) t ′ = −0.4. (f) Varying t ′.

non-Fermi-liquid-like as compared to the electron-doped case
in experiments, and our earlier calculations as well as the
present ones give a microscopic understanding of this impor-
tant basic fact. We emphasize that despite this, the t ′ > 0 case
is also strongly correlated, when we view the T dependence of
the spectral features, where the effective Fermi scale is much
reduced from the bare (band structure) value.

III. RESULTS

A. Spectral properties

1. Spectral function and self-energy

In earlier studies [23], the ECFL spectral function obtained
phenomenologically [11,23,28] has been compared with

experimental data measured with angle-resolved photoemis-
sion spectroscopy (ARPES) at optimal doping, leading to very
good fits. Later we calculated the spectral function from the
raw second-order ECFL equations in the symmetrized model
[29] but it is only valid for doping δ � 0.25. Here we present
the result at optimal doping δ = 0.15 from a microscopic
calculation of ECFL by numerically solving the improved set
of second-order equations [15,16].

We display the energy distribution curves (EDCs) in Fig. 1
and Fig. 2, obtained by fixing k and scanning ω at optimal
doping and various t ′. These quantities can be measured in
ARPES experiments. Figure 1 shows the EDCs for several
constant k along the nodal (� → X) and Fig. 2 for the
antinodal direction (� → M for t ′ > 0). Note that the value of
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FIG. 4. The spectral functions at ω = 0: ρG and ρ� at kF (in nodal and antinodal directions) vs T with varying t ′ at δ = 0.15; legend is the
same for each figure. (a) ρG(kF nodal ). (b) ρG(kF antinodal ). (c) ρ� (kF nodal ). (d) ρ� (kF antinodal ).

kF depends on t ′ and direction in k space. The fixed value of
k is given in terms of kF based on the specific t ′ and direction.
The antinodal (M → X) kF for t ′ � −0.2 is close to zero. The
corresponding EDCs are too close to resolve clearly; hence
they are not presented.

We observe that at low temperatures the EDC peak gets
sharper as k approaches the Fermi surface. The insets show
that a small heating (�T ∼ 0.06t) strongly suppresses the
region around the Fermi surface k ∼ kF while it leaves the re-
gion away from Fermi surface almost unchanged. As a result,
a weaker k dependence of peak height can be viewed in the
higher temperature. It also shows that the EDC line shape is
asymmetric for k < kF , consistent with ARPES experiments.
As t ′ decreases from positive (electron doped) to negative
(hole doped), the correlation becomes stronger, and therefore
the spectral peak gets lower. Slight anisotropy is found for
t ′ � 0.2 in that the peak at the Fermi surface is a bit higher in
the nodal direction than in the antinodal direction, indicating
a weak k dependence of self-energy.

The spectral function of the Dyson self-energy is defined
as

ρ� (�k, ω) = − 1

π
Im �(�k, ω). (7)

It is calculated from the spectral function obtained from
solving the set of ECFL equations (1)–(6):

ρ� (�k, ω) = ρG(�k, ω)

π2ρ2
G(�k, ω) + [ReG(�k, ω)]2

, (8)

where ReG is calculated through Hilbert transform of ρG. As
observed in Figs. 3(a)–3(e), the self-energy shows asymmetry
from intermediate frequencies at essentially all values of t ′
and k, which is consistent with previous studies [16,29],
unlike the symmetric curves in standard Fermi liquid the-
ory. Further they all appear to depend weakly on k. This is
qualitatively different from the strong k dependence of the
low-energy behaviors of the self-energy in one dimension
[21]. This weak k dependence supports our approximation
of resistivity formula ignoring vertex correction in the next
section. The inset indicates that the heating makes the most
difference in the low-energy region by lifting the bottom. In
Fig. 3(f), ρ� at kF for different t ′ are put together. As t ′
increase from negative to positive, its minimum goes down,
indicating a lower decay rate, and the bottom region becomes
rounded and more Fermi-liquid-like.

We also study the temperature-dependent ρG(kF ) and
ρ� (kF ) at ω = 0 for kF in the nodal and antinodal direction in
Fig. 4. Also, panels (a) and (b) show that the spectral function
peak is very sensitive to temperature changes. A sharp drop
happens over a small temperature region (<1% bare band-
width), wiping out the quasiparticle peak for T > 400 K in
either direction. Another angle to observe this phenomenon is
through the self-energy, ρ� (kF ) = 1/[π2ρG(kF )], describing
the decay rate of a quasiparticle. The huge increase of ρ� (kF )
upon small warming shows a rapid drop in the lifetime of
a quasiparticle. Note that the ρ� curvature dependence on
t ′ is similar to that of the plane resistivity in Fig. 4 of
Ref. [15].
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FIG. 5. MDC line shapes at different fixed values of frequency ω in each curve. All figures including insets share the legend. Here the
parameters are set as δ = 0.15, T = 105 K and 400 K (inset). k is scanned along the nodal (� → X) direction. In all cases, they have a highest
peak with a symmetric shape at ω = 0. Consistently, the peak height decreases with smaller t ′, or stronger correlation. (a) t ′ = 0.4, nodal
(� → X). (b) t ′ = 0.2, nodal (� → X). (c) t ′ = 0, nodal (� → X). (d) t ′ = −0.2, nodal (� → X). (e) t ′ = −0.4, nodal (� → X).

The momentum distribution curves (MDCs) are plotted in
Fig. 5 and Fig. 6, obtained by fixing ω and scanning k in nodal
and antinodal directions, respectively, at optimal doping and
various t ′. As expected from the EDC case, the MDC peak
is highest at the Fermi surface ω = 0, which gets broadened
the most upon warming. However, unlike the EDC case, the
MDC peaks that are far away from k = 0 or π look more
symmetric. This difference is consistent with experimental
findings. The spectral function in the early phenomenological
versions of ECFL, Refs. [23,28], leads to a somewhat exag-
gerated asymmetry in MDC curves, and has been the subject
of further phenomenological adjustments in Ref. [30], to
reconcile with experiments. The present microscopic results

show that the greater symmetry of the MDC spectral lines
comes about naturally, without the need for any adjustment
of the parameters.

2. Fermi surface

The Fermi surface (FS) structure can be observed in
the momentum distribution of spectral function peak height.
We present the case for t ′ = −0.2, which is roughly the
parameter describing the LSCO cuprate material [31], and
vary the doping δ in Fig. 7. The FS is hole-like (open) for
low doping [panels (a) and (b)] and becomes electron-like
(closed) for high doping in panels (d) and (e). The transition
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FIG. 6. MDC line shapes at different fixed values of frequency ω in each curve. All figures including insets share the same legend. Here
the parameters are set as δ = 0.15, T = 105 K and 400 K (inset). k is scanned along the antinodal (� → M for t ′ � 0 or M → X for
t ′ < 0) directions. (a) t ′ = 0.4, antinodal (� → M). (b) t ′ = 0.2, antinodal (� → M). (c) t ′ = 0, antinodal (� → M). (d) t ′ = −0.2, antinodal
(M → X). (e) t ′ = −0.4, antinodal (M → X).

point δ ≈ 0.17 can be explicitly seen in Fig. 8(a) which is
close to the noninteracting case with the tight-binding model
in Fig. 8(e), consistent with experimental findings [31–33].
At higher (hole) doping which leads to a weaker effective
correlation [15], the quasiparticle peak height increases and
becomes more Fermi-liquid-like.

The FS is only well defined at zero temperature. Following
Ref. [34] we can define a pseudo-FS at finite temperature, by
examining a specifically weighted first moment of the energy:

γkσ (μ, T ) = −
∫

ρG(k, ω)

× dω ω

cosh(βω/2)

/∫
ρG(k, ω)

dω

cosh(βω/2)
. (9)

We define a pseudo-FS as the surface in �k space where γkσ

changes sign from positive to negative. Shastry has recently
shown [34] that at T = 0, the pseudo-FS becomes the exact
Luttinger-Ward FS. It is further suggested that it is useful to
study a T -dependent effective carrier density

Neff =
∑
kσ

�(γkσ (μ, T )), (10)

where � is the Heaviside step function, such that Neff = N at
zero temperature. At finite temperatures we expect that Neff 
=
N , and the difference between the two gives insights into
the different T scales at play. This is especially applicable in
strongly correlated materials, where it is well known [17–19]
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(a) (b) (c)

(d) (e)

FIG. 7. The 3D plot of the spectral function peak height at several dopings at t ′ = −0.2, T = 63 K. The ridge in the spectral function peak
tracks the Fermi surface. As δ increases, we find that the Fermi surface changes from open (hole-like) to close (electron-like), with the critical
δ ≈ 0.17. The ridge height increases generally as δ goes up, showing decreasing correlation strength. (a) δ = 0.11. (b) δ = 0.14. (c) δ = 0.17.
(d) δ = 0.2. (e) δ = 0.23.

that Gutzwiller correlations result in the Fermi liquid regime,
the strange-metal regime, and the bad-metal regime, followed
by a high-T regime, with three crossover temperatures. In
Fig. 9, we show how Neff/N changes with temperature for
different t ′. For t ′ � 0, Neff increases monotonically toward
N as T goes down. And for t ′ < 0, Neff decreases from larger
to smaller than N upon cooling. With further lowering T one
expects that Neff equals N .

At low temperatures (T � t), we find that the roots of γk

are close to the location of the ridge of spectral peak height
shown in Fig. 11, and hence it can be taken as an approximate
or a pseudo-finite-temperature FS. Figure 10 shows that the
pseudo-FS is getting close to the true FS at zero temperature as
T goes down for both electron-doped and hole-doped systems.

To understand better the deviations at finite T seen in
Fig. 9, Fig. 10, and Fig. 11, it is helpful to recall a phenomeno-
logical spectral function [48] (see Eq. (9) and Eqs. (SI-20) and
(SI-21) in Ref. [48]). This function is obtained by expanding
the two self-energies in Eq. (2) and Eq. (3) at low energies
in a power series. It captures many features of the ECFL
calculations in terms of a few parameters, and is given as

A(k̂, ω) = z0

π

�(ω)

�(ω)2 + (ω − VLk̂)2

(
1 − ξ√

1 + cαξ 2

)
, (11)

where k̂ is the component of �k normal to the FS; ξ = 1
�0

(ω −
r VLk̂); �(ω) = η + π

��
(ω2 + π2k2

BT 2); �0 and �� are the
low- and high-energy scales; VL is the Fermi velocity; and
z0, r , and cα are numerical constants. The important variable
r ∈ [0, 2] determines the location of a feature in the dispersion

known as the “kink.” It is analyzed using this model spectral
function in Ref. [48]. Here r = 1 is at the border of two
regimes r < 1 with kinks in the unoccupied side, and r > 1
with kinks in the occupied side of the distribution. In Fig. 12
we plot the location of the peak in the spectral function
Eq. (11) against T , for three values r = 0.5, 1, and 1.5. From
this we see that these regimes display either a shrinking or an
enlargement of the FS with increasing T . This corresponds to
the types of behavior seen in Fig. 10 and Fig. 11.

3. Local density of states

The local density of states (LDOS) is calculated by∑
�k (1/Ns )ρG(�k, ω) and plotted in Figs. 13 and 14, varying

t ′ with fixed δ = 0.15 and varying δ with fixed t ′ = 0,−0.4,
respectively. This quantity can be measured by scanning tun-
neling microscopy [35–39].

In Fig. 13, comparing panels (a) and (c), we observe that
the LDOS peak gets smoothened and also broadened by the
electron-electron interaction. Although the relative position
for different t ′ remains unchanged after turning on interaction,
the strong correlation brings them closer by renormalizing
the bare band into the effective one, as shown in the inset of
Fig. 22. From panel (a) to (b), raising temperature tends to
have a stronger suppression on the peak with lower t ′. This
means the system with higher t ′ has a higher Fermi liquid
temperature scale, and therefore it is more robust to heating,
which is consistent with the previous findings of the spectral
function.
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FIG. 8. The spectral function peak height in typical directions of momentum space at several dopings at t ′ = −0.2 and T = 63 K. All
panels share the same legend. Panel (a) shows evidence of Lifshitz transition (Fermi surface changed from opened to closed) at δ ≈ 0.17,
similar to the tight-binding model case shown in panel (e). Panels (b), (c), (d) provide other angles to observe this transition, in complementarity
with the 3D plots in Fig. 7. (a) ρG(π, ky ), M → X. (b) ρG(π/2, ky ). (c) ρG(0, ky ), � → M . (d) ρG(k, k), nodal (� → X). (e) Tight-binding
model.

In Fig. 14, from the electron-like panels [(a), (c), (e)] to the
strongly hole-like panels [(b), (d), (f)], the LDOS peak shifts
from ω > 0 to ω < 0. In contrast to the noninteracting tight-
binding model in (e) and (f) where the peak height is indepen-
dent of doping, (a)–(d) have smaller peaks in general and show
that the height decreases at smaller doping with more weight
in the lower Hubbard band (insets). This is again a feature of
strong correlation. As the system approaches the half-filling
limit (δ → 0), the correlation enhances and further suppresses
the quasiparticle peak, which contributes to the central peak
of the LDOS. We also observe that (a) is similar to the
density dependence of the location of Kondo or Abrikosov-
Suhl resonance in the Anderson impurity problem [16]. It can
be understood as a generic characteristic in strongly correlated
matter given the relation between density and the effective
interaction.

B. Resistivity

We next present the resistivity under strong electron-
electron interaction. The popular bubble approximation is
used and the current correlator is writen as 〈J (t )J (0)〉 ∼∑

k v2
kG2(k). Here the velocity h̄vα

k = ∂εk

∂kα
represents the

bare current vertex. In tight-binding theory the sign

oscillation in vα
k leads to a reduction in the average over

the Brillouin zone and therefore diminishes the magnitude
of the vertex corrections. Also the weak k dependence
of self-energy in Fig. 3 reduces the importance of vertex
corrections.

In our picture of a quasi-two-dimensional metal, there
are 2D well-separated sheets, by a distance c0 in the c

FIG. 9. Neff/N vs T at δ = 0.15 and various t ′. For electron-
doped (t ′ � 0) case, Neff increases as one lowers the temperature,
while in the hole-doped (t ′ = −0.2) case, Neff decreases upon cool-
ing down. At lower temperature, one expects that Neff equals N .
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FIG. 10. Comparison between the noninteracting FS and pseudo-FS at low and high temperature. Here we fix δ = 0.15 and vary t ′.
Generally, as we cool down the system, the pseudo-FS approaches the noninteracting system or FS from the right (t ′ = −0.2) or left (t ′ =
0, 0.2) side. The exception is that at T = 105 K and t ′ = −0.2 the pseudo-FS turns out to be closed (electron-like). This delicate effect is a
consequence of the redistribution of weight in the spectral function, and its thermal sensitivity is presumably related to the nearby Lifshitz
transition point for the choice of t ′ = −0.2. We cannot access very low T for our system sizes, but it is expected that the pseudo-FS flips back
to being hole-like at a low T .

direction. Thus each sheet can be effectively characterized
by the 2D t-J model. Its dc resistivity ρxx can be written as
follows:

ρxx = ρ0ρ̄xx = ρ0

σ̄xx

, (12)

σ̄xx = (2π )2
∫ ∞

−∞
dω

(
− ∂f

∂ω

)〈
ρ2

G(�k, ω)

(
h̄vx

k

)2

a2
0

〉
k

, (13)

where ρ̄xx and σ̄xx represent dimensionless resistivity and
conductivity, respectively; ρ0 ≡ c0h/e2 (∼ 1.718 m� cm)

FIG. 11. Comparison between the pseudo-FS from γk (blue), the spectral peak (red), and the noninteracting FS (dashed) at various t ′ and
fixed δ = 0.15. Note that the spectral peak (location) curve and the pseudo-FS are not exactly the same, but deviate from the noninteracting FS
in the same direction. As T decreases, the difference between them gets smaller. (a) t ′ = 0.2, T = 400 K. (b) t ′ = 0, T = 400 K. (c) t ′ = −0.2,
T = 440 K. (d) t ′ = −0.4, T = 420 K. (e) t ′ = 0.2, T = 105 K. (f) t ′ = 0, T = 105 K. (g) t ′ = −0.2, T = 270 K. (h) t ′ = −0.4, T = 105 K.
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FIG. 12. The location of the peak of the spectral function A(k̂, ω)
in Eq. (11) in units of k̂P VL versus T , at three values of r . The
model spectral function, Eq. (11), is from Ref. [48]. It is obtained
by a low-energy expansion of the two ECFL self-energies � and �

(equivalently χ ) in Eq. (2) and Eq. (3). As T → 0 all the curves move
towards k̂ = 0 as one expects, but the approach from finite T displays
significant differences depending on the value of r . The values of the
parameters used here are η = 0.01, �0 = 50, �� = 5000 (in meV),
and cα = 10. An estimated [48] VL ∼ 2 eV Å gives the shift in wave
vector �k̂ ∼ .05 Å, at 500 K for r = 1.5.

serves as the scale of resistivity; 〈A〉k ≡ 1
Ns

∑
�k A(�k); f is

the Fermi distribution function. We present our results in
absolute units in Fig. 15 by putting the measured values of the
lattice constant into the formula and converting the energy unit
using t = 0.45 eV ≈ 5220 K. The scale of ECFL resistivity is
consistent with the experimental findings in cuprates [24].

TABLE I. The Fermi liquid temperature TFL obtained from
fitting the data with Eq. (14). Increasing either t ′ (horizontally) or
doping δ (vertically) increases TFL, signaling weaker correlations.

Fermi liquid temperature TFL (K)

↓ δ → t ′ −0.2 −0.1 0 0.1 0.2

0.12 10.0 18.4 33.1 68.2 117.6
0.15 15.8 31.1 66.3 135.4 218.0
0.18 24.4 53.7 117.4 245.2 420.9
0.21 37.3 78.8 189.5 360.3 618.4
0.24 56.8 145.2 274.4 569.5 820.5

In our previous study [15], a significant finding was that
the curvature of resistivity changes when t ′ varies. Here
we focus more on the δ-dependent behavior of resistivity
as shown in Fig. 15. For a given t ′, decreasing the hole
doping changes the curves from concave to linear then to
convex and varying t ′ shifts the crossover doping region.
This phenomenon signals a change of the effective Fermi
temperature scale. In higher hole doping (lower electron
density), there is less influence of the Gutzwiller projection.
Hence the system has less correlation effectively and displays
more Fermi-liquid-like behavior, namely, T 2 dependence, and
hence positive curvature. In the case with low hole doping,
i.e., closer to the Mott-insulating limit, the correlation is
relatively stronger and suppresses the Fermi liquid state into
a much lower temperature region, which is usually masked

FIG. 13. Local density of states with varying t ′ while fixing δ = 0.15, at T = 105 K and 400 K from ECFL and at T = 0 from the bare
case. All figures share the same legend. (a) T = 105 K. (b) T = 400 K. (c) Tight-binding model for reference, T = 0.

205106-11

(346)



PEIZHI MAI AND B. SRIRAM SHASTRY PHYSICAL REVIEW B 98, 205106 (2018)

FIG. 14. Local density of states with varying δ while fixing t ′ = 0 and −0.4, at T = 105 K and 400 K from ECFL and at T = 0 from the
bare case. All figures share the same legend. (a) t ′ = 0, T = 105 K. (b) t ′ = −0.4, T = 105 K. (c) t ′ = 0, T = 400 K. (d) t ′ = −0.4, T = 400
K. (e) t ′ = 0, tight-binding model for reference, T = 0. (f) t ′ = −0.4, tight-binding model for reference, T = 0.

by superconductivity. In the displayed temperature range of
Fig. 15, the system shows strange-metal or even bad-metal
behaviors [17] instead, and hence negative curvature. The
curvature can be explicitly calculated as the second deriva-
tive of ρxx with respect to T shown in Fig. 16, which
displays features qualitatively similar to the experiments
[24,40–43].

To explore the crossover from the Fermi liquid (ρxx ∝ T 2)
at low T to the strange metal (ρxx ∝ T ) at higher T , we define
a simple fitting model:

ρapprox = const. × T 2

TFL + T
. (14)

This fit gives Fermi liquid behavior for T � TFL and then
crosses over to strange-metal linear behavior at T � TFL.
Thus, TFL serves as a crossover scale describing the boundary
of the Fermi liquid region as well as estimating the strength
of correlation. We find our data fit into this model well
up to intermediate temperature with fitted coefficient and
TFL.

Table I shows the value of TFL in various sets of δ and t ′.
In all cases, the TFL is considerably smaller than the Fermi
temperature in the noninteracting case at the order of the
bandwidth, as a result of strong correlation. In experiment, a
small enough TFL prevents the observation of the Fermi liquid
because at low enough temperature the superconducting state
shows up instead [24]. Relatively, TFL is further suppressed
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FIG. 15. Resistivity versus T for varying hole doping δ and t ′ = −0.2, −0.1, 0, 0.2 (some data in (a), (b), and (d) can be found in Ref. [15]).
The curvature tends to change from negative (convex) to positive (concave) with increasing doping. (a) t ′ = −0.2. (b) t ′ = −0.1. (c) t ′ = 0.
(d) t ′ = 0.2.

by smaller second-neighbor hopping t ′ or smaller doping δ,
either of which strengthens the effective correlation. Negative
t ′ increases the resistivity and shrinks the temperature region
for the Fermi liquid. In this sense, decreasing t ′ turns up
the effective correlation by depressing the hopping process.
On the other hand, decreasing doping leaves less space for
electron movement, which also effectively increases the cor-
relation and suppresses TFL. δ and t ′ both control the effective
correlation strength and hence TFL, as shown in Table I.
Their similar role can also be understood in the fact that
they both change the geometry of the Fermi surface which
determines the conductivity at T � W , where W = 8t is the
bare bandwidth. In general, either increasing δ with fixed t ′
or increasing t ′ with fixed δ changes the Fermi surface from
hole-like to electron-like.

C. Hall number

Within the bubble scheme, we also calculate the Hall
conductivity [19,44–46] as σxy = (−2π2/ρ0)( �

�0
)(σ̄xy ). The

dimensionless conductivity can be written as

σ̄xy = 4π2

3

∫ ∞

−∞
dω (−∂f /∂ω)

〈
ρ3

G(k, ω)η(k)
〉
k
, (15)

where η(k) = h̄2

a4
0
{(vx

k )2 ∂2εk

∂k2
y

− (vx
k v

y

k ) ∂2εk

∂kx∂ky
}; � = Ba2

0 is the

flux [47], and �0 = hc/(2|e|) is the flux quantum. In these

terms, we can compute the Hall number as

nH = − 1

4π2

σ̄ 2
xx

σ̄xy

. (16)

Note that in this definition, the sign of the Hall number is
opposite to that in Ref. [15]. In this definition, nH shares the
same sign with the Hall coefficient RH , consistent with
the experimental convention [24,40–43,49–53]. We present
the ECFL Hall number nH in Fig. 17 together with the non-
interacting one nH0 for comparison. In all cases of different
t ′, nH is around 60% of nH0 and decreasing t ′ suppresses the
scale of nH . This indicates the reduction of effective charge
carrier due to strong correlation. Therefore, the Hall number
increases when the effective correlation turns down either by
increasing t ′ or increasing δ, as shown in Fig. 17. In panel
(d), nH remains smooth when crossing the Lifshitz transition
δ ≈ 0.17, where the Fermi surface changes from opened to
closed as presented in Sec. III A, while nH0 shows a crossover
to a steeper region.

D. Spin susceptibility and the NMR relaxation rate

The imaginary part of spin susceptibility can also be calcu-
lated in the Bubble approximation:

χ ′′(k, ω) =
∫ ∞

−∞
dy〈ρG(p, y)ρG(p + k, y + ω)〉p

× [f (y) − f (y + ω)], (17)
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FIG. 16. Curvature of resistivity versus T for a range of doping δ and t ′ = −0.2, −0.1, 0, and 0.2. For most values of t ′, there is a blue
area towards the right bottom representing positive (concave) curvature akin to a Fermi liquid. Towards the left top we find a red area with
negative (convex) curvature resembling a strange (or bad) metal [17]. This trend is consistent with experimental results [24]. (a) t ′ = −0.2.
(b) t ′ = −0.1. (c) t ′ = 0. (d) t ′ = 0.2.

while the real part χ ′ can be obtained from calculating the
Hilbert transform of χ ′′. χ ′′ is shown in Fig. 18 for hole-doped
(t ′ = −0.2) and electron-doped (t ′ = 0.2) cases at various
fixed k. In both cases, we see the quasielastic peaks in the
occupied region for small k which disappears gradually as k

increases.
Figure 19 presents the k-dependent χ ′ at zero frequency,

in comparison with the noninteracting χ ′
0 in the inset. We ob-

serve that χ ′ is much smaller than χ ′
0 due to the broadening in

the spectral function as a result of strong interaction. Despite
the scale difference, the k-dependent χ seems closer to χ0 in
the electron-doped case (t ′ = 0.2) than the hold-doped case
(t ′ = −0.2), consistent with the previous discussion that the
system is more Fermi-liquid-like for positive t ′. The Knight
shift χ ′(k = 0, ω = 0) of the system is almost independent of
temperature and therefore not shown specifically in figure.

The relaxation rates for cuprates are given by [25,26,55]

1

T1
= γ 2kBT

μ2
B

∑
q

A2
q

χ ′′(q, ω0)

ω0
, (18)

where Aq is a form factor that is determined by the lo-
cal geometry of the nucleus [25,26,55], and ω0 is nuclear

frequency which is assumed to be very small. Our scheme of
calculation is not yet refined enough to capture the detailed
difference between the copper and oxygen relaxation rates in
cuprates. Hence, we will content ourselves by presenting the
case with Aq = 1, which should correspond to the inelastic
neutron scattering (INS) derived relaxation rate in Ref. [25]
from Walstedt et al. We plot 1/T1 vs T at δ = 0.15 and various
t ′ in Fig. 20. For t ′ = −0.2, 1/T1 increases sublinearly with
temperature. It shows roughly the same trend as the copper
rates shown in Ref. [25], but is somewhat steeper than the
derived INS rate therein.

E. J variation

Above we have discussed the ECFL results at J = 0.17.
We next address the question of variation with J . Figure 21
shows the EDCs and MDCs at different J fixing t ′ = 0. Turn-
ing on J raises the peak in EDC [(a) → (c) → (e)] and MDC
[(b) → (d) → (f)] slightly. Also, increasing J separates the
other EDC lines farther away from k = kF while bringing the
other MDC lines closer to ω = 0.

We find that J has an effect on the effective bandwidth.
This can be seen in the EDC and MDC dispersion relation in
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FIG. 17. Hall number vs doping at different t ′ and T = 105 K, where t ′ controls the scale of nH . (a) t ′ = −0.4. (b) t ′ = −0.3. (c) t ′ =
−0.25. (d) t ′ = −0.2.

FIG. 18. χ ′′ at different k for δ = 0.15, T = 63 K, and t ′ = ±0.2. (a) t ′ = −0.2. (b) t ′ = 0.2.

FIG. 19. χ ′ at ω = 0 for δ = 0.15, T = 63 K, and t ′ = ±0.2. Inset shows the corresponding noninteracting χ ′
0. χ ′ is largely suppressed

from the bare case due to strong interaction. (a) t ′ = −0.2. (b) t ′ = 0.2.
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FIG. 20. Relaxation rate from Eq. (18) (arb. units) at δ = 0.15
and different t ′. The curve becomes more sublinear as t ′ decreases
from positive to negative. The sublinear curve at t ′ = −0.2 looks
similar to the copper relaxation rate in Ref. [25].

Fig. 22. As J increases, the EDC and MDC bands separate
out more widely, though they are still very narrow (due to
strong correlations) compared to the bare bandwidth. The
MDC dispersion shows a high-energy feature, namely the
kink (or waterfall). Due to the finite lattice size and to the
second-order approximation made in the present work, the
low-energy kink discussed in Ref. [48] cannot be resolved
clearly. Another angle to view the effect of J is through the
3D plot of the nodal direction spectral function ρG(k, k, ω)
in Fig. 23. It appears that turning on J rotates the spectral
function counterclockwise with respect to the z axis with
k = kF and ω = 0 if viewed from above. In other words,
increasing J extended the renormalized bandwidth with no
effect on the Fermi surface location since all curves cross
at the same kF . That said, small variation of J does not
change the system behavior qualitatively, and only slightly in

FIG. 21. EDC and MDC line shapes at different values of superexchange J . All EDC figures [(a), (c), (e)] or MDC figures [(b), (d), (f)]
share the same respective legend. Here the parameters are set as δ = 0.15, t ′ = 0, T = 105 K, and J = 0, 0.17, 0.4, in the nodal (� → X)
direction. Increasing J , the peak at the chemical potential becomes somewhat higher, but it remains qualitatively similar at all J . Besides,
increasing J separates the EDC lines farther away from k = kF and brings the MDC lines closer to ω = 0. (a) J = 0, EDC. (b) J = 0, MDC.
(c) J = 0.17, EDC. (d) J = 0.17, MDC. (e) J = 0.4, EDC. (f) J = 0.4, MDC.
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FIG. 22. (a) EDC and (b) MDC dispersion relation at different values of superexchange J . In both cases, increasing J expands the
renormalized bandwidth, consistent with Fig. 21 of EDC and MDC lines. Both insets show that the renormalized band is strongly suppressed
by correlation compared with the bare one. The energy and k resolution in the present study is not fine enough to deduce the detailed properties
of the low-energy kinks (for ω ∼ 0.07 eV) discussed phenomenologically within ECFL in Ref. [48].

quantitative detail. Therefore it is reasonable to set J = 0.17
from experiment as a representative number and to explore the
k, ω, t ′, and δ dependence of the system.

From the discussion above, we expect the k-average phys-
ical quantity like resistivity with significant contribution from
the area around the Fermi surface to be insensitive to J

variation. Figure 24 shows the resistivity at different J for
fixed t ′. As expected, varying J from 0 to 0.4 does not make
a qualitative difference in the resistivity of the normal state,

although it has a relatively stronger effect on the case with
larger |t ′|.

IV. CONCLUSION

We apply the recently developed second-order ECFL
scheme [15,16] to studying the 2D t-J model with second-
nearest-neighbor hopping t ′. We have presented the spectral
function, self-energy, LDOS, resistivity, Hall number, and dy-

(a) (b)

(c) (d)

FIG. 23. 3D plot of the nodal direction spectral function ρG(k, k, ω). Consistent with Fig. 21, turning on J increases the peak height and
rotates ρG counterclockwise with respect to the z axis with k = kF and ω = 0 if viewed from above. This is another facet of the steeper
dispersion with J noted in Fig. 22. (a) J = 0, T = 105 K. (b) J = 0, T = 400 K. (c) J = 0.4, T = 105 K. (d) J = 0.4, T = 400 K.
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FIG. 24. Resistivity at δ = 0.15 versus T for various J and t ′ (same legend for all panels). In all t ′, we observe that J variation of
the resistivity is small. As |t ′| becomes large J has a somewhat larger influence on the resistivity. (a) t ′ = −0.4. (b) t ′ = −0.2. (c) t ′ = 0.
(d) t ′ = 0.2. (e) t ′ = 0.4.

namical susceptibility at low and intermediate temperatures,
with t ′ varying from −0.4 to 0.4 and within a large density
region around optimal doping.

The spectral properties are shown to be consistent with
ARPES experiments [56–60] on correlated material. The
asymmetric EDCs and more symmetric MDCs are observed
as expected from the previous study on the phenomeno-
logical model of simplified ECFL theory [23]. The weak
k dependence of self-energy indicates the relative unimpor-
tance of vertex corrections at the densities considered, and
gives credence to the use of the bubble approximation for
transport.

The curvature change on the resistivity ρ-T curve arises
from varying t ′ and δ, signaling different strength of effective

correlation. Both t ′ and δ affect the effective electron-electron
correlation because t ′ controls the second-neighbor hopping
process and δ leaves more or less space for electron move-
ment. As a feature in 2D, the combination of them determines
the geometry of the Fermi surface and therefore the low-
energy behaviors.
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There is considerable recent interest in the phenomenon of anisotropic electroresistivity of correlated metals.
While some interesting work has been done on the iron-based superconducting systems, not much is known
for the cuprate materials. Here we study the anisotropy of elastoresistivity for cuprates in the normal state.
We present theoretical results for the effect of strain on resistivity and additionally on the optical weight and
local density of states. We use the recently developed extremely strongly correlated Fermi liquid theory in
two dimensions, which accounts quantitatively for the unstrained resistivities for three families of single-layer
cuprates. The strained hoppings of a tight-binding model are roughly modeled analogously to strained transition
metals. The strained resistivity for a two-dimensional t-t ′-J model are then obtained, using the equations
developed in recent work. Our quantitative predictions for these quantities have the prospect of experimental
tests in the near future, for strongly correlated materials such as the hole-doped and electron-doped high-Tc

materials.

DOI: 10.1103/PhysRevB.101.245149

I. INTRODUCTION & MOTIVATION

Understanding the temperature and doping dependent elec-
trical conductivity of very strongly correlated metals in two
dimensions (2D) is a very important problem in condensed
matter physics. Recent interest in elastoresistivity, i.e., the
strain dependence of resistivity has been triggered by the
discovery of strong nematicity in iron based superconductors
[1–3]. The nematic susceptibility is defined as

χnem = lim
εxx→0

ρ ′
xx − ρxx

ρxxεxx
, (1)

where ρ ′
xx(ρxx ) is the x-axis resistivity in the presence (ab-

sence) of a small strain εxx. The large magnitude of this
dimensionless susceptibility (|χnem| � 200), and the peaklike
features in its temperature dependence, suggest enhanced
nematic fluctuations in the pnictides.

The situation for cuprates is less studied thus motivating
the present work. The recently developed extremely correlated
Fermi liquid theory (ECFL) [4] accounts quantitatively for
the (unstrained) normal state resistivities of three families
of single layer cuprates [5–7]. This theory treats correlation
effects within the well-defined t-t ′-J model. The model lacks
any explicit mechanism to drive large nematic fluctuations,
but it is possible that these fluctuations are emergent. It is
thus natural to ask if the theory can provide a benchmark scale
for elastoresistivity effects in cuprates, as well as to examine
if nematic fluctuation are encouraged. Towards this goal we
present results for the anisotropic elastoresistivity in various
geometries for cuprate materials in the normal state within
the extremely correlated Fermi liquid theory (ECFL) [4] as
applied to the t-t ′-J model for spin- 1

2 electrons on a square

lattice given by the Hamiltonian

H = −
∑
i jσ

ti jC̃
†
iσC̃jσ − μN̂ + 1

2

∑
i j

Ji j

(
�Si.�S j − 1

4
nin j

)
.

(2)
Here ti j = t (t ′) for nearest (next-nearest) neighbor sites i j and
is zero otherwise on the square lattice [8], N̂ is the number
operator, C̃iσ = PGCiσ PG, and PG is the Gutzwiller projection
operator which projects out the doubly occupied states. Also
the superexchange Ji j = J when acting on nearest neighbor
sites and is zero otherwise. The other symbols have their usual
meaning.

While the ECFL theory accounts for the variation of
resistivity with a change of hopping parameters, we need
another piece of information to calculate elastoresistivity. That
is a solution to the independent problem of describing the
effects of strain on the hopping parameters of the underlying
tight-binding model. In cuprates the t-t ′-J model arises as
an effective low energy model from downfolding from a
three band (or in general multiband) description obtained
within band structure calculations[9–11]. This procedure is
not unique since the extent of correlations included in the band
structure can differ among different calculations. We take the
practical view that the hopping parameters can be chosen
to depend parametrically on the distance between atoms, in
parallel to the treatment of volume effects in transition metals
by V. Heine[12]. Thus in our approach, a small strain can be
parametrized through a single variable α relating the hopping
to the separation R via the relation

t (R) ∼ A

Rα
. (3)

From tight-binding theory α = l1 + l2 + 1, where l1, l2 are
the angular momenta of the overlapping orbitals [12]. Within
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this scheme we expect that compression enhances overlap and
hence the magnitude of hopping, and conversely stretching
reduces overlap. Excluding very strong multiband effects we
may take α ∈ {2, 5} for cuprates. The single parameter needed
for our purpose is α, since A is reabsorbed in the unstrained
hopping. We further suggest that one may more realistically
estimate this single parameter α by measuring other α depen-
dent variation of physical variables with strain, as described
below.

This modeling neglects the possible three-dimensional ef-
fects, where the c-axis propagation could in certain situations
influence the two-dimensional bands indirectly. Also cuprates
with many layers per unit cell may have more complex
dependence on strain as compared to single layer systems.
Despite the above caveats in place, it is still worthwhile to
study the model Eq. (2 together with the relation Eq. (3) for
understanding the elastoresistivity of single layer cuprates.

The problem of (unstrained) normal state resistivity has
been explored in various experiments [13–15] on different
materials over the last few decades. Experiments reveal inter-
esting and challenging transport regimes, termed the strange
metal and the bad metal regime [16], whose existence is
inexplicable within the standard Fermi liquid theory of metals.
These results have attracted several numerical studies using
the techniques of dynamical mean field theory [17–19], deter-
minant quantum Monte-Carlo method [20,21], and dynamical
cluster approximation [22,23] etc. These studies indicate that
the unusual regimes are indicative of very strong correlations
of the Mott-Hubbard variety.

Despite the numerical progress, few analytical techniques
are available to extract the low temperature transport behavior
and thus better understand the various regimes. This is due
to the inherent difficulties of treating strong correlations, i.e.,
physics beyond the scope of perturbation theory. Recently, the
extremely correlated Fermi liquid theory (ECFL) [4,24,25]
has been developed by Shastry and coworkers. This theory
consists of a basic reformulation of strong correlation physics,
and its many applications have been reported for the t-t ′-J
model in dimensions d = 1, 2,∞. This is a minimal and fun-
damental model to describe extreme correlations. The ECFL
theory leads to encouraging results which are in close accord
with experiments such as spectral line shape in angle-resolved
photoemission spectroscopy (ARPES) [6,7,26–31], Raman
susceptibility [32,33], and particularly, resistivity [6,7,25,34].
A recent work [5] shows that the ECFL theory gives a quanti-
tatively consistent account of the T and density dependence of
the resistivity for single layer hole-doped and electron-doped
correlated materials. Here we explore the strain dependence
of the resistivity within the same scheme.

In the ECFL theory, the resistivity arises from (Umklapp-
type) inelastic scattering between strongly correlated elec-
trons. Here the hopping amplitudes of electrons play a dual
role. The first one, that of propagating the fragile quasipar-
ticles, is standard in all electronic systems. They provide a
simple model for the band structure. Additionally, for very
strong correlations the ECFL theory shows that the hopping
parameters are also involved in the scattering of quasiparticles
off each other [35]. A surprisingly low characteristic tempera-
ture scale[7,34] emerges from the strong correlations, above
which the resistivity crosses over from Fermi liquid type,

i.e., ρ ∼ T 2 behavior, to an almost linear type, i.e., ρ ∼ T
behavior [6,7,15].

From the above we argue that strain effects could provide
a test of the underlying mechanism for resistivity within
the ECFL theory to include strain dependence. Experiments
probing these strain effects are likely in the near future, thus
enabling an important test of the theory. For the purpose
of independently estimating the strain-hopping parameter α

in Eq. (3), we have identified two experimentally accessi-
ble variables. Firstly we study the integrated weight of the
anisotropic electrical optical conductivity, i.e., the f-sum rule
weight, accessible in optical experiments [36,37]. Secondly
we study the local density of states (LDOS), measurable
through scanning tunneling microscopy (STM) [38–42]. The
f-sum rule weight in tight-binding systems is related to the
expectation of the kinetic energy, or hopping, and can be ob-
tained from the Green’s function. The LDOS can also be
calculated from the local Green’s function easily.

The plan of the paper is as follows: In Sec. II (A) we
introduce the t-t ′-J model and summarize the second order
ECFL equations and the corresponding Green’s functions
and self-energies. (B) We describe how to convert the lattice
constants and hopping parameters for a system under strain.
(C) We outline the parameters for the program. In Sec. III,
we present the detailed calculation for and results of (A) the
resistivity, (B) the kinetic energy, and (C) the LDOS and their
associated susceptibilities with respect to strain. We provide a
brief summary and discussion of our results and future work
in Sec. IV.

II. METHODS & PARAMETERS

A. The model

It has been argued that the t-t ′-J model is key to describing
the physics of high-Tc superconducting materials [43]. This
model is composed of two terms: HtJ = Ht + HJ where Ht

is derived by taking the infinite-U limit of the Hubbard
model plus an additional term HJ which introduces antifer-
romagnetic coupling. The general Hamiltonian Eq. (2) can be
rewritten in terms of the Hubbard X operators [4] as

Ht = −
∑
i jσ

ti jX
σ0
i X 0σ

j − μ
∑

iσ

X σσ
i ,

HJ = 1

2

∑
i jσ

Ji jX
σσ
i

+ 1

4

∑
i jσ1σ2

Ji j
{
X σ1σ2

i X σ2σ1
j − X σ1σ1

i X σ2σ2
j

}
. (4)

Here ti j and Ji j are already defined below Eq. (2). We present
results for both vanishing and nonvanishing Ji j . The operator
X ab

i = |a〉 〈b| takes the electron at site i from the state |b〉 to the
state |a〉 where |a〉 and |b〉 are one of the three allowed states:
two occupied states |↑〉, |↓〉, or the unoccupied state |0〉—
the appropriate X operator referring to the doubly occupied
state |↑↓〉 is excluded in both the Hamiltonian and state space.
The X operator relates to the alternative representation used in
Eq. (2) as follows: X σ0

i → C̃†
iσ , X σ0

i → C̃iσ , and
∑

σ X σσ
i →

ni.
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B. The ECFL equations

In this section, we briefly introduce the ECFL equations for
the t-t ′-J model. More details can be found in [4,6,24,25]. In
the ECFL theory, the one-electron Green’s function G is found
using the Schwinger method [44] and in momentum space is
factored as a product of an auxiliary Green’s function g and a
“caparison” function μ̃:

G(k) = g(k) × μ̃(k), (5)

where k ≡ (�k, iωk ), and ωk = (2k + 1)πkBT is the fermionic
Matsubara frequency and subscript k is an integer. The auxil-
iary g(k) plays the role of a Fermi-liquid type Green’s function
whose asymptotic behavior is 1/ω as ω → ∞, and μ̃ is an
adaptive spectral weight that mediates between two conflict-
ing requirements [24]: (1) the high frequency behavior of the
noncanonical fermions and (2) the Luttinger-Ward volume
theorem at low frequencies.

The Schwinger equation of motion for the physical Green’s
function can be symbolically written as [24](

g−1
0 − X̂ − Y1

)
.G = δ (1− γ ), (6)

where X̂ represents a functional derivative and Y1 describes
a Hartree-type energy, i.e., G convoluted with hopping and
exchange interactions. The left hand side of Eq. (6) is anal-
ogous to that of the Schwinger-Dyson equation for Hubbard
model [45]: (g−1

0 − Uδ/δV − UG).G = δ 1. Observe on the
right side of Eq. (6), the essential difference is the γ term
which is proportional to a local G and originates from the non-
canonical algebra of creation and annihilation operators. The
noncanonical nature of operators and the lack of an obvious
small parameter for expansion present the main difficulties
towards solving this equation.

To tackle these difficulties, the ECFL theory inserts into
Eq. (6) the λ parameter(

g−1
0 − λX̂ − λY1

)
.G = δ (1− λγ ), (7)

where λ ∈ [0, 1] interpolates from a noninteracting to fully
interacting system. This parameter plays a parallel role to that
of inverse spin parameter 1/2S in quantum magnets, where
S is the magnitude of the spin. Then we expand Eq. (7)
systematically with respect to λ up to a finite order and
at the end set λ = 1 to recover the full t-t ′-J physics. The
introduction of λ bound to [0,1] in ECFL makes it possible
that a low-order expansion could be enough to describe low-
energy excitations in a large region of doping. This argument
has been justified in one [46] and infinite [25] dimensions by
benchmarking against exact numerical techniques and in two
[6,7] dimensions by comparing well with experiments.

In the following, we use the minimal version of second
order (in λ) ECFL equations [6]:

μ̃(k) = 1 − λ
n

2
+ λψ (k) (8)

g−1(k) = iωk + μ − ε�k + λ
n

2
ε�k − λφ(k) (9)

where μ is the chemical potential (denoted in boldface) and
ε�k is the bare band energy found by taking the Fourier trans-
formation of the hopping parameter. The physical Green’s
function features two self-energy terms: the usual Dyson-like
self-energy denoted φ(k) in the denominator and a second

self-energy in the numerator ψ (k). The self-energy φ(k)
can conveniently be decomposed as follows: φ(k) = χ (k) +
ε′

�kψ (k) where χ (k) denotes a self-energy part, ε′
�k = ε�k −

u0/2 and ψ (k) the second self-energy. Here u0 acts as a
Lagrange multiplier, enforcing the shift invariance [4,6,24] of
the t-t ′-J model at every order of λ. The two self-energies
functions ψ and χ expanded formally in λ to second order
approximation O(λ2) are ψ = ψ[0] + λψ[1] + . . . and χ =
χ[0] + λχ[1] + . . .. The expression for these self-energies in
the expansion are

ψ[0](k) = 0, χ[0](k) = −
∑

p

(
ε′

�p + 1

2
J�k−�p

)
g(p) (10)

and

ψ[1](k) = −
∑

pq

(ε′
�p + ε′

�q + J�k−�p)g(p)g(q)g(p + q − k)

(11)

χ[1](k) = −
∑

pq

(ε′
�p + ε′

�q + J�k−�q )(ε′
�p+�q−�k + J�k−�p)

× g(p)g(q)g(p + q − k), (12)

where
∑

k ≡ kBT
Ns

∑
�k,ωk

and J�q is the Fourier transform of Ji j

[47]. By setting λ to 1, the resulting expressions for the ECFL
equations expanded to O(λ2) are

μ̃(k) = 1 − n

2
+ ψ (k) (13)

g−1(k) = iωk + μ − ε�k + n

2
ε�k − χ[0](k)

− χ[1](k) − ε′
�pψ[1](k). (14)

We can verify that an arbitrary shift of ε�k → ε�k + c0 leaves
the above expression invariant by shifting μ → μ + c0 and
u0 → u0 + 2c0. In this sense, we may take u0 as a second
chemical potential. We can determine the two chemical po-
tentials μ and u0 by satisfying the following number sum rules

∑
k

g(k)eiωk0+ = n

2
=

∑
k

G(k)eiωk0+
, (15)

where n is the particle density. We find the spectral func-
tion ρG (k) = −1/πmG(k) by analytically continuing (i.e.,
iωk → ω + iη) and by solving Eq. (5) and Eqs. (10)–(15)
iteratively. We remind the reader that the spectral function
ρG (�k, ω) is referred to in most experimental literature by
the symbol A(�k, ω). We can recover the interacting Green’s
function from ρG using

G(�k, iωk ) =
∫ ∞

−∞

ρG (�k, ν)

iωk − ν
dν. (16)

C. Strain effects on hopping and exchange

1. Converting lattice constant changes to hopping changes

The t-t ′-J model in two dimensions describes the hopping
of electrons between copper atoms in the 2d plane. In this
model, the hopping parameters with strain and without strain
are denoted as

{tx, ty, td} → {t, t, t ′}. (17)
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Thus under strain tx and ty refer to nearest neighbor hops along
x and y axes, and td is the second neighbor hopping along
the diagonal of the square lattice. We start with the tetragonal
symmetry case tx = ty = t where there are just two parameters
t, t ′.

At the level of a single bond between two coppers, any
generic hopping t (R) for a bond with length R can be repre-
sented by [12]

t (R) ∼ A

Rα
, (18)

where A is a constant. In the simplest cases, the exponent α is
given by the angular momentum l1, l2 of the relevant atomic
shells of the two atoms by the formula

α = l1 + l2 + 1. (19)

Thus for two copper atoms l1 = l2 = 2 and hence we might
expect

α ∼ 5, (20)

whereas for copper oxygen bonds l1 = 2, l2 = 1, therefore

α ∼ 3. (21)

For the effective single band description of the cuprate materi-
als, it is not entirely clear what value of α is most appropriate.
Comparisons with experiments might be the best way to de-
cide on this question, when the results become available. Until
then we can bypass this issue by presenting the theoretical
results in terms of δt

t rather than the strain itself. Towards this
end Eq. (18) is a very useful result. We rewrite it as

δt (R)

t (R)
= −α

δR

R
, (22)

thus enabling us to convert a change of the lattice constant to
that of the corresponding hopping, using only the value of t
and α. Throughout this paper we will refer to δt/t as “strain”
or with emphasis as “hopping strain” in order to distinguish it
from “conventional strain” δR/R. Strain will always refer to
variations along the x axis unless otherwise noted.

2. Geometrical aspects of the strain variation

Our calculation studies a few variations of parameters. We
start on a lattice with tetragonal symmetry at t ∼ 5220 K
(0.45 eV), and we vary t ′ to capture both electron-doped
(t ′ > 0) and hole-doped (t ′ < 0) cuprates. The magnitude of t
is only a crude estimate, it is refined for different single layer
cuprate systems in [5].

On the distorted lattice with orthorhombic symmetry and
lattice constants a and b, the three distances of interest (two
sets of nearest neighbors and one set of second neighbors) are

a, b, ρ =
√

a2 + b2. (23)

For the tetragonal case we refer to the undistorted lattice
parameter as a0, thus a = b = a0, ρ = √

2a0. We next study
the effect of stretching (δa > 0) or compressing (δa < 0) the
x-axis lattice constant, leaving the y axis unchanged. The
changes in the lattice constants then read as

a → a0 + δa; b → a0; ρ →
√

2a0 + δa√
2
. (24)

We denote the strain in the x direction as

εxx = δa

a0
. (25)

In terms of the strain, we can rewrite the distances to neigh-
bors as

a = a0(1 + εxx ), b = a0, ρ =
√

2a0

(
1 + εxx

2

)
, (26)

so that εxx > 0 is regarded as stretching and εxx < 0 as com-
pression. The single particle (tight-binding) energies for the
distorted lattice are given by

ε�k = −2tx cos(kxa) − 2ty cos(kyb) − 4td cos(kxa) cos(kyb).

In terms of the band parameters of the unstrained system t and
t ′, we can write the anisotropic band parameters as

tx = (1 − α εxx ) t, ty = t, td =
(

1 − α
εxx

2

)
t ′, (27)

where the factor of 1
2 for td comes about due to a shorter

stretching of ρ as in Eq. (26). Their strain variations are
denoted by

δtx
tx

≡ δt

t
= −αεxx,

δty
ty

= 0,
δtd
td

= −1

2
αεxx. (28)

These formulas relate the change in hopping to the physical
strain, and thus involve the parameter α which is somewhat
uncertain. For that reason, we actually vary δt

t in this study.
We also go beyond the linear response regime, i.e., we use
larger values of δt

t than those attainable in the laboratory. In
such a case we set δtd

td
= δt

2t . To summarize the sign convention
used in this work,

compress:
δt

t
> 0, εxx < 0

stretch:
δt

t
< 0, εxx > 0. (29)

3. Converting hopping changes into exchange changes

In this model, the superexchange interaction maps to hop-
ping as follows: J = t2/U where U is the on site energy
of the Hubbard model. As we vary the hopping parameter,
we find δJ = 2(δt/t )J since U does not vary with strain. In
this model the first neighbor exchange parameters with and
without strain, similar to Eq. (17), are denoted as

{Jx, Jy} → {J, J}, (30)

where Jx and Jy refer to the first neighbor exchange interac-
tions along the x and y axes. In terms of hopping changes we
can rewrite the exchange parameters as

Jx =
(

1 + 2
δtxx

txx

)
J, Jy = J. (31)

D. Parameters in the program

The model considered applies to several classes of mate-
rials, such as the cuprates, the sodium cobaltates, and pre-
sumably also to the iron arsenide superconductors. We shall
restrict our discussion to the cuprates where the parameters
are fairly well agreed upon in the community [5,43,48].
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In this calculation, we set t = 1 as our energy scale and we
allow t ′/t to vary between −0.4 and 0.4, to cover the full range
of cuprate materials. The hopping strain δt/t is varied from
−0.15 to 0.15. The exchange parameter J is set to zero except
where otherwise noted. We convert the energy to physical
units by setting t = 0.45 eV, and hence the bandwidth is
W = 8t = 3.6 eV. If one wants to make a different choice for
t , this can be done by rescaling the energies and T ’s by the
same scaling factor.

We focus on the optimal doping case δ = 0.15 for cuprate
materials [49]. Here δ refers to the hole doping and relates to
the particle density as follows δ ≡ (1 − n). The temperature
range is set to T ∈ [37, 450] K. Lower temperatures than this
lie outside the range of convergence for the current scheme.
For the interacting system we solve the ECFL equations
(10)–(15) iteratively on a real frequency grid of size Nω =
214 within the range [−2.5W,2.5W], where W is the bare
bandwidth, and a lattice L × L with L = 61, 79, 135. The
scale of the frequency grid is tuned to capture the low-T
physics. A frequency grid of size Nω = 216 only slightly
improves our results at much larger computational costs. We
primarily use an L > 61 for t ′ > 0 at low temperatures (i.e.,
T < 100 K) in order to get sufficient resolution to converge
electrical resistivity calculation. The need for a high resolution
lattice at low temperatures is a product of the spectral function
which features higher, sharper peaks for t ′ > 0, to which the
resistivity calculation is sensitive [6], i.e., a larger grid is
required to settle the unphysical oscillations in the resistivity
calculation. For the noninteracting system we compute LDOS
using a system of size Nω = 212 and L = 271.

III. RESULTS

Here we present the effects of strain along the x axis on
electrical resistivity, kinetic energy, and LDOS and their asso-
ciated susceptibilities in response to a compressive (δt/t > 0)
and tensile (δt/t < 0) hopping strain.

A. Resistivity for an x-axis strain

We now study the response of electrical resistivity ρα char-
acterized by electron-electron scattering [6] in the presence
of a strain. We use the bubble approximation, factoring the
current correlator as 〈J (t )J (0)〉 ∼ ∑

k v2
�k G

2(k) with suitable
vertices v�k and dressed Green’s function G, to compute the
conductivity σα . Our picture of a quasi-2D metal consists
of well separated Cu-O planes and hence each plane can be
characterized using the 2D t-J model. The weak k dependence
of the self-energy as seen in Fig. 3 of Ref. [7] diminishes
the significance of vertex corrections. In fact the self-energy
is completely k independent in the d = ∞ limit, and studies
in this limit [34] have successfully implemented the bubble
approximation while completely ignoring vertex corrections.
We shall calculate and quote the following objects denoting
the irreducible representations of the D4h point group by the
standard names [2,50–52]

(i) ρ ′
xx(T ) the strained version of resistivity along the x

axis.
(ii) ρ ′

yy(T ) the strained version of resistivity along the y
axis.

(iii) ρxx without a prime refers to the tetragonal result,
which is the same as ρyy.

(iv) XX component variations:

−(ρ ′
xx − ρxx )/(ρxxδt/t ) vs T

(v) YY component variations:

−(ρ ′
yy − ρyy)/(ρxxδt/t ) vs T

(vi) A1g symmetry variations:

−ρ ′
xx + ρ ′

yy − 2ρxx

2ρxxδt/t
vs T

(vii) B1g symmetry variations:

−ρ ′
xx − ρ ′

yy

ρxxδt/t
vs T

Of special interest are the ρ ′
xx + ρ ′

yy response which cor-
responds to the A1g irreducible representation (irrep) and the
ρ ′

xx − ρ ′
yy response, corresponding to the B1g irrep.

1. Computation of the anisotropic resistivity

To find the anisotropic resistivity, we compute the dimen-
sionless conductivity [6] for the anisotropic case

σxx = 〈
ϒ�k

(
h̄vx

�k
)2/

(ab)
〉
k, (32)

σyy = 〈
ϒ�k

(
h̄v

y
�k
)2/

(ab)
〉
k, (33)

where 〈A〉k = 1
Ns

∑
�k A, Ns = L × L and

ϒ�k = (2π )2
∫ ∞

−∞
dω(−∂ f /∂ω)ρ2

G (�k, ω), (34)

where f (ω) ≡ 1/(1 + exp(βω)) is the Fermi function, ρG (k)
is the spectral function from from ECFL theory up to O(λ2),
and vx

�k , v
y
�k are the bare vertices, which are defined as

vx
�k = 1

h̄

∂εk

∂kx
= a

h̄

∂εk

∂k1
, (35)

v
y
�k = 1

h̄

∂εk

∂ky
= b

h̄

∂εk

∂k2
, (36)

where k1 = kxa and k2 = kyb denote the components of the di-
mensionless momenta. Inserting the dimensionless momenta
into Eq. (33), we obtain

σxx =
〈
ϒ�k

(
dε�k
dk1

)2

(a/b)

〉
k

, (37)

σyy =
〈
ϒ�k

(
dε�k
dk2

)2

(b/a)

〉
k

(38)

for the dimensionless conductivity. The corresponding dimen-
sionless resistivities are ρxx = 1/σxx and ρyy = 1/σyy.

The electrical resistivity can be converted to phys-
ical units as follows: ρphysical,α = ρα × ρ0 where ρ0 =
c0h/e2(∼1.171 m� cm) sets the scale for the resistivity,
and α = xx describes the longitudinal (i.e., current ‖ εxx)
resistivity and yy describes the transverse (i.e., current ⊥
εxx) resistivity. Here c0 ∼ 6.645 Å is the typical separation
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( )
(a)

( )
(b)

t/t = 0.10

t/t = 0.00

t/t = −0.10

( )
(c)

( )
(d)

( )
(e)

FIG. 1. The longitudinal and transverse resistivities, ρxx (solid) and ρyy (dashed), respectively, versus temperature at filling n = 0.85, for
various t ′, and at representative strains. While the green curves are for the unstrained case, the red curves correspond to a compressive strain
δt/t = 0.10 (i.e. εxx ∼ −.02), and the blue curves correspond to a tensile strain δt/t = −0.10 (i.e. εxx ∼ .02), if we take α ∼ 5. (a) t ′/t = −0.4,
n = 0.85; (b) t ′/t = −0.2, n = 0.85; (c) t ′/t = 0.0, n = 0.85; (d) t ′/t = 0.2, n = 0.85; (e) t ′/t = 0.4, n = 0.85. All figures share the legend.
The resistivity in physical units can be found by ρphysical = ρ × ρ0, where ρ0 = c0h/e2 ∼ 1.17 m� cm.

between parallel Cu-O planes [5,53]. In order to estimate
the magnitude of the inelastic scattering, we can relate the
dimensionless resistivity to 〈kF 〉� as follows 〈kF 〉� = 1/ρα as
argued in Refs. [15,54] for quasi-2D materials, where 〈kF 〉 is
an (angle averaged) effective Fermi momentum and � is the
mean-free-path. Hence we expect ρα/ρ0 < 1 in a good metal.

2. The raw resistivities

We first present the effects of hopping strain δt/t on
resistivity. In Fig. 1, we study the anisotropy of the raw
dimensionless resistivity over a broad range of temperatures

at the optimal density n = 0.85. Figure 1 displays the longi-
tudinal resistivity ρxx (solid) and the transverse resistivity ρyy

(dashed) for a compressive strain (red) and tensile strain (blue)
in comparison to the unstrained tetragonal system (green).
Here we used a representative magnitude of compressive
strain δt/t = 0.10 (i.e., εxx ∼ −.02). We observe that lon-
gitudinal resistivity under a compressive strain (δt/t > 0) is
reduced, and conversely, under a tensile strain (δt/t < 0) it is
enhanced across the displayed temperature range for all t ′. The
response for transverse resistivity is less than the longitudinal
one in magnitude. An interesting new feature lies in the t ′
dependence; we note that magnitude and sign of the change
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in transverse resistivity is controlled by t ′, e.g., for t ′ = 0.2t
the resistivity is almost unchanged for all strains.

These behaviors can be understood qualitatively in the
following ways. First, let us look at the simplest case with
t ′ = 0 as in Fig. 1(c). When the system is compressed in the x
axis, the hopping tx rises according to Eq. (27) and so does the
conductivity along the same direction, and vise versa. Hence,
the longitudinal resistivity gets suppressed (enhanced) under
compressive (tensile) strains. One can also consider isolating
the strain-induced effects in Eqs. (37) and (38) from the band
structure, contained in vα

�k , and from the spectral function ρG ,
which accounts for the influence of the Gutzwiller correlations
on resistivity. (Changes in the resistivity due to variation
of the explicit lattice constants are small.) When we exert
a compressive strain, this produces additive changes to the
longitudinal resistivity due to in equal parts (1) changes in
vertex and (2) T -dependent changes in spectral function, both
arising from the enhancement of tx. Whereas for the transverse
resistivity the hopping parameter ty is unchanged and hence
changes to resistivity from the band structure become less
important and as a result the transverse resistivity is domi-
nated by strain-induced effects on the spectral function. For
this reason, the transverse response to compressive strain is
generally smaller in magnitude than the longitudinal response
and likewise for a tensile strain both shown in panel (c). We
also find that the transverse strain response has a different sign
than the longitudinal one when there is no second neighbor
hopping.

Now let us turn on t ′. According to Eq. (27), the strain has a
longitudinal-like effect, only smaller, on the magnitude of the
second neighbor hopping. Turning on a positive t ′ strengthens
longitudinal response and “counters” the transverse response
from ty hopping. Therefore we see that the longitudinal curves
depart further from the unstrained one in panels (d) and (e),
and it also explains why the transverse change almost vanishes
for t ′ = 0.2 in panel (d) and switches to the same sign as the
longitudinal one for t ′ = 0.4 in panel (e). Likewise turning on
a negative t ′ weakens the longitudinal response and enhances
the transverse response, so that the longitudinal response gets
smaller in panels (a) and (b) while the transverse shifts more
explicitly to the same side as t ′ = 0. Further analysis of these
effects can be found in the Supplemental Material (SM) [55].

Next we discuss how strain affects the effective interaction
and the characteristic temperature scale. We mainly use the
longitudinal resistivity in this discussion because the longi-
tudinal response is more explicit. In our recent work [6,7],
a significant finding was the t ′ dependence of the curvature
of the ρ-T lines. We observe that this t ′-dependent curvature
persists under strain, i.e., the curvature changes from positive
(concave up like +T 2) to negative (convex up like −T 2) as
t ′/t is varied upward.

Recall that strain is effectively a small change in the
hopping parameter, so we ought to expect strain to change
the t ′ dependence of the curvature only quantitatively but
not qualitatively. Phenomenologically, varying t ′ signals a
change in the effective Fermi temperature scale TFL where
for T < TFL the system is in the Fermi liquid regime ρ ∝ T 2

and hence has a positive curvature. Moreover, as we decrease
t ′ from positive to negative, the Fermi liquid temperature
regime is compressed into a smaller temperature regime down

to temperatures where resistivity is usually hidden by the
superconducting state. We want to focus on the crossover
between Fermi liquid and strange metal which is covered by
the following empirical relation

ρ ∼ C
T 2

TFL + T
. (39)

Here C is a constant that defines the slope of linear regime
and TFL marks the crossover from the Fermi-liquid regime.
For example when t ′ = −0.2t as found in typical hole-doped
cuprates [56], we observe that a compressive strain extends
the Fermi-liquid regime for the longitudinal resistivity, and
flipping the strain reduces the Fermi-liquid regime. Qual-
itatively speaking, a compressive strain enhances the lon-
gitudinal hopping so that the effective interaction reduces
relatively to the hopping. Likewise, a tensile strain increases
the effective interaction in the unit of longitudinal hopping
and suppresses the Fermi liquid temperature scale. Besides,
we observe that a compressive strain suppresses the linear
constant C while a tensile strain enhances it, as shown more
obviously in Fig. 2. That can be verified in the experiment by
measuring the slope of ρ-T for a strange metal under strain.

3. Susceptibilities for anisotropic resistivities

It has been argued [1] that cuprates are candidates for
an electron nematic phase, in which nematic order might
coexist with high temperature superconductivity, that is, the
electronic system breaks a discrete rotational symmetry while
leaving the translational symmetry intact. Here the normalized
resistivity response plays the role of the order parameter in
the phase transition. Since it is possible to experimentally
identify continuous phase transitions through observation of a
diverging thermodynamic susceptibility across a phase bound-
ary this makes the temperature profile of elastoresistance, i.e.,
normalized resistivity response with respect to an arbitrary
strain, an interest observable to explore. For that reason, we
shall examine linear response function for the longitudinal
and transverse components of the elastoresistivity tensor con-
structed in terms of the hopping strain as:

χXX ≡ −
(ρ ′

xx − ρxx

ρxx

)/(δt

t

)
, (40)

χYY ≡ −
(ρ ′

yy − ρyy

ρxx

)/(δt

t

)
, (41)

respectively. The susceptibility as defined is positive if com-
pression along the x axis leads to a reduction of the resistivity
in the specified direction. We note the connection of these
susceptibilities with the nematic susceptibility Eq. (1) on
using Eq. (28) as

χnem = α lim
εxx→0

χXX . (42)

We compute the susceptibility for small values of strain
δt/t � .05. However, even these values of strain pick up some
nonlinear components of the response function. These are also
of interest, and we comment on these below.

The linear response function for strain-resistivity curves
is plotted as a function of temperature in Fig. 2 for the
longitudinal and transverse components at optimal density
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FIG. 2. The longitudinal [Eq. (40] and transverse [Eq. (41)]
strain-resistivity susceptibilities versus temperature at filling n =
0.85, for various t ′ and δt/t . (a), (c), (e), (g), (i) t ′/t = −0.4,
−0.2, 0.0, 0.2, 0.4 longitudinal, respectively; (b), (d), (f), (h), (j)
t ′/t = −0.4, −0.2, 0.0, 0.2, 0.4 transverse, respectively. All figures
share a legend. For various δt/t , the susceptibilities χxx for T � 100
approach each other in two sets, one for δt/t > 0 and another slightly
displaced set for δt/t < 0. They splay apart at low T thus displaying
strong nonlinearity in the Fermi liquid regime. The susceptibilities
χyy approach a single set for T � 100 and splay apart for low T thus
also displaying strong nonlinearity in the Fermi liquid regime.

n = 0.85 for various t ′ and δt/t . Note that since the resistivity
vanishes as T → 0, there is an enhancement of the normalized
susceptibility at low T .

In Figs. 2(a), 2(c), 2(e), 2(g), and 2(i), we see that the linear
response function for the longitudinal resistivity χXX is mostly
positive and shows nonlinear (in δt/t) behavior at a fixed T
(as can be identified by the separation of the strain curves)
with respect to strain across the entire temperature range. This
nonlinearity will be measured directly in Fig. 5 for t ′ = −0.2.
The response function for T � 100 K is highly ordered in
that varying the strain from positive (compressive) to negative
(tensile) increases the strength of the response function for all
t ′. Conversely as we cool the system, we observe that strain
dependence of the response function becomes increasingly
nonlinear, i.e., showing a wider separation between strain
curves, the forms of which are strongly t ′ dependent. Now
if we vary t ′ to survey the range of cuprate materials, we
find at low T for holelike (t ′ < 0) materials a significant
enhancement in and an inversion of the strain dependence that
is absent in electronlike (t ′ > 0) materials, though for both
material types the strength of the response function remains
approximately invariant at high T .

We next discuss the transverse linear response function
χYY shown in Figs. 2(b), 2(d), 2(f), 2(h), and 2(j). This
response is potentially interesting since the affects of strain
on the band structure are found to play a less significant
role, hence the correlation effects dominate. We find that the
features of transverse response function are different from that
of the longitudinal response function mainly in two ways:
(1) the χYY collapses at high T , showing strong linearity with
respect to the strain and (2) it changes sign from negative to
positive as we vary t ′/t across 0.2 from below, consistent with
Fig. 1. Measurements confirming this linear behavior and sign
change would be potentially interesting results.

4. Resistivity with nonzero J

In this section we examine the role of exchange parameter
J (nearest neighbor exchange energy) on resistivity and the
susceptibilities, setting J = 0.17t which is the typical value
for LSCO cuprate materials [48]. We take J = t2/U where
U is the on site energy of the Hubbard model and U does
not vary with strain and hence δJ = 2(δt/t )J [47]. Now, if
we turn on the exchange parameter J , we find that at low
temperatures the resistivity is reduced by the exchange energy
and at high temperatures the resistivity is slightly enhanced
as seen in Figs. 3(a) and 3(b). In Figs. 3(c) and 3(d) we see
the longitudinal and transverse susceptibility with exchange
interaction is further enhanced at low temperatures whereas at
higher temperatures the response is unchanged. The J effects
are magnified in the low-T response since ρ → 0 as T → 0.
We can say the effects of J on the response are negligible at
high T .

5. Susceptibilities for A1g and B1g irreps

Experimentally, it is possible to identify the irrep to which
the order parameter belongs by applying a strain with a
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FIG. 3. (a), (b) The strain-induced resistivity at optimal filling
n = 0.85, t ′/t = −0.2 for three representative strain types with
exchange parameter J = 0.0 (solid) and J = 0.17 (dashed). (c),
(d) The strain-resistivity susceptibility for the same parameter set
as above. All figures share a legend. We note that a nonvanishing
J enhances somewhat the magnitude of the susceptibilities in the
low temperature Fermi liquid regime. (a),(c) Longitudinal; (b),(d)
Transverse.

particular irrep of strain and searching for a divergence in
the temperature profile. In the case of uniaxial strain along
the x axis the strain can be decomposed into the A1g and B1g

irreps. In this section we examine the strain-resistivity linear
response function for the A1g and B1g irreps defined in terms
of the hopping strain as

χA1g ≡ −
(

ρ ′
xx + ρ ′

yy − 2ρxx

2ρxx

)/(
δt

t

)
= χXX + χYY

2
,

χB1g ≡ −
(

ρ ′
xx − ρ ′

yy

ρxx

)/(
δt

t

)
= χXX − χYY , (43)

respectively.
In Fig. 4 we present the normalized strain-resistivity re-

sponse functions at optimal density n = 0.85 for various t ′
and δt/t . In this picture the A1g and B1g irreps play the roles
of a center of mass coordinate and a relative coordinate,
respectively. Together the two susceptibilities characterize the
shift of in-plane resistivity as a result of an arbitrary in-plane
strain. Recall that since the resistivity vanishes as T → 0, the
A1g and B1g susceptibilities are also enhanced at low T .

Examining the A1g susceptibilities in Figs. 4(a), 4(c) 4(e),
and 4(g), one important feature stands out, namely, that for
T � 100 K the response function is positive for all t ′ and
strains δt/t . This indicates that increasing a tensile (compres-
sive) strain for T � 100 K enhances (suppresses) the average
of the anisotropic resistivities.

We also see that at T ∼ 100 K with hole doping, i.e.,
t ′ � 0, the normalized susceptibilities become independent of
the strain, and hence the response is in the linear regime (sig-
naled by the convergence of all strain curves). The nonlinear
response at lower T is interesting and potentially observable
in experiments with varying strain. On the other hand for

−

( )
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t/t = −0.05

t/t = −0.10
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( )

(b)

−
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(f)
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( )

(g)
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FIG. 4. The normalized strain-resistivity susceptibilities from
Eq. (43) versus T for the A1g and B1g irreducible representations
at filling n = 0.85 at various t ′ and δt/t . (a), (c), (e), (g) t ′/t =
−0.4, −0.2, 0.0, 0.2 χA1g, respectively; (b), (d), (f), (h) t ′/t = −0.4,
−0.2, 0.0, 0.2 χB1g, respectively; All the figures share a legend. For
various δt/t , and for T � 100 all the susceptibilities approach each
other in two sets, one for δt/t > 0 and another slightly displaced
set for δt/t < 0. They splay apart at low T thus displaying strong
nonlinearity in the Fermi liquid regime.

electron doping, i.e., t ′ > 0, we see nonlinear behavior even
at high T . Its origin is the extended Fermi-liquid regime
which has a higher crossover temperature scale. Summarizing,
we find that the early departure from Fermi liquid behavior
into a strange metallic behavior in the hole doping favors an
apparent linear response above 100 K due to a change in scale.
Conversely we expect to see nonlinearity extending to much
higher T ’s in electron-doped systems.

From Fig. 4, we observe that the B1g susceptibilities for
T < 100 K are strongly dependent on the value of t ′ of the
system. We find in holelike materials (t ′ � 0.0) there is a
strong enhancement (the details of which depend on the δt/t)
in the susceptibility at low T . In contrast, this feature is absent
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FIG. 5. The strain-resistivity susceptibilities for various symme-
tries as a function of strain δt/t at filling n = 0.85 and t ′/t = −0.2.
(a) XX , longitudinal, Eq. (40); (b) YY , transverse, Eq. (41); (c) A1g ir-
rep, Eq. (43); (d) B1g irrep, Eq. (43). The susceptibilities are relatively
strain independent above 100 K but show strong nonlinearity at low
T . It is noteworthy that for the lowest T shown, the susceptibilities
χxx, χyy, χA1g change sign at or close to δt/t = 0. At higher T this
change of sign is lost. The behavior of the nematic susceptibility
χnem = limεxx→0(αχxx ) at low T has thus the potential for a change of
sign, depending on how we choose a sufficiently small |εxx| or |δt/t |
for the purpose of taking the limit limεxx→0.

in electronlike materials (t ′ > 0.0) where there is weaker
correlation, higher TFL, and hence stronger quasiparticles.

Focusing on the strain dependence, we see that at high-T
the susceptibilities are relatively insensitive to t ′ and generally
increases as we vary from a compressive to a tensile strain.
There is also asymmetry in rate of change of susceptibilities
between a compressive and tensile strain as |δt/t | is varied,
i.e., the response function changes more rapidly for tensile
than compressive strains. Therefore the degree of anisotropy
is higher for tensile strain than compressive strains of equal
magnitude.

Also, the B1g curves under compressive strain (δt/t > 0)
are closer to each other than those under tensile strain for
electron-doped systems, yet this spacing difference is less ob-
vious in the hole-doped case. It means that a tensile response
tends to show stronger nonlinearity, especially in electron-
doped systems.

6. Susceptibilities versus strain

In Fig. 5, we display the strain-resistivity response func-
tions versus hopping strain for various symmetries at t ′ =
−0.2t and n = 0.85 (which is roughly the parameter set for
LSCO cuprate material [56] at optimal density) at four repre-
sentative temperatures. Here we approximate the variance in
the linear response function as follows

χ (T ) = c0(T ) + c1(T )(δt/t ) + c2(T )(δt/t )2 + . . . . (44)

In panels (a) and (b) we have longitudinal and transverse
linear response functions, respectively, showing nonlinear

behavior at low temperature which becomes more linear
(as indicated by horizontal line) as the system warms. This
nonlinear behavior at low T can be understood as a result
of the increasing importance of correlations as the system
is cooled. Although the longitudinal and transverse response
functions differ considerably in magnitude, the curves are ap-
proximately symmetric under inversion of the axes. In panels
(a), (b), and (c) there is a wavelike oscillation which indicates
the presence of higher order terms, e.g., the T = 37 K curve in
panel (a) appears to have (δt/t )3 term competing with a linear
term. Another interesting result we find that as the system
cools the B1g response function appears diverge at δt/t = 0
as T → 0 suggests that any deviation from the point group
symmetry of the square lattice produces a finite resistivity
response.

B. Kinetic energy for an x-axis strain

In this section we explore the kinetic energy anisotropy
induced by strain along the x axis using ECFL theory. Since
the anisotropic kinetic energy can be related to measurements
of the optical conductivity using the f-sum rule on the t-t ′-J
model, this makes it another interesting observable to explore.

The total kinetic energy for a system under strain is
computed as

Ktot =
〈∫ ∞

−∞
ρG (�k, ω)ε�kdω

〉
k

. (45)

This may be decomposed as follows:

Ktot = Kxx + Kyy + Kxy, (46)

where the cross kinetic energy Kxy comes from the second
neighbor interactions and is related to the dynamic Hall con-
ductivity. Additional information on the total kinetic energy
can be found in the SM [55]. The longitudinal, transverse, and
cross kinetic energies are given by

Kxx =
〈∫ ∞

−∞
dωρG (�k, ω)εkx

〉
k

(47)

Kyy =
〈∫ ∞

−∞
dωρG (�k, ω)εky

〉
k

(48)

Kxy =
〈∫ ∞

−∞
dωρG (�k, ω)εkxy

〉
k

(49)

where

εkx = −2tx cos(kxa) (50)

εky = −2ty cos(kyb) (51)

εkxy = −4td cos(kxa) cos(kyb). (52)

In the t-t ′-J model the anisotropic kinetic energies Kα , where
α = xx, yy, and xy, are related to the optical conductivity σα

by the following sum rule

�e
∫ ∞

0
σα (ω)dω = −Kαe2, (53)

where e is the electrical charge. Kαe2 sets the scale of the
optical conductivity, i.e.,

− 1

Kαe2
�e

∫ ∞

0
σα (ω)dω = 1. (54)
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FIG. 6. Anisotropic kinetic energies Kα versus T for Kxx (solid)
and Kyy (dashed) at filling n = 0.85, for various t ′ and at three rep-
resentative strains: compressive strain, no strain, and tensile strain.
Note that Kxx = Kyy in the absence of strain. (a) t ′/t = −0.2, (b)
t ′/t = 0.0, (c) t ′/t = 0.2. All figures share a legend.

The optical conductivity in the DC limit σα (0) relates to
the DC resistivity as follows: ρα (0) = 1/σα (0). For the
anisotropic kinetic energy, we calculate and quote the follow-
ing objects:

(i) K ′
xx is the strained version of longitudinal kinetic

energy.
(ii) K ′

yy is the strained version of transverse kinetic energy.
(iii) We call Kxx without a prime the tetragonal result. It is

the same as Kyy.
(iv) We present A1g :

−K ′
xx + K ′

yy − 2Kxx

2Kxx(δt/t )
vs T .

(v) We present B1g : −(K ′
xx − K ′

yy)/(Kxxδt/t ) vs T .

1. Raw kinetic energies

From Eq. (47) we calculate the anisotropic kinetic ener-
gies Kα as a function of temperature at optimal density for
a representative range of cuprate materials t ′ and hopping
strains δt/t as shown in Fig. 6. The main observation is that a
compressive (tensile) strain suppresses (enhances) the longi-
tudinal kinetic energy and vice versa for the transverse kinetic
energy response with a smaller magnitude of variation. The
variation in the longitudinal kinetic energy can be understood
as a combination of changes in the band structure parameter
tx and correlations. On the other hand, the transverse kinetic
energy is dominated by changes to the correlation function
since the parameter ty is unmodified by x-axis strain. There is
little T dependence with the exception of a slight broadening
of the range of the response at low T as the TFL is reduced.
The t ′ dependence is also weak because Kxx and Kyy do not
explicitly depend on t ′ but through the spectral function.
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FIG. 7. The normalized strain-kinetic-energy susceptibilities vs
T for the A1g and B1g irrep as defined in Eqs. (55) and (56) at filling
n = 0.85, for various t ′ and δt/t . (a), (c), (e), (g) t ′/t = −0.4, −0.2,
0.0, 0.2 MA1g, respectively; (b), (d), (f), (h) t ′/t = −0.4, −0.2, 0.0,
0.2 MB1g, respectively; All figures share a legend.

2. Strain-kinetic-energy susceptibilities

In analogy with elastoresistance, we compute the so-called
normalized strain-kinetic-energy response function, which
measures the change in kinetic energy with respect to a
strain. We shall focus on the normalized strain-kinetic-energy
response functions for the A1g and B1g irrep since measure-
ments of these symmetries are sensitive to a break in the
fourfold rotation symmetry of a square lattice. Explicitly the
response functions are defined in terms of hopping strain as

MA1g ≡ −
(

K ′
xx + K ′

yy − 2Kxx

2Kxx

)/(
δt

t

)
, (55)

MB1g ≡ −
(

K ′
xx − K ′

yy

Kxx

)/(
δt

t

)
, (56)

where the sign is imposed so that susceptibility defined in
terms of hopping strain matches its counterpart defined in
terms of conventional strain. Figure 7 displays the normal-
ized strain-kinetic-energy susceptibilities as a function of
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FIG. 8. The strain-kinetic-energy susceptibilities versus δt/t at
filling n = 0.85 and t ′/t = −0.2 at four representative temperatures.
All figures share a legend. (a) XX , longitudinal, Eq. (57); (b) YY ,
transverse, Eq. (58); (c) A1g irrep, Eq. (55); (d) B1g irrep, Eq. (56).

temperature for the A1g and B1g irrep at optimal density for
various t ′ and δt/t . The A1g irrep susceptibility signals a
change in the sum of anisotropic kinetic energies Kxx + Kyy

with respect to the hopping change. The A1g susceptibility
shows that tuning the strain from tensile to compressive
increases rather uniformly the magnitude of the anisotropic
kinetic energy, i.e., strain enhances the overall optical weight
from Eq. (53). Analysis of the longitudinal and transverse
components are in the SM [55].

The B1g susceptibility is characterized as the difference in
the kinetic energies Kxx − Kyy with respect to the hopping
change. Thus a nonzero value for the B1g irrep signals an
anisotropy between the two directions. We observe that the
response function for the B1g irrep is strongly t ′ dependent.
For t ′ = −0.4, the response functions is nearly linear at all
temperatures. We point out a curious feature for the t ′ = −0.2
curve where at high T the system is linear whereas at low
T the system is nonlinear, but it is nearly symmetric with
respect to a compressive or tensile strain of similar magnitude.
At high T for all t ′ the system is monotonic with respect to
strain. For t ′ � 0 there is little variation in the response func-
tion across the temperature range and it appears to become
increasingly nonlinear as the system is warmed due to the
reduction in the scale of variation.

3. Strain-kinetic-energy susceptibility versus strain

We now present strain-kinetic-energy susceptibility as a
function of strain at optimal density (n = 0.85) and t ′ =
−0.2t for XX , YY , A1g, B1g symmetries at various T (see
Fig. 8), where we define the longitudinal and transverse
response functions as

MXX ≡ −
(K ′

xx − Kxx

Kxx

)/(δt

t

)
, (57)

MYY ≡ −
(K ′

yy − Kyy

Kxx

)/(δt

t

)
, (58)

respectively. Like the resistivity case, MA1g = 0.5 × (MXX +
MYY ) and MB1g = MXX − MYY .

We find that at low temperatures, decreasing the magnitude
of the strain increases the strength of the longitudinal response
function in panel (a) and the response function is symmetric
with respect to both strain types. The transverse response
function in panel (b) shows a similar symmetry between
tensile and compressive strains with a flipped sign. Therefore
we find that a compressive strain for the A1g response function
[panel (c)] depletes the in-plane optical weight and vice versa
for a tensile strain. The B1g response function is similar to the
longitudinal and transverse only more intensive and it signals
an enhanced (suppressed) anisotropy between in-plane kinetic
energies for a compressive (tensile) strain. In all cases the
response function is approximately linear at room temperature
(297 K) and becomes increasingly nonlinear as the system
cools. In comparing panels (b)–(d) we see strong similarity
between their respective responses. This is expected since
strain merely shifts kinetic energy versus temperatures curves
up and down. Also, it appears to diverge for small strains as
T → 0.

C. The local density of states for an x-axis strain

The local density of states (LDOS) is also very interesting
since it can be measured using STM probes. We present
results on how the LDOS changes with strain and the related
susceptibilities. We argue that if experiments are done on
resistivity variation as well as LDOS variation with strain,
we can bypass the need for measuring strain accurately and
of estimating the parameter α in Eq. (19). The LDOS is
calculated as ρGloc(ω) = 〈ρG(�k, ω)〉k where averaging over
the Brillouin zone is implied, and G → g is the free Green’s
function (i.e., band structure) which gives the bare LDOS and
the ECFL Green’s function G → G gives the LDOS for the
t-t ′-J model.

In this section we calculate the normalized change in the
local density of states and quote the following:

(i) ρ ′
gloc(ω) = 〈ρg(�k, ω)〉k is the bare LDOS for a strain

along the x axis.
(ii) ρ ′

Gloc(ω) = 〈ρG (�k, ω)〉k is the interacting LDOS for an
x axis strain.

(iii) ρgloc without a prime refers to the tetragonal result and
similarly for ρGloc.

(iv) We present (ρ ′
gloc − ρgloc)/(ρglocδt/t ) vs ω.

(v) We present (ρ ′
Gloc − ρGloc)/(ρGlocδt/t ) vs ω.

1. T variation

In Fig. 9, we display the LDOS at optimal density (n =
0.85) and t ′ = −0.2 for various temperatures at three charac-
teristic strains: a compressive strain (thick dashed), unstrained
(solid), and tensile strain (thin dashed). We compare the
LDOS for a noninteracting system [panel (a)] to a system
with electron-electron interaction [panels (b)–(d)]. We find
over large temperature scales that curves for the bare LDOS
shifts to left along the ω spectrum upon warming, leaving the
line shape intact. In contrast with the bare LDOS, we see
that warming the LDOS for the interacting system in panel
(c) completely smooths and broadens the LDOS peaks for
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FIG. 9. The local density of states for (a) the noninteracting
(band-structure) and (b)–(d) interacting system (t-J model) at op-
timal filling (n = 0.85), t ′ = −0.2t , for various temperatures and at
three characteristic strains: δt/t = 0.15, 0.00, −0.15 (thick dashed,
solid, thin dashed), respectively.

all strains and slightly shifting them left. This is consistent
with previous findings that interactions significantly lower the
Fermi liquid temperature TFL [6]. We note that strain inverts
the LDOS peak at low T , leaving behind a pair of cusps at a
reduced height. This is an artifact of the anisotropy of hopping
parameters since it also shows up in the bare case.

2. J variation

In Fig. 10, we turn on the exchange parameter J and
examine the LDOS. We also find it useful to examine the
self-energy of the system. We define the Dyson self-energy
� as

G(k) = 1

ω + μ − ε�k − �(k)
. (59)

Here we use the shorthand � = �′ + i�′′ to denote the real
and imaginary parts of a complex function. In terms of the
spectral function, self-energy imaginary part is

�′′(k) = −πρG (k)

[G ′(k)]2 + [πρG (k)]2
, (60)

where �eG = G ′ is found by taking the Hilbert transform
of mG = G ′′ and we can find �′ in the same manner. In
Figs. 10(c)–10(f) we display the Dyson self-energy averaged
over the Brillouin zone �loc(ω) = 〈�(�k, ω)〉k .

Turning on the exchange parameter in Fig. 10(a) has a
small but visible effect on LDOS at low ω when compared
to Fig. 6(b) of the SM [55]. For panel (c) we see that varying
strain from compressive (δt/t > 0) to tensile (δt/t < 0) shifts
the average quasiparticle states to higher energies and panel
(e) shows that increasing the intensity of the strain produces
quasiparticles with higher and sharper peaks. In panels (b),
(d), and (f) we see that varying J from ferromagnetic (neg-
ative) to antiferromagnetic (positive) splits a single LDOS

− −

(a)

− −

(b)

− −

(c)

− −
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− −

(e)

− −

(f)

FIG. 10. (a), (b) The LDOS; (b), (c) real part of local Dyson
self-energy; (e), (f) the imaginary part of local Dyson self-energy
for parameter set n = 0.85, T = 37K, t ′ = −0.2t with varying δt/t
(LHS) and varying J (RHS). Figures (a), (c), (e) J = 0.17t and (b),
(d), (f) δt/t = 0.05 share a legend, respectively.

peak into two, shifts the average quasiparticle states to higher
energies, and narrows the quasiparticle peaks.

3. t ′ variation

In Fig. 11, we examine the LDOS from a different vantage
point by looking at the t ′ dependence for a system at optimal
density (n = 0.85), for a compressive strain of δt/t = 0.15,
at various t ′/t . In panel (c), we show the bare LDOS at room
temperature as a reference for the interacting system. In panels
(a) and (b), we display the interacting system at T = 37 K
and T = 298 K, respectively. Upon inspection it appears the
primary role that t ′ plays is to shift the energy band along
the spectrum. As previously noted, warming the interacting
system to room temperature smooths and broadens the char-
acteristic LDOS peaks for all strain types and at all t ′ while
leaving their position in the spectrum fixed. Even though the
relative position of different t ′ curves remain unchanged as
the interactions are turned on, we note that strong correla-
tions renormalize the bare band into a smaller energy region.
Comparing panels (a) and (b) fixed at t ′ = −0.4,−0.2, we
observe that LDOS peak height is more strongly suppressed at
a lower t ′. This is consistent with previous studies [7] on the
unstrained interacting system, and it indicates that a smaller t ′
has a lower Fermi-liquid temperature scale and hence it is less
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FIG. 11. The local density of states versus frequency at optimal
filling (n = 0.85), for a compressive strain (δt/t = 0.15) at various t ′.
(a), (b) The interacting system (t-t ′-J model) at T = 37 K and T =
298 K, respectively. (c) The noninteracting (band-structure) system
at T = 298 K. All figures share the same legend.

robust to heating. For further analysis of the strain dependence
see the SM [55].

4. Susceptibilities

Next, we examine the normalized response function of
LDOS of the noninteracting and interacting system, respec-
tively, defined as

Ng ≡
(

ρ ′
gloc − ρgloc

ρgloc

)/(
δt

t

)
, (61)

NG ≡
(

ρ ′
Gloc − ρGloc

ρGloc

)/(
δt

t

)
. (62)

In Fig. 12, we plot the LDOS susceptibility for a noninter-
acting and interacting system at room temperature at optimal
density for various t ′. We observe that the response function
is linear at all frequencies except near the LDOS peak and, al-
though not shown in the figure, at the band edges. Regardless
of the presence of interaction, we note that the susceptibility
is enhanced by tensile strain near the LDOS peak and reduced
by a compressive strain.

5. Susceptibility versus strain

Changing up the perspective, we explore the LDOS sus-
ceptibility now as a function of strain, at four representative
frequencies as seen in Fig. 13. We can approximate the
variance in the linear response function in Eqs. (61) and (62)
as

N (T ) = c0(T ) + c1(T )(δt/t ) + c2(T )(δt/t )2 + . . . , (63)

where c0 is the linear term, c1 is the second order term, and
c2 is the third order term of the response. We see that for the
bare LDOS, Fig. 13(a), at ω = 0.45 the system is nearly linear
with c0 ≈ −0.5 and c1 ≈ 3. The other presented frequencies
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FIG. 12. The LDOS susceptibility versus frequency at optimal
filling n = 0.85, at room temperature (T = 297 K), for various t ′

and δt/t . The noninteracting (band-structure) system (LHS) and
interacting system (t-t ′-J model) (RHS) from Eq. (61) and Eq. (62),
respectively. (a), (c), (e), (g) t ′/t = −0.4, −0.2, 0.0, 0.2 Ng, respec-
tively; (b), (d), (f), (h) t ′/t = −0.4, −0.2, 0.0, 0.2 NG , respectively;
All the figures share a legend.

= −0.25 = −0.12 = 0.0 = 0.45
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FIG. 13. The LDOS susceptibility versus strain at optimal filling
n = 0.85, at room temperature (T = 298 K), for t ′ = −0.2t , at a few
representative frequencies ω in units of t . (a) The noninteracting
system (band-structure) in Eq. (61). (b) The interacting system (t-t ′-J
model) in Eq. (62).
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appear to be nonlinear with significant second and third order
terms. The LDOS susceptibility for the interacting system
[panel (b)] appears to be nearly linear everywhere except at
the location of the LDOS peak (ω = 0) which has a strong
quadratic response, suggesting that at temperatures relevant to
experiments nonlinear behavior is only observable at energies
near the Fermi surface. Note that the second order scheme
used here is good for low energies but somewhat less reliable
at high energies, |ω| � kBTFL.

IV. SUMMARY AND COMMENTS

A. Summary

In this work, we have applied the ECFL theory to study the
effect of small strain on the resistivity, kinetic energy, LDOS,
and their associated susceptibilities in the t-t ′-J model Eq. (2)
with various t ′ at n = 0.85. These results are expected to be
relevant to cuprate superconductors, especially single layered
materials, where the calculated unstrained resistivities are in
good accord with the experimental data [5].

Based on comparisons carried out earlier, the second order
scheme of ECFL used here is expected to be reasonable in
the density range 0.85 � n � 0.80 spanning an experimen-
tally accessible range in cuprates. With improvements in the
theoretical scheme, we expect that while resistivities them-
selves might not change too much, the related susceptibilities
[involving division by the small resistivity as in Eq. (1)] could
be more sensitive.

Our results exhibit in considerable detail the theoretically
expected strain dependence of resistivity and LDOS as well as
optical weight. The derived susceptibilities depend sensitively
on the magnitude and sign of t ′. Our results in Figs. 2 and
3 illustrate the quantitative change of the strain dependence
due to varying the magnitude and sign of t ′. We should stress
that the absolute scale of t is important in determining the T
dependence. For illustration we have used t = 0.45 eV in the
present paper while the more fine-tuned estimates in Ref. [5]
suggest a material dependent and somewhat larger value of
t ∼ 1 eV in most cases.

Our results can be converted to actual strains as in Eq. (42),
with α in the range α ∈ {2, 5}. If data is available one may
ideally eliminate α by measuring the strain dependence of the
LDOS or the optical conductivity sum rule.

B. Comments on experiments

The results found in Fig. 2 yield a magnitude of the
nematic susceptibility χnem ∼ (1 − 5)α for cuprates. Using
the expected range of α ∈ {2, 5}, we find χnem ∼ 2–25). On
the other hand, iron based pnictide superconductors appear
to have a considerably larger value for χnem, e.g., in Fig. 3
of [1] the range |χnem| � 650 is reported, thus an order of
magnitude greater than our theoretical estimate for cuprates.
While fluctuations may drive the magnitude of nematicity
further upwards, especially at some densities and tempera-
tures, it appears that the baseline magnitude of this object
is itself much larger than expected in cuprates. For example
in the four featureless curves of Fig. 3 of [1] we see that
|χnem| ∼ 200.

This magnitude indicates that the downfolding of the many
bands of the pnictides to an effective single (or few) band
model must yield hopping parameters that are much more
sensitive to strain than in cuprates. The different type of
quantum overlap of relevant atomic orbitals from those in
cuprates are presumably the origin of this difference. We also
note that the sharp peaks in |χnem| on varying T , as reported
in Refs. [1,3], are missing in our results. Instead we have a
monotonic increase of |χnem| and related susceptibilities as we
cool the system, as seen in Fig. 2 and Fig. 4. This increase is
largely due to the decrease of the (unstrained) resistivity with
lowering T in the Fermi liquid regime.

The sign of χnem presents a more subtle problem. In
iron pnictides it is known to be sensitive to effective mass
anisotropy. In fact it changes sign with doping in certain
hole-doped iron pnictides [57]. Our single band model lacks
such an anisotropy and is therefore not appropriate to describe
the elastoresistivity of iron pnictide materials.

Recently, we came across the measurement of the elastore-
sistivity nematic susceptibility in [58] on the two layer cuprate
Bi2212. In this experiment, the magnitude of the nematic
susceptibility is found to be in the range |χnem| ∈ {2.5, 5}.
This range is consistent with our theoretical estimate. It is
also smaller than the nematic susceptibility in iron pnictides
by about two orders of magnitude.

The sign of the nematic susceptibility χnem [Eq. (1)] re-
ported in [58] implies that the resistivity increases in the
direction of compression. This result has the opposite sign
to our theoretical result as seen in Fig. 2. There we see that
the theoretical resistivity decreases in the direction of com-
pression, although it does increase in the transverse direction.
It is possible that the two layer nature of Bi2212 might be
responsible for this opposite sign. Also as noted in Fig. 5, the
behavior of the nematic susceptibility χnem = limεxx→0(αχxx )
at sufficiently low T has the potential for a change of sign,
depending on how we choose a sufficiently small |εxx| or
|δt/t | for the purpose of taking the limit limεxx→0. On the
experimental side, a more detailed T variation and examining
the various susceptibilities listed in Fig. 5 should yield a more
complete picture.

The results found here should also motivate further studies
of the strain variation of the three-dimensional electronic
bands of cuprates, towards computing strain variation of the
resulting two-dimensional bands found from projecting to a
t-t ′-J model. These would test the simple assumptions made
here between strain and hopping parameters of a reduced
two-dimensional model as presented in Eqs. (22), (27), (28),
and (29). It is also possible that under certain situations, the
sign of α can even be changed, as a naive interpretation of the
experiments of Ref. [58] suggests.

We believe that it is important to study a more extensive
set of samples including single layer cuprates at various
compositions in the future. It would also be useful to study
the variations of resistivity along different axes, parallel and
transverse to the strain axis and extend the studies to various
T’s. This type of measurements would enable the construction
of the symmetry adapted susceptibilities as in Fig. 5, which
provide a greater insight into the results. It would also be of
considerable interest to measure the variations of the LDOS
and optical weight with strain, as emphasized above.
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Planar normal state resistivity data taken from three families of cuprate superconductors are compared with
theoretical calculations from the recent extremely correlated Fermi liquid theory (ECFL) [B. S. Shastry, Phys.
Rev. Lett. 107, 056403 (2011)]. The two hole-doped cuprate materials LSCO and BSLCO and the electron-
doped material LCCO have yielded rich data sets at several densities δ and temperatures T, thereby enabling
a systematic comparison with theory. The recent ECFL resistivity calculations for the highly correlated t-t ′-J
model by us give the resistivity for a wide set of model parameters [B. S. Shastry and P. Mai, New J. Phys. 20,
013027 (2018); P. Mai and B. S. Shastry, Phys. Rev. B 98, 205106 (2018)]. After using x-ray diffraction and
angle-resolved photoemission data to fix parameters appearing in the theoretical resistivity, only one parameter,
the magnitude of the hopping t , remains undetermined. For each data set, the slope of the experimental resistivity
at a single temperature-density point is sufficient to determine t , and hence the resistivity on absolute scale at all
remaining densities and temperatures. This procedure is shown to give a fair account of the entire data.

DOI: 10.1103/PhysRevB.101.115121

I. INTRODUCTION

Understanding the normal state resistivity of high-Tc

cuprate superconductors and other strongly correlated ma-
terials is a challenging problem. The resistivity reveals the
nature of the lowest energy charge excitations and therefore
constitutes a relatively simple and yet fundamental probe
of matter. In cuprates the different chemical compositions,
conditions of preparation, and temperatures and a wide range
of electronic densities lead to a complex variety of data sets.
These are almost impossible to understand within the standard
Fermi liquid theory of metals. Major puzzles are the almost
T-linear planar resistivity of the hole-doped cuprates, the T 2

resistivity of the closely related electron-doped cuprates, and
the intermediate behavior at various densities. Indeed one of
the larger questions about the cuprates is whether the differing
T dependence of the electron-doped and hole-doped cases
can possibly arise from a common physical model. Equally
puzzling is the drastic reduction of the observed T scale of
the resistivity variation (∼100–400 K) from a bare bandwidth
(∼eV’s) by a few orders of magnitude for both electron-doped
and hole-doped cuprates. This situation has generated an
upsurge of often radically new theoretical work on correlated
systems in the last three decades, amounting to something like
a revolution in condensed matter physics. In this new class of
theories the planar resistivity stands at the center [1–14]; its
unusual temperature dependence is most often emphasized.

In this work we bring theory face to face with experimental
data on resistivity. We focus on the extremely correlated
Fermi liquid theory (ECFL) proposed by Shastry [1,15,16],
where a detailed and meaningful comparison has become

*sriram@physics.ucsc.edu

possible, as explained below. Starting from a microscopic
Hamiltonian, the ECFL theory yields the resistivity on an
absolute scale with a very few parameters determining the
underlying model. The resistivity is calculated starting from
the t-t ′-J model [17–19] containing four parameters, of which
three parameters can be fixed using ARPES and x-ray crystal
structure data; thus only one parameter remains undetermined.
The theory works in 2 dimensions without introducing any
redundant degrees of freedom, and therefore the results can
be meaningfully tested against data on a variety of cuprates,
including both hole-doped and electron-doped cases.

II. SUMMARY OF THE ECFL THEORY

A summary of the basic ideas and context of the ECFL
theory is provided here; readers familiar with these ideas
may skip to the later sections giving the results. The ECFL
formalism is applicable in any dimension to doped Mott-
Hubbard systems described by the t-t ′-J model [17–19]

H = −t
∑
〈i, j〉

(C̃†
iσC̃jσ + H.c.) − t ′ ∑

〈〈i, j〉〉
(C̃†

iσC̃jσ + H.c.)

+ J
∑
〈i, j〉

(
�Si · �S j − 1

4
nin j

)
, (1)

where 〈i, j〉 (〈〈i, j〉〉) denotes a sum over nearest (next-
nearest) neighbors i, j, the Gutzwiller projector is given
by PG = ∏

i(1 − ni↑ni↓), the operator C̃iσ = PGCiσ PG is
the Gutzwiller-projected version of the standard (canon-
ical) fermion operator, and �Si (ni) the spin (density)
operator at site i. This model is in essence obtained
from the Hubbard model by a canonical transforma-
tion implementing the large-U limit [17]. The transforma-
tion preserves the physics of the strong-coupling Hubbard
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model at the lowest energies. The large energy scale U
of the Hubbard model is traded for noncanonical anticommu-
tation relations between Gutzwiller-projected electrons in the
t-t ′-J model. Standard (Feynman) diagrammatic many-body
techniques do not apply to the t-J model due to the effect of
the Gutzwiller projection on the anticommutation relations.
For the relevant operators C̃, C̃† of the model Eq. (1), the
canonical fermionic anticommutator {Ciσi ,C†

jσ j
} = δi jδσiσ j is

replaced by a noncanonical anticommuting Lie algebra{
C̃iσi , C̃†

jσ j

} = δi j
(
δσiσ j − σiσ jC̃

†
iσ̄i

C̃iσ̄ j

)
, (2)

where σ̄i = −σi. An immediate resulting problem is that
Wick’s theorem simplifying products of operators into pair-
wise contractions is now invalid. Hence a formally exact and
systematic Feynman-Dyson series expansion of the Green’s
functions in a suitable parameter is unavailable. On the other
hand, in the Hubbard model with canonical fermions, the
Feynman-Dyson series exists but is not controllable since U
the parameter of expansion is very large for strong correla-
tions. In trading the Hubbard model for the t-J model in the
Gutzwiller-projected subspace, we gain the tactical advantage
of avoiding accounting for the large energy scale. However
this advantage is lost unless we succeed in finding a corre-
sponding formally exact expansion to replace the Feynman-
Dyson series. The ECFL formalism solves this problem by
replacing the Feynman-Dyson series with an alternate λ se-
ries. This series is formally exact and is an expansion of the
Green’s functions in a parameter λ. This parameter lives in a
finite domain λ ∈ [0, 1], interpolating between the free Fermi
gas at λ = 0 and the fully Gutzwiller-projected limiting case
λ = 1. One way is to introduce λ as the coefficient of the
noncanonical term in the anticommutator Eq. (2). For analogy
it is useful to compare Eq. (2) with the contrast between the
commutators of canonical bosons and the usual rotation group
[SU (2)] Lie algebra of spin-S particles. One finds [20] that
λ plays a parallel role to the inverse spin, in the theory of
quantum spin systems, i.e., λ ↔ 1

2S , where S = 1
2 , 1, . . .. For

computing the Green’s functions, we note the exact functional
differential equation of the canonical Hubbard model and
the t-J model written in shorthand space-time-spin matrix
notation [1,2] as(

g−1
0 − U

δ

δV − UG

)
· G = δ1, (3)(

g−1
0 − λX̂ − λŶ1

) · G = δ(1 − λγ ), (4)

where g−1
0 is the noninteracting Green’s function, γ is a local

version of G, and the remaining terms [of a similar character
to the 2nd and 3rd terms in Eq. (3)] are detailed in [1,2].
Here Eq. (3) is the functional differential equation for the
Hubbard model. By inverting the operator multiplying G and
expanding in U, one generates the complete Feynman series
in powers of U for the Hubbard model. In Eq. (4) λ is set
at unity to obtain the exact equation for the t-J model. Its
iteration of the above type is not straightforward due to the
extra time-dependent term on the right-hand side. These are
the equations of motion in the presence of a space-time-
spin dependent potential V , which is set at zero at the end
as prescribed in the Schwinger-Tomonaga method of field
theory. The fermionic antiperiodic boundary conditions on

G in the imaginary-time variable complete the mathematical
statement of the problem. The ECFL formalism converts the
noncanonical equation (4) into a pair of equations of the
type Eq. (3) by introducing a decomposition of the Green’s
function G = g · μ̃ into auxiliary Green’s function g and a
caparison function μ̃. These pieces satisfy the exact equations(

g−1
0 − λX · g · g−1 − λŶ1

) · g = δ1, (5)

μ̃ = δ(1 − λγ ) + λX · g · μ̃, (6)

where the contraction symbol indicates that the functional
derivative contained in X acts on the term at the other end
of the symbol, while other terms satisfy matrix product rules.
Notice that Eq. (5) looks similar to Eq. (3) with a unit matrix
on the right-hand side, and is thus essentially like a canonical
Green’s function expression. The second equation, Eq. (6),
must be solved simultaneously with Eq. (5), since Ŷ1 depends
on both g and μ̃. This task is done by expanding all variables
systematically in powers of λ and writing down a set of
successive equations to each order. The solution thus found
is continuously connected to the free Fermi gas, and satisfies
the Luttinger-Ward volume theorem at T = 0. The latter is
an essential part of claiming that the resulting theory is a
variety of Fermi liquid, being notoriously difficult to satisfy
in uncontrolled approximations such as the truncations of
Green’s function equations. On setting the time-dependent
potential to zero we get the frequency-dependent Green’s
function as

G(k, iω j ) = g(k, iω j ) × μ̃(k, iω j )

= 1 − λ n
2 + λ�(�k, iω j )

g(−1)
0 (�k, iω j ) − λ�(�k, iω j )

, (7)

where the two self-energies �,� determine G. The ECFL
formalism has a systematic expansion of these equations in
powers of λ, starting with the free Fermi gas as the lowest term
and finally setting λ = 1. An expansion in λ thus provides
a controlled framework for explicit calculations [1,15]. The
current version of the theory [1–3,15] is valid to O(λ2) and
has been benchmarked against other standard techniques for
strong coupling in limiting cases of infinite dimensionality
[i.e., dynamical mean field theory (DMFT)] and the single-
impurity limit [15]. Higher-order terms in λ are expected to
impact the results outside the regime considered here, namely
0.13 <∼ δ <∼ 0.2. It has been recently applied to several objects
of experimental interest such as angle-resolved photoemission
(ARPES), Raman scattering, optical conductivity, the Hall
constant, and recently the resistivity [2,3,16].

One of the main effects of strong correlations is to reduce
significantly the quasiparticle weight Z from its Fermi gas
value of unity. It is worth commenting that the exact DMFT
studies of the Hubbard model in d = ∞ using a mapping to
a self-consistent Anderson impurity model yield a very small
Z for U > 2.918D (2D is the bandwidth) as one approaches
the insulating limit n → 1. This is seen, e.g., in Fig. 1(a)
of [21], where Z is plotted versus δ = 1 − n for various U .
One sees that Z decreases upon with increasing U , taking a
nonzero value in the U = ∞ limit. In this limit its density
dependence is close to the empirical formula Z ∼ δ1.39. In
the case of the 2-d t-t ′-J model the ECFL results [2] have
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FIG. 1. (a) LSCO: Slightly underdoped to optimally doped. (b) LSCO: Near-optimal doping. The resistivity ρ is in units of m
 cm and
T is in kelvins. Dotted (red) line is data extracted from Fig. 2(b) of Ando and co-workers [22], and solid (blue) curve is the theoretical curve
with t ′/t = −0.2. Panels (a) and (b) focus on densities in the slightly underdoped and near-optimal doping ranges. The displayed pair of
numbers {δ, ρimp} indicates the hole density and estimated impurity resistivity. The parameter t = 0.9 eV was fixed using �(T �), the slope of
the resistivity [see Eq. (9)] at δ = 0.15, T � = 250 K in panel (a). The resistivities at every other density in other panels and in the three panels
of Fig. 2 are then predicted by the theory.

a similar character. The reduction of Z from unity occurs
as we approach the insulating limit n → 1. Additionally, it
is very sensitive to the sign and magnitude of t ′/t [23].
The dependence of Z on n and t ′/t is most clearly seen in

Fig. 1 of [2]. Qualitatively we find that Z decreases when
t ′/t is negative and growing in magnitude, whereas a positive
t ′/t enhances its value. Within the theory, reduction of the
magnitude of Z , i.e., the loss of weight of the quasiparticles, is
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FIG. 2. The resistivity ρ is in units of m
 cm and T is in kelvins. Dotted (red) line is data extracted from Fig. 2(b) of Ando and co-workers
[22] for the slightly overdoped cases of LSCO, and solid (blue) curve is the theoretical curve with t ′/t = −0.2 and t = 0.9 eV.

compensated exactly by the growth of the background pieces
of the spectral function, as seen in Figs. 1–2 of [3]. We note
that experiments on cuprates strongly indicate the growth of
background weight, and indeed the ECFL theoretical results
closely match experiments in regard to the shapes of spectral
functions [16].

The resistivity calculations in Refs. [2,3] were performed
for a typical set of model parameters chosen for illustrative
purposes. In these works we noted that the resulting resistivi-
ties are broadly comparable to experiments in their magnitude
and on the scale of temperature variation. In the present paper
we push this observation to a more explicit and quantitative
level, by comparing the ECFL results of [2,3] with experi-
ments on a few representative high-Tc materials with both hole
and electron doping. Although broken symmetries of various
types are possible within the methodology, we focus here on
the properties of the paramagnetic normal state.

III. PARAMETERS OF THE MODEL

The ECFL theory results used here [2,3] are valid for
a quasi-two-dimensional correlated metal, with separation
c0 between layers. The resistivity in the calculations [2,3]
arises from intrinsic inelastic e-e scattering with the umklapp
processes, inherent in the tight-binding model, relaxing the
momentum efficiently. The (smaller) a and b axis lattice
constants cancel out in the formula for resistivity. The theory
gives the planar resistivity in the form

ρ = RvK × c0 × ρ̄

(
t ′

t
,

J

t
,

kBT

t
, δ

)
, (8)

where RvK = h
e2 = 25 813 
 is the von Klitzing resistance.

The (dimensionless) theoretical resistivity ρ̄ is a function of

the four displayed dimensionless variables. Detailed formulas
leading to this expression can be found in Eqs. (45) and
(46) of [2] and Eqs. (12) and (13) of [3]. More precisely
δ is the concentration of holes measured from half filling,
i.e., δ = 1 − n and n = Ne

Ns
, where Ne (Ns) is the number of

electrons (copper sites). At δ = 0 (n = 1) the model describes
a Mott-Hubbard insulator. We discuss below the exchange
parameter J/t , which plays a secondary role at the densities
considered here. While three parameters c0, δ, T are obtained
from experiments directly, ARPES constrains the parameter
t ′/t from the shape of the Fermi surface in most cases. Given
these, the remaining single parameter t fixes the resistiv-
ity on an absolute scale. In addition the usually small and
T -independent (extrinsic) impurity resistance, usually arising
from scatterers located off the 2-d planes, must be estimated
separately.

In addition to c0, the basic parameters of the model are
the nearest-neighbor hopping t , the second-neighbor hopping
t ′, and a superexchange energy J within a tight-binding de-
scription of the copper d-like bands. The parameter t ′ plays
an important role in distinguishing between hole-doped su-
perconductors (t ′ < 0) with a positive Hall constant and the
electron-doped superconductors (t ′ > 0) with a negative Hall
constant. The shape of the Fermi surface is sensitive to the
ratio of the bare hopping parameters t ′/t , if one assumes that
interactions do not change its shape very much; this is largely
borne out in ECFL theory. For this reason ARPES can most
often provide us with a good estimate for this parameter t ′/t ,
although t itself is not fixed by knowing the shape of the Fermi
surface. We fix J at a typical value 0.17t . At the densities we
study here we find that the magnitude of J has a very limited
influence on the calculated resistivity, as seen, e.g., in Fig. 24
of [3]. For the single-layer cuprate systems, one has two Cu-O
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layer per unit cell and therefore the separation c0 equals half
the c-axis lattice constant cL [24,25]. The applicability of the
theoretical calculations to systems with a higher number of
layers per unit cell, such as Bi-2212 or YBa2Cu3O6−δ , is
less direct. It requires making further assumptions relating
c0 to the lattice constants. In order to avoid this we confine
ourselves to single-layer systems.

The theoretical results tested here are found by ig-
noring a possible superconducting or magnetic state. We
have produced a grid of theoretical calculations for t ′/t =
−0.4,−0.3, . . . , 0.3 at several densities in the range 0.12 �
δ � 0.22 surrounding the interesting regime of optimal dop-
ing δ ∼ 0.15. Since the theory is smooth in most theoretical
parameters we can interpolate in it, when necessary. Calcula-
tions are carried out in a wide range of T with a lower end
T ∼ 100 K with a system size of 62 × 62. Lower T calcula-
tions require bigger system sizes which are computationally
expensive and alternate methods are possible for estimating
the resistivity. For example at lower T <∼ 50 K the resistivity
can be extrapolated to a quadratic in T quite accurately using
ρ = αT 2/(1 + T/T0) with suitable constants α, T0. This form
is consistent with the T → 0 Fermi liquid character of the
theory below the (already low) T0

IV. THE CHOICE OF SYSTEMS

The lattice structure of the cuprates allows for a system-
atic change in carrier concentration by chemical substitution
of elements situated away from the copper oxide planes,
without severely impacting the impurity resistance. The role
of block layers or charge reservoirs in hosting the donors
away from the copper oxide planes plays an important role
in achieving this property of the cuprates [24,25]. This feature
also provides a useful handle in our analysis; we can access
data on families of cuprates that contain a reasonably large
range of electron densities. Since the basic parameters of the
theoretical model can be assumed unchanged with doping
[26], such a family provides a systematic proving ground
for theory. Thus the experimental data used for testing the
theory are narrowed down to the available systematic sets of
resistivity data on single-layer cuprates with varying densities.

In Table I we list the single-layer cuprate compounds
where data sets with several densities are available. The hole-
doped LSCO and BSLCO materials are well studied by many
authors, and the data set from Ref. [22] used here reports a
very extensive set of densities for each family. This provides
us with 11 densities for LSCO in the range 0.12 � δ � 0.22
and 7 densities for BSLCO in the range 0.12 � δ � 0.18
which are essentially within the range treatable by theory.
We include recent thin-film data on the electron-doped LCCO
from Ref. [27]. Here 4 densities are available in the theoretical
range and the very regular ρ ∼ +T 2 type behavior of the data
allows for easily eliminating the impurity contribution. For a
more balanced representation of the electron-doped materials,
we included data on NCCO from Ref. [28]. The NCCO family
contains only two densities in the theoretically accessible
range, of which one is impacted by 2-d localization effects.
It is therefore not as constraining as the other families. The
choice of the above four families of single-layer cuprates with

TABLE I. The single-layer cuprates analyzed in this work. For
the first three materials the values of t ′/t are obtained from ARPES
experiments where the Fermi surface shape is fitted to a tight-binding
model. For LCCO the ARPES data on the Fermi surface do not exist.
The quoted t ′/t is chosen to be the same as NCCO. The resistivity
data for LCCO are from thin films while the other data are from
single crystals. Here cL is the c-axis lattice constant. In all the above
cases the unit cell contains two copper oxide layers, and hence their
separation c0 entering Eq. (8) is half the lattice constant 1

2 cL . The
last column lists the values of t determined in this work. The single
adjustable parameter, the hopping t , is found using the slope of the
experimental resistivity at 200 K at a single density δ = 0.15 as in
Eq. (9). Band structure estimates of the t ′/t ratio [29,30] are quite
close to the ones used here, but the estimates of t differ somewhat. It
must be kept in mind that the quoted parameter t is the bare one, i.e.,
prior to many-body renormalization.

Single-Layer High-Tc Compounds
Material cL (Å) t ′/t t (eV)

La2−xSrxCuO4 (LSCO) 13.25 [22,31] −0.2 [32,33] 0.9

Bi2Sr2−xLaxCuO6 (BSLCO) 24.3 [22] −0.25 [33] 1.35

Nd2−xCexCuO4 (NCCO) 12.01 [24,34] +0.2 [35] 0.9

La2−xCexCuO4 (LCCO) 12.45 [36] +0.2 0.76

>∼20 sample densities seemed sufficiently representative for
our task.

In addition to the above set of materials there are a few
others belonging to the single-layer class with data provided
for several densities. Among these we have excluded from
our analysis the mercury compound Hg1201 (HgBa2CuO4+δ)
[37] and the thallium compound Tl2201 (Tl2Ba2CuO6+δ)
[38,39]. In the literature for these compounds, the value of
Tc for different samples is quoted and one needs to extract
the electron density from other measurements, e.g., the Hall
constant. This was hard for the authors to achieve, with
a required accuracy in density δ ∼ 0.1 necessary for the
present analysis.

In Table I we quote the c-axis lattice constant cL taken
from x-ray diffraction data. The ratio t ′/t is taken from angle-
resolved photoemission (ARPES) experiments on the shape of
the Fermi surface, fitted to a tight-binding band. In some cases
the experimental fits include a small further neighbor hopping
as well; we neglect it here since the corrections only fine-tune
the shapes of the Fermi surface while preserving their basic
topology. Theoretical estimates from band structure [29,30]
are roughly consistent with the above experimentally guided
choices of t ′/t .

V. PROTOCOL FOR FIXING t AND ESTIMATING
THE IMPURITY RESISTIVITY

We determine the magnitude of t for each material by col-
lating a data set consisting of experimental ρexp(T, δ) points at
various densities δ = δ1, δ2, . . .. From this set we extract the
slope of the resistivity

�(T �) =
(

dρexp(T, δ = 0.15)

dT

)
T =T �

. (9)
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Equating �(T �) to the corresponding theoretical slope at T �

determines the single parameter t . The density is chosen as
δ = 0.15 since it is in a regime where the calculation is
quite reliable. T � is chosen as the midpoint of the temper-
ature range of the data set, so that T � = 250 K for LSCO
and T � = 200 K for BSLCO and LCCO in the following
analysis.

We next need to estimate the T -independent impurity
contribution to the resistivity at each density ρimp(δ) for LSCO
and BSLCO [40]. For LCCO the impurity contribution ρimp

has been eliminated by the authors of [27]; thus this task is
already done. For the others we shift down the experimental
resistivity ρexp(T �, δ) to match the theoretical resistivity;
the magnitude of the shift gives us the estimated ρimp(δ) at
each density. We are thus using the relation ρexp(T �, δ) −
ρimp(δ) = ρth(T �, δ), where ρth is from Eq. (8). The impurity
contribution is displayed in all figures and is a small fraction
of the total resistivity in all cases.

In summary fixing the magnitude of t for a data set requires
a comparison with experiments at a single density (δ = 0.15)
and a single temperature (T = T �). The impurity contribution
is estimated at each density at the same temperature T = T �.
Checking these against data constitutes the essence of the test
carried out here. The final two columns in Table I report the
fitted value of the single undetermined parameter t . The bare
bandwidth is estimated as W ∼ 8t . Slightly different choices
of the density and T � lead to comparable results for t .

Before looking at the results, we make a few comments
about the analysis. (a) The requirement that the fitted values
of t and t ′/t remain unchanged for different densities δ gives
added significance to the fits. It is clearly an important and
nontrivial requirement from any theory as well. In this sense
matching the experimental resistivity at a single density of
any particular compound is less significant than doing so
at a sequence of different densities. (b) The impurity shifts
reported in each curve are seen to be on a typically expected
scale ∼50–150 μ
 cm. The data on LCCO [27] are available
with the impurity contribution already removed by the au-
thors. (c) At low electron densities the effects of (2-d) electron
localization are visible in some data sets. In these cases the
impurity contribution leads to an upturn at low T. This upturn
has been discussed extensively in the literature [22,28] and
also manipulated with magnetic fields [41]. Since the ECFL
theory excludes any strong-disorder effects, we do not expect
to capture these in the fits.

For LCCO the digital data were provided by the authors
of [27]. For the other data sets studied here the published
resistivity data were digitized using the commercial software
program DigitizeIt [42]. We found that the program works
quite well provided the experimental curves do not overlap
or cross. This feature limited our data extraction to some
extent, as the reader might notice from the low-temperature
truncation in the experimental data in the figures presented
below.

We next describe the comparison for different systems.

VI. LSCO

In Figs. 1(a) and 1(b) and Fig. 2 the extensive data set
from Fig. 2(b) of [22] is compared with theoretical predic-

tions. The parameters in Table I are used here. The band
parameter t = 0.9 eV is found from the slope of the resistivity
δ = 0.15, T � = 250 K. All other densities are then predicted
by theory on an absolute scale. While some deviations at low
density δ = 0.12 and also at high density δ >∼ 0.2 are visible,
the overall agreement seems fair. For the same parameters
Fig. 6(a) shows the theoretical resistivity over an enlarged
temperature window. Here subtle changes of curvature are
visible at high and low T.

VII. BSLCO and Bi-2201

In Fig. 3 the data for the BSLCO family of compounds
Bi2Sr2−xLaxCuO6 from Ando [22] is compared with theory.
The band parameter t = 1.35 eV is found from the slope of
the resistivity at δ = 0.15, T � = 200 K. All other densities
are then predicted by theory. For these parameters Fig. 6(b)
shows the theoretical resistivity over an enlarged temperature
window. The larger value of t in BSLCO relative to that in
LSCO can be understood from comparing Figs. 6(a) and 6(b).
The almost doubled value of c0 increases by a similar factor
the resistance of BSLCO over that of LSCO, provided one is
at the same scaled temperature T/t . A larger t spreads this
increase over a larger T window.

VIII. NCCO AND LCCO

The NCCO family of materials with composition
Nd2−xCexCuO4 and the closely related LCCO family
La2−xCexCuO4 are of considerable interest as counterpoints
to the other two families studied above. Both have the opposite
sign of the Hall constant from the hole-doped cases and
display a pronounced T 2-type resistivity.

In a single band model description, such as the t-t ′-J model
used here, these materials can also be treated as having a fill-
ing less than half. The filling of these materials in the original
electron picture is greater than half. Starting with a Hubbard
model one can perform a particle-hole transformation of
both spin species to map the model to less than half filling.
For U large enough the t-J model is once again introduced
in the place of the Hubbard model. This process generates
some U-dependent constant terms that are absorbed into the
chemical potential. It also flips the sign of all hopping matrix
elements. While the nearest-neighbor hopping t can be flipped
back to the standard (positive) sign using a simple unitary
transformation (exploiting the square lattice geometry), the
second-neighbor hopping t ′ is now positive and the Fermi
surface is electron-like.

On the materials side, the available data on NCCO [28]
[see Fig. 9(b) therein] is relatively sparse in the metallic
range containing only two samples. One of these is afflicted
with strong-disorder effects at low T. In Fig. 4 we com-
pare the data from Onose and co-workers [28] with theory.
While the density δ = 0.15 is perfectly matched with theory,
the lower density δ = 0.125 curve shows a distinct upturn at
low T, as discussed in [28]. A systematic treatment of strong-
disorder effects in the ECFL theory is currently missing.

The data on LCCO [27] give us four densities within the
range covered by theory. In the absence of ARPES data we
choose t ′/t = 0.2, i.e., the same value as in NCCO. We have

115121-6

(378)



ASPECTS OF THE NORMAL STATE RESISTIVITY OF … PHYSICAL REVIEW B 101, 115121 (2020)

FIG. 3. (a) BSLCO: Slightly underdoped. (b) BSLCO: Near-optimal doping. The resistivity ρ is in units of m
 cm and T is in kelvins.
Dotted (red) line is data extracted from Fig. 1(a) of Ando and co-workers [22], and solid (blue) curve is the theoretical curve with t ′/t = −0.25.
Panels (a) and (b) focus on densities in the slightly underdoped and near-optimal doping ranges. The displayed pair of numbers {δ, ρimp}
indicates the hole density and estimated impurity resistivity. The parameter t = 1.35 eV was fixed using �(T �), the slope of the resistivity [see
Eq. (9)] at δ = 0.15, T � = 200 K in panel (a). The resistivity at every density in the other panels is then predicted by theory.

verified that nearby values to t ′/t lead to a similar quality
of fits after adjusting the parameter t , and hence this choice
not final. The authors conveniently present the resistivity in
Fig. 2(b) of [27] requiring no further impurity corrections. In

Fig. 5 we compare theory and experiment, and in Fig. 6(c)
we present the theoretical resistivity on an extended T scale at
several densities. The discrepancy in LCCO between theory
and experiment at δ = 0.17 at T = 200 is ∼0.01, and is quite
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FIG. 4. The resistivity ρ is in units of m
 cm and T is in kelvins. Dotted (red) line is data extracted from Fig. 9(b) of Onose and co-workers
[28], and solid (blue) curve is the theoretical curve with t ′/t = +0.2. The parameter t = 0.9 eV was fixed using the slope of the δ = 0.15 data
at 200 K. The data set contains only these two densities within the range accessible to theory. The upturn in the lower density curve and the
larger magnitude of impurity resistivity are due to strong disorder effects, as already noted in [27]. The sign of t ′/t is reversed between this
figure and Fig. 1 for LSCO, while other parameters c0, t are essentially unchanged. Both the experimental and theoretical resistance display a
resistance with a positive upward curvature (i.e., ρ ∼ +T 2).

visible. However we should keep in mind that at correspond-
ing densities the absolute scale of the resistivity for LCCO is
considerably smaller than that for LSCO and BSLCO. This
can be seen in Figs. 2 and 3. As a consequence a similar scale
of absolute error leads to a much larger relative error.

IX. DISCUSSION

We have presented a comparison of theoretical resistivity
with extensive data on three families of cuprate supercon-
ductors. It is also feasible to fit data on noncuprate strongly
correlated systems such as Sr2RuO4 from [43], where data
over a large range T � 1000 are available. However data are

available at only one composition in this case, and the value
of t ′/t is hard to find from experiments. Since a single density
within a family does not test the theory stringently, we omit
the comparison here.

Overall we have shown that the ECFL theory gives a
reasonable account of data in the three families discussed
above. A small number of parameters taken from experimental
data fix the model completely. It is encouraging that the
resulting resistivity affords a reasonable fit to a collection
of resistivity data at various densities, both in terms of the
T dependence and its magnitude. It is also encouraging that
upon using different model parameters, the same calculation

FIG. 5. The resistivity ρ is in units of m
 cm and T is in kelvins. Data are from Fig. 2(b) of Sarkar and co-workers [27] as the dotted red
line. The impurity contribution in this data set has been removed by the authors in [27]. The theoretical curve is in solid blue, with t ′/t = +0.2.
The hole density is marked at the top in each plot. The parameter t = 0.76 eV was fixed using �(T �) [see Eq. (9)], the slope of the resistivity at
δ = 0.15, T � = 200 K. The sign of t ′/t > 0 is common to NCCO and reversed from that in LSCO and BSLCO. Both experiments and theory
find a resistance with a positive curvature (i.e., ρ ∼ +T 2), as in NCCO. This is in striking contrast to LSCO and BSLCO as seen in Figs. 1, 2,
and 3.
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FIG. 6. (a) LSCO: δ = 0.12 → 0.22 (increasing ↓). (b) BSLCO: δ = 0.12 → 0.22 (increasing ↓). (c) LCCO: δ = 0.12 → 0.2
(increasing ↓). Theoretical resistivity curves for LSCO [panel (a)], BSLCO [panel (b)], and LCCO [panel (c)] over an extended temperature
range. The hole densities increase downward at intervals δ = 0.01. In going from LSCO with BSLCO the separation between the layers,
i.e., c0, is almost doubled while t ′/t changes only slightly. The resistivity at a comparable (δ, T ) here, and also in the data, changes by a
smaller factor than c0. In order to reconcile with this feature of the data, the deduced hopping parameter t is greater by ∼50% for BSLCO
relative to LSCO. The distinct almost pure T 2 behavior of the resistivity of LCCO relative to the other two systems is striking. Additionally
it is noteworthy that the magnitude of the intrinsic resistivity of the electron-doped LCCO is considerably smaller than that of the hole-doped
LSCO. Since these have roughly the same c0, t, |t ′/t | values, the difference is attributable to the different sign of t ′/t .

fits the resistivity of both hole-doped and electron-doped
materials.

In Fig. 6 we display the theoretical resistivities on a larger
T scale and for more densities, using parameters of the three
families separately. We found that the data are fitted almost
equally well by making nearby choices of the pair t ′/t and t .
The differences between different choices do exist and show
up but only at higher T, especially in the location of subtle
kinks of the sort seen in Fig. 6.

X. CONCLUSIONS

From the above exercise it appears that the extremely
correlated Fermi liquid theory has the necessary ingredients to
explain the variety of data seen in the above materials. Other
materials, some of them with a higher number of layers, do
display further subtle features which are missing in the theory.
However these features are also missing in the displayed data
from the above materials. We have thus made a fair beginning
with the above “standard” cuprate materials, but further chal-
lenges from more complex behavior are to be expected.

A few comments on the results and their implications
are appropriate. Let us first discuss the hole-doped mate-
rials. Here the quasilinear resistivity seen near δ ∼ 0.15 is
remarkable, as noted by many authors. We should also pay
attention to the underlying suppression of scale. By this we re-
fer to the fact that the temperature scale of resistivity variation
is as low as ∼100-300 K, starting from a bare bandwidth of
almost 10 eV. The three orders of magnitude reduction in scale
is nontrivial, reminiscent of the emergence of the low-energy
Kondo scale in magnetic impurity systems. Starting from wide
energy bands with a width of ∼10 eV, the ECFL theory
systematically generates low energy and temperature scales, a
few orders of magnitude smaller than the bare ones [1,15,16].
The low energy scales depend sensitively on the density and
a few other parameters, especially the sign and magnitude
of t ′/t .

A major part of this scale suppression is due to the small
quasiparticle weight Z <∼ 0.1 at relevant densities that arise
in the theory [1–3]. More physically we can attribute this
suppression to the profound role of Gutzwiller projection on
the electron propagators near the Mott-Hubbard half-filled
limit. It is captured to a good extent by the ECFL theory,
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and is visible in the detailed structure of the electron spectral
functions [1–3].

For the electron-doped materials, it is interesting that the
theoretical resistivity matches experiments essentially as well
as for the hole-doped materials. The two classes of materials
have the opposite sign of the parameter t ′/t , which is dis-
connected from the extent of correlations. This finding has a
bearing on the frequently debated topic of the Fermi liquid
nature of electron-doped cuprates. The ECFL theory says that
both hole-doped and electron-doped systems are (extremely
correlated) Fermi liquids at the lowest temperature. Addi-
tionally the theory quantifies the range of T where a Fermi
liquid type behavior ρ ∼ T 2 holds good. Going further it also
identifies regimes succeeding the Fermi liquid [1–3,15,44,45]
upon warming.

In order to better understand the origin of the difference
between hole and electron doping within the theory, the
following observation may be helpful. It is known that the
sign and magnitude of the parameter t ′/t directly influences
the magnitude of the already small quasiparticle weight Z (see
Fig. 1 of [2]) [23]. A positive t ′/t leads to a small Z , while
a negative t ′/t leads to an even smaller but nonvanishing Z .
For the electron-doped case this distinction ultimately results
in an enhanced thermal range displaying a positive curvature

of the ρ-T plots. The effect on resistivity of the sign of t ′/t
can be seen explicitly by comparing the theoretical resistivity
curves for the hole-doped cases Figs. 6(a) and 6(b) with the
electron-doped case in Fig. 6(c).

As a cross-check on the theory, it would be interesting to
compare other physical variables with data for the systems
considered here, using the deduced parameters. Finally we
should note that future technical developments in the imple-
mentation of the ECFL theory are likely to refine some of the
theoretical results presented here.
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Superconductivity in the t-J model is studied by extending the
recently introduced extremely correlated fermi liquid theory.
Exact equations for the Greens functions are obtained by gener-
alizing Gor’kov’s equations to include extremely strong local re-
pulsion between electrons of opposite spin. These equations are
expanded in a parameter λ representing the fraction of double
occupancy, and the lowest order equations are further simplified
near Tc , resulting in an approximate integral equation for the su-
perconducting gap. The condition for Tc is studied using a model
spectral function embodying a reduced quasiparticle weight Z
near half-filling, yielding an approximate analytical formula for
Tc . This formula is evaluated using parameters representative
of single layer High-Tc systems. In a narrow range of electron
densities that is necessarily separated from the Mott–Hubbard
insulator at half filling, we find a typical Tc∼102 K.
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1. Introduction

The single band t-J model Eq. (1), [1,2], and the closely related strong coupling Hubbard model
have attracted much attention in recent years. In large part the interest is due to the potential
relevance of these models in describing the phenomenon of High Tc superconductivity, discovered
in cuprate materials in 1987 [3] and later, in other materials. These models lead to a single sheet
of the fermi surface, and are specified by fixing the band hopping t and the exchange energy J for
the t-J model, or equivalently 4t2/U for the strong coupling (U ≫ t) Hubbard model, where the
interaction is given by VHub. = U

∑
i ni↓ni↑. The exotic possibility of superconductivity arising from

such inherently repulsive systems, is surprising from a theoretical perspective, and also challenging.
Significant theoretical work using a variety of tools on the strong coupling Hubbard model and
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the extremely strong coupling t-J models [4–16] has given useful insights into the role of strong
correlations in cuprate superconductivity. However given the non-triviality of the theoretical task
of analytically solving these models, progress in that direction has been slow.

In this work we extend the extremely correlated fermi liquid theory (ECFL) [17,18] recently
formulated to overcome the analytical difficulties of the strong coupling models, to include su-
perconducting type broken symmetry. Upon cooling the normal metallic state, a superconducting
instability is expected to arise, and our main goal in this study is to determine the conditions for
the occurrence of this state, and to provide its detailed description.

In order to motivate these calculations of the superconducting state, it is useful to summarize
the main features of ECFL theory as applied to the normal (non-superconducting) state so far. We
provide a broad overview next, further details can be found in Refs. [17,18].

The methodology developed in this theory starts with exact functional differential equations
for the various Greens function, obtained using the Tomonaga–Schwinger approach of external
potentials. These equations incorporate the modification of the anti-commutation relations between
the fermion operators due to Gutzwiller projection (see Eq. (5)). While providing a formally exact
starting point for us, these equations are not yet amenable to systematic approximations. The core
difficulty is that an additional set of terms arise from this modified non-canonical anticommutator
structure Eq. (5). These non-canonical terms multiply the most singular term in the equation,
namely the Dirac delta function (originating in the time derivative of the time ordering Θ functions
in the Greens functions). For an explicit example, note the γ term multiplying the delta function in
Eq. (34).

In order to make progress, we therefore need to go beyond the established framework of
Tomonaga–Schwinger. The first development in ECFL is that the above inconvenient feature of
a non-canonical coefficient of the delta function, is eliminated by factoring the Greens function
into two parts, the auxiliary Greens function g and the caparison function µ̃ (see Eq. (46) and
the discussion in the text following it). The auxiliary Greens function g now satisfies a canonical
equation (as in Eq. (51) by ignoring the term involving f ), while the caparison function µ̃ accounts
for the non-canonical nature of the original equation (as in Eq. (52)). This factorization process and
the resulting equations are exact.

As the next development, we introduce a parameter λ in the range 0 ≤ λ ≤ 1 into these exact
equations. Setting λ=0 gives the uncorrelated system, while λ=1 gives the exact equations of the
strongly correlated system. The λ parameter has a formal similarity to the expansion parameter 1

2S
used in the Dyson–Maleev (or Holstein–Primakoff) formulations [19,20] of the spin-wave theory
of magnets. The magnetic models involve spin operators satisfying the SU(2) (angular momentum)
Lie algebra. They can be approached using different strategies. On the one hand we may think of
spins as canonical bosons with a constraint on their occupation number nb

i at any site i, namely
nb
i = 0, 1, . . . , 2S. This constraint can be implemented using a repulsive interaction between bosons

Unb
i (n

b
i −1) . . . (nb

i −2S), and finally letting U→∞. This bosonic Hubbard model is difficult to solve,
since the large energy scale U makes the use of perturbation theory impractical. On the other hand
we can employ the Dyson–Maleev (or Holstein–Primakoff) non-linear mappings to bosons, and
expand the relevant Heisenberg equations of motion in a series in 1

2S . This gives an efficient way of
solving the models to considerable precision at fairly low orders in 1

2S . This latter method is parallel
to the λ expansion employed here, since the modified anticommutators Eq. (5) also yield a (non-
canonical) Lie algebra. This analogy is discussed further in Ref. [18] (Sec. 6). In a different setting,
the parameter λ can also be related to the fraction of doubly occupied states [21] (see Appendix.
A).

The parameter λ serves two important and related objectives. Firstly it provides a continuous
path between the uncorrelated and the fully correlated system equations. Since 0 ≤ λ ≤ 1, dialing
it up from 0 does not involve invoking a large energy scale, unlike for example, dialing up U in the
Hubbard model. This (isothermal) continuity enables the ECFL method to retain the ideal (i.e. non-
interacting) fermi surface volume at low T. This ideal volume is expected for weakly interacting
fermi systems from the Luttinger–Ward perturbative arguments [22], and importantly, survives
the transition to extremely strongly correlated regions, as argued recently using non-perturbative
arguments [23]. Lastly, the ideal volume is also seen in photoemission studies of overdoped and
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optimally doped cuprate superconductors in the normal state [24], which provide a useful starting
point for our study.

The second aspect of λ is that it can be used to organize a systematic power series expansion,
analogous in spirit to the skeleton graph expansion of Dyson [25] in perturbative theories. This
λ expansion can be carried out order by order, leading to a set of successive equations that are
amenable to numerical study. A question might arise, whether a low order calculation in this
expansion can capture the strongly correlated limit. For answering this, it is useful to examine the
results for the d = ∞ Hubbard model at U = ∞, where numerically exact results are available
from the dynamical mean field theory [26]. The λ expansion to O(λ2) is compared with the exact
numerical result from the dynamical mean field theory [27], in Fig. (6) of Ref. [28]. This shows that
the calculated quasiparticle weight Z vanishes upon approaching a density of 1-particle per site,
i.e. half filling. This vanishing is a hallmark of the strong correlation limit, where the Mott–Hubbard
insulating state is realized. In the above d = ∞ study, and also in the case of the 2-dimensional t-
Jmodel [29–31], the λ expansion describes an extremely correlated Fermi liquid state, characterized
by a small quasiparticle weight that vanishes near the Mott–Hubbard insulator, accompanied by a
rich set of low energy scales located above the (strongly suppressed) effective fermi temperature.
The O(λ2) equations for the normal state have been applied to calculations of the asymmetric
photoemission lines [30–32], and most recently the calculation of the almost T-linear resistivity
in single layer cuprates [29].

In this paper we extend the above formalism to the case where superconducting order emerges
at low temperatures. This requires a non-trivial generalization to the superconducting state of the
various steps of the ECFL theory highlighted above. In a similar fashion to the normal state, we
first obtain exact equations for the normal and anomalous Greens functions for the t-J model.
These equations generalize Gor’kov’s equations for BCS type weak coupling superconductivity [33]
by including the effect of extremely strong local repulsion between electrons. These equations are
studied further using a specific decomposition of the Greens functions into two pieces (see Eq. (46)).
This step is followed by a systematic expansion in a parameter λ. This leads to a set of equations
Eqs. (51), (52), (54), iterating these in λ to all orders constitutes the exact answer. In the present
work, we perform a leading order calculation.

In order to obtain explicit results, Eqs. (51), (52), (54) are further simplified near Tc where the
order parameter is small, leading to simplified versions of these in Eqs. (55)–(57). These are treated
to O(λ2), and the lowest order condition for Tc is formulated in Eq. (68). In summary Eq. (68)
is the leading order term near Tc , within the λ expansion, and constitutes an important formal
result of the present work. In principle it should be possible to find further systematic equations
to higher order, and also to extend the results for T ≪ Tc following the procedure laid out here. In
this work we are content to study this first set in detail. The transition temperature is given from
Eq. (68), which is expressed in terms of the electronic Greens function, renormalized by strong
correlations. In this renormalization the short ranged Hubbard–Gutzwiller terms are dominant, and
the pairing energy causing the instability, is provided by the much smaller exchange energy J . This
equation exhibits both a tendency towards an insulating state due to a diminished quasiparticle
weight, and a tendency towards superconductivity due to the exchange term J . Their competing
tendencies play out in Eq. (68) and the closely related Eq. (70). These equations determine whether
superconductivity is found at all, and further identifies the model parameters that promote it. When
the superconducting state is found, they also provide an estimate of the range of densities and
temperatures which favor it.

The conditions Eqs. (68) and (70) are evaluated using a simple phenomenological electronic
spectral function, modeling strong correlations near half filling in terms of a density dependent
quasiparticle weight Z and a wide background. This model has the advantage of leading to an
explicit analytical formula for Tc , in terms of the various parameters of the t-J model, thus allowing
for a thorough understanding of the role of different parameters on the result. Evaluating this
expression we find that the model supports a d-wave superconducting phase consistent with
data [34,35], located away from half filling. The Tc is found to be typically ∼102 K, i.e. an order of
magnitude smaller than that of the model Eq. (2) where the sole difference from the t-J model
is that short ranged Hubbard–Gutzwiller type correlations are ignored, in a range of densities
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determined by the band parameters. The temperature–density phase diagram has the form of a
tapered tower Fig. 1. A smooth dome structure reported in cuprates, is replaced here by a somewhat
narrow density range and an exaggerated height near the peak. The location of the peak can be
varied by choosing the hopping parameters, but always remains well-separated from the insulating
limit.

The paper is organized as follows. In Section 2 we define the t-J Hamiltonian, express it in
terms of the correlated fermionic operators, and outline the method of external potentials employed
to generate the exact dynamical equations for the electron Greens function G and the Gor’kov
anomalous Greens function F . In Section 3 the equation is expanded in λ and further simplified
near Tc . In Section 4 the condition for Tc is evaluated using a model spectral function. This section
contains expressions that involve only the electronic spectral function, and might be directly
accessible to readers who are more interested in the concrete results. In Section 5 we conclude
with a discussion of the results.

2. Theoretical preliminaries

The t-J Hamiltonian [1,2] is

H tJ = Ht + HJ (1)

Ht = −

∑
ijσ

tij̃c
†
iσ c̃jσ − µ

∑
i

ni

HJ =
1
2

∑
ij

Jij(S⃗i.S⃗j −
ninj

4
)

where tij are the band hopping matrix elements detailed below, Jij the nearest neighbor exchange
and µ the chemical potential, with the density operator ni =

∑
σ c̃†

iσ c̃iσ , and spin density operator
Sα
i =

1
2

∑
σσ ′ c̃†

iσ τ α
σσ ′̃ciσ ′ , τ α is a Pauli matrix and the correlated fermi destruction operator c̃i is found

from the plain (i.e. canonical or unprojected) operators ci, by sandwiching it between two Gutzwiller
projection operators c̃iσ = PGciσ PG, where PG ≡

∏
j(1− nj↑nj↓) [36]. It acts by eliminating all states

with double occupancy in the state space. The creation operators follow by taking their hermitean
conjugate. The physical meaning of this sandwiching process is that the fermi operators act within
the subspace where projector PG enforces single occupancy at each site. The t-J model may be
obtained by taking the large U limit of the Hubbard model [1]. It has also been argued [2] to be
the low energy effective Hamiltonian for an underlying three-band model, describing the copper
oxygen lattice of the cuprate superconductors, where it is found by eliminating high energy states
of the model.

In the following work we will also find it useful to study the model

Hunc-tJ = −

∑
ij

tijc
†
iσ cjσ − µ

∑
i

ni +
1
2

∑
ij

Jij(S⃗i.S⃗j −
ninj

4
). (2)

We may view it as an uncorrelated t-J model in contrast to the correlated version Eq. (1), here the
ultra strong short ranged Hubbard–Gutzwiller correlations with U ≫ max{|tij|} are turned off,
while the relatively weak exchange term J ≪ max{|tij|} is retained. All operators that appear in
Eq. (2), including the density and spin, are defined by the same expression as Eq. (1) but with the
unprojected fermion operators ciσ , c†

iσ ’s. In this model the exchange term, which is usually viewed
as the mechanism for antiferromagnetism, doubles up to play the role of a superconducting pairing
potential. This fruitful observation of Anderson, Baskaran and Zou [5,6] follows from viewing the
interaction in the crossed or Cooper channel. It is paralleled in our discussion later (see paragraph
below Eq. (30)), where the exchange term, after a rearrangement amounting to a crossed channel,
leads to a mean Cooper pair expectation in Eq. (31). Its superconducting solution, found by standard
BCS-Gor’kov meanfield theory, is presented below (see Eqs. (74), (75)), and serves as a useful
reference point in the study of the strongly correlated t-J model.
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It is convenient for our calculations to use the operators invented by Hubbard Refs. [37,38] to
represent this projection process. Ref. [39] (Sec.8) discusses the origin of difficulties of the early
work employing the Hubbard operators, in reproducing the Luttinger–Ward Fermi surface volume
at low temperatures. In contrast the present ECFL formalism achieves this goal successfully, using
continuity with the Fermi gas and the λ expansion described in [17,39] and below. We denote

c̃†
iσ ↔ Xσ0

i , c̃iσ ↔ X0σ
i , c̃†

iσ c̃iσ ′ ↔ Xσσ ′

i . (3)

These operators satisfy the following fundamental anti-commutation relations and their adjoints:

{X0σi
i , X

0σj
j } = 0 (4)

{X0σi
i , X

σj0
j } = δij

(
δσiσj − σiσjX

σ̄iσ̄j
i

)
, σ̄ = −σ . (5)

In physical terms, for a given site index i and with {a, b} ∈ {0, ↑, ↓} limited to the three allowed
initial and final states of the projected Hilbert space, the symbol Xab

i represents an operator
representing all allowed matrix elements. To yield the correct fermion antisymmetry, the creation
operator Xσi,0

i anti-commutes with creation or destruction operators at different sites with any spin.
In terms of these operators we can rewrite

Ht = −

∑
ij σ

tijXσ0
i X0σ

j − µ
∑
i σ

Xσσ
i (6)

HJ = = −
1
4

∑
ij σiσj

JijσiσjX
σiσj
i X

σ̄iσ̄j
j . (7)

In the following we employ a convenient repeated internal spin summation convention. We shall
follow the convention that in an equation defining any object, often (but not always) indexed
by external spin indices, all the internal and repeated spin indices are to be summed over. As an
example, we could drop the explicit summation over spins in Eqs. (6) and (7), but not in Eq. (5)
where σi, σj are external spin indices that appear on the left hand side. We also use a repeated
internal site index below.

In order to calculate the Greens functions for this model, we add an imaginary time τ dependent
external potential (or source term) A to the definition of thermal averages. The expectation of
an arbitrary observable Q (τ1, . . .), composed e.g. of a product of several (imaginary) time ordered
Heisenberg picture operators, is written in the notation

⟨⟨Q (τ1, . . .)⟩⟩ = Tr Pβ Tτ {e−AQ (τ1, . . .)}. (8)

Here Tτ is the time-ordering operator, an external potential term A =
∫ β

0 dτA(τ ), and Pβ =

e−βH/Tr
(
e−βHTτ e−A)

is the Boltzmann weight factor including A. Here A(τ ) is a sum of two terms,
Aρ(τ ) involving a density-spin dependent external potential V , and AC (τ ) involving J (J ∗) Cooper
pair generating (destroying) external potentials. These are given by

Aρ(τ ) =

∑
i

Vσiσj
i (τ )X

σiσj
i (τ )

AC (τ ) =
1
2

∑
ij

(
J ∗

jσjiσi (τ )X
0σi
i (τ )X

0σj
j (τ ) + Jiσijσj (τ )X

σi0
i (τ )X

σj0
j (τ )

)
, (9)

where the repeated internal spin convention implies summing over σi, σj, and where we require
the antisymmetry Jiσi;jσj = −Jjσj;iσi and likewise for J ∗. The external potentials J ,J ∗ in Eq. (9)
couple to operators that add and remove Cooper pairs of correlated electrons, and are essential
to describe the superconducting phase. At the end of the calculations, the external potentials are
switched off, so that the average in Eq. (8) reduces to the standard thermal average. Tomonaga [40]
in 1946 and Schwinger [41] in 1948 (TS) pioneered the use of such external potentials [25,42]. We
next illustrate this technique for the present problem.
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2.1. Using external potentials

The advantage of introducing these external potential (or ‘‘sources’’) is that we can take the
(functional) derivatives of Greens function with respect to the added external potentials in or-
der to generate higher order Greens functions. If we abbreviate the external term as A =∑

i Uj(τ )Vj(τ ), where Uj(τ ) is one of the above c-number potential, and Vj(τ ) is the corresponding op-
erator in the imaginary-time Heisenberg picture, and Qi(τ ) an arbitrary observable, straightforward
differentiation leads to the TS identity

TrPβTτ {e−AQi(τ ′)Vj(τ )} = ⟨⟨Qi(τ ′)⟩⟩ ⟨⟨Vj(τ )⟩⟩ −
δ

δUi(τ )
⟨⟨Qi(τ ′)⟩⟩ (10)

This important identity can be found by taking the functional derivative of Eq. (8) with respect to
Uj(τ ) (see e.g. Ref. [21] Eq. (18)), and is now illustrated with various choices of the external potential.

From Eq. (10) we note the frequently used result

⟨⟨σiσjX
σ̄iσ̄j
i (τ )Q (τ ′)⟩⟩ =

(
γσiσj (iτ ) − Dσiσj (iτ )

)
⟨⟨Q (τ ′)⟩⟩ (11)

where

γσiσj (i, τ ) = σiσj⟨⟨X
σ̄iσ̄j
i (τ )⟩⟩

Dσiσj (i, τ ) = σiσj
δ

δV σ̄iσ̄j
i (τ )

, (12)

The singlet Cooper pair operator is(
X0↑
i X0↓

j − X0↓
i X0↑

j

)
= σX0σ

i X0σ̄
j , (13)

where summation over σ is implied on the right hand side, and its Hermitean conjugate

−

(
X↑0
i X↓0

j − X↓0
i X↑0

j

)
= σ̄Xσ0

i X σ̄0
j . (14)

We define the (singlet) Cooper pair correlation functions at time τ as

Cij(τ ) = ⟨⟨σX0σ
i (τ )X0σ̄

j (τ )⟩⟩ (15)

C∗

ij (τ ) = ⟨⟨σ̄Xσ0
i (τ )X σ̄0

j (τ )⟩⟩, (16)

where σ is summed over. We note that C∗

ij equals the complex conjugate of Cij only after the external
potentials are finally turned off, but not so in the intermediate steps.

The basic equation Eq. (10) for the Cooper pair operators with an arbitrary operator Q is
δ

δJ ∗

iσijσj
(τ )

⟨⟨Q ⟩⟩ = ⟨⟨X
0σj
j (τ )X0σi

i (τ )⟩⟩⟨⟨Q ⟩⟩ − ⟨⟨X
0σj
j (τ )X0σi

i (τ )Q ⟩⟩ (17)

δ

δJiσijσj (τ )
⟨⟨Q ⟩⟩ = ⟨⟨X0σi

i (τ )X
0σj
j (τ )⟩⟩⟨⟨Q ⟩⟩ − ⟨⟨X0σi

i (τ )X
0σj
j (τ )Q ⟩⟩ (18)

From these relations the Cooper-pair correlations can be found by summing over the spins

⟨⟨σX0σ
i (τ )X0σ̄

j (τ )Q ⟩⟩ =
[
Cij(τ ) − Kij(τ )

]
⟨⟨Q ⟩⟩ (19)

⟨⟨σ̄Xσ0
i (τ )X σ̄0

j (τ )Q ⟩⟩ =
[
C∗

ij (τ ) − K∗

ij(τ )
]
⟨⟨Q ⟩⟩ (20)

where

Kij(τ ) = σ̄
δ

δJ ∗

iσ ;jσ̄ (τ )
(21)

K∗

ij = σ̄
δ

δJiσ ;jσ̄ (τ )
, (22)

where σ is summed over.
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2.2. Greens functions and their dynamical equations

We are interested in the electron Greens function (see e.g. Ref. [21] Eq. (17)) expressed
compactly by

Giσijσf (τ , τ ′) = −⟨⟨X0σi
i (τ )X

σf 0
j (τ ′)⟩⟩, (23)

where the Dyson time ordering Tτ and the external potential factor e−A are included in the
definition of the brackets Eq. (8). To describe the superconductor, following Gor’kov [33] we define
the anomalous Greens function :

Fiσijσf (τ , τ ′) = σ̄i⟨⟨X
σ̄i0
i (τ )X

σf 0
j (τ ′)⟩⟩ (24)

where σ̄ ≡ −σ , and as in Eq. (23), the Dyson time ordering Tτ and the external potential factor
e−A are included in the definition of the brackets Eq. (8)

We note that the Cooper pair correlation functions Eq. (16), which plays a crucial role in defining
the order parameter of the superconductor, can be expressed in terms of the anomalous Greens
function using

C∗

ij (τ ) = Fiσ jσ (τ , τ ), (25)

where σ is to be summed over, as per the convention used. We will also need the equal time
correlation of creation operators Cij(τ ) Eq. (15). It is straightforward to show that when the external
potentials A are switched off, this object is independent of τ and can be obtained by complex
conjugation of C∗

ij . It is possible to add another anomalous Greens function with two destruction
operators as in Eq. (24), corresponding to Nambu’s generalization of Gor’kov’s work. In the present
context it adds little to the calculation and is avoided by taking the complex conjugate of C∗

ij to
evaluate Cij.

2.2.1. Greens function G
The equations for the Greens functions follow quite easily from the Heisenberg equations,

followed by the use of the identity Eq. (10), and has been discussed extensively by us earlier. There
is one new feature, concerning an alternate treatment of the HJ (exchange) term, necessary for
describing superconductivity described below. In this section we make use of the internal repeated
site index summation convention quite extensively.

Taking the τ derivative of G we obtain

∂τ ⟨⟨X
0σi
i (τ )X

σf 0
f (τ ′)⟩⟩ = δ(τ − τ ′)δif (δσiσf − γσiσf (iτ ))

+⟨⟨[Ht + HJ + A(τ ), X0σi
i (τ )] X

σf 0
f (τ ′)⟩⟩ (26)

We work on the terms on the right hand side. At time τ we note

[Ht + Aρ, X0σi
i ] = µX0σi

i − Vσiσj
i X

0σj
i + tij(δσiσj − σiσjX

σ̄iσ̄j
i )X

0σj
j , (27)

where the repeated internal indices σj and j are summed over. From this basic commutator, using
Eq. (10), Eq. (11) and the definitions Eq. (12) we obtain

⟨⟨[Ht + Aρ(τ ), X
0σi
i (τ )] X

σf 0
f (τ ′)⟩⟩ =

(
µδσiσ − Vσiσ

i

)
⟨⟨X0σ

i (τ )X
σf 0
f (τ ′)⟩⟩

+tij⟨⟨X
0σi
j (τ )X

σf 0
f (τ ′)⟩⟩ − tij(γσiσ (i, τ ) − Dσiσ (i, τ ))⟨⟨X

0σ
j (τ )X

σf 0
f (τ ′)⟩⟩, (28)

where the repeated spin index σ , and the site index j are summed over, while σi, σf and site indices
i, f are held fixed.

For the exchange term

[HJ , X
0σi
i ] =

1
2
Jijσiσ X0σ

i X σ̄iσ̄
j (29)

= −
1
2
JijσiX

σ̄i0
j

(
X0↑
i X0↓

j − X0↓
i X0↑

j

)
, (30)
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where the repeated internal indices σ and j are summed over. In order to obtain Eq. (30) from
Eq. (29), we used X σ̄iσ̄

j = X σ̄i0
j X0σ̄

j and anticommuted the equal time operators X0σ
i X σ̄i0

j into
−X σ̄i0

j X0σ
i , followed by an explicit sum over σ . This subtle step is essential for obtaining the

superconducting phase, as discussed (para following Eq. (2)) in the Introduction, since the role of
exchange in promoting Cooper pairs manifests itself here. Using Eq. (19) we find

⟨⟨[HJ , X
0σi
i (τ )]X

σf 0
f (τ ′)⟩⟩ = −

1
2
Jijσi

(
Cij(τ+) − Kij(τ+)

)
⟨⟨X σ̄i0

j (τ )X
σf 0
f (τ ′)⟩⟩, (31)

where the repeated internal index j is summed over, and with η is a positive infinitesimal we
indicate here and elsewhere τ+

≡ τ + η and τ−
≡ τ − η .

In treating this term we could have proceeded differently by sticking to Eq. (29), using Eq. (10)
with a different external potential term as in Eq. (11) to write

⟨⟨[HJ , X
0σi
i (τ )]X

σf 0
f (τ ′)⟩⟩ =

1
2
Jijσiσ ⟨⟨X0σ

i (τ )X σ̄iσ̄
j (τ )X

σf 0
f (τ ′)⟩⟩

= −
1
2
Jij

(
γσ̄iσ̄ (j, τ ) − Dσ̄iσ̄ (j, τ )

)
⟨⟨X0σ

i (τ )X
σf 0
f (τ ′)⟩⟩, (32)

where the repeated spin index σ , and the site index j are summed over, while σi, σf and site
indices i, f are held fixed. These two expressions Eq. (31) and Eq. (32) are alternate ways of writing
the higher order Greens functions [43]. In order to describe a broken symmetry solution with
superconductivity, we are required to use Eq. (31), since using the other alternative disconnects the
normal and anomalous Greens functions altogether, thereby precluding a superconducting solution.

The term ⟨⟨[AC (τ ), X
0σi
i (τ )]X

σf 0
f (τ ′)⟩⟩ generates a term that is linear in J which is treated

similarly and the final result quoted in Eq. (34).
We summarize these equations compactly by defining

G−1
0iσijσj

= δijδσiσj (µ − ∂τ ) + tijδσiσj − δijV
σiσj
i

Yiσijσj = tijγσiσj (i, τ )

Xiσijσj = −tijDσiσj (i, τ ), (33)

and write the exact equation

(G−1
0iσijσj

− Yiσijσj − Xiσijσj )Gjσjf σf (τ , τ ′) = δ(τ − τ ′)δif (δσiσf − γσiσf (i, τ ))

+
1
2
Jij

(
Cij(τ ) − Kij(τ )

)
Fjσif σf (τ , τ ′)

+Jjσj;iσk

(
δσi,σk − γσiσk (i, τ ) + Dσiσk (i, τ )

)
σjFjσ̄jf σf (τ , τ ′), (34)

where the spins σj, σk and the site index j are summed over, while σi, σf and site indices i, f are held
fixed. The final term drops off when we switch off the external potential J . Viewing the spin and
site indices as joint matrix indices, these equations and their counterparts Eq. (40), are transformed
into matrix equations below.

2.2.2. Greens function F
The Gor’kov Greens function F in Eq. (24) satisfies an exact equation that can be found as follows.

First we note

∂τ ⟨⟨X
σ̄i0
i (τ )X

σf 0
f (τ ′)⟩⟩ = ⟨⟨[Ht + HJ + A(τ ), X σ̄i0

i (τ )] X
σf 0
f (τ ′)⟩⟩ (35)

A part of the right hand side satisfies

⟨⟨[Ht + Aρ(τ ), X
σ̄i0
i (τ )] X

σf 0
f (τ ′)⟩⟩ = −

(
µδσiσ − V σ̄iσ̄

i

)
⟨⟨X σ̄0

i (τ ) X
σf 0
f (τ ′)⟩⟩

−tij⟨⟨X
σ̄i0
j (τ ) X

σf 0
f (τ ′)⟩⟩ + tij(γσ̄ σ̄i (iτ ) − Dσ̄ σ̄i (iτ ))⟨⟨X

σ0
j (τ ); X

σf 0
f (τ ′)⟩⟩, (36)
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where the repeated spin index σ , and the site index j are summed over, while σi, σf and site indices
i, f are held fixed. The exchange term is treated similarly to Eq. (29)

[HJ , X
σ̄i0
i ] =

1
2
Jij

(
X↑0
i X↓0

j − X↓0
i X↑0

j

)
σiX

0σi
j (37)

so that using Eq. (20) we get

⟨⟨[HJ , X
σ̄i0
i ] X

σf 0
f (τ ′)⟩⟩ = −

1
2
Jijσi

(
C∗

ij (τ
−) − K∗

ij(τ
−)

)
⟨⟨X0σi

j (τ )X
σf 0
f (τ ′)⟩⟩, (38)

where the repeated internal index j is summed over
We gather and summarize these equations in terms of the variables that are ‘‘time-reversed’’

partners of Eq. (34) and hence denoted with hats:

Ĝ−1
0iσijσj

= δijδσiσj (µ + ∂τ ) + tijδσiσj − δijV
σ̄iσ̄j
i

Ŷiσijσj = tijγσ̄jσ̄i (i, τ )

X̂iσijσj = −tijDσ̄jσ̄i (i, τ ) (39)

So that(̂
G−1
0iσijσj

− Ŷiσijσj − X̂iσijσj

)
Fjσjf σf (τ , τ ′) = −

1
2
Jij

(
C∗

ij − K∗

ij

)
Gjσif σf (τ , τ ′)

+σi

∑
m

J ∗

iσ̄nmσm
(δσi,σn − γσ̄nσ̄i (i, τ ) + Dσ̄nσ̄i (i, τ ))Gmσmf σf (τ , τ ′) (40)

where the repeated spin indices σj, σn, σm and site index j are summed over, while σi, σf and i, f
are held fixed. The final term arising from ⟨⟨[AC , X

σ̄i0
i ]X

σ̄f 0
f (τ ′)⟩⟩ drops off when we switch off the

external potential J ∗.

2.2.3. Summary of equation in symbolic notation
Eq. (34) and Eq. (40) are exact in the strong correlation limit. Noting that all terms containing γ

and D in Eq. (34) and Eq. (40) arise from Gutzwiller projection, we obtain the corresponding equa-
tions for the uncorrelated t-J model in Eq. (2) by dropping these terms. Recall also that the external
potentials J ,J ∗ represent the imposed symmetry-breaking terms that force superconductivity, and
are meant to be dropped at the end. In this uncorrelated case, let us understand the role of the terms
with the Cooper pair derivatives K,K∗. If we ignore these terms and also set J ,J ∗

→ 0 right away,
Eq. (34) and Eq. (40) reduce to the Gor’kov mean-field equations for the uncorrelated model [33],
with the equation Eq. (25) providing a self consistent determination of C∗

ij in terms of F . Thus by
neglecting the terms with K,K∗, the role of the exchange J is confined to providing the lowest order
electron–electron attraction in the Cooper channel. This amounts to neglecting the O(J2) dressings
of the electron self energies and irreducible interaction i.e. the pairing kernel in Eq. (64). When
retained, the normal state studies (see Ref. [31] Figs. (22,23,24-(a))) show that the self energy terms
arising from J change the spectral functions of the model only slightly. Regarding the irreducible
interaction in the superconducting channel, the O(J) term is already attractive. Since we are in the
regime of J ≪ max{|tij|} the retained term is expected to dominate the neglected higher order
term. In summary, strong Hubbard–Gutzwiller type short ranged interactions renormalize the
Greens function to G from G0, and the self energy terms due to J are minor [17,31]. The role of J is
significant only insofar as it provides a mechanism for superconducting pairing, and potentially
magnetic instabilities close to half filling. Keeping these considerations in mind, we drop the terms
involving K,K∗,J ,J ∗ in Eq. (34) and Eq. (40). This suffices for our initial goal, of generalizing a
Gor’kov type [33] mean-field treatment of Eq. (2) to the strongly correlated problem Eq. (1).

Multiplying the γ and D terms, or equivalently the X and Y terms with λ and expanding the
resulting equations systematically in this parameter constitutes the λ-expansion that we discuss
below.

With these remarks in mind we make the following changes to Eq. (34) and Eq. (40):

(i) We drop the terms proportional to J ,J ∗ and the corresponding derivative terms K,K∗.
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(ii) Defining the gap functions:

∆ij =
1
2
JijCij and ∆∗

ij =
1
2
JijC∗

ij (41)

(iii) We scale the each occurrence of γ , X, Y , X̂, Ŷ by λ.

With these changes we write the modified Eq. (34) and Eq. (40):

(G−1
0iσijσj

− λYiσijσj − λXiσijσj )Gjσjf σf

= δ(τ − τ ′)δif (δσiσf − λγσiσf (i, τ )) + ∆ij Fjσif σf (42)

(̂
G−1
0iσijσj

− λŶiσijσj − λX̂iσijσj

)
Fjσjf σf = −∆∗

ijGjσif σf , (43)

where σj is summed over in both Eq. (42) and Eq. (43). Note that the self consistency condition
Eq. (16) and Eq. (25) fix the correlation functions C ’s in terms of F . As λ → 0 we get back the
meanfield equations of Gor’kov for the uncorrelated-J model. The λ parameter governs the density
of doubly occupied states, and hence a series expansion in this parameter builds in Gutzwiller type
correlations systematically. We expand the Greens functions to required order in λ and finally set
λ = 1.

We write Eq. (42) and Eq. (43) symbolically as

(g−1
0 − λY − λX).G = (1 − λγ ) + ∆.F (44)

(̂g−1
0 − λŶ − λX̂).F = −∆∗.G (45)

where the symbols G,F etc are regarded as matrices in the space, spin and time variables, 1 is
the Dirac delta function in time and a Kronecker delta in space and spin, with the dot indicating
matrix multiplication or time convolution. In the case of X, X̂ it also indicates taking the necessary
functional derivatives.

3. Expansion of the equations in λ

We decompose both Greens functions in Eq. (44) and Eq. (45) as

G = g.µ̃, F = f .µ̃ (46)

where µ̃ is a function of spin, space and time that is common to both Greens function. As an example
of the notation, the equation G = g.µ̃ stands for Giσijσj (τi, τj)=

∑
kσk

∫ β

0 dτk giσikσk (τi, τk) µ̃kσkjσj (τk, τj).
Here µ̃ is called the caparison (i.e. a further dressing) function, in a similar treatment of the normal
state Greens function. The terms g and f are called the auxiliary Greens function. The basic idea
is that this type of factorization can reduce Eq. (44), to a canonical type equation for g, where the
terms 1− λγ are replaced by 1. We remark that this is a technically important step since the term
1 − λγ modifies the coefficient of the delta function in time, and encodes the distinction between
canonical and non-canonical fermions.

To simplify further, we note that X contains a functional derivative with respect to V , acting on
objects to its right. When acting on a pair of objects, e.g. X .G = X .g.µ̃, we generate two terms.
One term is (X .g).µ̃, where the bracket, temporarily provided here, indicates that the operation of
X is confined to it. The second term has the derivative acting on µ̃ only, but the matrix product
sequence is unchanged from the first term. We write the two terms together as

X .g.µ̃ = X .g.µ̃ + X .g.µ̃, (47)

so that the ‘contraction’ symbol refers to the differentiation by X , and the ‘.’ symbol refers to the
matrix structure. We may view this as the Leibnitz product rule.
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Let us now operate with X on the identity g.g−1
= 1, where g−1 is the matrix inverse of g. Using

the Leibnitz product rule, we find

X .g = −

(
X .g.g−1

)
.g (48)

and hence we can rewrite Eq. (47) in the useful form

X .g.µ̃ = −

(
X .g.g−1

)
.g + X .g.µ̃. (49)

With this preparation we rewrite Eq. (44) the equation for G as

(g−1
0 − λY + λ

(
X .g.g−1

)
).g.µ̃ = (1 − λγ ) + ∆.f .µ̃ + λX .g.µ̃ (50)

We now choose g, f such that

(g−1
0 − λY + λ

(
X .g.g−1

)
).g = 1 + ∆.f . (51)

Substituting Eq. (51) into Eq. (50), we find that µ̃ satisfies the equation

µ̃ = (1 − λγ ) + λX .g.µ̃. (52)

Note that Eq. (51) has the structure of a canonical equation since we replaced the 1 − λγ term by
1 in Eq. (50). Thus the non-canonical Eq. (44) for G,F is replaced by a pair of canonical equations
for g, µ̃. In Eq. (51) we note that the action of X is confined to the bracket λ

(
X .g.g−1

)
, unlike the

term λX .G in the initial Eq. (44) . We may thus view the term in bracket in Eq. (51) as a proper self
energy for g.

For treating the equation for F Eq. (45) we use the same scheme Eq. (46) and find

X̂ .F = X̂ .f .µ̃ = −

(
X̂ .f .f −1

)
.f .µ̃ + X̂ .f .µ̃ (53)

With this we rewrite Eq. (45) after canceling an overall right multiplying factor µ̃

(̂g−1
0 − λŶ + λX̂ .f .f −1).f = −∆∗.g + λX̂ .f .µ̃.µ̃−1 (54)

Summarizing we need to solve for f , g, µ̃, ∆∗ from Eqs. (51), (52), (54) by iteration in powers of λ.

3.1. Simplified equations near Tc

For the present work, we note that Eq. (54) simplifies considerably, if we work close to Tc . In
this regime f may be assumed to be very small, enabling us to throw away all terms of O(f 2) and
also to discard terms of O(λf ). This truncation scheme is sufficient to determine Tc for low orders
in λ.

When T ∼ Tc , throwing away terms of O(f 2) and O(λf ), we obtain the simplified version of
Eq. (54)

f = −̂g0.∆
∗.g + o(λf ), (55)

so that Eq. (51) can be written as

g−1
= g−1

0 − λY + λ

(
X .g.g−1

)
+ ∆.̂g0.∆

∗ (56)

In this limit the above two are the O(λ2) equations required to be solved, together with Eq. (52)
and the self consistency condition Eq. (41), Eq. (25). The latter can be combined with Eq. (24) as

∆∗

ij =
1
2
JijC∗

ij = −
1
2
Jij

∑
σ

Fiσ ,jσ (τ+, τ ) (57)
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and further reduced using Eq. (46). On turning off the external potentials we regain time translation
invariance. We next perform a fourier transform to fermionic Matsubara frequencies ωn =

π
β
(2n+1)

using the definition F(τ ) =
1
β

∑
n e

−iωnτF(iωn), and write Eq. (46) in the frequency domain as

Fpσ (iωn) = f pσ (iωn)µ̃pσ (iωn). (58)

Thus taking spatial fourier transforms with the definition

J(q) = 2J
(
cos qx + cos qy

)
, (59)

so that the self consistency condition Eq. (57) finally reduces to

∆∗(k) = −
1
2β

∑
pσωn

J(k − p)f pσ (iωn)µ̃pσ (iωn) (60)

We may write Eq. (55) as

f pσ (iωn) = −̂g0σ (p, iωn)∆∗(p)gσ (p, iωn) (61)

where the time reversed free Greens function

ĝ0(p, iωn) =
1

−iωn + µ0 − ε−p
=

1
−iωn − ξp

(62)

with ξ = εp − µ0 and by using εp = ε−p, and µ0 is taken as the non-interacting system chemical
potential, discarding the corrections of µ due to λ. Therefore Eq. (60) becomes

∆∗(k) =
1
2β

∑
pσωn

J(k − p)̂g0σ (p, iωn)∆∗(p)gσ (p, iωn)µ̃pσ (iωn) (63)

Here g is taken from Eq. (56), i.e. the O(λ2) Greens function with a small correction (for T ∼ Tc)
from the gap ∆. Performing the spin summation and recombining g.µ̃ = G, we get the equation in
terms of the physical electron Greens function

∆∗(k) =
1
β

∑
pωn

J(k − p)∆∗(p)̂g0(p, iωn)G(p, iωn). (64)

This is an important result of our formalism, it represents the leading order Gor’kov equation
for the t-J model. It is analogous to a refinement of Gor’kov’s equation [33], usually called the
Eliashberg equation [44], valid for strong electron–phonon coupling superconductivity. Our λ
expansion plays the role of the Migdal theorem [45] in that problem. The analogy with Migdal [45]
and Eliashberg’s [44] work is only superficial, since the strongly correlated problem does not share
the physics of the separation of the electronic and phonon time scales, underlying those results.

In Eq. (64) the physical electron Greens function G is taken from the O(λ2) theory if we neglect
the corrections from the gap, which vanishes above Tc anyway. We express the physical Greens
function in terms of its spectral function A(p, ν)

G(p, iωn) =

∫
dν

A(p, ν)
iωn − ν

(65)

The frequency integral in Eq. (57) can be performed as
1
β

∑
ωn

ĝ0(p, iωn)G(p, iωn) =

∫
dν A(p, ν)

1 − f (ν) − f (ξp)
ν + ξp

. (66)

where f is the fermi distribution f (ν) = 1/(1 + expβν). Hence

∆∗(k) =

∑
p

J(k − p)∆∗(p)
∫

dν A(p, ν)
1 − f (ν) − f (ξp)

ν + ξp
. (67)

In summary this eigenvalue type equation for ∆∗(k), together with the spectral function A(p, ν)
determined from the O(λ2) Greens function in Eq. (56), gives the self-consistent gap near Tc . At
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sufficiently high temperatures, i.e. in the normal state T > Tc ∆∗ vanishes, so that A is independent
of ∆∗. In this case Eq. (67) reduces to a linear integral equation for ∆∗. We may then determine Tc
from the condition that the largest eigenvalue crosses 1. For this purpose we only need the normal
state electron spectral function of the strongly correlated metal.

4. Estimate of Tc

4.1. Equation for determining Tc

The condition for obtaining a d-wave superconducting state is given by setting T = T+
c in Eq. (67)

writing ∆∗(k) = ∆0(cos kx − cos ky), using the normal state spectral function for A and canceling an
overall factor ∆0(cos kx − cos ky). Following these steps we get

1 = J
∑
p

{
cos(px) − cos(py)

}2
∫

dν
1 − f (ν) − f (εp − µ0)

ν + εp − µ0
A(p, ν)

⏐⏐⏐⏐
Tc

. (68)

Instead of working with Eq. (68), it is convenient to make a useful simplification for the average
over angles. Since Eq. (68) is largest when p⃗ is on the fermi surface, we factorize the two terms and
write

1 = JΨ (µ0) Γ (69)

Γ =

∑
p

∫
dν

1 − f (ν) − f (εp − µ0)
ν + εp − µ0

A(p, ν)
⏐⏐⏐⏐
Tc

(70)

where Γ is a particle–particle type susceptibility. Here Ψ (µ0) is more correctly the weighted
average of

{
cos(px) − cos(py)

}2 with a weight function that is the integrand in Eq. (70). We simplify
it to the fermi surface averaged momentum space d-wavefunction

Ψ (µ0) =
1

n(µ0)

∑
p

{
cos(px) − cos(py)

}2
δ(εp − µ0) (71)

where n(ϵ) is the band density of states (DOS) per spin and per site, at energy ϵ,

n(ϵ) =
1
Ns

∑
p

δ(εp − ϵ). (72)

Using this simplification and performing the angular averaging over the energy surface εp⃗ = ϵ we
write the (particle–particle) susceptibility Γ (Eq. (70)) as

Γ =

∫
dϵ

∫
dν n(ϵ) A(ϵ, ν)

1 − f (ν) − f (ϵ − µ0)
ν + ϵ − µ0

⏐⏐⏐⏐
Tc

. (73)

where A(ϵ, ν) is the angle-averaged version of the spectral function A(p, ν). We estimate this
expression below for the extremely correlated fermi liquid, by using a simple model for the spectral
function A.

In Eq. (73) if we replace the spectral function A by the (fermi gas) non-interacting result
A0(ϵ, µ0) = δ(ν − ϵ + µ0), we obtain the Gor’kov–BCS mean-field theory, where the susceptibility
Γ reduces to

∫
dϵ n(ϵ) tanh 1

2 βc (ϵ−µ0)
2(ϵ−µ0)

. This is evaluated by expanding around the fermi energy, and

utilizing the low T formula
∫ W0
0

dϵ
ϵ
tanh 1

2βcϵ ∼ log
[

ζ0W0
kBTc

]
, where W0 is the half-bandwidth and

ζ0 = 1.13387 . . .. Equating Γ to 1/JΨ (µ0) gives the d-wave superconducting transition temperature
for the uncorrelated t-J model

kBT (un)
c ∼ 1.134 W0 e−

1
g , (74)

with the superconducting coupling constant

g = JΨ (µ0)n(µ0). (75)
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4.2. Model spectral function

We next use a simple model spectral function to estimate these integrals. It has the great
advantage that we can carry out most integrations analytically and get approximate but closed form
analytical expressions for Tc , which provide useful insights. The model spectral function contains
the following essential features of strong correlations namely:

• A quasiparticle part with fermi liquid type parameters, where the quasiparticle weight Z goes
to 0 at half filling n = 1, and

• A wide background.

The model spectral function used is in the spirit of Landau’s fermi liquid theory [46–48] with
suitable modifications due to strong correlation effects [17]. We take the spectral function as

A(ϵ, ν) = Zδ(ν −
m
m∗

ϵ) + (1 − Z)
1

2W0
Θ(W0 − |ν|). (76)

Here Θ(x) =
1
2 (1+

x
|x| ),W0 the half-bandwidth m

m∗ is the renormalized effective mass of the fermions,
and Z is the fermi liquid renormalization factor. The first term is the quasiparticle part with weight
Z , and second part represents the background modeled as an inverted square-well. Integration over
ν gives unity at each energy ϵ. Z is chosen to reflect the fact that we are dealing with a doped Mott–
Hubbard insulator so it must vanish at n = 1. For providing a simple estimate we use Gutzwiller’s
result [36,49]

Z = 1 − n. (77)

The effective mass is related to Z and the k-dependent Dyson self energy Σ through the standard
fermi liquid theory [46–48] formula

m
m∗

= Z × (1 +
∂Σ(k⃗, µ)

∂εk

⏐⏐⏐⏐
kF

). (78)

The Landau fermi liquid renormalization factor m
m∗ can be inferred from heat capacity experiments

provided the bare density of states is assumed known.
Using Eq. (76) in Eq. (73) and decomposing the susceptibility Γ into a quasiparticle and

background part, the equation determining Tc is:(
ΓQP + ΓB

) ⏐⏐⏐⏐
T→Tc

=
1

JΨ (µ0)
(79)

ΓQP = Z
∫

dϵ n(ϵ)
1 − f (ϵ − µ0) − f ( m

m∗ (ϵ − µ0))
(ϵ − µ0)(1 +

m
m∗ )

(80)

ΓB =
(1 − Z)
2W0

∫
dϵ n(ϵ)

∫ W0

−W0

dν
1 − f (ϵ − µ0) − f (ν)

(ϵ − µ0) + ν
. (81)

Using the same approximations that lead to Eq. (74) the ΓQP can be evaluated as

ΓQP =
Zn(µ0)
1 +

m
m∗

∫ W0

0

dϵ
ϵ

(
tanh

ϵ

2kBT
− tanh

ϵ m/m∗

2kBT

)
, (82)

and hence at low enough T the estimate

ΓQP ∼ n(µ0)
2Z

1 +
m
m∗

log

[
ζ0W0

√ m
m∗

kBT

]
. (83)

Unlike the quasiparticle part with this log T behavior at low T, the background part is nonsingular as
T → 0, since a double integral over the region of small ϵ−µ0 and ν is involved. It can be estimated

14

(397)



B.S. Shastry Annals of Physics 434 (2021) 168614

by setting T = 0, ϵ − µ0 ∼ ϵ and replacing n(ϵ) ∼ n(µ0). With

ΓB ≡ n(µ0)γB, (84)

γB =
(1 − Z)
2W0

∫ W0

−W0

∫ W0

−W0

1
2
sign(ϵ) + sign(ν)

ϵ + ν
dϵ dν. (85)

Integrating this expression we obtain

γB = (1 − Z) log 4. (86)

Combining Eqs. (79), (83), (86) we find

kBTc ∼ 1.134 W0 ×

√
m
m∗

× e
−

1
geff (87)

where the effective superconducting coupling:

geff =
2Z(

1 +
m
m∗

) {
Jeff Ψ (µ0)n(µ0)

}
(88)

and an effective exchange

Jeff =
J

1 − γB JΨ (µ0)n(µ0)
, (89)

where the denominator represents an enhancement due to the background spectral weight. In
comparing Eq. (87) with the uncorrelated result Eq. (74) several changes are visible. The bandwidth
prefactor is reduced by correlations due to the factor of

√ m
m∗ ≪ 1. This factor vanishes as n → 1

thereby diminishing superconducting Tc in the close proximity of the insulator. A similar but even
more drastic effect arises from multiplying factor 2Z

(1+ m
m∗ ) in the coupling geff Eq. (88). This term

reflects the quasiparticle weight in the pairing process, and since Z vanishes near the insulating
state, it leads to an essential singularity in Tc as a function of hole density. Being situated in the
exponential, it kills superconductivity much more effectively than the bandwidth prefactor. Away
from the close proximity of the insulator other terms in geff become prominent, allowing for the
possibility of superconductivity. Amongst them is the replacement of the exchange energy by Jeff . In
a density range where Ψ (µ0)n(µ0) is appreciable, this enhances Jeff over J due to the feedback nature
of Eq. (89), and has an important impact on determining the phase region with superconductivity.

4.3. Numerical estimates of Tc

We turn to the task of estimating the order of magnitude of the Tc in this model. When we
take typical values for cuprate systems: W0 ∼ 104 K (i.e ∼1 eV) and J ∼ 103 K (i.e. ∼0.1 eV),
the transition temperature of the uncorrelated model T (un)

c Eq. (74) is a few thousand K, at most
densities. It remains robustly non-zero at half filling, since in this formula correlation effects are yet
to be built in and the Mott–Hubbard insulator is missing. For the correlated system, we estimate
Tc from Eq. (87) using similar values of model parameters. The terms arising from correlations in
Eq. (87) are guaranteed to suppress superconductivity near the insulating state, since Z → 0 and
the quasiparticle is lost. A more refined question is whether an intermediate density regime (δ > 0)
can support superconductivity. And if so, whether the temperature scales are robust enough to be
observable. Within the context and confines of the simplified model spectral function considered,
we answer both questions positively here.

4.3.1. Choice of model parameters
In order to estimate the order of magnitude of the Tc, its dependence on J and band parameters,

we choose parameters similar to those used in contemporary studies for the single layer High
Tc compound La2−xSrxCuO4. The hopping Hamiltonian −

∑
ij tijC̃

†
iσ C̃jσ , gives rise to band energy

dispersion ε(k⃗) = −2t(cos kx + cos ky)− 4t ′ cos kx cos ky − 2t ′′(cos 2kx + cos 2ky) on a square lattice.
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Fig. 1. The superconducting transition temperature for the correlated model Tc (Eq. (87)) (t ′/t = −0.159, t ′′/t =

0.01, m
m∗ = Z). The scale of the maximum transition temperature is smaller by an order of magnitude from the

uncorrelated model. As the insulator is approached δ → 0, and Tc decreases drastically. This is easy to understand
since the quasiparticle weight Z shrinks on approaching the insulating state, killing the coupling geff Eq. (88). When δ

goes beyond the peak (optimum) value, the effective superconducting coupling geff again falls off as seen in Fig. 2 and
in Fig. 5 due to the other factors in Eq. (88). When geff drops below ∼ 0.12, the resulting Tc is negligible.

Thus the hopping amplitudes tij are equal to t when i, j are nearest neighbors, t ′ when i, j are second-
nearest neighbors, and t ′′ when i, j are third-nearest neighbors. For this system we will use the
values [14,50]

t = 0.45 eV, t ′/t = −0.16 ± 0.02, t ′′/t = .01. (90)

This parameter set is roughly consistent with the experimentally determined fermi surface of
La2−xSrxCuO4 [50], we comment below on considerations leading to a more precise choice. The tight
binding band extends from −W0 ≤ ϵ ≤ W0, where W0 = 4t , neglecting a small shift due to t ′. The
exchange energy is chosen to be

J/t = 0.3, or J/kB ∼ 1550 K, (91)

as determined from two magnon Raman experiments [51] on the parent insulating La2CuO4. Note
that the t-J model is obtainable from the Hubbard model by performing a large U/t super-exchange
expansion, giving J =

4t2
U . Thus our choice of J corresponds to a strong coupling type magnitude of

U/t ∼ 13.3 in the Hubbard model, placing it in a perturbatively inaccessible regime of that model.
We now discuss the enhancement of effective mass m

m∗ [52]. In the proximity of the Mott–
Hubbard insulating state n → 1, an enhancement in m∗

m is expected on general grounds, reflecting
a diminished thermal excitation energy scale due to band narrowing. For illustrating the role of this
parameter we use two complementary estimates

m
m∗

∼ 3.4 (1 − n), (a) (92)

m
m∗

= Z, (b) (93)

where estimate (a) gives a two-fold enhancement of m⋆

m at δ = .15, while estimate (b), obtained
by neglecting the k dependence of the self energy in Eq. (78), gives a seven-fold enhancement. The
formulas used are simple enough so that the effect of other estimates for m

m∗ should be easy for the
reader to gauge.

4.3.2. Results
In Fig. 1 the superconducting transition temperature for d-wave symmetry is shown as a function

of the hole density δ = 1 − n where the band parameters are indicated in the caption. It shows
that Tc is maximum at δ ∼ 0.15 and falls off rapidly as one moves away from that density in either
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Fig. 2. The figure and inset use t ′/t = −0.159, t ′′/t = 0.01, and m
m∗ = Z . The effective superconducting coupling geff

(Eq. (88)) for three Cooper pair symmetries: (i) (blue) d-wavefunction ⟨
{
cos(kx) − cos(ky)

}2
⟩FS , (ii) (brown) extended

s-wavefunction ⟨
{
cos(kx) + cos(ky)

}2
⟩FS , and (iii) (magenta) s + id wavefunction ⟨

{
cos2(kx) + cos2(ky)

}
⟩FS . For the d-

wavefunction, the drastic decrease of Tc on both sides of the peak values in Fig. 1 can be understood by referring

to the second y-axis, giving the temperature scale T appx
c = 104

× e
−

1
geff K. This scale provides an order of magnitude of

Tc at a given geff by assuming a prefactor 104 K. It illustrates the rapid reduction of Tc when geff <
∼ 0.12. The other two

symmetries lead to much smaller couplings and are therefore ineffective. Inset: The band DOS at the fermi energy shows
an enhancement around the hole density δ = 0.15. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 3. The superconducting transition temperature for the correlated model Tc (Eq. (87)) for three parameter sets — (i)
(red) t ′/t= −0.159, t ′′/t= 0.01 with δpeak = 0.15, (ii) (blue) t ′/t= −0.137, t ′′/t = .01 with δpeak = 0.13 and (iii) (purple)
t ′/t= −0.181, t ′′/t= 0.01 with δpeak = 0.17. The solid lines use m

m∗ = Z and the dashed lines m
m∗ = 3.4δ. Inset: Ψ (µ0) the

fermi surface averaged d-wavefunction ⟨
{
cos(kx) − cos(ky)

}2
⟩FS is shown for the three sets of band parameters. The peak

values occur at the densities where Tc is highest. Their peak magnitude ∼ 3.2 indicates a strong constructive interference
effect from k⃗ ∼ {±π, 0}, {0, ±π}, where |cos(kx) − cos(ky)| ∼ 2. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

direction. The scale of Tc is a few hundred K, which is an order of magnitude lower than that of
the uncorrelated system. The small kink-like features to the right of the peak reflect structure in
the DOS shown as inset in Fig. 2. In Fig. 2 the effective superconducting coupling geff is shown for
three different symmetries of the Cooper pairs: d-wave, extended s-wave, and s + id-wave. It is
clear that within this theory, only d-wave symmetry leads to robust superconductivity, the other
two symmetries lead to effects too small to be observable. From Fig. 3 we see that the peak density
is shifted by varying the band hopping parameters. As the peak density moves towards small δ, its
height falls rapidly. This is understandable as the effect of the quasiparticle weight Z in the formulas
Eqs. (87), (88). We also note that the use of different expressions for the effective mass in Eqs. (92),
(93) change the width of the allowed regions somewhat, but are quite comparable.

The inset in Fig. 3 displays the d-wavefunction averages corresponding to the same sets of
parameters. It is interesting to note that the height of the peaks, Ψmax∼3.2, is close to their upper
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Fig. 4. The effective exchange Jeff from Eq. (89) for the three parameter sets — (i) (red) t ′/t= −0.159, t ′′/t= 0.01
with δpeak = 0.15, (ii) (blue) t ′/t= −0.137, t ′′/t = .01 with δpeak=0.13 and (iii) (purple) t ′/t= −0.181, t ′′/t= 0.01 with
δpeak=0.17. Since we assumed J/t ∼ 0.3 (Eq. (89)), Jeff /t is considerably enhanced in the range of densities exhibiting
high Tc . This enhancement in turn boosts up geff , via Eq. (88), and hence plays an important role in giving an observable
magnitude of Tc in Figs. 1 and 3. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

bound 4, from a type of constructive interference that requires comment. Note first that the DOS can
be expressed as a line integral in the octant of the Brillouin zone n(µ0) =

2
π2

∫ kmax
0

dkx
|vy(k⃗)|

, where the

velocity vy(k⃗) = 2 sin(ky)(t + 2t ′ cos kx + 4t ′′ cos ky) is evaluated with ky → ky(kx, µ0) on the fermi
surface. Thus the region of small |vy

| dominates the integral. If vy vanishes on the fermi surface,
we get a (logarithmic van Hove) peak in the DOS. Now the average of Ψ (µ0) is largest, when k⃗ is
close to {±π, 0} and {0, ±π}. Therefore if the fermi surface passes through {±π, 0} and {0, ±π}

for an ‘‘ideal density’’, then we simultaneously maximize the average of Ψ , and obtain a large DOS.
The condition for this is found by equating the band energy at {±π, 0} to the chemical potential
µ0 = 4t ′ − 4t ′′, thereby fixing the corresponding density δ. It follows that a given δ can be found
from several different sets of the parameters t ′, t ′′. The inset of Fig. 3 shows the average Ψ (µ0)
displays peaks, the middle one (red) coincides in location with the peak in the DOS in the inset of
Fig. 2.

In Fig. 4 we illustrate the role of the feedback enhancement of the exchange J due to the
background spectral function discussed in Eq. (89). For each set of parameters, there is a density
region where both the DOS at the fermi energy and the averaged d-wavefunction are enhanced,
and the confluence directly enhances Jeff . In turn this is reflected in the superconducting coupling
geff . In Fig. 5 we see how the confluence of enhancements in the DOS and in the d-wavefunction
Ψ (µ0), further boosts the superconducting coupling geff and offsets to some extent the suppression
due to a small magnitude of Z , as seen in Eq. (88). As a result of this competition Tc turns out to be
in the observable range. The additional y-axis in Fig. 5 translates the superconducting coupling geff
to an order of magnitude type transition temperature T appx

c = e−1/geff ×104 K . This scale helps us to
understand why Tc falls off so rapidly when δ increases beyond the peak value where the coupling
geff falls below ∼ 0.12, thereby rapidly suppressing Tc .

5. Conclusions

This work presents a new methodology for treating extremely correlated superconductors. The
exact equations of the normal and anomalous Greens functions in the superconductor are derived.
These are further expanded in powers of a control parameter λ related to the density of double
occupancy, and the second order equations are given in Eqs. (51), (52), (54), together with the
self consistency conditions Eqs. (25), (41). A further simplification is possible for T∼Tc where the
anomalous terms are small. This leads to a tractable condition for Tc given in Eq. (69), expressed
in terms of the electron spectral function. Further analysis uses a model spectral function Eq. (76),
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Fig. 5. The effective superconducting coupling geff (Eq. (88)) for the three curves in Fig. 3, with parameter sets — (i)
(red) t ′/t= −0.159, t ′′/t= 0.01 with δpeak = 0.15, (ii) (blue) t ′/t= −0.137, t ′′/t = .01 with δpeak = 0.13 and (iii) (purple)
t ′/t= −0.181, t ′′/t= 0.01 with δpeak = 0.17. The drastic decrease of Tc on both sides of the peak values in Fig. 3 can

be understood by referring to the second y-axis, giving the approximate temperature scale T appx
c = 104

× e
−

1
geff K. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

which is simple enough to yield an explicit expression for Tc in Eq. (87). More elaborate calculations
should be feasible upon the availability of reliable spectral functions, when one may directly solve
Eq. (68).

Our calculation delineates the regime of parameters where superconductivity is possible in the
t-J model within the ECFL theory. This regime turns out to be quite constrained. The calculation
highlights the requirement of a substantial magnitude of the d-wavefunction average and the DOS
at the fermi energy. It shows that Tc is maximal at a density where n(µ0), the bare DOS is peaked,
and is co-located with the peak of the fermi surface average of the d-wavefunction Eq. (71) (inset
Fig. 3). The latter aspect is understandable, since the passing of the Fermi level energy dispersion
through the zone boundary points {±π, 0}, {0, ±π}, promotes a peak in the DOS, and also leads to
the maximization of ⟨(cos px − cos py)2⟩FS . The prediction of a correlation between the peak in Tc
with a peak in the d-wavefunction average is testable, since the latter is amenable to measurement
using angle resolved photoemission.

In the approximation used here, the maximum Tc is nominally unbounded in a narrow density
range here due to the logarithmic singularity of the DOS. It is expected to be cutoff to a finite value
of O(102 K) due to a more exact integration over energies, when using a reliable spectral function,
in the place of the model used here. Such an integration would also supersede the Gor’kov-type
approximation of expanding around the fermi surface (

∫
dϵ n(ϵ) ∼ n(µ0)

∫
dϵ) employed here,

thereby flattening out the sharp peak into a smoother shape. Finally this mean-field description
of the superconductor is expected to be corrected by fluctuations of the phase, in a strictly two
dimensional case, and by interlayer coupling, in the physically realistic case of a three dimensional
system of weakly coupled layers.

In conclusion this work contains the essential outline of a new and controlled formalism to
treat superconducting states of models with extremely strong correlations, such as the t-J model.
A transparent calculation within a low order approximation is presented here. It demonstrates that
the exchange energy J can indeed provide the fundamental binding force between electrons forming
Cooper pairs. It leads to superconductivity with Tc ’s of O(102 K), in a finite range of densities located
away from the insulator, as also experimentally found in cuprate superconductors.
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