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We present a finite temperature �T� study of the t-J model on the two-dimensional triangular lattice for the
negative hopping t, as relevant for the electron-doped NaxCoO2 �NCO�. We study several thermodynamic and
transport properties in this study: the T-dependent chemical potential, specific heat, magnetic susceptibility, and
the dynamic Hall coefficient across the entire doping range. We show systematically how this simplest model
for strongly correlated electrons describes a crossover as function of doping �x� from a Pauli-like weakly
spin-correlated metal close to the band limit �density n=2� to the Curie-Weiss metallic phase �1.5�n
�1.75� with pronounced antiferromagnetic �AFM� correlations at low temperatures and Curie-Weiss-type
behavior in the high-temperature regime. Upon further reduction of the doping, a different energy scale,
dominated by spin-interactions �J� emerges. It is apparent both in specific heat and susceptibility, and we
identify an effective interaction Jef f�x�, valid across the entire doping range. This is in contrast to the formula
by Anderson et al. �J. Phys.: Condens. Matter 16, R755 �2004�� for the square lattice. NCO has t�0, hence the
opposite sign of the Nagaoka-ferromagnetic situation, this expression includes the subtle effect of weak kinetic
AFM �Haerter and Shastry, Phys. Rev. Lett. 95, 087202 �2005��, as encountered in the infinitely correlated
situation �U=�� for electronic frustration. By explicit computation of the Kubo formulas, we address the
question of practical relevance of the high-frequency expression for the Hall coefficient RH

* �Shastry et al.,
Phys. Rev. Lett. 70, 2004 �1993��. We hope to clarify some open questions concerning the applicability of the
t-J model to real experimental situations through this study.
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I. INTRODUCTION

Since the discovery of superconductivity for x�0.3 in
H2O-intercalated NaxCoO2, or NCO crystals,4 this com-
pound has drawn significant attention. NCO also displays a
variety of remarkable thermoelectric effects, such as an un-
usually large and magnetic-field dependent thermopower5 for
x�0.66 and a T-linear Hall coefficient.3,6 While some of its
properties are similar to those seen in high-Tc materials there
are some major differences. Both the cobaltates and the cu-
prates become superconducting in the vicinity of half filling.
However, in NCO this is enabled through electron doping x
between x=1/4 and x=1/3,7 while the cuprates require hole
doping. For both compounds the role of electron transport in
two-dimensional planes—separated by thick insulating
layers—appears to be crucial. While the cuprates have planar
square lattices �Cu ions�, a triangular lattice �Co atoms� re-
sults in NCO. The magnitude of the hopping integral seems
to be an order of magnitude smaller in NCO �Ref. 8� than in
the cuprates, thus leading to a lower temperature scale for all
physical phenomena. The experimental results indicate a rich
set of phases with x, and it seems difficult to obtain these
from a single simple model. However, the fundamental
model of strong correlations, namely the t-J model, seems
very promising in terms of explaining transport and thermo-
dynamic phenomena, and that is precisely the aim of this
paper.

In the half filled band, where strong interactions lead to
the spin-1

2 Heisenberg antiferromagnet �HAF�, the square ge-
ometry facilitates antiferromagnetism through its bipartite
nature, while the tendency towards antiferromagnetism in the
cobaltate system is weaker. However, extensive numerical
computations9 indicate Néel long-ranged order even in the

triangular lattice. Away from half filling, projected hopping
on the hole-doped �n�1� square lattice system �t�0� obeys
the Nagaoka mechanism.10 This results in a competition be-
tween the ferromagnetic �FM� kinetic operator and antiferro-
magnetic �AFM� potential energy for finite values of J lead-
ing to the formula espoused by Anderson et al., Jef f �J
−4x�t�. Conversely, in the current case of the electron-doped
triangular lattice �n�1� with a negative hopping t�0, AFM
tendencies are enhanced by the electronically frustrated ki-
netic energy operator, a phenomenon that we have previously
named kinetic antiferromagnetism �KA� in the case of a
single hole in the infinite U limit.2 In this study we explicitly
isolate the effect of KA by studying the J=0 case for various
dopings.

Beginning at a doping of only a single hole in the
infinitely correlated system, we track the effect of KA into
the intermediate doping regime. The specific heat develops a
low-temperature peak indicative of effective spin interac-
tions, generated by a dressed hole in an AFM-spin
background. The same effect is manifest in the susceptibility
results where we present an x- and J-dependent effective
interaction, with a small but finite AFM value in the case
of J=0. We proceed by an explicit computation of the
frequency-dependent Hall coefficient. The results show
weak frequency dependence of RH and encourage the appli-
cability of its high-frequency limit RH

* to practical situations.
While small in magnitude compared to the spin susceptibil-
ity, we show through an identity in terms of derivatives—
suggested by our numerical results—that the diamagnetic
susceptibility alone may be closely connected to the
temperature-dependent Hall coefficient.

This paper has two main objectives: We have recently
studied the origin of the Curie-Weiss phase in Ref. 11 by
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presenting the numerical results of the t-J model as applied
to NCO. In this, the companion long paper, we provide fuller
details of our results. Second, we will discuss the finite tem-
perature t-J model starting from the Nagaoka regime and
then extend into finite dopings. The structure is as follows: In
Sec. II we describe our model and the exact diagonalization
technique, which we utilize for our computations. We show
details of the relevant finite clusters and the inclusion of a
small magnetic field perpendicular to the two-dimensional
planes. Section III presents the results for the static proper-
ties: Sec. III A, chemical potential; Sec. III B, specific heat
and entropy, as well as Sec. III C, the spin susceptibility. We
point out the implications of electronic and spin frustration
for the temperature and doping dependence of these quanti-
ties. We then investigate in Sec. III D the dynamic Hall co-
efficient RH��� and compare its dc and high-frequency be-
havior. Last, in Sec. III E we draw a connection between the
Hall coefficient and the diamagnetic susceptibility as a rela-
tion between derivatives. For all properties, we study sys-
tematically the dependence on temperature, doping, and in-
teraction strength. In Sec. IV we conclude and summarize
our results.

II. MODEL AND EXACT DIAGONALIZATION

As a model for hole doped strongly interacting Mott in-
sulators, the t-J Hamiltonian can be applied to the experi-
mental situation of electron-doped NCO after an electron-
hole transformation,12 making use of the symmetry of the
Hubbard model in respect to half filling. The replacement
rules are t→−t, �= �1−n�=x, and qe→−qe, where � �x� al-
ways refers to hole �electron� doping away from half filling
and n is the electron density per site. This leads to the t-J
model

Ĥ = − t �
�i,j	,�

P̂Gĉi�
† ĉj�P̂G + J�

�i,j	

Ŝi · Ŝj −

n̂in̂j

4
� , �1�

where ĉi�
† �ĉi�� creates �annihilates� an electron of spin �, Ŝi

is the three-component spin-operator, n̂i is the number opera-

tor and i specifies the lattice site. P̂G denotes the Gutzwiller
projector and the summation is over all nearest-neighbor
pairs �i , j	.

In the following, whenever doping x is mentioned this
refers to electron doping in the NCO system and hole doping
in the model Hamiltonian. To compute the complete
spectrum—as required for thermodynamic properties—we
employ the canonical ensemble exact diagonalization tech-
nique for small clusters. The computational demand limits
the analysis to quite small systems and finite-size effects are
challenging to overcome. Nonetheless, careful comparison
between several systems of different geometry enables us to
extract the stable behavior and somewhat isolate finite-size
effects. Conversely, finite-size effects can help identify the
favored eigenstate of a system.

We have employed several toroidal and ladder geometries
with L=9, 12, and 18 sites, as well as the highly symmetric
icosahedral geometry. The icosahedron—a 12-sited platonic
solid with 20 equilateral triangular faces—shares the

property of geometric frustration with the infinite system
while the effect of the reduced coordination number �z=5�
appears to have only a small, quantitative effect on the com-
putational results �Fig. 1�c��. Our 12-site torus clusters are
depicted in Figs. 1�a� and 1�b�. A third 12-site cluster is the
simple 4�3 cluster �called torus c, not pictured�.

While the numerical effort of exact computations for
translationally invariant systems can be significantly reduced
by exploiting space-group symmetries of the Hamiltonian,
these symmetries are broken upon the introduction of a mag-
netic field, as relevant for the evaluation of the Hall coeffi-
cient. A magnetic field is introduced by the usual Peierls
substitution which modifies the hopping t between sites i and
j by

t → tij�A� = t exp
i
2	


0
�

i

j

A · ds� , �2�

where A is the magnetic vector potential and 
0 is the flux
quantum. We define the flux threading a triangular plaquette
as �
 2	


0
��A ·ds. In finite systems, the value of the smallest

nonzero magnetic field is limited to values of �
	 / l where
l is the length of a periodic loop in the system. Through a
particular gauge we can achieve l equal to the number of
triangular faces in the cluster, this guarantees the equality of
the flux values through all plaquettes. An example is given in
Fig. 1�a�. A similar strategy has been followed in the case of
the square lattice quantum Hall effect.13 We complement the
computations on periodic systems with ladder systems,
which enable an infinitesimal flux to be chosen due to open
boundary conditions in one of the spatial dimensions �Fig.
1�b�� and the Landau gauge is adequate. In the case of the
icosahedron �Fig. 1�c�� the magnetic field is applied through
a �fictitious� magnetic monopole in its center, creating equal
magnetic fluxes through all triangular plaquettes.

III. RESULTS

A. Chemical potential

The chemical potential is evaluated as a derivative of the
free energy F with respect to the particle number N,

��T� =
�F�T�

�N
.

The derivative has to be taken as a discrete difference of
F�N�. To take this derivative numerically, we use the central
difference formula. Hence it is suitable to define

�+ = F�N + 1� − F�N� and �− = F�N� − F�N − 1� .

The value of � can then be obtained from

� =
��+ + �−�

2
.

In Figs. 2�a� and 2�b� we present ��T� at several J and dop-
ings x. At low temperatures ��T� shows degenerate Fermi
behavior ��T2�.14 In the strong-correlation regime �J=0 and
J=0.4�t�� the ground-state �g.s.� internal energy has a
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maximum at intermediate dopings x�0.5 due to the compe-
tition of increasing number of mobile particles and reduction
of the available vacancies upon decrease of doping and
hence the low-temperature chemical potential changes sign
here. In the high-temperature regime the doping dependence
of the Hilbert-space dimension determines the limit of

��T → �� � T
�g�x�

�x

with g�x�= �1−x�ln�2x / �1−x��+ln�1/x� essentially the natu-
ral logarithm of the dimension of the Hilbert space. In the
projected t-J model, g�x� peaks at x=1/3. For x�1/3 the
slope at large T becomes negative. In Fig. 2 the comparison
of ��T� for different interactions shows that the impact of
projected fermions near half filling is to force a negative
slope of � for x�0 which occurs in the noninteracting sys-
tem only for x�0. This is an example of the qualitative
difference between a strongly interacting Fermi system and
its noninteracting counterpart.

At larger x�0.7 the effect of strong interactions is gradu-
ally lost and the temperature dependence resembles that of
the noninteracting Fermi system �Fig. 2�c��. For low tem-
peratures well below the linear range of �, finite J�0 gen-
erally increases the value of the chemical potential with a
stronger increase for x near the Mott insulator. The high-
temperature behavior is independent of J.

In Fig. 2�d� we compare the results with direct experimen-
tal measurements of the T-dependent chemical potential15 at
x�0.83. Since our results in this doping range are rather
insensitive to the value of U, we compare with our U=0
results. Here, ��T� was obtained directly from the tight-
binding density of states by the implicit equation �n	=2
��−�

� f�� ,������d� with fixed �n	=1+x, where f denotes the
Fermi-Dirac distribution function and � is the noninteracting
density of states. This fit confirms the notion of NCO as a
system with an unusually small Fermi temperature scale. In
Fig. 2�d� we show as a shaded region the values t=
−100 K to t=−300 K, photoemission results8 point to a
value of �t��10 meV�−118 K, hence �t� here is more than
an order of magnitude smaller than in the cuprate supercon-

FIG. 1. �Color online� Small numbers along arrows �red� denote
Peierls phases in units of the flux through a single plaquette, phases
on icosahedron �c� not shown for clarity. Dotted parallelograms
�black� specify boundaries of finite clusters �a� and �b�. All sites on
corners of parallelograms are equivalent and translations along
bounding vectors T1 and T2 tile infinite lattice; shaded region in �b�
forbidden for ladder. Note: different coordinate systems are used for
torus and ladder. For ladder system we use the Landau gauge with
A�yx̂, �a� represents only one choice �denoted torus a� for 12 sites.
Another �denoted torus b� results from ladder �b� by connecting all
corners through T1 and T2 �not shown�. Torus c is simple 3�4
cluster �not shown�.

FIG. 2. �Color online� Chemical potential ��T� for all accessible
dopings on torus b: x=2/12=0.16 to 10/12=0.83 for J=0 �a�, J
=0.4�t� �b�, and U=0 �c�. Data for U=0 computed for infinite non-
interacting system, comparison with �a�–�c� shows relatively weak
effect of interactions in the doping range x�0.8. �d� Squares are
experimental data for ���T�=��T�−��0� from Ref. 15 Shaded
area is a comparison with our data for U=0 for t=−100 K to t=
−300 K.
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ductors. In the following, when making contact with
experiments, we take t=−100 K for simplicity.

B. Specific heat, entropy

In Figs. 3�a� and 3�b� we present the specific heat per site,

Cv�T� =
1

L

d�E	
dT

,

with �E	 the thermodynamic expectation value of the internal
energy. We first concentrate on the case of J=0, correspond-
ing to an infinite on-site interaction. Near the band insulator
�x�1� the temperature dependence resembles that of nonin-
teracting fermions, computed at fixed particle density by first
determining ��T� and then the T derivative of the internal
energy. When the doping is reduced, the main energy scale—
manifest in a peak of Cv�T� at temperature
Tm�x ,J�—continuously moves to smaller temperatures, away
from the tight-binding peak. Even at our lowest doping
x=1/L the peak feature persists �called the KA peak�. This
feature is magnified in Fig. 4 for several different systems.

Numerical work on the g.s. of the problem of a single
hole in an AFM spin background2 suggests this system to
exhibit a weak effective AFM interaction Jef f �1/L due to
the projected kinetic energy term only. While for one hole
this excitation decays in the thermodynamic limit, Jef f none-
theless induces a Néel ordered AFM g.s. and low-energy

excitations similar to those observed in the HAF.9

The validity of our computations for the case of a single
hole is underscored by the entropy. In Fig. 5, the temperature
dependence of the entropy shows that the low-energy fea-
tures observed in the specific heat are necessary for the en-
tropy to obtain its �known� high-temperature limit. For
T / �t��0.075 half the entropy is recovered �s�T� /s���=0.5�,
indicative of entropy enhancement due to electronic
frustration.16 For intermediate dopings, the entropy reaches
half its maximum at T / �t��0.75 and for dopings
x�0.7—relevant to the Curie-Weiss phase of NCO—we find
T / �t��0.78.

Within a high-temperature expansion16 a numerical argu-
ment was given for an S-shaped low-temperature behavior of

FIG. 3. �Color online� Specific
heat per site as function of T for
varying x, computed on 18-site
�x
0.72� and 12-site cluster �x
�0.72�, �a� J=0, �b� J=0.4�t�.
Dotted lines show Cv�T� for non-
interacting fermions and solid line
for exact results. Note: scale
changes in plots of different dop-
ings, long temperature exponential
behavior at large x due to finite-
system induced gap in energy
spectrum. Results for x=0.72 ap-
peared in Ref. 11.

FIG. 4. �Color online� Cv�T� at x=1/L for several sets of bound-
ary conditions, peak in specific heat is system-independent property.
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the entropy for the case of x=0.2 and x=0.4. Our computa-
tions at small dopings rather suggest s�T for low T as ap-
plicable to a metal from Fermi-liquid arguments. It is re-
markable here that Cv�T� reflects these low-energy
excitations, notably even for larger dopings than the one
applicable to the Nagaoka situation.

We now distinguish the effect of J�0 �Fig. 3�b��. This
scenario has been investigated by several authors for the case
of the hole doped square lattice and the HAF.17,18 For the
situation of a single hole J�0 shifts the KA peak to larger
temperatures Tm=J / t. In Fig. 8�b� we present the peak posi-
tions as function of doping and J. We find Tm�x ,J� to in-
crease monotonically both with x and J and the slope as
function of J for fixed x to decrease for larger values of x.
Extrapolating these results at a given value of J to x=0 we
obtain roughly Tm�x=0��J. Our result should be distin-
guished from investigations on the t�0 square lattice,17

where Tm was found to follow the opposite trend decreasing
slightly with x at small dopings, along with a rapid suppres-
sion of the peak. This supports the notion of electronic frus-
tration contributing to AFM correlations in the present study
in opposition to competing AFM exchange coupling and the
FM Nagaoka mechanism in the case of t�0, capable of
quickly eliminating the low-energy spin excitations.

An experimentally interesting quantity related to the spe-
cific heat is � defined by Cv�T���T or �=ds /dT corre-
sponding to the low-energy electronic part of the specific
heat. When extracting this quantity from our numerical re-
sults, we neglect the contributions at very low T arising
purely from the finite system induced gap in the spectrum
�scaling as exp�−� /T� where � is the gap between the g.s.
and the first excited state�. For the large doping case x=0.7
we found11 ��45�±5� mJ/mol K2 ��0�33 mJ/mol K2 for
noninteracting tight-binding electrons�, indicating a signifi-
cant many-body enhancement. Experimental results19 indi-

cate ��26 mJ/mol K2. On the other hand, in the low-
doping regime the linear increase with T is only observed in
a very small temperature range and this range is possibly
better classified as a non-Fermi-liquid regime. Roughly,
��x� /�0�x��1 for x�0. The increase in � with decreased
doping is also demonstrated clearly by the low T slope of
s�T� in Fig. 5.

C. Spin susceptibility

To gain further insight into the role of spin fluctuations
and to address the existence of the experimentally observed
Curie-Weiss phase of NCO,20 we compute the spin
susceptibility ��T� as function of temperature from the
Gibbs free energy G�T ,M�, here M =�iSi

z is the total
magnetization. This quantity follows from the Helmholtz
free energy F�T ,H� through a Legendre transformation
G�T ,M�=F�T ,M�−H �F

�H =F�T ,H�+MH. H is the externally
applied magnetic field;

�−1 =
d2G

dM2

can then be evaluated numerically, by constraining the ca-
nonical ensemble to the sector of minimal �Sz

tot�, and those
sectors where Sz

tot is raised �lowered� by �.
For low temperatures, near the band limit �x=1� we iden-

tify weakly temperature-dependent, Pauli-like behavior of �,
reminiscent of the experimentally observed spin-density
wave �SDW�-phase �Fig. 6�. When x is lowered past
x=0.75 we find11 a crossover to a Curie-Weiss-like behavior
with appreciable renormalizations of the g.s. susceptibility
compared to its bare value, mirroring the experimental find-
ings. This behavior can roughly be understood by picturing
electrons distributed on an empty lattice: Initially, the many-
body eigenstate enables the electrons to move around with-
out interacting directly with their neighbors, yielding a sus-
ceptibility that is J dependent only to second order. When the

FIG. 5. �Color online� Entropy per site for three different dop-
ings at J=0 �x=1/12=0.08, x=5/12=0.42, x=13/18=0.72�, hori-
zontal lines indicate high-temperature limit s�T→��
=kB ln(g�x�) /N, x=0.08 corresponds to Fig. 4. Exponential increase
at low T for intermediate x due to finite system-size gap �.

FIG. 6. �Color online� Spin susceptibility per site ��T� for all
accessible dopings x on 12-site torus. Dependence on J / �t�
= �0,0.1,0.2,0.3,0.4,0.5�, indicated by arrow, blue dotted line
shows bare susceptibility for noninteracting fermions of density n
=1+x and black dotted line indicates susceptibility of isolated spin-
1
2 fermions of density n=1. Plots for x
0.58 appeared in Ref. 11.
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density is increased �n�0.25 or equivalently n�1.75�, elec-
trons are forced to interact through the exchange-coupling
directly and hence yield a strongly J-dependent magnetic
susceptibility. The emergence of the Curie-Weiss phase is
further supported by the strong magnetic-field suppression of
the Heikes-Mott term in the thermopower within the t-J
model, an effect due to spin entropy5 as was demonstrated in
Ref. 11.

For temperatures larger than a certain crossover tempera-
ture �which we call T*�, for all dopings, ��T� can be
described through the Curie-Weiss form

��T� =
1

3

L

V

�B
2 pef f

2

kB�T − ��

with the Weiss temperature � and the effective magnetic mo-
ment pef f, V is the volume of the crystal, and L is the number
of sites. For all accessible system sizes—in particular torus a,
b, c �Fig. 1�—we compute ��T� to extract �, pef f and T*, the
parameters characterizing the magnetic properties at a given

doping and interaction strength. To determine � and pef f we
fit the high-temperature part of our computations for ��T� to
the function f�T�=a / �T−b� �compare Fig. 7�a��. In Figs.
7�a�–7�c� we present the inverse susceptibility at several dif-
ferent dopings near the Mott-insulating phase. The results for
� and pef f are shown in Figs. 7�d�–7�f�. For all x and J
0, �
remains negative indicating AFM correlations. � shows a lin-
ear increase when the doping is increased or the interaction is
decreased. In short, as mentioned in Ref. 11, � can be col-
lapsed into the form ��x ,J�=−cJef f�x� where

Jef f�x� = J�1 + c�x�t�� + c�x�t�

with c=4.0, c�=0.014 25, and c�=−0.9175. In contrast
to the relation given by Anderson et al.1 in the case of the
t�0 square lattice, in our situation of t�0 even at J=0
there is a slightly negative intercept suggesting AFM spin
interactions in the low-temperature regime of the electroni-
cally frustrated U=� Hubbard model, indicative of kinetic
antiferromagnetism �KA�.

FIG. 7. �Color online� �a�–�c� Inverse susceptibility vs temperature for dopings x=1/12=0.08 �bottom�, x=2/12=0.16 �center�, and
x=3/12=0.25 �top� for torus a, b, and c �left to right�. Solid vertical arrows show increase in J, dotted �blue� line shows example for fit to
extract Weiss temperature ��x ,J� and effective moment pef f. Dotted vertical arrows indicate temperature T*; Note: comparison of the three
systems allows isolation of finite-size effects, most visible for x=0.16. �d� Effective magnetic moment pef f. �e� Weiss temperature � vs
doping x for J=0. . .0.5. Letters in angled brackets correspond to experimental data from �a� Viciu et al. �Ref. 21�, �b� Gavilano et al. �Ref.
22�, �c� Sales et al. �Ref. 23�, �d� Takeuchi et al. �Ref. 24�, �e� Motohashi et al. �Ref. 19�, and �f� effective moment of isolated
spin-1

2 -particles on half filled lattice. �f� Magnification of � vs x for J=0 for several clusters.
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On the other hand, once J�0 is allowed, this intercept
grows strongly and expresses dominant AFM correlations
�Fig. 7�e��. We compare these results with experiments for
various dopings �x�1/2� of NCO. Among others, the cases
of x=0.75,19,23,24 x=0.7,22 x=0.6, and x=0.9,25 various x in
the three-layer system21 and x=0.55 �Ref. 26� were experi-
mentally investigated. The comparison with experiment
proves difficult due to the large number of structural
phases,21 the role played by the Na ions in the crystal, and
the large quantitative and qualitative difference between
powder and single-crystal samples.23 However, the Weiss
temperature appears to lie between 100 and 200 K near
x=0.7 �varying considerably with H �c and H �a �Ref. 23��
and was measured to be smaller at larger dopings.21 Hence at
least for x�0.5 the t-J model description yields reasonable
experimental agreement.

The effective magnetic moment pef f in units of �B has a
value close to that obtained for localized spin-1

2 particles at
half filling �1/2=g��s�s+1�=�3 and decays linearly for
x→1.

The inverse susceptibility shows a minimum at a tempera-
ture T* which becomes more pronounced with increasing J.
At low temperatures the system prefers antiferromagnetic or-
der which is strengthened by J�0. Thermal spin fluctuations
break this order and when T is increased to values of order J
a small perturbative B field is sufficient to align spins anti-
parallel to the field. Hence the susceptibility is largest at this
temperature. When T is further increased, the ability of the
field to flip spins is weakened by thermal fluctuations, con-
sequently, ��T� decreases. The behavior of this peak as func-
tion of hole doping away from the Mott insulator has already
been investigated within a high-temperature expansion.16

Due to the small size of the systems available to our
study, it is difficult to confirm the results for the doping
dependence.16 Here, we study the behavior as function of J,
considering several dopings near half filling and several sys-
tem geometries �Fig. 8�a��. The figure indicates that T* / �t�
roughly scales as J / �t� hence the scale at which the system
undergoes a transition from an AFM-ordered to a paramag-
netic state is set by the interaction strength. As was shown
for the case of J=0 and t�0 in the hole doped system,2 a
single hole favors AFM Néel order and numerical results9

indicate that the triangular lattice Heisenberg model also fa-
vors Néel order—at least in the g.s. and the elementary
excitations—hence it is not surprising that a finite J�0 em-
phasizes this tendency. This is in opposition to the case of
t�0 where the kinetic energy term favors ferromagnetism
and competes with the Heisenberg interaction preferring
AFM.

D. Hall coefficient

Experimentally, NCO has been shown to exhibit unusual
thermoelectric properties, resulting from strong electron cor-
relations. Wang et al.6 measured the dc-Hall coefficient as a
function of temperature at several dopings showing unex-
pected temperature dependence with an oscillatory behavior
below 200 K and a rapid linear increase for temperatures
above 200 K.

Much theoretical work has been invested into the study of
RH on square lattices3,12,27–39 both for g.s. properties and for
finite temperatures. For the triangular lattice, it was possible
to predict the high-temperature behavior within a high-
temperature expansion of the t-J model3,12 in its high-
frequency limit. Several authors have also attempted to de-
scribe this behavior through Boltzmann transport theory36,37

within the relaxation time approximation, where RH is ex-
pressed as an integral over the Fermi-surface curvature and
the relaxation time �k is taken to be isotropic. For large
dopings—x
0.7—where the holelike Fermi surface of NCO
approximates a circle, this leads to the same high-
temperature linear coefficient as the t-J-high-temperature ex-
pansion, however, the behavior completely diverges in the
dense regime �x�0.7�, possibly due to the misleading re-
placement of the interacting Fermi surface by its noninteract-
ing counterpart. Also, at low temperatures—where the relax-
ation time is anisotropic—the oscillatory behavior seen in
experiments is not reproduced.

To shed some light on the low-temperature and strongly
correlated behavior, we start from the high-frequency limit3

for RH�T ,��:

RH
* �T� 
 lim

�→�
RH�T,�� = lim

B→0

−

ivL

Be2

��Jx,Jy�	
��x,x	2 � . �3�

Here, e is the electron charge, Jx �Jy� are the currents in x
�y� directions, v is the unit-cell volume, and �x,x is the diag-

FIG. 8. �Color online� �a� AFM-paramagnetic crossover tem-
perature as function of J for several dopings on 12-site torus clus-
ters a, b, c. �b� Evolution of Tm as function of J, values averaged
over three 12-site clusters a, b, c.
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onal part of the stress tensor. To ensure the effect of strong
correlations within this limit, it is necessary to force the hi-
erarchy t���U. We enable this by projecting out double
occupancy using the Gutzwiller projector, hence the t-J
model is the appropriate description.

Our plan is as follows: we show the connection of
this high-frequency limit—not measurable in
experiments—to the dc or low-frequency behavior. Then we
evaluate the dependence on the parameters T, J, and x for
several systems. Hence for the first part we compare RH

* with
the expression derived from the Kubo formulas for the
electrical conductivities

��,� =
ie2

�v
���,�	 −
1

Z
�
�,�

exp − ����� − exp − �����
�� − �� − � − i�

���J���	

����J���	� , �4�

with �� the �th energy eigenvalue of Ĥ and Z the canonical
partition function. In terms of this expression the Hall
coefficient is given by

RH��� = v
�

�B

 �x,y���

�x,x����y,y���
�

B=0
. �5�

As a transport object RH is a demanding quantity to study
on finite clusters. The effect of boundary conditions and their
finite-size implications are difficult to eliminate. We intro-
duce a small magnetic field through the Peierls substitution
�Eq. �2�� which impacts only on the orbital motion of the
electrons and does not couple to the spin. Studying RH on
toroidal and spherical geometries reduces the finite-size ef-
fects on the transport, however, these periodic systems con-
strain the smallest accessible flux 
0 to 	 /L. For L=12 this
is already a considerable flux. An alternative are ladder
systems such as in Fig. 1�b� where the limit 
0→0 is
possible. However, ladders have additional finite-size effects
impacting on the transport quantities.

For several dopings �x=0.08,0.67,0.75,0.83� we com-
pute RH��� as a function of temperature both on the torus
and the icosahedron. To take into account the finite size of
the system, a broadening � of the energy equal to the mean
level spacing of the current matrix elements was employed,
this requires ��3�t�. In Fig. 9 we show RH as a function of
temperature at three different frequencies. Comparing �=0
to �=� we find that the dc limit is qualitatively the same
as the high-frequency limit, however, the overall temperature
dependence is scaled by a renormalization factor
s
RH�T ,�=0� /RH�T ,�� where s is only weakly tempera-
ture dependent. For the torus, s was found to be 0.83 �0.78�
at x=0.83 �x=0.75�. At x=0.083 the many-body renormal-
ization is stronger.

Conversely, in Fig. 10 we show the frequency dependence
of RH at several temperatures and different dopings. Similar
to the work done by Grayson et al.40 on the Hall angle, finite
frequency experiments may be helpful to confirm the weak
frequency dependence seen in our computations: With �t�
�10 meV results in the frequency range �
3�t��30 meV
could be compared to our theoretical results and hence

lend experimental support for the usefulness of the
high-frequency limit3 of RH.

We have computed two additional quantities related to the
dc limit as checks of the validity of the dc computations.
Zotos et al.29 derived an expression for the g.s. expectation
value, RH�T=0�= 1

�e�
d

dn ln D�n� with D the charge stiffness

D=
d2�E	0

d
2 , �E	0 the g.s. energy, and 
 a constant flux inducing
a persistent current.41 In this fashion, we evaluated the dop-
ing dependence of the g.s. and found RH

0 �0 in the experi-
mental regime near x�0.7 and a divergence RH

0 →−� as
the Mott limit is approached.11 The second check refers
back to the basic definition of the dc-Hall coefficient
RH=−Ey / �Bjx� and computing this directly on a ladder sys-
tem. This computation showed no change of sign for
x�0.7 as a function of T and a qualitatively similar behavior
to the �=� result.

FIG. 9. �Color online� RH�� ,T� on 12-site torus at several
frequencies for several dopings and J=0.

FIG. 10. �Color online� RH��� at several temperatures and
dopings as function of frequency on 12-site torus a for J=0.
Temperatures in all plots T / �t�= �0.5,1 ,2 ,4�.
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Encouraged by the notion of weak frequency dependence,
we studied RH

* 
RH��=��. We have studied several 12
site tori, several doping values on an 18 site torus, the
icosahedron and several ladders.

The g.s. RH
* �x� shows a Drude dropoff near the band in-

sulator and a saddle point around x=0.5 as was reported by
the authors in Ref. 11. When the strong-correlation regime
near the Mott insulator is approached �x�1/2�, the slope
again increases and for 1 hole �x=0.083� RH

0 changes sign.
The high-temperature behavior confirms the prediction

from the high-temperature series expansion.3,12 The interest-
ing temperature range is for T�2�t� where the experimental
data show an oscillatory behavior and analytical results are
not available �Fig. 11�. Our computations show a distinct
minimum in RH�T� which appears near T= �t� in the Curie-
Weiss regime �x�0.7� and continuously moves to smaller
temperatures as the doping is decreased. For the smallest
dopings accessible �x=1/L� this minimum appears near
T=0.2�t�, while the behavior becomes linear at higher T in all
cases. In the Curie-Weiss regime some systems also show a
weak maximum close to T=0.25�t�. These results point to-
wards the existence of two distinct energy scales. The pro-

nounced minimum appears to be correlated with the peak in
the electronic specific heat �Fig. 11�, which also occurs
around T= �t� in the band limit, and gradually shifts towards
smaller temperatures with decreased doping.

To strengthen this point it is useful to include the depen-
dence on J. As reported for the specific heat, the effect of J is
to move the peak in specific heat to larger temperatures. This
behavior is mirrored by RH. In Fig. 11 we show RH�T� for
several dopings and J. At x=0.75 the peak of Cv�T� shifts
from T=1.3�t� to T=1.5�t� while the minimum in RH�T�
moves from T=0.75�t� to T=1.1�t�. At x=0.67 the behavior
around T= �t� is similar, however, an additional peak in the
specific heat emerges at T�0.5�t�. A qualitatively similar fea-
ture is seen in other clusters, however, its magnitude is de-
pendent on the system geometry. Hence we do not attempt to
extract quantitative information in the T range below
T=0.5�t�. Nonetheless, it is important to note that with de-
creasing doping a second energy scale—caused by spin
interactions—becomes dominant. At small doping x=0.16
and x=0.08 the specific heat becomes strongly J dependent
and the main peak in the specific heat—as discussed in the
first section—increases significantly with J. The variations in
RH�T� with J are also more pronounced.

FIG. 11. �Color online� �left�
RH

* �T� for several x and J for torus
b. �right� Cv�T� for several x and J
on same torus.
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Assuming t�−100 K we compare our results to the ex-
perimentally available data6 at x=0.31 and x=0.71, this was
done in Ref. 11 for x=0.71. In Fig. 12 the comparison at
x=0.31 shows good agreement for the slope at high T and
reproduces the temperature scale for the minimum near
25 K. For x=0.71 the temperature scale for the minimum
near 100 K is seen both in experiment and theory. The slope
of the high-temperature limit differs by a factor of 4 and was
adjusted in the plot for better comparison. Also, the theory
does not show the change of sign as function of temperature.
However, the oscillatory behavior below T=100 K and the
onset of the linear increase for T�200 K agrees well with
experiment. Hence the exact temperature dependence of RH
remains a challenging task—both on the theoretical and
experimental side.

E. Diamagnetic susceptibility

Last, we study the orbital susceptibility per site,

�d�T� 
 −
1

L

�2F

�B2 ,

where F is the free energy and B is the magnitude of the
perpendicular magnetic field. We define the dimensionless
flux �=BA /
0 through a triangular plaquette with
A=�3a2 /4 the area of the plaquette and a the lattice spacing.
We get

�d = −
1

L

�2F

��2
 ��

�B
�2

It is useful to employ ladder systems as shown in Fig. 1�b�.
Defining t=�2 /2ml2 we have

1

L
�d = −

2m

�2l2A2�B
2 1

L

�f

��
,

where f is the dimensionless F / t and �B is the Bohr magne-
ton. In Fig. 13�a� we present the diamagnetic susceptibility
and its first two derivatives with respect to T. For free elec-
trons in an infinite system, �d corresponds to electrons mov-
ing in circular orbits with radii inversely proportional to the
magnetic field. RH measures the polarization induced in a
system with a stationary current and perpendicular magnetic
field. It is hence reasonable to ask for a connection between
these two quantities. Our numerics suggest the relation

T
�2�d

dT2 = c�x�
�2RH

�T2 , �6�

where c�x� is a function depending on doping x.
In Fig. 13�b� we display our numerical result for RH

* �T� at
a doping relevant to the experimental situation6 compared to
the result obtained from integrating Eq. �6� and choosing the
two integration constants appropriately. For J=0 this was
done by the authors in Ref. 11 Ignoring the range for
T�0.5�t� which may be strongly influenced by finite-size
effects, we find that both curves show a minimum at T��t�

FIG. 12. �Color online� Comparison of 12-site torus b and icosa-
hedron with experiment �Ref. 36� at x=0.31 and x=0.71, we take
t=−100 K, in the lower plot our numerical results are scaled to
match the slope of the linear part at T�200 K in the experimental
results.

FIG. 13. �Color online� �a� �d�T� and unitless Hall coefficient rH

and their derivatives on a 12-site ladder at x=0.83. �b� Comparison
of numerical results for x=0.83 for RH

* �T� �obtained on an 18-site
torus� with the integral of Eq. �6� ��d�T� obtained on a 12-site
ladder system� for two different values of J. Appeared partly in Ref.
11.
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and then increase until T=2�t�. The reaction to finite J�0 is
also similar for both curves, moving the minimum from T
= �t� to roughly T=1.25�t�. We plan to further investigate this
connection within a high-temperature expansion for �d�T�, in
particular for the doping regime close to the Mott insulator.

IV. CONCLUSION

In summary, we have presented a systematic study of the
entire doping regime for the triangular lattice t-J model with
electronic frustration �t�0 for n�1�. We have identified
low-energy excitations, stemming purely from kinetic pro-
cesses �J=0� of infinitely correlated spin-1

2 fermions. These
are manifest in a peak structure in the specific heat emerging
at very low T near the Mott insulator, however, persisting for
intermediate dopings. The effect of electronic frustration is
further supported by entropy enhancement in the underdoped
regime with a low entropy recovery temperature.

We have studied both the diamagnetic and spin suscepti-
bility. For the spin susceptibility we extract a relation for
effective spin interactions ��x ,J� valid for all dopings. This
stands in contrast to Anderson’s formula for FM t�0, since
in our case antiferromagnetism is supported rather than sup-
pressed by doping. In the experimentally relevant doping
range of x�0.5 we offer an explanation for the crossover
between the Curie-Weiss and SDW metallic phases, as ob-

served in experiments.7 For the diamagnetic susceptibility �d
a connection is obtained between �d and the temperature-
dependent Hall coefficient.

The dynamic Hall coefficient reveals a weak frequency
dependence and a qualitatively similar dc and high-
frequency behavior, with stronger renormalizations close to
the Mott limit. This strengthens the practical relevance of the
high-frequency limit3 RH

* . The temperature dependence con-
firms the linear slope at high temperatures3 and reproduces
the experimentally observed minimum near T=100 K at
x=0.71.

In conclusion, the t-J model is applicable to NCO for
x�0.5 and shows that the interface of strong correlations
and metallic behavior indeed describe the experimental situ-
ation here. For x�0.5 the frustrated t-J model leads to subtle
effects of strong correlations, even in the case of J=0. Our
results show that for the proper description of experimentally
observed normal-state properties7 there—such as the charge-
ordered insulator at x=0.5 or the paramagnetic metal for
x�0.5—an extension of the simple t-J model would be
necessary.
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