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Entropy, frustration, and large thermopower of doped Mott insulators on the fcc lattice
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Electronic frustration and strong correlations may lead to large Seebeck coefficients. To understand this physics
on general grounds, we compute the thermopower of the one-band Hubbard model on the three-dimensional fcc
lattice over the whole range of fillings for intermediate and large interaction strengths. Dynamical mean-field
theory shows that when the density approaches half-filling, the fcc lattice at strong coupling exhibits a large
low-temperature Seebeck coefficient S. The largest effect occurs as one approaches n = 1 from dopings where
electronic frustration is maximized. The high-frequency limit of the thermopower and the Kelvin limit are both
used to provide physical insight as well as practical tools to estimate the thermopower. The high-frequency limit
gives a reliable estimate of the dc limit at low temperature when the metal becomes coherent. By contrast, the
Kelvin approach is useful in the strongly interacting case at high temperature when transport is incoherent. The
latter result shows that in doped Mott insulators at high temperature and strong coupling, the thermopower can
be understood on entropic grounds.
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I. INTRODUCTION

The search for better thermoelectric materials has focused
on strongly correlated materials in recent years, going beyond
traditional semiconductor systems. Narrow-band correlated
oxides in quasi-two-dimensional systems such as sodium
cobaltate NaxCoO2

1 show large thermoelectric power (or
Seebeck coefficient S) S ∼ 100µV/K, at ∼100 K. Mott
Hubbard physics is invoked to understand this extraordinary
scale of S in NaxCoO2 and SrxLa1−xTiO3,2 often in the limit of
zero bandwidth or atomic limit t → 0.2–4 More recently, FeSb2
(a Kondo insulator or a correlated band insulator) has drawn
much attention.5–7 This is a three-dimensional compound
with a colossal Seebeck coefficient S ∼ 45 000 µV/K that
is of great interest for thermoelectric cooling at cryogenic
temperatures.

For more traditional classes of thermoelectric materials,
such as the semiconductor Bi2Te3, the Bloch-Boltzmann
transport theory points to a way to optimize the band structure
for thermoelectric applications.8 In the case of strongly
correlated materials, the situation is much more complicated
due to the fragility of the quasiparticles. These appear with
strongly renormalized physical properties only in the so-called
coherent regime that may develop at very low temperatures in
the presence of correlations. Strongly correlated systems favor
large thermopower then because the large effective masses
correspond to small Fermi temperatures. The temperature scale
for maximum thermopower is set by fractions of hopping t .
Estimates for real materials give for V2O3

9 t ≈ 580 K, for
FeSi10 t ≈ 152 K, and t ≈ 100 K for NaxCoO2.11 Hence the
peaks that are found for T < t as well as the strong temperature
dependence up to about T ∼ t are in a physically relevant
temperature range not far from room temperature. Room
temperature may even fall in the incoherent regime where
Fermi liquid theory does not apply and S can be large.

Early studies of the effect of correlations on the ther-
mopower focused on the Hubbard model on unfrustrated
lattices.12–16 On these unfrustrated lattices, it is unlikely that

large values of thermopower S can be achieved17 because
when the temperature T is of the order of the coherence
temperature T coh, the thermopower has contributions from the
quasiparticle peak but also from the adjacent Hubbard band
and these contributions have opposite sign. Study of the effect
of frustration on the cubic lattice with next-nearest-neighbor
hopping at half-filling for interaction strengths below the
Mott transition18 show that the peaks that are obtained in S
are similar to those in the electronic specific heat and are
associated with the thermal destruction of the quasiparticles.
More recently, realistic calculations17,19 of thermopower for
experimentally interesting compounds have shown increase in
thermopower due to correlations.7,20,21 The role of frustration
has been emphasized in particular for the cobaltate NaxCoO2
using the t − J model on a 2D finite triangular lattice.11

Realistic calculations for that compound22,23 demonstrate that
frustration and interactions combined also with disorder can
lead to large enhancements.

Here we focus on a generic model system with no disorder.
More specifically, we study the fcc lattice because of its
prevalence in materials and because its electronic structure
is frustrated already for nearest-neighbor hopping. Shastry
and coworkers24–27 have argued that in correlated materials,
electronic frustration can amplify the Seebeck coefficient
considerably beyond Bloch-Boltzmann (band) theory expec-
tations. The fcc lattice has optimal thermopower, according
to the Bloch-Boltzmann theory,8 when the chemical potential
coincides with the sharp peak in the density of states. Here
we show, instead, that in the presence of interactions, large
thermoelectric effects appear at low temperatures close to
half-filling and for dopings that correspond to large electronic
frustration, provided the system is sufficiently correlated that
the half-filled band is insulating. We show that insights on
the temperature and doping dependence of our results may
be obtained from methods developed recently by Shastry and
coworkers.24–27 In these approaches, one considers either the
high-frequency limit or the ultralow frequency (Kelvin) limit.
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In the latter case, the thermopower is related to the density
dependence of the entropy at fixed temperature. We find that
such entropic considerations beyond the Bloch-Boltzmann
theory can control the thermopower in the incoherent regime
and that in the coherent regime the high-frequency limit is often
reliable. In other words, while approximate, these approaches
also give correct order-of-magnitude estimates and bypass the
difficulties facing Kubo formula calculations. These methods
can be straightforwardly implemented in existing codes for
realistic calculations.28

In the next section, we describe the model and the dynamical
mean-field theory (DMFT) approach along with the three
formulas used for thermopower: Kubo, high-frequency, and
Kelvin. The results are then discussed for two values of interac-
tion strengths, half bandwidth, and two times the bandwidth, in
the context of the Kubo formula. The next to last section makes
comparisons with the high-frequency and Kelvin approaches.
We end with a summary. Appendix A shows that in the strong-
coupling limit the thermopower changes sign at half-filling
n = 1 instead of n = 0.8 in the Bloch-Boltzmann theory.
Appendix A presents benchmarks, in the worse case, of the
impurity solver we used for the Kubo calculations.

II. MODEL AND METHODS

A. DMFT

Dynamical mean-field theory (DMFT) has proven its accu-
racy for the Hubbard model and its predictive power for real
materials29,30 that have a clearly three-dimensional structure,
despite the fact that the method is exact only in infinite dimen-
sion. Here, we apply it to the one-band Hubbard model on the
fcc lattice where the single-particle dispersion is given by εk =
−4t[cos(kx) cos(ky) + cos(kx) cos(kz) + cos(ky) cos(kz)]. We
take nearest-neighbor hopping t positive.

We consider only the paramagnetic phase. To solve the
impurity problem of DMFT, we use two different methods.
(1) The numerically exact continuous time quantum Monte
Carlo method (CTQMC),31 a finite temperature approach
that relies on the Monte Carlo summation of all diagrams
obtained from the expansion of the partition function in powers
of the hybridization ". This method does not have errors
associated with time discretization or bath parametrization and
is therefore exact within statistical errors, but computationally
expensive. (2) When analytical continuation is an issue for
this method, we rely on iterated perturbation theory (IPT),
an approximation method based on an interpolation from
second-order perturbation theory for the Anderson impurity
problem.32 The interpolation preserves the correct high-
frequency limit for the self-energy and is exact in both
the noninteracting and the atomic limits. For U/t in the
intermediate-coupling regime, the condition of Refs. 33 and 18
to fix the bath occupation number leads to accurate results.
However, at finite temperature and large U , we need to
use the version of IPT that was developed and carefully
benchmarked in Ref. 34. In this approach, IPT-D, one needs
double occupancy. At very large U , the simplest estimate for
double occupancy suffices. We checked for many observables
that CTQMC and IPT in this particular implementation give
similar temperature-dependent properties.

B. Thermopower

A general Kubo formula for the thermopower may be
written down using linear response theory24 as

S(qx,ω) =
χĴx (qx ),K(−qx )(ω)

T χĴx (qx ),ρ(−qx )(ω)
, (1)

where the susceptibility of any two operators A,B is given
by χA,B(ω) = i

∫ ∞
0 dt eiωt−0+t 〈[A(t),B(0)]〉 and ρ, K =

H − µN̂ , and Ĵx are the charge density, the (grand canonical)
Hamiltonian, and the current operator, respectively, at finite
wave vectors. The fast limit, where q → 0 first and then
ω → 0, is the relevant limit that we will call SKubo, for dc
transport.35 In other words, the correct procedure is to take the
thermodynamic limit first, followed by the dc limit. Taking first
the q → 0, i.e., thermodynamic limit, allows the energy-level
spacing to go to zero when the system is in a metallic state, as
is necessary to obtain a finite dc conductivity.

Since the methods of solution for DMFT are formulated
in Matsubara frequency, one needs analytical continuation.
With methods that do not involve statistical uncertainties,
Padé approximants can give meaningful results.18 However,
the most accurate modern method to solve the DMFT
equations, namely, CTQMC, requires analytical continuation
of numerical data that contains statistical uncertainties. In such
a case, one usually resorts to maximum entropy methods.
However, since the kernel for χĴx (qx ),K(−qx )(ω) is not positive
definite, it is not practical to analytically continue directly the
response function. Fortunately, in single-site DMFT, the vertex
corrections vanish for one-band models,36,37 so analytical
continuation of single-particle Green’s functions and/or self-
energies, in principle, suffices. Still, analytical continuation is a
difficult task even for maximum entropy methods. That is why
to compute SKubo we performed the analytical continuation on
the self-energy obtained by IPT-D using the Padé N points
algorithm that can be found in Ref. 38. SKubo is then calculated
using the real frequency equations18 given by

S = − kB

|e|T

∫
dω

(
− ∂f

∂ω

)
ω

∫
dεN(ω,ε)2X(ε)

∫
dω

(
− ∂f

∂ω

) ∫
dεN(ω,ε)2X(ε)

, (2)

where f is the Fermi function, while the so-called transport
function X(ε) is given by

X(ε) =
∑

k

(
∂εk

∂kx

)2

δ(ε − εk) (3)

and the spectral function is defined by

N (ω,ε) = − 1
π

Im
[

1
ω − (ε − µ) − )(ω)

]
. (4)

In Ref. 34, we showed that the results obtained for the
resistivity were at least qualitatively valid.

Two new approximate methods to compute the
thermopower24,27 without analytical continuation, namely the
superfast limit S∗ and the Kelvin formula SKelvin, are explained
below. They have the advantage that they do not require
analytical continuation. In addition, they have physical content
that will help us identify the origin of enhanced thermopower.

Consider first the superfast limit of Eq. (1), S∗ =
limω)ωc *q→0 S(q,ω), where ωc is the largest characteristic
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frequency in the problem. In the case of the Hubbard model, we
would identify ωc = max{W,U}, where W is the bandwidth.
In terms of the thermoelectric operator *xx and the stress
tensor τ xx that appears in the f -sum rule,24 the quantity S∗

is equal to 〈*xx 〉
T 〈τ xx 〉 . Since the Seebeck coefficient is a ratio

of transport coefficients where the scattering rate cancels in
the relaxation-time approximation, it is conceivable that it
may have a weak dependence on frequency. It turns out that
S∗ captures much of the many-body content of the exact
SKubo when the characteristic ωc is not too large.24 For the
Hubbard model, the commutators can be evaluated exactly
and the correlation functions evaluated solely in terms of the
single-particle Green’s function:28,39

〈*xx〉 = qe

β

∑

k,n,σ

eiωn0+
Gσ (k,iωn)

{
)σ (k,iωn)

∂2εk

∂k2
x

+ ∂

∂kx

[
∂εk

∂kx

(εk − µ)
] }

, (5)

with qe the (negative) charge of the electron. While one can
show that limT →0〈*xx〉 = 0 when U = 0, for interacting
systems, it was found in numerical calculations25,26,28 and
from Fermi liquid theory that limT →0〈*xx〉 += 0 and hence,
S∗ diverges as T vanishes. Indeed, at large frequency, there
are reactive parts to the energy transport that should not be
considered part of the thermal current. We thus eliminate
the constant term limT →0〈*xx〉 ≡ 〈*xx〉0 by fitting the low-
temperature part of 〈*xx〉 to 〈*xx〉0 + bT 2, a functional
form derived from the Sommerfeld expansion that empirically
remains valid in the presence of strong interactions. We then
define the thermopower in the super fast limit by

S∗∗ = 1
T

〈*xx〉−〈*xx〉0

〈τ xx〉
. (6)

Not subtracting 〈*xx〉0 leads to large deviations between S∗∗

(now only S∗) and SKubo at low T for all dopings, contrary to
what we find.28 Note that the stress tensor τ xx is given by

τ xx = q2
e

∑

k,σ

∂2εk

∂k2
x

nk,σ , (7)

where nk,σ is the occupation number for state k,σ .
The second approximate method considers the slow limit

of the general formula for thermopower, Eq. (1). This means
that we invert the order by which we are taking the limits in
Eq. (1), i.e., the dc first. As noted earlier,24,27 this leads to a
finite and interesting answer that is termed the Kelvin formula:

SKelvin = lim
q→0

lim
ω→0

S(q,ω)

= 1
qe

(
∂s

∂n

)

T ,V

= − 1
qe

(
∂µ

∂T

)

V,n

, (8)

where s is the entropy density, n is the number density, V is
the volume, µ is the chemical potential, kB is Boltzmann’s
constant, and where the last form follows from a Maxwell
relation. The formulas for S∗∗ and SKelvin approach SKubo from
two different limits.
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FIG. 1. (Color online) S in µV/K for U = 0 as a function of
T/t for different values of density: n = 0.2 [yellow (!)], 0.4 [black
(◦)], 0.6 [blue (∗)], 0.8 [red (")], 1.2 [green (♦)], 1.4 [cyan ($)], 1.6
[magenta (%)], and 1.8 [brown (.)].

III. RESULTS

A. Band limit

The Seebeck coefficient in the band limit (U = 0) and
constant relaxation-time approximation is displayed in Fig. 1
along with the noninteracting density of states as an inset.
The bare bandwidth is 16t . The horizontal triangles & on
this plot indicate the temperature T/, below which the leading
term of the Sommerfeld expansion for the U = 0 case is 90%
of the full answer. The sign and magnitude of the results in
Fig. 1 depend mostly on the particle-hole asymmetry [X(ε) +=
X(−ε)] of the energy-dependent transport function given by
Eq. (3), X(ε) =

∑
k( ∂εk

∂kx
)2δ(ε − εk), computed in Ref. 34. At

the qualitative level, the behavior of the thermopower is easy
to understand. Below T/ it is linear, the behavior expected
from Fermi liquid theory. The low-temperature thermopower
changes sign from negative to positive when the Fermi
surface turns from electron-like to holelike at the van Hove
singularity in the density of states, located around n = 0.8.
In the large-temperature limit, the thermopower saturates to
a value of the order of the fundamental unit of thermopower,
kB/|e| = 86 µV/K. As can be seen from the sharp peak in
the density of states, the absolute value of S is maximum
in the large T limit and for an almost filled band where the
largest deviations from particle-hole symmetry occur. This
asymmetry comes from the fact that the electronic spectrum
for large filling is frustrated: the extrema of the band dispersion
for excitations are not at high-symmetry points in the Brillouin
zone. This may be understood simply from the electronic
spectrum of a single triangle. Any site forms, with any pair of
its nearest-neighbors on the fcc lattice, an equilateral triangle.
Note that frustration leads to low values of T/.

B. Weak and strong-coupling limits

Armed with this understanding, we turn to the two inter-
acting cases displayed in Fig. 2. The value U = 8t , namely
half the bandwidth in Figs. 2(a)–2(c), is in the intermediate
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FIG. 2. (Color online) SKubo, SKelvin, and S∗∗ as a function of
T/t as calculated with IPT for Kubo and CTQMC for the Kelvin
and high-frequency estimates for two values of interaction U = 8t

(a)–(c) and U = 32t (d)–(f) for different values of density: n = 0.4
[black (◦)], 0.6 [blue (∗)], 0.8 [(red (")], 0.84 [black dashed (!)],
0.88 [blue dashed (.)], 0.92 [(red dashed (×)], 1.08 [(green dashed
(')], 1.2 [green (♦)], 1.4 [cyan ($)], and 1.6 [magenta (%)].

coupling range, whereas U = 32t , twice the bandwidth, in
Figs. 2 (d)–(f) is representative of strong coupling. These
values of U are respectively below and above the Mott
transition at half-filling. For each value of U , we evaluate
S in three different ways: SKubo, SKelvin, and S∗∗.

Let us move slowly through the many different results
displayed in Fig. 2. In these figures, we do not display the
results far away from half-filling, namely, n = 0.2 and 1.8,
since they are essentially the same as in the band limit Fig. 1.
Indeed, at low density, the carriers (electrons at n = 0.2 and
holes at n = 1.8) can avoid each other and the interaction is
not important. Raising the carrier densities, we see that for
n = 0.4 (black) and n = 1.6 (magenta) the results still do not
depend much on U . In addition, the results for SKubo and S∗∗

are very close to each other.
As we move closer to half-filling, the thermopower becomes

more sensitive to interactions. Let us then first focus on
SKubo Fig. 2(a) at weak to intermediate coupling, U = 8t . At
densities n = 0.6 (blue), 0.8 (red), 1.2 (green), and 1.4 (cyan),
the main qualitative changes are a sign change as a function of
T for n = 0.6 (blue) and n = 0.8 (red) and the appearance of
a small low-temperature peak for the four fillings. However,

the absolute values do not exceed the largest absolute values
that can be reached in the band limit by doping.

At strong coupling, U = 32t , there are larger deviations
from the U = 0 results. The system is an insulator at n = 1.
Upon doping, it develops a large Seebeck coefficient with
nontrivial T dependence even below T/ defined in Fig. 1. In
Fig. 2(d), at the fillings discussed above, n = 0.6 (blue), 0.8
(red), 1.2 (green), and 1.4 (cyan), the peaks in SKubo are more
pronounced at large U and there is a sign change at finite
temperature even for n = 1.2. One finds an extremum at low
temperature: for example, for n = 0.8 (red), S ≈ −15µV/K at
T = 0.3t , for n = 1.2 (green), S ≈ 57µV/K at T = 0.24t , or
for n = 1.08 (dashed green), S ≈ 71.23µV/K at T = 0.01t .
This represents at least an increase by a factor 3–4 to more
than an order of magnitude with respect to the noninteracting
case. The appearance of pronounced peaks at low temperature
that are absent in the noninteracting limit reflects, as pointed
out in Ref. 18, the fact that Fermi liquid coherence is recovered
only at very low temperature in the presence of strong
correlations.29 The peaks for S are similar to those of the
specific heat (see Fig. 9 of Ref. 34) and define T coh, as noted
before.18 Since T coh in IPT-D and CTQMC is similar,34 the
positions of the peaks in SKubo should be correct. Frustration
is a factor that contributes to make the Fermi liquid coherence
T low. It also plays a role in the t − J model on the triangular
lattice.11 The results also confirm the predictions of Shastry
using S∗∗ concerning the dependence of the thermopower on
the sign of t on a frustrated lattice.

The results very near half-filling, shown by dashed lines
in Fig. 2(d) are especially interesting: (a) large thermopower
develops at low temperature above half-filling where there is
frustration. (b) The low-temperature slope changes sign near
n = 1 by contrast with the smaller U results where the sign
change occurs near n = 0.8. We show in Appendix A that the
change of sign of SKubo at low temperature near n = 1 can be
confirmed directly from the CTQMC results. From a Fermi
liquid point of view, this phenomenon reflects the importance
of particle-hole asymmetric termsωT 2 andω3 in the scattering
rate.17

IV. OTHER MEASURES OF THERMOPOWER:

Here, we compare S∗∗(T ) and SKelvin(T ), respectively, in
Figs. 2(b), 2(c), 2(e) and 2(f), with the corresponding SKubo(T ).
The results for S∗∗(T ) and SKelvin(T ), obtained directly
with CTQMC without analytical continuation, provide both
physical understanding and an alternate more straightforward
way to estimate the thermopower. For S∗∗(T ), results for
both U = 8t and 32t obtained using IPT give basically the
same results as those obtained from CTQMC. Hence they
can be considered reliable. For SKelvin(T ) at large U = 32t , we
obtained the same qualitative behavior of the thermopower but
with smaller coherence temperatures for CTQMC, as shown
in Appendix B. Above the coherence temperature, even the
quantitative differences disappear.

We focus first on the low-T linear regime, which cor-
responds most of the time to operating conditions. In the
spirit of the Boltzmann calculation for U = 0 in the constant
relaxation-time approximation, we can assume a phenomeno-
logical form for S at low T involving two different Fermi
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FIG. 3. (Color online) Sgn(S)/T
(1)
f for U = 8t (a) and 32t (b)

as a function of the density. The Boltzmann noninteracting value is
given by the black solid line, SKubo [blue (")], SFermi with only the
first term [green (∗)], SKelvin [brown (♦)], and S∗∗ [red (◦)].

temperature T
(1)
f and T

(2)
f :

S ≈ Sgn(S)
kB

|qe|
π2

2
T

T
(1)
f

[
1 −

(
T

T
(2)
f

)2]
. (9)

The first Fermi temperature T
(1)
f characterizes the linear

contribution to the thermopower, the only one at very low
temperature. Another way to define the Fermi temperature for
a free electron gas is through the higher-order terms of the
Sommerfeld expansion. The second Fermi temperature T

(2)
f is

defined by analogy, as a measure of the temperature at which
the first correction to the linear behavior in T of S occurs. This
T

(2)
f defines a relevant energy scale for S (used to define Tl

in Fig. 1) that is nonuniversal and not simply related to the
Fermi energy εf , as we might think from a non interacting
electron gas with no lattice. Depending on the band structure
and filling, T

(1)
f and T

(2)
f can be very different from each other

even at U = 0 (see Appendix B of Ref. 40 for more details).
We wrote explicitly the sign of the thermopower to be able to
define a positive T

(1)
f .

Figure 3 shows Sgn(S)/T
(1)
f as calculated from the Boltz-

mann noninteracting S (solid black line) and for SKubo (blue
squares). The latter is our reference value for finite U . For
comparisons, we plot S∗∗ (red circles) and SKelvin (brown
diamonds) as well as SFL (green star), the value obtained
by assuming that we have a Fermi liquid with a pure ω2

dependence without deviations from particle-hole symmetry,
i.e., the first term of SFermi in Eq. (A4).17 The left panel is
for U = 8t (a) and the right panel for U = 32t (b). This
illustrates two of the important results of this paper, i.e.,
(1) for weak to intermediate coupling in Fig. 3(a), S∗∗ is
a good indicator of the behavior of S. (2) The failing of
SKelvin in that region suggests that the common view of
the thermopower as the entropy per particle is not to be
taken seriously when the system is coherent. Still, SKelvin
for large U , see Fig. 3(b), predicts the correct sign for the
low-T thermopower. Figure 3(b) also shows that S∗∗(T ) gives
information about the increase of S close to n = 1 even
if its wrong just below half-filling where the quasiparticles

weights become very small while the scattering rates become
large34 and particle-hole asymmetric. By comparing the SFL
(green star) with SKubo (blue squares), we finally see that at
strong coupling, the effects of the nonquadratic terms of the
self-energy on the low-T thermopower are important mostly
for n < 1.

The fact that S∗∗ is less reliable for the Hubbard model
at strong coupling, where interaction matters, contrary to the
t − J model,11 was expected from the fact that large U makes
ωc, the largest characteristic frequency in the problem, too far
from the ω = 0 limit.

Overall then, one finds from the results in Fig. 2 that
for weak to intermediate coupling (U = 8t), the frequency
dependence of the scattering rate is not so important and
S∗∗ gives a good estimate of the thermopower. On the other
hand, for strong coupling (U = 32t), the situation is more
complicated. At low T , where single-site DMFT gives a
Fermi liquid regime, S∗∗ seems to give a good estimate
when the carrier density is not too close to half-filling where
interactions effects become important. By contrast, when
Fermi liquid behavior is present, SKelvin is not reliable at low
temperature and strong coupling. At high T , however, SKelvin
gives qualitatively correct results,41 accounting for the fact
that the temperatures where the thermopower changes sign
are off. This demonstrates, through Eq. (8), that in the strong
coupling incoherent regime, entropy drives the thermopower.
The relationship between entropy and thermopower has been
discussed in the linear low-temperature regime and multiband
systems experimentally42–44 and theoretically.45

Let us come back to the high-temperature regime, U )
T ) t . In this limit, the so-called Mott-Heikes formula also
suggests a relationship between the entropy per particle and
thermopower. Heike’s formula, S → µ/T = (∂s/∂n)E,V is
derived by applying the atomic limit to the case of large U .
The thermopower in this case depends only on density since
µ/T is T independent. It is given by3

SMH =
{

− kB

|e| ln
[ 2(1−n)

n

]
if 0 ( n ( 1,

kB

|e| ln
[ 2(n−1)

2−n

]
if 1 ( n ( 2.

(10)

One striking prediction of these formula is a change of sign
of the thermopower at 1/3 doping from half-filling. None
of our results in Fig. 2 are in the regime where µ/T is T
independent.34 It is quite remarkable then that for temperatures
between T = t and T = 2t , we nevertheless have more than
one sign change as a function of density for a fixed T , when
U = 32t .

Even though SKelvin = SMH in the regime where µ/T is T
independent, when T is not high enough for this condition
to be realized, as in our case, SKelvin makes a stronger case
than Heikes formula. Indeed, SKelvin = 1/qe(∂s/∂n)T ,V relies
on the correctness of interchanging the order of two limits,
which can become justified in the incoherent regime.46 It was
checked explicitly in Ref. 41 that Kelvin’s formula is better
than a modified Heike’s formula, −1/qe[µ(T ) − µ(0)]/T . To
illustrate what happens in our case, we show in Fig. 4 the
thermopower as a function of density for T = 2t and U = 32t
for SKubo, SKelvin, S∗∗ and compare with SMH in Eq. (10).
For densities above about n = 0.8, our Kubo results match
quite well with Heike’s. For large doping, S∗∗ works better
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FIG. 4. (Color online) SKubo (black), SKelvin (blue dashed), SMH

(red dashed-dot) and S∗∗ (magenta ◦ CTQMC) in micro volts per
Kelvin for U = 32t as a function of density for T = 2t . In order to
calculate SKelvin we used IPT results. As shown in Fig. 5, in this tem-
perature range, IPT-D gives essentially the same µ(T ) as CTQMC.

than SKelvin or SMH, which is another indication that large
interaction effects are necessary for SKelvin or SMH to be good
approximations. Despite their simplicity, we see that the latter
two formulas capture the essence of the thermopower in the
high-temperature regime. Note that the quantitative results are
a bit off, especially for n < 0.8 where the absence of electronic
frustration seems to leave more room for coherence. At this
particular temperature, Heike’s formula seems to be somewhat
better overall than Kelvin’s. However, in the presence of
electronic frustration at n > 1, Heike’s formula shows a small
systematic deviation from Kubo’s that does not appear for
SKelvin.

Chakraborty et al.47 studied the case of a square lattice
with nearest-neighbor hopping at large U = 20t for T = 0.5t
in the incoherent regime. U = 40t and T = t would be more
comparable to our case given that the bandwidth of the fcc
lattice is twice as large as that of the square lattice for the same
t . They solved the problem using CDMFT with NCA as an
impurity solver. They did the calculation for densities between
n = 0.6 and 1 and found, like we do, that Kubo’s result is
quite close to Heike’s. A more thorough investigation of the
high-temperature regime is called for.

V. SUMMARY

We have shown that from weak to intermediate coupling,
the thermopower of the fcc lattice is not influenced very much
by interactions. The quantity S∗∗ that neglects the frequency
dependence of the scattering rate can be a reliable estimator
for the thermopower. By contrast, at strong coupling, namely,
when at n = 1, the system is a Mott insulator, sharp peaks
in the T dependence of Seebeck coefficient appear at low
temperature and, for the range of dopings considered, absolute
values comparable to kB/|e|, close to hundreds of micro volts
per Kelvin, can be obtained. We found a sharp increase of the
thermopower at a given T when one approaches n = 1. The
increase is particularly sharp for n > 1 where there is strong
electronic frustration. We leave open the question of whether

there is an optimal doping or just a sudden jump from very large
thermopower at infinitesimal doping to zero at half-filling. For
doped Mott insulators in the incoherent large-temperature limit
close to half-filling, the Kelvin formula gives a reasonable
estimate of the thermopower without the need for analytical
continuation. This clearly shows that large thermopower in
this case can be explained on entropic grounds. Very far from
half-filling, one recovers a more conventional behavior where
S∗∗ gives a good estimate of the thermopower.

It would be of great interest to verify how SKelvin behaves
at low T and large U when non-Fermi liquid behavior is
observable. For this, one needs to consider lower-dimensional
systems that require going beyond single-site DMFT. Also,
addition of disorder trough CPA48 or statistical DMFT49 would
be of interest to verify how S∗∗ and SKelvin inform us about the
interplay between correlations and disorder.

Note added. Recently, related results regarding the ther-
mopower were independently reported.50
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APPENDIX A: SIGN CHANGE OF THE THERMOPOWER
AROUND n = 1 FOR U = 32t

Since the calculation of SKubo rests on IPT-D, we need to
verify that the change of sign of the low-temperature slope
around n = 1 is not an artefact of the method. We present
three arguments. First, we show that it is possible to obtain
the change of sign purely from CTQMC results. Although
analytical continuation for CTQMC is nearly impossible
for such a large U , there is a way to check the sign of
the thermopower directly from the behavior in Matsubara
frequency. Following Ref. 51, we define the function

γij (1n) ≡ χij (0) − χij (i1n)
1n

=
∫ ∞

−∞

dω

π

1n

ω2 + 12
n

Lij (ω).

(A1)

In Eq. (A1), i and j can take the value 1 or 2. χ11 is the
charge-charge, χ12 is the charge-heat, and χ22 is the heat-heat
susceptibilities. The sign of the thermopower is thus given by
the sign of L12(0). In terms of the γij function, we can show
that

Lij (0) = lim
1n→0

γij (1n). (A2)

If we replace the discrete variable 1n by a continuous variable
z, Eq. (A2) would correspond to

lim
1n→0

γij (1n) → lim
z→0

γij (z) = −χ ′
ij (z)|z→0. (A3)
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Thus the dc value would be given by the slope at the origin.
The problem is to find the correct continuous function since
the value of the derivative will depend strongly on the function.
But for the sign there is no such problem. Direct inspection
of the 1n dependence indicates what is the sign of the
derivative and thus the sign of the thermopower. To verify
again this result, we also calculated the susceptibility χ12 by
the same method we used for χ11 in Ref. 34 but using results
obtained via CTQMC. We find that, indeed, at U = 32t , the
low-temperature thermopower changes sign around half-filling
rather than around the small U result n = 0.80. Finally, we
can also use just a few Matsubara frequencies to obtain the
self-energy near zero frequency from Padé approximants and
use it to calculate L12(0). The sign should be correct even
though the actual value cannot be trusted. Once again, we
obtain that the sign change occurs around half-filling if we use
5, 10, or 20 Matsubara frequencies. We are thus confident that
the IPT-D results for SKubo are at least qualitatively significant.

The sign change and its relation to the underlying Fermi
liquid predicted by DMFT can also be understood analytically.
Starting from anω2 self-energy, Refs. 12 and 17, demonstrated
that the thermopower only depends on interaction through Z,
the quasiparticle weight. Hence, at first sight, the sign seems
determined solely by the noninteracting problem, namely by
the sign of the derivative of the transport function Eq. (3).
However, when one considers the particle-hole asymmetry of
the quasiparticle lifetime by including ωT 2 and ω3 terms in
the self-energy,17 the thermopower is given by

SFermi = −kB

|e|
kBT

Z

[
φ′(µ̃)
φ(µ̃)

E1
2

E1
0

− a1E
2
4 + a2E

2
2

γ0E
1
0

]
, (A4)

where µ̃ = µ − Re[)(0)], the E′s are universal constants
while a1, a2, and γ0 are fitting parameters for the different
powers of the self-energy and thus have an interaction
dependence. Recent strong-coupling theories52 provide an
analytical understanding of the odd frequency contributions
to the quasiparticle lifetimes, which become prominent as the
particle density increases towards half-filling. These provide
dynamical asymmetry and significantly influence the ARPES
line shapes. From Eq. (A4), we see that the asymmetry in
the lifetime creates a term that might compete for the sign
and magnitude of the thermopower. This is what is happening
in our case. Below half-filling but above n = 0.8, the band
results would be positive but the interacting part leads to a
strong particle-hole asymmetry that competes and keeps SKubo
negative. This compensation leads to a small thermopower
between n = 0.8 and n = 1. However, above half-filling, either
both contributions are of the same sign and enable an increase
in the thermopower or the second contribution is negligible.
The asymmetry in the scattering rate also plays an important
role in the temperature dependence of the thermopower, as
shown in Ref. 41.
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FIG. 5. (Color online) SKelvin as a function of T/t as calculated
with IPT (dashed) and CTQMC (dot-dashed) for U = 32t . In (a),
values of filling farther away from n = 1 and (b) fillings closest to
n = 1: n = 0.4 [black (◦)], 0.6 [blue (∗)], 0.8 [red (")], 0.84 [black
dashed (!)], 0.88 [blue dashed (.)], 0.92 [red dashed (×)], 1.08 [green
dashed (')], 1.2 [green (♦)], 1.4 [cyan ($)], and 1.6 [magenta (%)].

APPENDIX B: SKelvin AT U = 32t

The only quantity that does not require analytical contin-
uation and depends on the method of calculation, i.e., IPT-D
vs CTQMC, is SKelvin at strong coupling. The comparisons
are made in Fig. 5. Lines with the same color are obtained
for the same filling. There are dots when they are obtained
from CTQMC. The main quantitative difference is that the
coherence temperatures (peaks) are smaller with CTQMC and
closer to the ones predicted by SKubo and Cn even if those
two quantities were obtained with IPT-D. This quantitative
difference does not prevent qualitative comparisons. For T
larger than the peaks, then even the quantitative differences
disappear.
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