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a b s t r a c t

We study the infinite spatial dimensionality limit (d → ∞) of
the recently developed Extremely Correlated Fermi Liquid (ECFL)
theory (Shastry 2011, 2013) [17,18] for the t–J model at J = 0.
We directly analyze the Schwinger equations of motion for the
Gutzwiller projected (i.e. U = ∞) electron Green’s function
G. From simplifications arising in this limit d → ∞, we are
able to make several exact statements about the theory. The ECFL
Green’s function is shown to have a momentum independent
Dyson (Mori) self energy. For practical calculations we introduce
a partial projection parameter λ, and obtain the complete set of
ECFL integral equations to O(λ2). In a related publication (Zitko
et al. 2013) [23], these equations are compared in detail with
the dynamical mean field theory for the large U Hubbard model.
Paralleling the well known mapping for the Hubbard model, we
find that the infinite dimensional t–J model (with J = 0) can be
mapped to the infinite-U Anderson impurity model with a self-
consistently determined set of parameters. This mapping extends
individually to the auxiliary Green’s function g and the caparison
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factor µ. Additionally, the optical conductivity is shown to be
obtainable from G with negligibly small vertex corrections. These
results are shown to hold to each order in λ.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Motivation

The Hubbard model (HM) with the Hamiltonian:

H = −
�

ijσ

tijc
Ď
iσ cjσ + U

�

i

ni↑ni↓ − µ
�

i

ni, (1)

has attracted great theoretical interest in condensedmatter physics, and is also a fairly realistic model
of strongly correlated materials such as the cuprates. While the small U

t limit is well described by
standard Fermi-Liquid theory [1,2], the large and intermediate U

t (strongly correlated) cases aremuch
less well understood. Considerable progress has been made by considering the HM in the limit of
infinite dimensions [3–11]. One important result is that the Dyson self energy, defined by inverting
the expression for the electron Green’s function G:

G(k) = 1
iωk + µ − �k − ΣD(k)

, (2)

becomes momentum independent in this limit [3–6]. Two other important results are the self-
consistentmapping of the infinite dimensional HM onto the Anderson Impuritymodel (AIM), detailed
in [8] (Dynamical Mean Field Theory), and the vanishing of the vertex corrections in the optical
conductivity [10,11], so that the two particle response is obtainable from the single particle Green’s
function. The Dynamical Mean Field Theory (DMFT) provides a means for doing reliable numerical
calculations for the Hubbard model, at any value of U and has continued to provide new, and
interesting results [12,13].

A different approach to understanding strong correlations is to consider the extreme correlation
limit, where on sets U → ∞ at the outset. In this case, the Hilbert space is Gutzwiller projected so
that only single occupancy is allowed on each lattice site. One such extremely correlated model, the
t–J model, consists of taking the U → ∞ limit of the Hubbard model (the t part of the model) and
adding on a nearest neighbor anti-ferromagnetic coupling term (the J part of the model). The t model
studied here, is obtained by dropping the J term and thus is identical to the U = ∞ limit of the HM.
It has been argued by Anderson [14] that the t–J model describes the physics of the cuprates, thereby
providing an impetus for its detailed study. The Hamiltonian for this model can be written in terms of
the Hubbard X operators as [15]

H = −
�

ijσ

tijXσ0
i X0σ

j − µ
�

iσ

Xσσ
i + 1

2

�

ijσ

JijXσσ
i + 1

4

�

ijσ1σ2

Jij{Xσ1σ2
i Xσ2σ1

j − Xσ1σ1
i Xσ2σ2

j }. (3)

The operator Xab
i = |a��b| takes the electron at site i from the state |b� to the state |a�, where |a� and

|b� are one of the three allowed states | ↑�, | ↓�, or |−�. Our present goal is to obtain a formally exact
solution of the above t model in the limit of large dimensions by studying its equations of motion.
This is designed to be methodologically independent of the available DMFT solution of the HM with
U = ∞, and can be compared with it.

Our object of study is the Green’s function written as

Gσ1σ2(i, f ) = −�TτX
0σ1
i (τi)X

σ20
f (τf )�, (4)
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where the angular brackets indicate the usual thermal average. Due to the non-canonical
commutation relations of the X operators, the high frequency limit of Green’s function is 1− n

2
iωn

rather
than 1

iωn
as in the canonical case. To avoid linear growth of the self-energy in the high frequency

limit [15], the Dyson self-energy must be redefined to the Dyson–Mori self energy [16] as in:

G(k) = 1 − n
2

iωk + µ − �k
�
1 − n

2

�
− ΣDM(k)

. (5)

Just as is the case for ΣD in the finite-U Hubbard model, ΣDM is finite as iω → ∞ in the t–J model.
Shastry has recently introduced a novel and promising approach for calculating correlation

functions within the t–J model based on Schwinger’s formulation of field theory [15,17,18]. This has
culminated in the theory of the Extremely Correlated Fermi Liquid (ECFL) [17,18]. This theory has been
successfully benchmarked against: line shapes from (ARPES) experiments [19,20], high-temperature
series [21] and the numerical renormalization group (NRG) calculations for the Anderson impurity
model [22]. A recent theoretical benchmarking related to this work is the comparison with DMFT
calculations for the large U Hubbard model in a concurrent publication [23], with the formulas found
here. Indeed the main motivation of the present paper is to obtain results in the limit of large d for
the samemodel, the t–J model (at J = 0) or equivalently the U = ∞ Hubbard model by two different
methods, the ECFL and the DMFT, allowing such a comparison.

In the ECFL theory, the physical Green’s function G(k) is factored into a canonical auxiliary Green’s
function g(k) and an adaptive spectral µ(k), where k = (�k, iωk):

G(k) = g(k) × µ(k). (6)
These two factors are in turn written in terms of two self-energies, Φ(k) and Ψ (k).

g−1(k) = iωk + µ − (1 − n/2)�k − Φ(k), (7)

µ(k) = 1 − n
2

+ Ψ (k). (8)

Here Φ(k) plays the role of a Dyson self-energy for the canonical Green’s function g(k), and Ψ (k) is
a frequency-dependent correction to µ(k) from its high frequency value of 1 − n

2 . Φ and Ψ are then
given in terms of the vertices (i.e. functional derivatives w.r.t. the source of the g−1 and µ) as will
be described below, leading to a closed set of Schwinger differential equations (the ECFL equations
of motion). These equations are in general intractable since there is no obvious small parameter, and
therefore to enable practical calculations, an expansion is carried out in a partial projection parameter
λ. Here λ interpolates between the free Fermi gas and the t–J model. The meaning of λ as a partial
projection parameter is detailed in [18], andmay be summarized in themapping Xσ0

i → f Ďiσ (1−λ niσ̄ ),
where fiσ is a canonical electron operator. Thus atλ = 0wehave canonical electrons,whereas atλ = 1
we have the fully projected electrons.

In this work, our aim is to combine the two approaches, namely to consider the ECFL in the limit of
infinite spatial dimensions. In this limit, J → 0, and the infinite-dimensional t–J model becomes the
infinite dimensional infiniteU Hubbardmodel (see Section 6A of Ref. [23] for a brief discussion of this).
It is not clear a priori, whether or not the aforementioned results, valid for the infinite dimensional
finite-U Hubbard model, carry over to the infinite dimensional t–J model. The possible conflict arises
from the fact that in the case of the former, the ratio U

d → 0, while in the case of the latter, U
d → ∞.

This questionwas raised inRef. [24], pointing to the ECFL solution of the infinite dimensional t–J model
as a source of resolution. Working directly with the infinite-U Hamiltonian (Eq. (3) with J = 0), and
using the corresponding ECFL equations of motion, we are able to address this challenging task and to
show that the two limits U → ∞ and d → ∞ do in fact commute.

Moreover, we are able to determine the structure of the ECFL objects Φ(k) and Ψ (k) in the limit
of infinite dimensions. Such structural information has already been used to fit numerical results
obtained through DMFT calculations to a convenient and flexible functional form [23]. Finally, we
are able to elucidate the nature of the λ expansion in the large d limit. For readers whomight be more
interested in the results than the methodology, we provide a detailed summary of our results at the
outset.
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1.2. Results in the limit of infinite dimensions

We show that in the large d limit, the two self energies Φ(k) and Ψ (k) simplify in the following
way.

Ψ (k) = Ψ (iωk), (9)
Φ(k) = χ(iωk) + �kΨ (iωk). (10)

These in turn show that the Dyson–Mori self energy behaves as

ΣDM(k) = ΣDM(iωk) = (iωk + µ)Ψ (iωk) +
�
1 − n

2

�
χ(iωk)

1 − n
2 + Ψ (iωk)

, (11)

and is therefore local in the limit of infinite dimensions.We show that to each order in theλ expansion,
Ψ (iωk) andχ(iωk) are each a product of an arbitrary number of factors, each ofwhich take on the form�

�p g(�p, iωp)�
m
�p , with m equal to zero or one, and with arbitrarily complex frequency dependence of

the individual factors.
We show that just as in the finite U case [10,11], the optical conductivity is given by the expression

σαβ(ω) = 2
iω

�

�p,iωp

G(�p, iωp)v
α
�p v

β
�p [G(�p, ω + iη + iωp) − G(�p, iη + iωp)], (12)

where vα
�p is the component of the velocity in the α direction (Eq. (39)). We show that this formula can

be applied at each order of the λ expansion.
We show that there is a self consistent mapping between the ECFL theory of the infinite-

dimensional t–J model and the ECFL theory of the infinite-U Anderson impurity model (AIM) [22].
This mapping is similar in spirit to themapping first discussed by Georges and Kotliar for the Hubbard
model [8], but is made directly in the infinite U limit here. In this mapping, gi,i[τi, τf ] and µi,i[τi, τf ]
of the t–J model are mapped to the objects g[τi, τf ] and µ[τi, τf ] of the Anderson model, written with
the same symbols, but without the spatial or momentum labels. This mapping is valid under the self-
consistency condition

�

�k
��kg(k) =

�

�k

|V�k|2
iωn − ���k

g(iωk), (13)

where ��k is the dispersion of the lattice in the t–J model, and V�k and ���k are the hybridization and
dispersion of the bath respectively in the Anderson impurity model. This self-consistency condition
is shown to be equivalent to the standard self-consistency condition from DMFT [8,9]. We also show
that the mapping holds to each order in λ under the same self-consistency condition. We note that
this implies that ECFL computations for the infinite-dimensional t–J model can be done with a DMFT-
like self-consistency loop involving ECFL computations for the AIM. However, since the λ expansion
provides integral equations which are relatively straightforward to solve numerically, this is not
necessary as the t–J model equations can be solved directly.

1.3. Outline of the paper

The paper is structured as follows. In Section 2, some basic facts about lattice sums in the limit
of large dimensions and the ECFL equations of motion as well as the λ expansion are reviewed.
Additionally, the spatial dependence of various standard and ECFL specific objects in the limit of large
dimensions is stated. Finally, we introduce a class of local functions denoted as class-L functions; these
turn out to play a central role in the ECFL in the limit of large dimensions. In Sections 3.1 and 3.2,
Eqs. (9) and (10) are proven in general and to each order in λ, and the locality of the Dyson–Mori self
energy is shown as a consequence. In Section 3.3, Eq. (12) is shown to hold in general and to each
order in λ. In Section 3.4, the ECFL self-consistent integral equations are derived to O(λ2) in the large-
d limit. Finally, in Section 4, the ECFL of the infinite dimensional t–J model is mapped onto the ECFL of
the infinite-U AIM under the self-consistency condition (Eq. (13)). This is done in general and to each
order in λ.
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2. Preliminaries

2.1. Spatial dependence of lattice sums in large d dimensions

We take the hopping to nearest neighbor sites on the d-dimensional hypercube. In this case, it is
well known [4] that tij → 1√

2d
t0 with t0 of O(1). We would like to exploit the smallness of individual

tij’s, these can only contribute (after multiplying with another like object), if one of the indices is
summed over the d-neighbors as in the simplest example

�
j t

2
ij = t20 . Extending this argument

further, for a pair of sites (i,m) located at a (Manhattanmetric) distance rim on the hypercube, suppose

there are two objectsWi,m and Vi,m who both have the dependence on rim : Vi,m;Wi,m ∼ O
�

1
(
√
d)

rim

�
.

Then it follows that

Wi,nVn,m ∼ O




1

�√
d
�rim



 . (14)

Here, and in the rest of the paper, bold and repeated indices are summed and/or integrated over. This
relation can be understood by first considering the case that the site n is on one of the shortest paths
between i and m. In this case, rin + rnm = rim proving the relation. If, n is a certain distance ro off of
a shortest path, then rin + rnm = rim + 2ro. This introduces an extra factor of 1

dro into the lattice sum
in Eq. (14). However, this factor is exactly cancelled by the dr0 choices for the site n. In this argument,
the number of shortest paths between i and m is taken to be O(1).

2.2. ECFL equations of motion and the λ expansion

The ECFL equations of motion for the finite dimensional t–J model can be found in Ref. [18]. There
is some freedom in how these equations arewritten because onemay add terms to themwhich vanish
identically in the exact solution, but play a non-trivial role when implementing approximations (such
as the λ expansion). We denote the version of these equations with no added terms the minimal
theory, and the version containing the added terms the symmetrized theory (since the added terms
make the resulting expressions symmetric in a certain sense). In Ref. [18], the ECFL equations ofmotion
for the symmetrized theory are derived, and the added terms required to go from the minimal theory
to the symmetrized theory are singled out. The ECFL equations for the minimal theory, which are the
ones used in this paper and in Ref. [23], can therefore be obtained from those in Ref. [18] by dropping
these extra terms.

Setting J → 0 (as discussed in Section 1.1), we write the minimal theory ECFL equations of motion
in expanded form:

g−1[i,m] = (µ − ∂τi − Vi)δ[i,m] + t[i,m] (1 − λγ [i])
+ λt[i, j] ξ ∗ · g[j,n] · Λ∗[n,m; i],

µ[i,m] = (1 − λγ [i])δ[i,m] − λt[i, j] ξ ∗ · g[j,n] · U∗[n,m; i],
(15)

where Vi ≡ Vi(τi) is the Bosonic Schwinger source function, and we have used the notation δ[i,m] =
δi,mδ(τi − τm) and t[i,m] = ti,mδ(τi − τm). These exact relations give the required objects g and µ in
terms of the vertex functions. Here we also note that the local (in space and time) Green’s function
γ [i], and the vertices Λ[n,m; i] and U[n,m; i], are defined as

γ [i] = µ(k)[n, i+] · g(k)[i,n]; Λ[n,m; i] = − δ

δVi
g−1[n,m];

U[n,m; i] = δ

δVi
µ[n,m],

(16)
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where we have used the notationM(k)
σ1,σ2

= σ1σ2Mσ̄2,σ̄1 to denote the time reversed matrixM(k) of an
arbitrary matrix M . These exact relations give the vertex functions in terms of the objects g and µ.
The vertices defined above (Λ and U) have four spin indices, those of the object being differentiated
and those of the source. For example, Uσ1σ2

σaσb [n,m; i] = δ

δV
σaσb
i

µσ1σ2 [n,m]. In Eq. (15), ξσaσb = σaσb,

and ∗ indicates that these spin indices should also be carried over (after being flipped) to the bottom
indices of the vertex, which is also marked with a ∗. The top indices of the vertex are given by the
usual matrix multiplication. An illustrative example is useful here: (ξ ∗ · g[j,n] · U∗[n,m; i])σ1σ2 =
σ1σagσa,σb [j,n] δ

δV
σ̄1 σ̄a
i

µσb,σ2 [n,m]. Finally, in order to ensure that the shift identities (Ref. [18]) are

satisfied, the substitution tij → tij + u0
2 δij is made, where u0 is the second chemical potential. For the

sake of clarity, this substitution will be ignored in the proofs given below, although they are easily
generalized to account for it. This generalization is discussed at the end of Section 3.1.

The λ expansion is obtained by expanding Eqs. (15) and (16) iteratively in the continuity parameter
λ. The λ = 0 limit of these equations is the free Fermi gas. Therefore, a direct expansion in λ will
lead to a series in λ in which each term is made up of the hopping tij and the free Fermi gas Green’s
function g0[i, f ]. As is the case in the Feynman series, this can be reorganized into a skeleton expansion
in which only the skeleton graphs are kept and g0[i, f ] → g[i, f ]. However, one can also obtain the
skeleton expansion directly by expanding Eqs. (15) and (16) in λ, but treating g[i, f ] as a zeroth order
(i.e. unexpanded) object in the expansion. This expansion is carried out to second order for the finite-
dimensional case in Ref. [18]. In doing this expansion, one must evaluate the functional derivative
δg
δV

. This is done with the help of the following useful formula which stems from the product rule for
functional derivatives:

δg[i,m]
δVr

= g[i, x] · Λ[x, y, r] · g[y,m]. (17)

This is an exact formula and will be used extensively in the arguments given below. Within the λ
expansion, the LHS is evaluated to a certain order in λ by taking the vertex Λ on the RHS to be of that
order in λ.

2.3. Leading order spatial dependence of various objects

All objects may be expanded in the inverse square root of the number of spatial dimensions d. The

lowest order term in the physical Green’s functionG[i, f ]must be at leastO
�

1
(
√
d)

rif

�
. Thismust be so

because it takes at least rif hops to get from the site i to the site f . Any terms that contribute to G[i, f ]
at higher order than O

�
1

(
√
d)

rif

�
are neglected in the large d limit. In a similar vein, the lowest order

term in g[i, f ], g−1[i, f ], µ[i, f ], Λ[i, f ; r], and U[i, f ; r] must be at least O
�

1
(
√
d)

rif

�
. Furthermore,

using the real space version of Eqs. (6) and (14), we see that any terms of higher order than this in
g[i, f ] and µ[i, f ] will result in a higher order term in G[i, f ] and may therefore be neglected as well.
Finally, using matrix inversion in the space–time indices, we see that higher order terms may also be
dropped from g−1[i, f ] as these will lead to higher order terms in g[i, f ], and using Eq. (15), higher
order terms may be dropped from Λ[i, f ; r], and U[i, f ; r] as these will lead to higher order terms in
g−1[i, f ] andµ[i, f ] respectively. In summary, in all objects:G[i, f ], g[i, f ], g−1[i, f ], µ[i, f ], Λ[i, f ; r],
and U[i, f ; r], terms of higher order than O

�
1

(
√
d)

rif

�
may be neglected in the large d limit.

We also note that the correlation function Παβ [i, f ] appearing in Eq. (40) must be at least O
�

1
drif

�
.

This is due to the fact that unlike the creation and destruction operators which appear in the Green’s
function, the current operators appearing in this correlation function conserve particle number.
Hence, one must hop from site i to site f and back, which takes 2× rif hops. Any terms that contribute
to Παβ [i, f ] at higher order than O

�
1

drif

�
are neglected in the large d limit.
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2.4. Class L functions

For the arguments given below, we need to define a class of localized functions, denoted as class L
functions. A class L function Li has three properties.

• (a) Li ∼ O
�

1
d0

�
.

• (b) Li is a function of only one site i, and an arbitrary number of time variables. Upon turning off
the sources, it becomes translationally invariant, but an arbitrary function of frequencies.

• (c) The V source derivative of Li is also localized:

δ

δVi
Lj = δijL�

i, (18)

with L�
i again a class-L function.

Our proofs deal with functions that turn out to be of this class. Iterating property (c), the following
equation must hold for any positive integer s.

δ

δVr1
· · · δ

δVrs
Li = δir1 . . . δirs

δ

δVi(τr1)
· · · δ

δVi(τrs)
Li. (19)

In the presence of the current source κ (Eq. (42)), class L functions acquire one additional property
(d): consider a typical contribution to Παβ [i, f ] (Eq. (44)) denoted by Oif

Oif = Wf ,x
δ

δκα
i

(Lx) Vx,f , (20)

where the functions Vx,f ,Wf ,x ∼ O
�

1
(
√
d)

rxf

�
. Then, neglecting terms of higher order than O

�
1

drif

�
in

Oif ,
�

i−f Oif → 0 as A → 0. Again iterating property (c) and using property (d), the following must
hold for any nonnegative integer s:

�

i−f

�
Wf ,x

δ

δκα
i

δ

δVx(τr1)
· · · δ

δVx(τrs)
(Lx) Vx,f

�

A→0
= 0. (21)

3. Limit of large dimensionality through the ECFL equations of motion

3.1. Simplification of the ECFL self energies

Weuse notation inwhichwe indicate spatial dependence by subscripts, so that g[i, j] → gi,j[τi, τj],
and recall that t[i, j] = ti,j δ(τi − τj), δ[i, j] = δi,j δ(τi − τj), δ[τi, τj] = δ(τi − τj) etc. After some
inspection of Eqs. (15) and (16) in the limit of high dimension, we make an Ansatz – to be proven
below – namely

g−1[i,m] = (µ − ∂τi − Vi) δ[i,m] + t[i,m] (1 − λγ [i]) − λ δi,m χi[τi, τm]
+ λ ti,m Ψi[τi, τm],

µ[i,m] = δ[i,m](1 − λγ [i]) + λ δi,m Ψi[τi, τm], (22)

whereΨi[τi, τm], χi[τi, τm], and γ [i] are class L functions. Wewill prove Eq. (22) by assuming that it is
true, and then showing that this assumption is consistent with the equations of motion (Eqs. (15) and
(16)). This argument will consist of a loop which begins with Eq. (22). Then, substituting this equation
into Eq. (16), we will derive a certain form for Λ, U, and γ . Finally, substituting these objects into
Eq. (15), and using simplifications which occur in the large d limit, we will complete the loop and
arrive back at Eq. (22).
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Substituting Eq. (22) into Eq. (16), we find that the vertices and γ [i] have the following form.

Λ[n,m; i] = δi,nδi,m Ai[τn, τm; τi] + δi,ntn,m Bi[τn, τm; τi],
U[n,m; i] = −δi,nδi,m Bi[τn, τm; τi],
γ [i] =

�
1 − λγ (k)[i]

�
g(k)[i, i] + λ Ψ

(k)
i [τj, τi]g(k)

ii [τi, τj],
(23)

where we defined two new functions:

Ai[τn, τm; τi] = δ[τi, τn]δ[τi, τm] 1 + λ
δ

δVi
χi[τn, τm],

Bi[τn, τm; τi] = λ δ[τn, τm] δ

δVi
γi[τn] − λ

δ

δVi
Ψi[τn, τm].

(24)

Here Ai and Bi are class L functions since they inherit this property from Ψi, χi, and γ [i] by functional
differentiation. Substituting Eq. (23) into Eq. (15) and comparing with Eq. (22),

χi[τi, τm] = −ti,j ξ ∗ · gj,i[τi, τn] · Ai,∗[τn, τm; τi],
Ψi[τi, τm] = ti,j ξ ∗ · gj,i[τi, τn] · Bi,∗[τn, τm; τi]. (25)

If we can now show that χi, Ψi, and γ [i] as defined in Eqs. (23) and (25) are Class L functions, we will
have justified our Ansatz and therefore we will have proven all of the above equations. To do this, we
must show that gii[τi, τm] and ti,j gj,i[τi, τm] are Class L functions. Taking their functional derivatives
we obtain:

δ

δVr
ti,j gj,i[τi, τm] = ti,jgj,r [τi, τk] Ar [τk, τl; τr ]gr,i[τl, τm]

+ ti,jgj,r [τi, τk] Br [τk, τl; τr ]tr,lgl,i[τl, τm], (26)

and
δ

δVr
gi,i[τi, τm] = gi,r [τi, τk] Ar [τk, τl; τr ]gr,i[τl, τm]

+ gi,r [τi, τk] Br [τk, τl; τr ]tr,lgl,i[τl, τm]. (27)

Using Eq. (14), the terms on the RHS of Eqs. (26) and (27) survive the large d limit if and only if r = i.
Moreover, uponmaking the substitution r → i, we see that theRHS ismadeupof the sameobjects that
appear on the LHS of the equations (as well as the class L functions A and B). Therefore, this argument
can be iterated to any number of derivatives acting on ti,j gj,i[τi, τm] or gi,i[τi, τm] (as required by
Eq. (19)), which are therefore class L functions. Thus, we have shown the self-consistency of our ansatz
Eq. (22).

The above results hold for any value of λ, since the proof was done with λ present in all of the
equations. In the bare expansion, this would imply that they also hold to each order in λ. However,
this line of reasoning is not as straightforward in the skeleton expansion because each order in the
skeleton expansion contains contributions from all orders in the bare expansion. Nonetheless, the
above results do hold to each order in λ in the skeleton expansion. In proving this, we shall shedmore
light on the nature of the objects Ψi, χi, γ [i], Ai, and Bi. In particular, we will show that they satisfy a
certain explicit form stated below in Eq. (28). We will do this using an inductive argument, in which
we will assume that they have this form through a certain order in λ, and then substituting this form
into the equations of motion, will show that it must hold for the next order.

We now use the symbol Ri as a proxy for either of the two functions gi,i[τn, τm] or ti,jgj,i[τn, τm]
where the time indices are arbitrary. Inductive hypothesis: through nth order in λ, Eqs. (22) and (23)
hold. Through n− 1st order in λ, the objects Ψi, χi, and γ [i], and through nth order, the objects Ai and
Bi, (all denoted below by the generic object Li) can be written as the following product (multiplied by
some delta functions in time variables):

(Li)(n) = λn(Ri)
m, (28)
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where m is arbitrary. We first examine the base case of zeroth order. In this case,

A(0)
i [τn, τm; τi] = δ[τi, τn]δ[τi, τm]; B(0)

i [τn, τm; τi] = 0. (29)

Clearly the hypothesis is satisfied. Now, we prove the inductive step. Explicitly displaying the order
in λ of all objects, the equations for χ , Ψ , and γ (Eqs. (25) and (23)) become

χ
(n)
i [τi, τm] = −ti,j ξ ∗ · gj,i[τi, τn] · A(n)

i,∗ [τn, τm; τi],
Ψ

(n)
i [τi, τm] = ti,j ξ ∗ · gj,i[τi, τn] · B(n)

i,∗ [τn, τm; τi],
γ (n)[i] = −λ γ (k)(n−1)[i]g(k)[i, i] + λ Ψ

(k)(n−1)
i [τj, τi]g(k)

ii [τi, τj].
(30)

By the inductive hypothesis, χ (n)
i , Ψ

(n)
i , and γ (n)[i] have the required form. The equations for A and B

(Eq. (24)) become

A(n+1)
i [τn, τm; τi] = λ

�
�

r≤n

δ

δVi
χ

(r)
i [τn, τm]

�(n)

,

B(n+1)
i [τn, τm; τi] = λ δ[τn, τm]

�
�

r≤n

δ

δVi
γ

(r)
i [τn]

�(n)

− λ

�
�

r≤n

δ

δVi
Ψ

(r)
i [τn, τm]

�(n)

.

(31)

To see that A(n+1) and B(n+1) have the required form we note that for all l ≤ n,
�

δ

δVr
ti,j gj,i[τi, τm]

�(l)

= ti,jgj,r [τi, τk] A(l)
r [τk, τl; τr ]gr,i[τl, τm]

+ ti,jgj,r [τi, τk] B(l)
r [τk, τl; τr ]tr,lgl,i[τl, τm], (32)

and
�

δ

δVr
gi,i[τi, τm]

�(l)

= gi,r [τi, τk] A(l)
r [τk, τl; τr ]gr,i[τl, τm]

+ gi,r [τi, τk] B(l)
r [τk, τl; τr ]tr,lgl,i[τl, τm]. (33)

In the limit of large dimensions, r → i. We can therefore (using the inductive hypothesis) write the
RHS of Eqs. (32) and (33) as λl(Ri)

m. Applying Eq. (28) (which has been shown to hold for χ
(n)
i , Ψ

(n)
i ,

and γ (n)[i]) to Eq. (31), we may write

A(n+1)
i =

n�

r=0

λr+1
�

δ

δVi
(Ri)

m
�(n−r)

,

B(n+1)
i =

n�

r=0

λr+1
�

δ

δVi
(Ri)

m
�(n−r)

.

(34)

Eq. (34), in conjunction with Eqs. (32) and (33), shows that A(n+1)
i and B(n+1)

i have the required form.
This completes the proof.

Since ti,j is independent of the source, the substitution ti,j → ti,j + u0
2 δi,j can be made directly into

all of the above equations. The only problem that could potentially arise involves Eqs. (26) and (27),
where the large d simplifications are actually used. However, one can check that this substitution does
not affect the simplifications. Therefore, this substitution merely adds the term λ u0

2 δi,mΨi[τi, τm] −
λ u0

2 δ[i,m]γ [i] to g−1[i,m], and everywhere replaces the local function ti,jgj,i[τn, τm] with the local
function ti,jgj,i[τn, τm]+ u0

2 gi,i[τn, τm]. This can be seen explicitly in the O(λ2) equations in Section 3.4,
and does not change the general structure of the solution.
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3.2. The zero source limit

Setting the sources to zero, the system becomes translationally invariant so that all objects can be
written in momentum space. Additionally, γ [i] → n

2 . Then, the above results can be summed up in
the following formulae (in which we set λ = 1):

g−1(k) = iωk + µ − εk

�
1 − n

2

�
− χ(iωk) − εkΨ (iωk),

µ(k) = 1 − n
2

+ Ψ (iωk), (35)

where Ψ (iωk) and χ(iωk) are the two momentum independent self-energies of the ECFL in infinite
dimensions. In terms of these self-energies, the physical Green’s function is written as

G(k) = 1 − n
2 + Ψ (iωk)

iωk + µ − εk
�
1 − n

2

�
− χ(iωk) − εkΨ (iωk)

. (36)

Comparing with the standard form of the Green’s function in terms of the Dyson–Mori self energy

G(k) = 1 − n
2

iωk + µ − �k
�
1 − n

2

�
− ΣDM(k)

, (37)

we see the momentum independence of the Dyson–Mori self energy ΣDM(k) = ΣDM(iωk), and

ΣDM(iωk) = (iωk + µ)Ψ (iωk) +
�
1 − n

2

�
χ(iωk)

1 − n
2 + Ψ (iωk)

. (38)

3.3. Conductivity in the limit of large dimensions

It is well known that for the finite-U Hubbard model in the limit of large dimensions, for zero
wave vector, vertex corrections can be neglected in the current–current correlation function [10,9].
This simple observation allows one to express the optical conductivity in terms of the single particle
Green’s function as in Eq. (50).We show that this is also the case for the infinite dimensional t–J model.
Moreover, a question of practical importance for the purpose of calculating the optical conductivity
within the framework of ECFL, is whether or not Eq. (50) can be applied at each order in the λ
expansion (as is done in Ref. [23]). We show that it can be applied and is the correct procedure. First,
we define the relevant objects.

The Schrödinger picture current operator for site j in the direction α is defined as follows:

Jαj = i
�

kσ

vα
k,jX

σ0
k X0σ

j ; vα
k,j = tk,j(�Rk − �Rj)α, (39)

so that v is a velocity. Using the notation Jα[i] = Jαi (τi);�Jα[i] = Jα[i]−�Jα[i]�, we define the correlation
function Παβ [i, f ] and its Fourier transform as

Παβ [i, f ] = �Tτ
�Jα[i]�Jβ [f ]�;

Παβ(�q, iΩn) =
� β

0
d(τi − τf ) eiΩn(τi−τf )

�

i−f

e−i�q·(�Ri−�Rf )Παβ [i, f ]. (40)

The optical conductivity can be given in terms of this object as

σαβ(ω) = 1
iω − η

�
Παβ(�0, ω + iη) − Παβ(�0, iη)

�
, (41)
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where η = 0+. We would like to express the object Παβ [i, f ] as a functional derivative of the Green’s
function. To this end, we add a source which couples to the current operator

A → A +
�

jα

� β

0
dτκα

j (τ )Jαj (τ ). (42)

In terms of the κ source derivative of the Green’s function, and using the definitions vα[i, j] =
vα
i,jδ(τi − τj); κα

i = κα
i (τi), Παβ [i, f ] is given as

Παβ [i, f ] = −i Tr
�

δ

δκα
i

G[f , j] vβ [j, f +]
�

A→0
, (43)

where the trace is over the spin degrees of freedom only. We expand the RHS of this equation using
Eq. (17) (which holds equally well for the κ source derivative), finally obtaining an expression for
Παβ [i, f ] in terms of the κ source derivatives of g−1 and µ.

Παβ [i, f ] = i Tr
�
g[f , x] δ

δκα
i
g−1[x, y] g[y, k]µ[k, j] vβ [j, f +]

�

A→0

− i Tr
�
g[f , k] δ

δκα
i

µ[k, j] vβ [j, f +]
�

A→0
. (44)

We now consider how the additional source Eq. (42) affects the ECFL equations ofmotion (Eqs. (15)
and (16)). The source enters into the equations of motion in the same way as the Hamiltonian does,
via its commutator with the destruction operator, X0σ

i . Moreover, the source has the same form as the
Hamiltonian, with the hopping in the kinetic energy replaced by the velocity in the current operator.
Therefore, the additional source affects the equations of motion only through the substitution

t[i, f ] → t[i, f ] − i
�

α

κα
f vα[i, f ]. (45)

Thus, the new equations of motion can be read off from Eq. (15) as

g−1[i,m] = (µ − ∂τi − Vi) δ[i,m] +
�

t[i,m] − i
�

α

κα
m vα[i,m]

�

× (1 − λγ [i]) + λ

�

t[i, j] − i
�

α

κα
j vα[i, j]

�

ξ ∗ · g[j,n] · Λ∗[n,m; i],

µ[i,m] = (1 − λγ [i])δ[i,m] − λ

�

t[i, j] − i
�

α

κα
j vα[i, j]

�

ξ ∗ · g[j,n] · U∗[n,m; i].

(46)

Since there is no source derivative with respect to κ in the equations of motion and vα[i, f ] is of the
same order in 1√

d
as t[i, f ], all of the results derived in Section 3.1 continue to hold after making the

substitution in Eq. (45). In particular, we showed that g−1[i,m] and µ[i,m] have the following form
(Eq. (22)):

g−1[i,m] = (µ − ∂τi − Vi) δ[i,m] − λ δi,m χi[τi, τm] +
�

t[i,m] − i
�

α

κα
m vα[i,m]

�

× (1 − λγ [i]) + λ

�

ti,m − i
�

α

κα
m vα

i,m

�

Ψi[τi, τm],

µ[i,m] = δ[i,m](1 − λγ [i]) + λ δi,m Ψi[τi, τm], (47)

where χi, Ψi, and γ [i] have properties (a)–(c) of class L functions (Section 2.4), and are defined by
Eqs. (22) through (25). We shall now further assume that they also satisfy property (d) (Eq. (21))
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and show that this assumption is consistent with their definitions. This, in turn, will allow us to
demonstrate the validity of Eq. (50).

Our task is then to show that χi, Ψi, and γ [i], as defined in the last line of Eqs. (23) and (25), satisfy
Eq. (21). By Eq. (24), Ai and Bi satisfy Eq. (21) since they inherit this property from χi, Ψi, and γ [i]. It
remains to show that gx,x[τn, τm] and (tx,j−i

�
α κα

j (τn)v
α
x,j) gj,x[τn, τm] (the time indices are arbitrary)

satisfy this equation.
Defining the notation wi,f (τi) ≡ ti,f − i

�
α κα

f (τi) vα
i,f , and using (the κ source derivative version

of) Eq. (17) as well as Eq. (47), we find that
�

δ

δκα
i

wx,j(τn) gj,x[τn, τm]
�

A→0
= −iδ[τi, τn]vα

x,i gi,x[τi, τm] + itx,jgj,a[τn, τa]

× (1 − λγ [a]δ[τa, τi] + λΨa[τa, τi])vα
a,igi,x[τi, τm]

+ λ tx,jgj,a[τn, τa]
δ

δκα
i

(γ [a]δ[τa, τb] − Ψa[τa, τb])

× ta,bgb,x[τb, τm] + λ tx,jgj,a[τn, τa]

× δ

δκα
i

(χa[τa, τb]) ga,x[τb, τm], (48)

where the RHS is also evaluated in the A → 0 limit. We now substitute this into Eq. (21) (with
s = 0). The last two terms must vanish by assumption (where a has taken the place of x). The first
term contains two paths from i to f , both via x. Hence, this term must vanish in the large d limit
unless x = i or x = f . The former also vanishes since vα

i,i = 0 while the latter must vanish due
to the sum over i − f and the odd parity of vα

i,f . The same reasoning applies to the second term
except that in this term the x = i case vanishes by the odd parity of vα

i,f . Hence, we have shown
that (tx,j − i

�
α κα

j (τn)v
α
x,j) gj,x[τn, τm] satisfies Eq. (21) with s = 0. A completely analogous argument

shows that this is also the case for gx,x[τn, τm]. Using Eqs. (26) and (27) (in particular the fact that the
RHS ismade up of the sameobjects as the LHS), the above argument can be used to show that the result
holds for any value of s. Thus, we have demonstrated the self-consistency of our ansatz (Eq. (21)).

Substituting Eq. (47) into Eq. (44), and using Eq. (21), we find that
�

i−f

Παβ [i, f ] =
�

i−f

Tr
�
G[f , k]vα[k, i]G[i, j] vβ [j, f +]

�
A→0 . (49)

Substituting this equation into Eq. (41), the optical conductivity may be expressed as

σαβ(ω) = 2
iω

�

�p,iωp

G(�p, iωp)v
α
�p v

β
�p [G(�p, ω + iη + iωp) − G(�p, iη + iωp)]. (50)

We now want to prove that this result holds to each order in λ. We do this via an inductive

argument, in which we assume that through nth order in λ,
�

δ
δκα

i
Lx

�(n)

A→0
(where Li can be Ψi, χi, or

γ [i]) satisfies a certain explicit form (Eq. (51)), and then show that this formholds for n+1st order.We

then plug Eq. (47) into
�

i−f Παβ [i, f ] (Eq. (44)), and use the explicit form of
�

δ
δκα

i
Lx

�(n)

A→0
to simplify

the resulting expressions, thereby proving Eqs. (49) and (50) to each order in λ.
For the reason given below (Eq. (46)), we are free to use any of the results from Section 3.1, after

making the substitution in Eq. (45).Wedefine Xi to be a product of local functions of the type in Eq. (28)
(i.e. Xi = (Ri)

m) and Yi,f to be a proxy for either gi,f [τn, τm] or ti,jgj,f [τn, τm] where the time indices are
again arbitrary. Inductive hypothesis: through nth order in λ, the κ source derivative of the objects
Ψi, χi, and γ [i] (denoted below by the generic symbol Li) can be written as

�
δ

δκα
i
Lx

�(n)

A→0
= λn XxYx,x1Xx1Yx1,x2Xx2 . . . Xxm−1Yxm−1,xmXxm

× vα
xm,i Yi,xm−1Xxm−1 . . . Xx1Yx1,xXx, (51)
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where the numberm is arbitrary. In the base case of zeroth order, the objects Ψi, χi, and γ [i] are

Ψ
(0)
i [τi, τm] = 0; γ (0)[i] = g(k)[i, i];

χ
(0)
i [τi, τm] = −

�

ti,j − i
�

α

κα
j (τi)v

α
ij

�

ξ ∗ · gj,i[τi, τi]δ[τi, τm].
(52)

We note that
�

δ
δκα

i
wx,j(τn) gj,x[τn, τm]

�(l)

A→0
is given by Eq. (48) with the appropriate objects on the

RHS evaluated to the appropriate order in λ. An analogous formula holds for
�

δ
δκα

i
gx,x[τn, τm]

�(l)

A→0
.

Using these formulas with l = 0 shows that the hypothesis is satisfied for the base case.
We now prove the inductive step. Eq. (28) continues to hold with ti,j → wi,j(τn) (the time index is

again arbitrary). Therefore, using the notation�Ri = [Ri]ti,j→wi,j(τn), we may write

�
δ

δκα
i
Lx

�(n+1)

A→0
=

n+1�

r=0

λr
�

δ

δκα
i

(�Rx)
m
�(n+1−r)

A→0
. (53)

Substituting the formulas for
�

δ
δκα

i
wx,j(τn) gj,x[τn, τm]

�(l)

A→0
and

�
δ

δκα
i
gx,x[τn, τm]

�(l)

A→0
(Eq. (48)) for

l ≤ n + 1 into Eq. (53), and using the inductive hypothesis, shows that
�

δ
δκα

i
Ψx

�(n+1)

A→0
,
�

δ
δκα

i
χx

�(n+1)

A→0
,

and
�

δ
δκα

i
γ [x]

�(n+1)

A→0
all have the desired form (Eq. (51)). Thus, Eq. (51) holds to all orders in λ.

Substituting Eq. (47) into
�

i−f Παβ [i, f ] (Eq. (44)), and using Eq. (51), the only non vanishing terms
are those which involve a derivative of the explicit factor (tx,y − i

�
α κα

y vα
x,y) from Eq. (47). The other

terms vanish due to the following reasoning. Upon substituting Eq. (51), in each of these terms there
are two paths from i to f , both of which pass through the point x as well as the points x1 . . . xm−1 in
Eq. (51). Hence, in the large d limit, all of these points must be chosen to be either i or f for these terms
to be non vanishing. Then, if we choose xm−1 = i, the term vanishes due to parity, while if we choose
xm−1 = f , the term vanishes due to parity combinedwith the sum

�
i−f . Therefore, aftermaking these

simplifications, we find that Eq. (49) and consequently Eq. (50) hold to each order in λ.

3.4. O
�
λ2

�
theory in the limit of large dimensions

To obtain self-consistent integral equations to any order in λ for the objects g−1[i, f ] and µ[i, f ],
we expand Eqs. (22) through (25) iteratively in λ, and set the sources to zero. Once the sources are set
to zero, the system becomes translationally invariant in both space and time and we may express the
equations in momentum/frequency space. Using the definitions

gloc,m(iωk) ≡
�

�k
g(k)�m

�k , (54)

Im1m2m3(iωk) ≡ −
�

ωp,ωq

gloc,m1(iωq)gloc,m2(iωp)gloc,m3(iωq + iωp − iωk), (55)

the resulting equations to O
�
λ2

�
are

aG ≡ 1 − λ
n
2

+ λ2 n
2

4
, (56)

g−1(k) = iωk + µ� − aG

�
εk − u0

2

�
− λ

�
��k − u0

2

�
Ψ (iωk) − λχ(iωk), (57)

µ(iωk) = aG + λΨ (iωk), (58)
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µ� = µ − u0

�
λ
n
2

− λ2 n
2

8

�
+ λ

�

p
εpg(p) − aG

u0

2
, (59)

Ψ (iωk) = −λu0I000(iωk) + 2λI010(iωk), (60)

χ(iωk) = −u0

2
Ψ (iωk) − u0λI001(iωk) + 2λI011(iωk). (61)

Before solving the equations, one must set λ = 1. The two Lagrange multipliers µ and u0 are
determined by the two sum rules:

�

k

g(k) = n
2
;

�

k

G(k) = n
2
. (62)

The objects gloc,m(iωk) are given by an appropriate integral over the non-interacting density of states of
a function composed of the two self energiesχ(iωk) andΨ (iωk) and the energy � (Eq. (57)). Therefore,
these constitute a self-consistent set of equations for the two self energies. These equations have been
solved numerically and compared to DMFT calculations in Ref. [23].

4. Anderson model

A word is needed at this point on the notation used, since similar looking symbols represent
quite different objects in the t–J model and the AIM. We use the functions G({τj}), g({τj}), µ({τj}) or
G({iωj}), g({iωj}), µ({iωj}) and the related vertex functions for the impurity site of theAIMaswell, but
distinguish them from the t–J model variables by dropping the spatial ormomentum labels. Therefore
in an equation such as Eq. (88), the object on the left (right) hand side corresponds to the t–J model
(AIM).

4.1. Equations of motion for the Anderson model

In DMFT [8,9], the local Green’s function of the infinite-dimensional finite-U Hubbard model is
mapped onto the impurity Green’s function of the finite-U AIM, with a self-consistently determined
set of parameters. Using the ECFL equations of motion for both models, we show that the same
mapping can be made between the infinite-dimensional t–J model and the infinite-U AIM. Further,
we show that this mapping also extends to the auxiliary Green’s function g, and the caparison factor
µ individually. In this section, we briefly review the ECFL theory of the AIM [22], and we establish the
mapping in the following section.

Consider the AIM in the limit U → ∞ which has the following Hamiltonian:

H =
�

σ

�dXσσ +
�

kσ

��knkσ +
�

kσ

(Vk Xσ0 ckσ + V ∗
k cĎkσ X0σ ), (63)

where we have set the Fermi energy of the conduction electrons to be zero. The impurity Green’s
function is given by the following expression:

Gσiσf [τi, τf ] = −�� X0σi(τi) Xσf 0(τf )��. (64)

The ECFL solution of the Anderson model is presented in Ref. [22]. The impurity Green’s function is
factored into the auxiliary Green’s function and the caparison factor:

G[τi, τf ] = g[τi, τj] · µ[τj, τf ]. (65)

The equations of motion for g and µ can be written as

(∂τi + �d + V(τi))g[τi, τf ] = −δ(τi − τf ) − (1 − λγ [τi]) · ∆[τi, τj] · g[τj, τf ]
− λ ξ ∗∆[τi, τj] · g[τj, τx] · Λ∗[τx, τy; τi] · g[τy, τf ], (66)

µ[τi, τf ] = δ(τi − τf )(1 − λγ [τi]) + λ ξ ∗ · ∆[τi, τj] · g[τj, τx] · U∗[τx, τf ; τi], (67)



E. Perepelitsky, B. Sriram Shastry / Annals of Physics 338 (2013) 283–301 297

where the conduction band enters through the (V independent) function

∆[τi, τf ] = −1
�

k

|Vk|2(∂τi +��k)−1δ(τi − τf ). (68)

We have also made use of the following definitions:

Λ[τn, τm; τi] = − δ

δV(τi)
g−1[τn, τm]; U[τn, τm; τi] = δ

δV(τi)
µ[τn, τm];

γ [τi] = µ(k)[τn, τ+
i ] · g(k)[τi, τn].

(69)

4.2. Mapping of the t–J model onto the Anderson model in infinite dimensions

Now let us consider the t–J model in the limit of infinite dimensions. Inverting Eq. (15), the
equations of motion for gi,i[τi, τf ] and µi,i[τi, τf ] are

(∂τi − µ + Vi(τi)) gi,i[τi, τf ] = −δ(τi − τf ) + (1 − λγ [i]) · ti,j gj,i[τi, τf ]
+ λ ti,j ξ ∗ · gj,i[τi, τx] · Ai,∗[τx, τy; τi] · gi,i[τy, τf ]
+ λ ti,j ξ ∗ · gj,i[τi, τx] · Bi,∗[τx, τy; τi] · ti,y gy,i[τy, τf ], (70)

µi,i[τi, τf ] = (1 − λγ [i])δ(τi − τf ) + λ ti,j ξ ∗ · gj,i[τi, τx] · Bi,∗[τx, τf ; τi]. (71)

By mapping gi,i[τi, τf ] and µi,i[τi, τf ] onto g[τi, τf ] and µ[τi, τf ] of the AIM, we would like to show
that the equations of motion of the AIM (Eqs. (66) and (67)) and those of the infinite dimensional t–J
model (Eqs. (70) and (71))map onto each other. To do this, we need the analog of the object g−1[τi, τf ]
of the AIM in the t–J model. We denote this new object by g−1

loc,i[τi, τf ] and define it to be the temporal
inverse of the local auxiliary Green’s function:

gi,i[τi, τj] · g−1
loc,i[τj, τf ] = δ(τi − τf ). (72)

Note that g−1
loc,i[τi, τf ] �= g−1

i,i [τi, τf ]. We also define the corresponding vertex:

Λloc,i[τn, τm; τi] = − δ

δVi(τi)
g−1
loc,i[τn, τm]. (73)

We now make use of the following identity:

Λloc,i[τx, τy; τi] · gi,i[τy, τf ] = Ai[τx, τy; τi] · gi,i[τy, τf ] + Bi[τx, τy; τi] · ti,y gy,i[τy, τf ]. (74)

This identity is easily proven by considering δ
δVi(τi)

gi,i[τx, τf ]:

δ

δVi(τi)
gi,i[τx, τf ] = gi,i[τx, τj]Λloc,i[τj, τy; τi]gi,i[τy, τf ]. (75)

The LHS can also be expressed as

δ

δVi(τi)
gi,i[τx, τf ] = gi,i[τx, τj] · (Ai[τj, τy; τi] · gi,i[τy, τf ]

+ Bi[τj, τy; τi] · ti,y gy,i[τy, τf ]). (76)

Left multiplying the above 2 equations by g−1
loc,i, we recover the identity Eq. (74). Substituting this

identity into Eq. (70), we obtain

(∂τi − µ + Vi(τi))gi,i[τi, τf ] = −δ(τi − τf ) + (1 − λγ [i]) · ti,jgj,i[τi, τf ]
+ λ ti,j ξ ∗ · gj,i[τi, τx] · Λloc,i∗[τx, τy; τi] · gi,i[τy, τf ]. (77)
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Weare now ready tomap the t–J model onto the Andersonmodel. To do this, wemap the local objects
gi,i[τi, τf ] and µi,i[τi, τf ] of the t–J model to the objects g[τi, τf ] and µ[τi, τf ] of the Anderson model.
We also map µ to −�d. The following mappings also follow as a consequence of these.

γ [i] → γ [τi]; Λloc,i[τn, τm; τi] → Λ[τn, τm; τi];
Bi[τn, τm; τi] → −U[τn, τm; τi].

(78)

Comparing Eq. (77) with Eq. (66) and Eq. (71) with Eq. (67), we see that the equations of motion map
onto each other if the following constraint is satisfied:

ti,j gj,i[τi, τf ] = −∆[τi, τj] · g[τj, τf ]. (79)

4.3. Mapping to each order in λ

The O(λ2) equations for the infinite-dimensional t–J model and infinite-U AIM are solved
numerically in Ref. [23] and Ref. [22] respectively. This can in principle be done to higher orders in
λ as well, and it is therefore interesting to know if the mapping from the previous section holds to
each order in λ. We show that it does, and give a simple prescription for obtaining the ECFL integral
equations for one model from those of the other one (Eq. (83)).

We review the λ expansion for the Anderson model from Ref. [22]. There, Eqs. (66) and (67) are
written as

g−1[τi, τf ] = −(∂τi + �d + V(τi))δ(τi − τf ) − (1 − λγ [τi]) · ∆[τi, τf ]
− λξ ∗∆[τi, τj] · g[τj, τx] · Λ∗[τx, τf ; τi], (80)

µ[τi, τf ] = δ(τi − τf )(1 − λγ [τi]) + λξ ∗ · ∆[τi, τj] · g[τj, τx] · U∗[τx, τf ; τi]. (81)

The λ expansion is obtained in the same way as for the t–J model, by iterating the equations in g−1

andµ and keeping track of explicit powers of λ. The details toO(λ2) can be found in Ref. [22]. To relate
this to the λ expansion for the infinite-dimensional t–J model, recall from Eq. (28) that to each order
in λ, Ψi, χi, γ [i], Ai, and Bi can be written as a product of the functions gi,i[τn, τm] and ti,jgj,i[τn, τm].
We can now state our inductive hypothesis: through nth order in λ, the λ expansion for the Anderson
model has the form

g−1[τi, τm] = −(∂τi + �d + V(τi)) δ[τi, τm] − λ χ[τi, τm]
− (1 − λγ [τi])∆[τi, τm] − λ Ψ [τi, τj]∆[τj, τm],

µ[τi, τm] = δ[τi, τm](1 − λγ [τi]) + λΨ [τi, τm],
Λ[τn, τm; τi] = A[τn, τm; τi] − B[τn, τj; τi]∆[τj, τm],
U[τn, τm; τi] = −B[τn, τm; τi], (82)

where through nth order in λ, the objects A[τn, τm; τi] and B[τn, τm; τi], and through n−1st order in λ,
the objects γ [τi], χ[τi, τm], and Ψ [τi, τm], can be obtained from their infinite dimensional t–J model
counterparts via the substitution

gi,i[τn, τm] → g[τn, τm]; µ → −�d; ti,jgji[τn, τm] → −∆[τn, τj] · g[τj, τm]. (83)

We first examine the base case of zeroth order:

A(0)[τn, τm; τi] = δ[τi, τn]δ[τi, τm]; B(0)[τn, τm; τi] = 0. (84)

Comparing with Eq. (29), the hypothesis clearly holds. We now prove the inductive step. Eq. (69)
together with Eqs. (80) through (82) implies the following:

χ (n)[τn, τm] = ξ ∗∆[τn, τj] · g[τj, τx] · A(n)
∗ [τx, τm; τn],

Ψ (n)[τn, τm] = −ξ ∗∆[τn, τj] · g[τj, τx] · B(n)
∗ [τx, τm; τn],

A(n+1)[τn, τm; τi] = λ

�
δ

δV(τi)
χ [τn, τm]

�(n)

,
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B(n+1)[τn, τm; τi] = λ δ[τn, τm]
�

δ

δV(τi)
γ [τn]

�(n)

− λ

�
δ

δV(τi)
Ψ [τn, τm]

�(n)

,

γ (n)[τi] = −λ γ (k)(n−1)[τi]g(k)[τi, τi] + λ Ψ (k)(n−1)[τj, τi]g(k)[τi, τj]. (85)

Comparingwith Eq. (30), we see thatχ (n)[τn, τm], Ψ (n)[τn, τm], and γ (n)[τi] have the desired form.We
also note that

�
δ

δV(τr)
g[τi, τm]

�(l)

= g[τi, τx](A(l)[τx, τy; τr ] − B(l)[τx, τj; τr ]∆[τj, τy])g[τy, τm]. (86)

Comparing this with Eqs. (26) and (27), we see that by the inductive hypothesis, the mapping Eq. (83)
continues to hold through order l ≤ n even after both sides have been acted on with a functional
derivative. Furthermore, in evaluating A(n+1)[τn, τm; τi] and B(n+1)[τn, τm; τi] using Eq. (85), we will
at most need to set l = n in Eq. (86). Finally, comparing Eq. (85) with Eq. (31), we see that
A(n+1)[τn, τm; τi] and B(n+1)[τn, τm; τi] have the desired form. Thus, we have proven our inductive
hypothesis.

Setting the sources to zero, and Fourier transforming Eq. (82), we may write (λ → 1, γ [τi] →
nd
2 ≡ n

2 )

g−1(iωk) = iωk − �d −
�
1 − n

2

�
∆(iωk) − χ(iωk) − ∆(iωk)Ψ (iωk),

µ(iωk) = 1 − n
2

+ Ψ (iωk). (87)

Comparing with Eq. (35), it immediately follows that under themapping Eq. (83),µi,i(iωk) → µ(iωk).
Furthermore, multiplying both sides of the equation for g−1(k) by g(k), summing over �k, and using
the mapping Eq. (83), it follows that gi,i(iωk) → g(iωk). Therefore, the ECFL solution of the infinite
dimensional t–J model maps onto the ECFL solution of the AIM to each order in λ as long as the
following self-consistency condition is satisfied:

�

�k
��kg(k) =

�

�k

|V�k|2
iωn − ���k

g(iωk). (88)

This mapping and self-consistency condition can be understood by referring back to DMFT. In
DMFT [9], the physical Green’s function Gi,f (iωk) is determined for any separation of i and f by the
local Green’s function Gi,i(iωk) or equivalently the local self energy Σ(iωk). The impurity Green’s
function of the Anderson model G(iωk) can be set equal to Gi,i(iωk) as long as �εk and Vk satisfy a
self-consistency condition relating them to G(iωk) (see Eqs. (13) and (15) of Ref. [9]). In the ECFL
mapping, the auxiliary Green’s function gi,f (iωk) is determined for any separation of i and f by the
local auxiliary Green’s function gi,i(iωk) and by the local caparison factor µi,i(iωk), or equivalently by
the two local self energiesΨ (iωk) andχ(iωk).µi,f (iωk) is itself local and related simply toΨ (iωk). The
impurity auxiliary Green’s function of the Anderson model g(iωk) can be set equal to gi,i(iωk) and the
caparison factor of the Anderson model µ(iωk) set equal to µi,i(iωk) as long as �εk and Vk satisfy the
self-consistency condition (Eq. (88)). We now show that Eq. (88) can be put into the form of Eqs. (13)
and (15) of Ref. [9]. Using Eq. (35) the LHS can be written as

�

�k
��kg(k) = −1

1 − n
2 + Ψ (iωk)

[1 − (iωk + µ − χ(iωk))g(iωk)]. (89)

Using Eqs. (2), (5), (35), (38) and the relation G(iωk) = g(iωk) · µ(iωk), the above equation becomes

ΣD(iωk) + 1
G(iωk)

− (iωk + µ) = −
�

�k
��kg(k)

1
g(iωk)

. (90)

Substituting Eq. (88) into the RHS of the above equation, we recover Eqs. (13) and (15) from Ref. [9].
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5. Conclusion

In this work we provide a detailed analysis of the simplifications arising from the large
dimensionality limit of the t–J model, and have given the first few terms in the λ series that leads
to practically usable results. It is clear that the formal result of a local Dysonian self energy is already
implied by the large d results for the Hubbardmodel reviewed in Ref. [9], if we take the limit of infinite
U; that is indeed another description of themodel studied here. However it must be kept inmind that
the present calculation starts with the infinite U limit already taken, and thus provides a non trivial
check on the uniqueness of the limit of U → ∞ and d → ∞, i.e. its independence on the order of
these two limits. Also the present work uses the novel ECFL methodology that rests on a different set
of tools from the ones usually used to study the Hubbard model and its large dimensional limit. We
use the Schwinger equations of motion, as opposed to the usual Feynman–Wick theory, and we have
obtained analytical results that do not rely on Wick’s theorem.

Summarizing, we have considered the ECFL theory for the t–J model (J = 0) by establishing the
simplifications that arise in the equations of motion in the limit of large dimensions. The auxiliary
Green’s function g(k) and the caparison factor µ(k) can be written in terms of two local self energies
Ψ (iωk) and χ(iωk) as in Eq. (35). This insight into the structural form of the physical Green’s function
G(k) has been used in a concurrent publication (Ref. [23]), to benchmark and compare the ECFL and
DMFT calculations. The ECFL integral equations in the large d limit, derived here to O(λ2), have been
solvednumerically in Ref. [23], and their solution compares favorablywithDMFT results. It can be seen
explicitly from these equations that Eq. (35) holds to secondorder inλ, withΨ (iωk) andχ(iωk)written
as a product of the functions gloc,m(iωk) (Eq. (54)) with m = 0 or m = 1. This continues to hold to
each order in λ. We have analyzed the optical conductivity and have shown that it is given by Eq. (50)
in general and to each order in λ. We have separately also studied the ECFL theory of the infinite-U
AIM[22], and have shown that there is a mapping between the ECFL of the infinite dimensional t–J
model and the ECFL of the AIM with a self-consistently determined set of parameters (Eq. (88)). This
mapping holds to each order in λ and there is a simple prescription for obtaining the ECFL integral
equations for one model from those of the other (Eq. (83)).

In conclusion this work provides a solid foundation for the study of the t–J model, and in particular
for the ECFL formalism, in the limit of infinite dimensions, by providing exact statements about the
k dependence of self energies, the absence of vertex corrections in computing the conductivity and
finally in yielding a systematic expansion in the parameter λ that enables a quantitative comparison
with other methods as in Ref. [23].
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