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a b s t r a c t

The t–J model is studied using a novel and rigorous mapping of
the Gutzwiller projected electrons, in terms of canonical electrons.
The mapping has considerable similarity to the Dyson–Maleev
transformation relating spin operators to canonical Bosons. This
representation gives rise to a non Hermitian quantum theory,
characterized by minimal redundancies. A path integral represen-
tation of the canonical theory is given. Using it, the salient results of
the extremely correlated Fermi liquid (ECFL) theory, including the
previously found Schwinger equations of motion, are easily red-
erived. Further, a transparent physical interpretation of the pre-
viously introduced auxiliary Greens function and the ‘caparison
factor’, is obtained.

The low energy electron spectral function in this theory, with
a strong intrinsic asymmetry, is summarized in terms of a few ex-
pansion coefficients. These include an important emergent energy
scale ⇥0 that shrinks to zero on approaching the insulating state,
thereby making it difficult to access the underlying very low en-
ergy Fermi liquid behavior. The scaled low frequency ECFL spectral
function, related simply to the Fano line shape, has a peculiar en-
ergy dependence unlike that of a Lorentzian. The resulting energy
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dispersion obtained bymaximization is a hybrid of a massive and a

massless Dirac spectrum E⇤Q � ⌦ Q �
q

� 2
0 + Q 2, where the van-

ishing of Q , a momentum type variable, locates the kinkminimum.
Therefore the quasiparticle velocity interpolates between (⌦ ⌅ 1)
over a width �0 on the two sides of Q = 0, implying a kink there
that strongly resembles a prominent low energy feature seen in an-
gle resolved photoemission spectra (ARPES) of cuprate materials.
We also propose novel ways of analyzing the ARPES data to isolate
the predicted asymmetry between particle and hole excitations.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The intensely studied t–J model is often regarded as the effective low energy Hamiltonian for
describing several observed phenomena in cuprate superconductors [1]. Here the U ↵⌘ limit
is presupposed, and hence the Hilbert space is restricted to a maximum of single occupancy at
each site, i.e. Gutzwiller projected [2]. A few words on the choice of the t–J model are relevant
here. The implied infinite U limit eliminates high energy (U scale) electronic states, known as the
upper Hubbard band states. The residual low energy (. 100 meV scale) excitations are probed by
sensitive spectroscopies and transport phenomena, making the t–J model suitable for our task. At
reasonably highU , say comparable to the bandwidth in aHubbardmodel, this elimination of the upper
Hubbard band must already occur in part. Therefore the limit U ↵⌘ must be regarded as a useful
mathematical idealization of the very strong, or extreme correlation phenomenon. The resulting
Gutzwiller projected electron operators, denoted byHubbard’s convenient notation of X operators [3],
are rendered non canonical. The non-canonical nature of the electrons precludes the Wick’s theorem
underlying the Feynman diagram approach, whereby leading to the fundamental difficulty of
the t–J model, namely the impossibility of a straightforward Feynman type perturbative expansion.
This situation leads to enormous calculational difficulties, so that systematic and controlled analytical
calculations with this model have been very difficult.

In a series of recent papers [4,6–8,5,9,10], we have shown that it is possible to overcome some
of these difficulties by using alternate methods based on Schwinger’s treatment of field theory with
time dependent potentials. This idea yields exact equations ofmotion for the electronGreens function.
These equations have the nature of functional differential equations, and provide a powerful launching
pad for various approximations. The specific approximation pursued is a systematic expansions in
a parameter ✏ related to double occupancy. Using this we have presented an analytical theory of
the normal state of the t–J model termed the extremely correlated Fermi liquid (ECFL) theory. An
interesting feature of the theory is that we find a non-Dysonian representation of the projected
electron Greens function. This is a significant structural departure from the usual field theories, and
arises in a most natural fashion. The Greens function is determined by a pair of self energies, denoted
by⇧(�k, i⇠n) and ⌃ (�k, i⇠n), instead of the standard Dyson self energy⌅(�k, i⇠n) (see Eq. (21) below).
The latter can be reconstructed from the pair by a simple inversion. Startingwith rather simple pairs of
self energies, it is found that non trivial complexity is introduced into the Dyson self energy through
this inversion process. Explicit self consistent calculations in parameter ✏ have been carried out to
O(✏2) so far, and yield reliable results for electron densities 0 ⌃ n . .7. The detailed dynamical results
of the ECFL theory have been benchmarked against independent theories in overlapping domains;
e.g. against high temperature series results in Ref. [11]. The ECFL theory has been shown to have
a momentum independent Dyson self energy in the limit of infinite dimensions [10]. This enables
benchmarking against the dynamical mean field theory (DMFT) in Ref. [9]. Importantly, the results
from the ECFL theory for the spectral function compare well with a large U Hubbard model solved
by the DMFT method, and not just infinite U . The ECFL theory has also been benchmarked in Ref.
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[12] against the exact solution of the asymmetric U = ⌘ Anderson impurity model, obtained
from the numerical renormalization group study of Krishnamurthy, Wilson and Wilkins [13]. In
addition, a detailed comparison between the data on cuprate superconductors at optimal filling and
the theoretical photoemission spectral lines of the ECFL theory has been carried out in Refs. [14,15],
where excellent agreement is found. In all cases studied, the comparisons with ECFL are good, and
seem to indicate the utility of this approach.

The ECFL formalismcould initially seemsomewhat unfamiliar, in viewof its reliance on the analysis
of the Schwinger equations ofmotion. This analysiswas originally used to derive themain constituents
of the theory, namely the auxiliary Greens function and the two self energies (detailed below). This
type of analysis is somewhat removed from the toolkit of ‘‘standard’’ many body physics courses, and
hence might obstruct a ready visualization of these objects. One goal of the present work is to show
that these results are (A) minimal, i.e. having least redundancy, and (B) available more transparently.
The latter follows from an important and novel hat removal theorem, leading to a compact mapping of
the Hubbard operators to canonical Fermions. The mapping is given in Eq. (1) and described further
in Section 3.2, leading to a path integral formulation (Section 7). It is possible that such a simplified
presentation could lead to improved strategies for devising approximate methods, especially close to
the insulating state.

This method rests on an exact replacement rule for the Hubbard X operators in terms of the
canonical Fermi operators

X0◆
i ↵ Ci◆ , X◆0

i ↵ CÑ
i◆ (1� Ni◆̄ ), X◆◆ ⇣

i ↵ CÑ
i◆Ci◆ ⇣ . (1)

This replacement rule is shown to be exact when ‘‘right-operating’’ on states which satisfy the
Gutzwiller constraint. This replacement is similar in spirit to the Dyson–Maleev representation [16,
17], where spin operators are expressed in terms of canonical Bosonic operators. With the advantage
of this representation, most steps in the ECFL theory, such as the factorization of the Greens function
into an auxiliary Greens function, the two self energies and the caparison function (see Eqs. (18), (19)
and (21)) becomes very intuitive.

The analogy can be pushed further to establish a parallel between the ✏ parameter of the ECFL
theory, and the small parameter of the Dyson–Maleev [16,17] theory, namely the inverse spin 1

2s .
Finally we are able to make contact with the illuminating work of Harris, Kumar, Halperin and
Hohenberg [18]. In a detailed work these authors computed the Greens function of the spins for two
sublattice antiferromagnet using theDyson–Maleev schemeand extracted the lifetimeof themagnons
of the theory. We find that their calculation contains the precise Bosonic counterparts of the auxiliary
Greens function and the second self energy ⌃ defining the ‘‘caparison function’’ of the ECFL theory
(see Eqs. (18), (19) and (21)). Unlike the spin problem with variable number of excitations, the t–J
model has a fixed number of particles. Hence there are significant new elements in the ECFL theory
involving the imposition of the Luttinger–Ward volume theorem, as discussed later.

A few comments on the canonical description of the equations of motion are appropriate. The
general problem is to represent a time evolution of a state of the t–J model

[⌫]⇣final = Q ⇣M . . .Q ⇣2.Q
⇣
1.[⌫]⇣initial, (2)

where the primed states and operators are in the t–J model Hilbert space defined with the three
allowed states at each site as usual (see Section 2.1 for details). The operators Q ⇣j may be thought of
as the exponential of the t–J Hamiltonian: Q ⇣j � e�itjHtJ written in terms of the projected operators.
Since the algebra of the projected electrons is very inconvenient, one seeks a reframing of the problem
into a canonical space. This involves mapping the states, the Hamiltonian and all other operators of
the original theory, into the unconstrained Hilbert space of two Fermions at each site. This canonical
space is of course described by the usual Fermi operators Cj�, Cj� and their adjoints. This gives us an
enlarged spacewith four states per site, with one redundant state corresponding to double occupancy,
eliminated using Gutzwiller projection. There are various possibilities for doing this elimination
leading to the different theories in literature. This includes the popular slave Boson or slave Fermion
technique [19–21], where additional degrees of freedom, over and above the already enlarged 4
dimensional local state space, are introduced and finally eliminated as best as possible. This handling
of the redundancy leads to gauge theories for the t–J model that are reviewed in Ref. [21].
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In the enlarged state space let us block diagonalize the state space into physical and unphysical
states and write the projection operator as

[⌫] =


⌫ph

⌫un

�

; P̂G =


1
ph 0
0 0

�

, (3)

where 1ph is the identity operator in the physical space. The relevant operators in the theoryQj e.g. the
Hamiltonian, the creation operators or the destruction operators, are now written in terms of the
canonical Fermions:

Qj =


Qpp
j Q pu

j
Q up
j Q uu

j

�

. (4)

The next goal of the construction is to ensure that a state resulting from the application of a sequence
of operators on a projected state remains in the projected space, i.e.

[⌫]final = QM . . .Q2.Q1.P̂G.[⌫]initial, (5)

and [⌫]final = P̂G.[⌫]final. If this condition is not ensured, the projector has to be introduced at all
intermediate time slices, thus making the calculations intractable. A sufficiency condition for this is
the commutation [Qj, P̂G] = 0 for all j. The slave Boson–Fermion technique uses the conservation
of the Gutzwiller constraint by writing a suitable version of the Hamiltonian. This enables the use
of a time independent Lagrange multiplier, as demonstrated in the work of Read and Newns [20]. In
Section 3.1, we display a compact Hermitian representation that also achieves this, without however
adding further states (beyond the four states) into the problem.

While the commutation condition [Qj, P̂G] = 0 is sufficient, it is not necessary, and a much less
restrictive condition can be found. We note that if the operators Qj have a vanishing Qup

j then the
product in Eq. (5) remains in the physical sector with

[⌫]final =


Qpp
M . . .Qpp

2 .Qpp
1 . ⌫

ph
initial

0

�

. (6)

The property of a commuting projection operator [Qj, P̂G] = 0, requires that Qpu
j = 0 as well as

Qup
j = 0, whereas the vanishing property of the unphysical components noted in Eq. (6) requires only

Qup
j = 0. Then Qpu

j as well as Quu
j are quite arbitrary. With this property, all the Qj operators in Eq. (4)

are block triangular

Qj =


Qpp
j Q pu

j
0 Quu

j

�

. (7)

Inmore formal terms the sufficiency conditionwith least constraints that leads to Eq. (6) (via the block
triangularity Eq. (7)) is

(1� P̂G).Qj.P̂G = 0. (8)

This condition is also expressible as [Qj, P̂G].P̂G = 0; a conditional vanishing of the commutator,
when right operating on projected states. This observation provides some intuition for why Eq. (8)
is sufficient in the present context. In view of the block triangular operators in Eq. (7), the adjoint
property, namely of representing conjugate operators by their matrix Hermitian conjugates, is lost in
this representation. This is seen clearly in Eq. (1), where the first two operators are mutual adjoints in
the defining representation, but not so in the canonical basis. In general this situation is expected to
lead to non Hermitian Hamiltonians. The non Hermitian representation in Eq. (64) and Section 3.2
implements this idea and therefore leads to the most efficient canonical theory. We show that it
exactly matches the minimal theory, found from the minimal description of the t–J model in terms
of the Hubbard X operators and the Schwinger equations of motion. It is notable that the Gutzwiller
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projection operator does not appear explicitly in the equations ofmotion, although it does play a crucial
role in the canonical theory, and is at the root of its difficulty.

Theplan of the paper is as follows. In Sections 2.1–2.3we review the Schwinger equations ofmotion
for the t–J model, and the ingredients of the recentmethod developed for a systematic expansion in a
parameter ✏. In Section 2.4 we summarize the general form of the Greens function at low frequencies
near the Fermi surface, and obtain the prototypical spectral function of the theory. We summarize
in Section 2.5 a kink in the electronic dispersion that arises from the theory, and seems to be closely
related to that seen in many photoemission experiments. We also present simple but important ideas
for analyzing photoemission data, with a view to isolating important feature of asymmetry predicted
by the ECFL theory.

In Section 3 we formulate the ‘‘best possible’’ representation of the Hubbard operators in terms
of canonical Fermions, as discussed above. Section 3.1 summarizes the well known representation
and Section 3.2 implements the block triangular idea to obtain a non Hermitian method with least
redundancy. Sections 3.3 and 3.4 give further details of the Hamiltonian in this representation and the
proof of the antiperiodic temporal boundary conditions necessary for defining the new framework.

In Section 4, the above non Hermitian representation is used to analyze the nature of the Greens
function of projected electrons. Quite remarkably this process also yields the Greens function as a
convolution of an auxiliary Greens function and a caparison function, in complete parallel to that
obtained from the Schwinger method employed in Sections 2.2 and 2.3. In Section 5 we generalize
the above representation to define ✏ Fermions where the Gutzwiller projection is only partial, and
becomes full at ✏ = 1. The equations of motion from these Fermions are shown to be those obtained
in the ✏ expansion of Section 2.3.

In Section 6wedisplay a close analogy between the nonHermitian representation of theGutzwiller
projected electrons and the well known Dyson–Maleev representation of spin operators in terms of
canonical Bosons. This connection also provides further meaning of the small parameter ✏ in the
Fermion theory, as a parallel of the expansion parameter 1

2s of the Dyson–Maleev theory. A connection
with the work of Harris, Kumar, Halperin and Hohenberg (HKHH) [18] is noted, who invented a
method for computing the lifetime of spin waves in antiferromagnets, with considerable overlap with
our representation of the Greens function with two self energies.

In Section 7, we cast the canonical theory in terms of Fermionic path integrals, and show how
the exact Schwinger equations of motion can be obtained directly from this representation, thereby
validating all the links in the argument. The subtle role of the Gutzwiller projection operator is
explored, it does not appear explicitly in the equations of motion and yet plays an important role
in the theory. In Section 8 we summarize the main points of the paper.

In Appendix A we summarize the derivation of the minimal equations of motion from the
Schwinger viewpoint. In Appendices B–D we provide the details of the coherent state path integrals
and the implementation of the Gutzwiller projection. In Appendix E we provide a more detailed
interpretation of the caparison function in terms of a change of variable of the source fields.

2. Summary of the ECFL theory for the t–J model

2.1. The t–J model preliminaries

Thewell studied t–J model is a two component Fermi system on a lattice, defined on the restricted
subspace of three local states, obtained by excluding all doubly occupied configurations. The allowed
states are |a⌫ with a = 0,�,�, and the double occupancy state |��⌫ is removed by the (Gutzwiller)
projection operator. These Gutzwiller projected electron operators are denoted, in the convenient
notation due to Hubbard, as Xa,b

i = |a⌫�b|. Its Hamiltonian HtJ is expressed in terms of the X operators
so that the single occupancy constraint is explicit. Summing over repeated spin indices we write

HtJ = Ht + HJ ,

Ht = �
X

ij

tijX◆0
i X0◆

j � µ
X

i

X◆◆
i ,
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HJ = 1
2

X

ij

Jij
✓

�Si.�Sj �
1
4
X◆◆
i X◆ ⇣◆ ⇣

j

◆

. (9)

In computing the Green’s functions we add two kinds of Schwinger sources to the Hamiltonian; the
anticommuting Grassmann pair J, J⇤ coupling to electron creation and destruction operators, and the
commuting potentialV , coupling to the charge aswell as spin density. These sources serve to generate
compact Schwinger equations of motion (EOM), and are set to zero at the end. Explicitly we write

ÂS =
X

i

Z  

0
ÂS(i,  )d ,

ÂS(i,  ) =
⇥

X◆0
i ( )Ji◆ ( ) + J⇤i◆ ( )X0◆

i ( )
⇤

+ V◆ ⇣◆
i ( )X◆ ⇣◆

i ( ), (10)

and all time dependences are as inQ ( ) = eHtJ Qe�HtJ . The generating functional of Green’s functions
of the t–J model is

Z[J, J⇤, V] ⇧ TrtJ e� HtJ T
⇣

e�ÂS
⌘

. (11)

It reduces to the standard partition function on turning off the indicated source terms. The Green’s
functions for positive times 0 ⌃ j ⌃  , are defined through the Martin–Schwinger prescription
[22,23]:

G◆◆ ⇣(ii, f f ) = �

D

T
⇣

e�ÂS X0◆
i (i)X◆ ⇣0

f (f )
⌘E

�T e�ÂS ⌫
. (12)

The functional Z conveniently yields the Green’s functions upon taking functional derivatives with
respect to the sources, e.g.

G◆◆ ⇣(ii, f f ) =
✓

1
Z

↵2Z
↵J⇤i◆ (i)↵Jf ◆ ⇣(f )

◆

, (13)

where the sources are turned off at then end. We note that n◆ , the number of particles per site, is
determined from the number sum rule:

n◆ = G◆◆ (i�, i ), (14)
and µ the chemical potential is fixed by this constraint.

2.2. The Schwinger equations of motion

The detailed theory of the t–J model developed so far [4,6] uses the Schwinger equations of
motion. Since these equations play a fundamental role in the theory,we summarize next the equations
of motion and their extension, obtained by introducing a parameter ✏. We relegate to Appendix A
the derivation of the ‘‘minimal theory’’ equations. In the minimal theory, the most compact set of
Schwinger equations are established, and some redundant terms from Ref. [4] are omitted. This
minimal version of the theory is important for the purposes of the present paper, since our goal in
this paper is to recover these from a canonical formalism.

As the Schwinger school has [22,24,25] emphasized, a field theory is rigorously determined by its
equations of motion plus the boundary conditions. We can also establish alternate descriptions such
as path integrals formulations, from the requirement that they reproduce these equations of motion—
we present an example of this approach in Section 7.2. In terms of the original description of the t–J
model involving the Hubbard X operators, the Schwinger equation of motion is a partial differential
equation in time and also a functional differential equation involving the derivatives with respect to
a Bosonic source:

⇣

g

�1
0,◆i,◆j(ii, jj)� X̂◆i◆j(ii, jj)� Y1◆i◆j(ii, jj)

⌘

⇥G◆j◆f (jj, f f ) = ↵if ↵(i � f )
�

↵◆i◆f � ⌦◆i◆f (ii)
�

, (15)
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where g0 is the noninteracting Green’s function (Eq. (136)), X̂ is a functional derivative operator
(Eq. (130)), ⌦ is the local Green’s function obtained from G as ⌦◆a◆b(ii) = ◆a◆bG◆̄b◆̄a(i

�
i , ii) (see

Eq. (135)) and Y1 is the band hopping times ⌦ (Eq. (131)); further details can be found in Appendix A.
This equation has been written down in Refs. [4,6]: Antiperiodic boundary conditions with respect
to both times (as in Eqs. (75) and (76)), and the number sum-rule (14) together with the equation of
motion (15), specify the theory completely.

2.3. The ✏ expansion, the shift identities and second chemical potential u0

The idea of introducing a parameter into the EOM (15) becomes quite natural when we
observe the Schwinger EOM for the Hubbard model closely. These can be written schematically as
�

g

�1
0 � U↵/↵V � UG

�

.G = ↵ 1. By scaling the interaction U ↵ ✏ U , with a parameter ✏ (0 ⌃ ✏ ⌃ 1),
the interacting theory is connected continuously to the Fermi gas by tuning✏ from1 to 0. The standard
perturbative expansion can be organized by counting the various powers of ✏, setting ✏ = 1 at the end
before evaluating the expressions [26]. Below in Section 5 we provide a more microscopic argument
for introducing the ✏ parameter in the Hubbard X operators directly, this method leads back to the
equations found here.

In the corresponding equation for the t–J model (15), we observe that the Green’s function differs
from that for the free Fermi gas through two terms on the left hand side, exactly as in the Hubbard
model, but also through one term on the right hand side. Scaling these three terms by ✏, we rewrite
(15) schematically as:

⇣

g

�1
0 � ✏X̂ � ✏Y1

⌘

. G = ↵ (1� ✏⌦ ). (16)

The strategy of the perturbative ✏ expansion method is to build up the solution of this equation at
✏ = 1 through a suitable expansion in ✏, starting from the free Fermi limit ✏ = 0. Thus ✏ < 1
corresponds to the admixture of a finite fraction of double occupancy that vanishes at ✏ = 1. Insights
from sum rules, the skeleton graph expansion and the physics of the Hubbard sub bands has played a
major role in formulating a systematic ✏ expansion described in detail in Refs. [4,6].

Within this approach it is also necessary to add a term ✏u0
P

i Ni�Ni� to the Hamiltonian, and a
corresponding term to the EOM, so that the X̂ and Y1 in Eq. (16) are suitably redefined. Here u0 is
an extra Hubbard interaction type parameter that is determined by a sum rule as explained below.
At ✏ = 1 such a term makes no difference since the double occupancy is excluded. This parameter
u0 also enables us to enforce a simple but crucial symmetry of the t–J model-the shift invariance,
noted in Ref. [6]. This invariance arises from the twofold function of the hopping in the t–J model
when expressed in terms of the canonical operators, of providing hopping as well as the four Fermion
(interaction) terms. Therefore in an exact treatment, adding a constant times the identitymatrix to the
hopping matrix: tij ↵ tij + const⇥ ↵ij, shifts the center of gravity band innocuously. In approximate
implementations it has the unphysical effect of also adding to the interaction (i.e. four Fermion type)
terms. Such a change must therefore be compensated by an adjustable parameter that can soak up
this additive constant. Indeed u0 provides precisely this type of a parameter. It also plays the role of
a second chemical potential u0 [6] to fix the number of Fermions in the auxiliary Green’s function g

through n◆ = g◆◆ (i�, i ), while the thermodynamical chemical potential µ (residing in the non
interacting g

�1
0 ), is fixed by the number sum rule n◆ = G◆◆ (i�, i ) (Eq. (14)). Enforcing this shift

invariance to each order in the ✏ expansion plays an important ‘‘watchdog’’ role on the ✏ expansion,
in addition to other standard constraints such as the Ward identities.

To summarize some key points of the ✏ expansion, we first decompose the Greens function into
the space time convolution of an auxiliary Greens function and a caparison function as:

G = g.µ. (17)

With this the operator in Eq. (16) acts on the two factors of Eq. (17), and breaks into two equations
upon using the ansatz that g has a canonical structure

⇣

g

�1
0 � ✏X̂ � ✏Y1

⌘

.g = ↵ 1. The ✏ expansion
[6] is then an iteration scheme that proceeds by an expansion of the caparison function µ(k) and Y1
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Table 1

A flowchart of the ECFL theory as developed in Refs. [4,6]. See Sections 2.2 and 2.3 for a detailed description.

Step(I) Step(II) Step(III) Step(IV) Step(V) Step(VI) Step(VII)

Green’s
function G
in terms of
Hubbard
operators.

Exact
Schwinger
equations
of motion
for G.

Product
expression into
canonical part g
and adaptive
spectral weight
(caparison) part
µ(k).

Exact
equations
for g(k)
and µ(k).

Introduction of
interpolating
parameter ✏
connecting the
Fermi gas to the
extreme
correlation limit.

Shift invariance
requires second
chemical
potential u0.
Same sum rule
for both Greens
functions so that
Fermi surface
volume is
conserved.

Successive
orders in ✏
expansion
satisfying
shift
invariance
for practical
calculations.

G ⇢G G(k) = g(k)µ(k) 0 ⌃ ✏ ⌃ 1
P

G = P

g = n
2

(Y1 = t⌦ ) in powers of ✏. Dyson’s skeleton graph idea is implemented by keeping the auxiliary g

intact (i.e. unexpanded in ✏), while all other variables are expanded in powers of ✏ and g, thereby
obtaining self consistent equations for g and the vertex functions. Successive levels of approximation
are obtained by retaining increasing powers of ✏. At each approximation level, we set ✏ = 1 before
actually evaluating the expressions, and implement the antiperiodic boundary conditions (75), (76),
and the number sum-rule n◆ = G◆◆ (i�, i ) (Eq. (14)).

Elaborating on the representation (17) of G, we note that the ⌦ term on the right hand side of
(16) is due to the non canonical anticommutator of the projected Fermi operators. As noted in Ref.
[4], this term contains the essential difficulty of the t–J problem, having no parallel in the (canonical)
Hubbard typemodels. After turning off the sources, in themomentum–frequency spacewe can further
introduce two self energies ⌃ (k, i⇠), and⇧(k, i⇠) with

µ(�k, i⇠n) = 1� n
2

+ ⌃ (�k, i⇠n) (18)

g

�1(�k, i⇠n) = g

(�1)
0 (�k, i⇠)� ⇧(�k, i⇠n), (19)

where the constant n
2 in Eq. (18) is fixed by the condition that ⌃ vanishes at infinite frequency. The

auxiliary Greens function satisfies a second sumrule analogous to Eq. (14), written in the Fourier
domain:

(kBT )
X

k,n

ei⇠n0+
g◆◆ (k, i⇠n) = n◆ . (20)

Clearly the same sumrule holds for G◆◆ (k, i⇠n). Eq. (17) can now be written explicitly in the non-
Dysonian form proposed in Refs. [4,5]

G(�k, i⇠) = 1� n
2 + ⌃ (�k, i⇠)

g

(�1)
0 (�k, i⇠)� ⇧(�k, i⇠)

. (21)

As argued in [4,6,8,9], simple Fermi liquid type self energies ⌃ and ⇧ can, in the combination above,
lead to highly asymmetric (in frequency) Dyson self energies from the structure of Eq. (21), thus
providing a considerable tactical advantage in describing extreme correlations. We further discuss
the physical meaning of this decomposition and the twin self energies in Section 4. Table 1 provides
an overview of the various steps in the construction of the theory.

2.4. G(�k, i⇠n) and the low energy spectral function in ECFL theory

We summarize here the low temperature low energy theory near the Fermi surface that follows
from the general structure of Eq. (21) in terms of a small number of parameters, upon assuming that
the two self energies have a Fermi liquid behavior at low energies. In the limit of large dimensions,
a similar exercise gives a very interesting spectral function that matches the exact solution of the
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U = ⌘ Hubbard model found from the dynamical mean field theory (DMFT) [9]. The presentation
below generalizes that to include a momentum dependence that is absent in high dimensions, and is
supplemented by a discussion of the behavior of the various coefficients as the density of electrons n
approaches unity, or equivalently the hole density ↵↵ 0.

The Dyson self energy can be inferred from a simple inversion, and has a strong set of corrections to
the Fermi liquid theory that we delineate here.We assume here a Fermi liquid type state that survives
the limit of small hold density ↵↵ 0. In reality at very small ↵ several other broken symmetry states
would compete and presumably win over the liquid state, so that this Fermi liquid state would be
metastable. It characteristics are of interest and hence we proceed to describe these.

We study Eq. (21) by analytically continuing i⇠↵ ⇠ + i0+ and write

g

(�1)
0 (�k, i⇠) = ⇠ + µ�

⇣

1� n
2

⌘

⇡k. (22)

Let us define k̂ as the normal deviation from the Fermi surface i.e. k̂ = (�k � �kF ).�kF/|�kF |, and the
frequently occurring Fermi liquid function

R = ✓{⇠2 + (✓kBT )2}. (23)
We carry out a low frequency expansion as follows:

1� n
2

+ ⌃ (�k,⇠) = �0 + c⌃ (⇠ + ⇣⌃ k̂ vf ) + iR/⌦⌃ + O(⇠3), (24)

where �0 = 1� n
2 +⌃0 is the constant term at the Fermi surface, and a similar expansion for⇧(�k,⇠)

so that

⇠ + µ�
⇣

1� n
2

⌘

⇡k � ⇧(k,⇠) = (1 + c⇧)
⇣

⇠ � ⇣⇧ k̂ vf + iR/⌥⇧ + O(⇠3)
⌘

, (25)

where vf = (⇢k⇡k)kF is the bare Fermi velocity. The expansion coefficients above are in principle
functions of the location of �kF on the Fermi surface, and have suitable dimensions to ensure that ⌃ is
dimensionless and ⇧ is an energy. The dimensionless velocity renormalization constants ⇣⇧ and ⇣⌃
capture the momentum dependence normal to the Fermi surface, arising from the two respective self
energies. The Greens function near the Fermi surface can now be written as

G(�k,⇠) � z0
�0

 

�0 + c⌃ (⇠ + ⇣⌃ k̂ vf ) + iR/⌦⌃

⇠ � ⇣⇧ k̂ vf + iR/⌥⇧

!

(26)

where z0 = �0/(1 + c⇧) is the net quasiparticle renormalization constant. The spectral function can
be computed from A(�k,⇠) = � 1

✓
m G(�k,⇠ + i0+) in the ECFL form of a Fermi liquid function times

a caparison function µ(k,⇠) as follows:

A(�k,⇠) = z0
✓

�0

(⇠ � ⇣⇧ k̂ vf )2 + � 2
0

⇥ µ(k,⇠), (27)

where the (Fermi liquid) width function

�0(k̂,⇠) = � + ✓(⇠2 + (✓kBT )2)

⌥⇧

, (28)

with an extra phenomenological parameter � required to describe elastic scattering [14] in impure
systems. The caparison function is

µ(k̂,⇠) = 1� ⇠

⇥0
+ ⇣0 k̂ vf

⇥0
, (29)

where we introduced an important (emergent) low energy scale combining the other parameters:

⇥0 = �0
⌦⌃

⌥⇧ � c⌃ ⌦⌃
(30)
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and the dimensionless momentum dependence coefficient
⇣0 = (⇣⌃ ⌦⌃ c⌃ + ⇣⇧⌥⇧)/(⌥⇧ � c⌃ ⌦⌃ ). (31)

A cutoff �
⇣

µ(k̂,⇠)
⌘

is implicit in Eq. (29), so that the function µ(k̂,⇠) is assumed to be zero at
large positive frequencies as discussed in Ref. [4]. The five final parameters defining the spectral
function (27) are z0, ⇣0, ⇣⇧,⌥⇧,⇥0. For fitting experimental data, it may be best to think of them
as adjustable parameters that determine the line shapes, their asymmetries and also features in
the spectral dispersions. In addition the � parameter is needed to describe impurities that are not
contained in the microscopic theory. In the early fit [14] the total number of free parameters is even
smaller—just two instead of five. The corrections to the Landau Fermi liquid theory are encapsulated
in the caparison factor, which contains a correction term that is odd in frequency and seems to be
ultimately responsible for the asymmetric appearance of the line shapes [14,8].

For reference we note that in the limit of high dimensions [9], the coefficient of the momentum
dependent term ⇣0 vanishes in Eq. (27), while the earlier fits to experiments in [14], it is non zero, and
in modified fits [15] its magnitude is varied to get a good description of the constant energy cuts of
the data.

It is useful to consider the approach to the Mott insulating limit, where the parameters behave
in a specific fashion to satisfy the expected behavior. We consider the limit of density ↵ ↵ 0, and
a frequency scale 0 ⌃ |⇠| < ⇠c � ↵t , where the above expression (27) may be expected to work.
For reference, it is useful to note that in this limiting case, the widely used Gutzwiller–Brinkman–Rice
theory [2,27] gives the quasiparticle propagator as:

GGBR(�k,⇠) � z

⇠ � z k̂ vf
, (32)

where z vanishes linearly with ↵ as z = 2↵/(1 + ↵). This leads to a delta function spectral weight
AGBR = z ↵(⇠ � z k̂ vf ). In contrast Eq. (27) provides the spectral function at non zero T and ⇠.

As n ↵ 1 in Eq. (24) we expect that the constant ⌃0 ↵ � n
2 , in order to reach the Mott

insulating limit continuously. This implies that �0 ✏ ↵ in this regime, and this drives the various
other coefficients as well. We summarize the expected behavior of the above five coefficients

z0 ↵ z0 ⇥ ↵; ⇥0 ↵ ⇥0 ⇥ ↵; ⌥⇧ ↵ ⌥⇧ ⇥ ↵;
⇣0 ↵ ⇣0 ⇥ ↵; ⇣⇧ ↵ ⇣⇧ ⇥ ↵; (33)

by using an overline for denoting a non vanishing limit of the stated variable [9,28]. The scaling of
the velocity constants ⇣ is guided by the results in high dimensions, and ensure that the dispersing
quasiparticles have a vanishing bandwidth aswe approach the insulator—as emphasized by Brinkman
and Rice [27]. From this we find that the ECFL spectral function (27) satisfies a simple homogeneity
(i.e. scaling) relation valid in the low energy regime for a scale parameter s:

A(k̂, s⇠|s T , s ↵) = A(k̂,⇠|T , ↵), (34)
where the dependence on the temperature and hole density are made explicit. The momentum
variable does not scale with s due to the assumed behavior of the ⇣’s. The scaling holds for � = 0,
and generalizes to a non zero values if we scale �↵ s �. This scaling relation describes a Fermi liquid
including significant corrections to Fermi liquid theory through the caparison function. It rests upon
the specific behavior for the coefficients as the density varies near the insulating state, unlike other
generalized scaling relations that have been proposed in literature Ref. [29] for non Fermi liquid states.
If set s⇥ ↵ = ↵0 with say ↵0 . .5, then the ratio ↵0

↵
⌦ 1 and we infer

A(k̂,⇠|T , ↵) � A
✓

k̂, ⇠
↵0

↵

�

�

�

�

T
↵0

↵
, ↵0

◆

, (35)

relating the low hole density system to an overdoped (i.e. high hole density) system at a high effective
temperature. This relation provides basic intuition for why the t–J model, near the insulating limit
behaves almost like a classical liquid, unless one fine tunes parameters very close to the T = 0,⇠ = 0
limit.
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2.5. Electronic origin of the low energy kink and further tests of dynamical asymmetry

In this section we summarize the origin of the important low energy kink feature of the dispersion
relation obtained in the ECFL theory. Since a similar feature is seen in the experiments on angle
resolved photoemission studies (ARPES) of various groups [30–32,14], it is worth clarifying the purely
electronic origin of this feature within the ECFL theory. A higher (binding) energy kink is also seen
and is well understood in terms of the behavior of the self energy over a greater range [5,9], and is
not pursued here. Rather we focus on the low energy kink seen around�.05 eV in several compounds
[30–32,14], and finds a natural interpretation within ECFL.

We also present a few experimentally testable features relating to dynamical asymmetry, i.e. the
asymmetric in ⇠ correction to the Fermi liquid theory contained in ECFL, arising from the caparison
function in Eq. (27).

Let us assume that |⇠|  �0 at low enough frequency relative to T so that we may treat �0 as a
constant. We may then bring Eq. (27) to an interesting form studied in Ref. [5] by defining variables

� = ⇠ � ⇣⇧ k̂ vf

�0

sinh uk = ⇥0 + (⇣0 � ⇣⇧) k̂ vf

�0
, (36)

so that the spectral function reduces to the standard form occurring in the ECFL theory:

A(uk, �) = A0
sinh uk � �

1 + �2
⇥ �(sinh uk � �) (37)

with A0 = z0
⇥0

. This expression is valid for small enough � [5,4], and can be viewed as the (weighted)
sum of the real and imaginary parts of a simple damped oscillator with a scaled susceptibility �(�) =
1/(� + i). It is interesting to note that the scaled spectral function (37) can be related to the (scaled)
Fano line shape

AFano(qf , �) ✏
(qf + �)2

(1 + �2)
. (38)

This spectrum is often considered with the Fano parameter qf > 0, it is highlighted by a vanishing
at negative energies � = �qf , representing the destructive interference of a scattering amplitude
with a background term arising from a continuum of states. However we can flip the sign of qf and by
choosing qf = �euk , we can relate these through

A(uk, �) ✏
�

AFano(�euk , �)� AFano(�euk ,⌘)
�

. (39)

For the purpose of representing ARPES spectral functions, the scaled spectral function (37) gains an
advantage over the Fano line shape (38) by the absence of a background at large |�|. In relating them
via Eq. (39), the background term in the Fano process is killed, while its interference with the peak is
retained.

Unlike the simple Lorentzian obtained at uk ↵ ⌘, the energy variable enters the numerator as
well as the denominator in both Eq. (37) and the Fano shape. This feature gives rise to the characteristic
skew to the ECFL spectrum. The spectral function can be maximized with respect to the frequency
at a fixed k̂, yielding the energy distribution curve (EDC) dispersion E⇤k , or with respect to k̂ at a
fixed frequency ⇠, giving the momentum distribution curve (MDC) dispersion Ek. Let us introduce
the convenient variables

r = ⇣0

⇣⇧
, (40)

giving the ratio of the two velocity factors. The ratio r = 0 in the limit of high dimensions [9]. In
the simplified ECFL analysis in [4,14], we find r > 1 due to the suppression of ⇣⇧ relative to ⇣0 by
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a quasiparticle renormalization factor zFL. We see below that the magnitude and sign of (r � 1) play
a significant role in determining the location of the kink, and its observability in ARPES respectively.
We also introduce a (linear in k̂ vf ) energy variable:

Q (k̂) = ⇥0 + (⇣0 � ⇣⇧) k̂ vf . (41)

In terms of these, the two dispersions are obtained as

E(k) = 1
2� r

✓

⇣⇧ k̂ vf + ⇥0 �
q

r(2� r)� 2
0 + Q 2

◆

, (42)

E⇤(k) =
✓

⇣0 k̂ vf + ⇥0 �
q

� 2
0 + Q 2

◆

. (43)

Simplifying the notation, both energy dispersions are of the form E � ⌦ Q�
p

Q 2 + M2, i.e. the hybrid
of a massless and amassive Dirac spectrum. As Q varies from�⌘ to⌘, the energy crosses over from
(⌦ + 1)Q to (⌦ � 1)Q , thus exhibiting a knee or a kink near Q � 0, with its sharpness determined by
the ‘‘mass term’’. The mass term in the MDC spectrum depends on the ratio r , and this generally leads
to a smaller magnitude. Upon turning off the decay rate �0, both the EDC and MDC spectra reduce to
the expected spectrum ⇡k = ⇣⇧ k̂ vf , arising from the pole of the auxiliary Greens function in Eq. (21).
These expressions illustrate an unusual feature of this theory: the two dispersions are influenced by
the emergent energy scale⇥0, as well as the width �0 (Eq. (28)).

The above dispersions exhibit an interesting kink feature at Q = 0 in both spectra. The condition
Q = 0 locates the kink momentum as

(k̂ vf )kink = ⇥0

⇣⇧(1� r)
, (44)

it corresponds to occupied momenta provided r > 1, we will confine to this case below. For the other
case r < 1, a kink would arise in the unoccupied side, for this reason we do not pursue it here. For
|Q | ⌦ �0, the two dispersions asymptotically become E⇤(k) � (⇣0 + (⇣0 � ⇣⇧) sign(k̂)) k̂ vf and
E(k) � 1

2�r (⇣⇧ + (⇣0 � ⇣⇧) sign(k̂)) k̂ vf . Hence these spectra exhibit a change in velocity (i.e. slope)
around Q � 0 of magnitude 2(⇣0 � ⇣⇧)vF for the EDC and the usually larger 2

2�r (⇣0 � ⇣⇧)vF for the
MDC spectrum. The change in slope of the spectrum occurs over a range ⇥Q ✏ �0, thus becoming
sharper as �0 decreases.

The value of the EDC energy at the kink is found by substituting Q = 0 and gives

E⇤(kkink) = � r
r � 1

⇥0 � �0. (45)

The MDC spectrum shows a kink for 2 ⌥ r ⌥ 1 at the same momentum (44), with energy

E(kkink) = � 1
r � 1

⇥0 � �0

r

r
2� r

, (46)

this feature is sharper than in the EDC spectrum since the effective damping is smaller.
When r > 2, theMDC energy is real only for |k̂ vf | < (|k̂ vf |)cutoff , where the (negative)momentum

(k̂ vf )cutoff = (k̂ vf )kink + �0

⇣⇧(r � 1)

p

r(r � 2).

For k̂ vf beyond the cut off, the root becomes complex implying the loss of a clear peak in the MDC
spectrum. Thus the spectrum ‘‘fades’’ before reaching the kinkmomentum (44). Therefore in this case,
the kink is less than ideal, unlike the EDC kink or the MDC kink for 1 ⌃ r ⌃ 2, which should be visible
on both sides of the kink momentum. From Eq. (33) we may extract the hole density dependence of
all the kink parameters, while �0, determining the kink width, is given in Eq. (28).
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Fig. 1. A kink feature in the MDC dispersion relation E(k) from Eq. (42) and in the inset from the EDC dispersion E⇤(k)
(Eq. (43)) with parameters ⇥0 = .025 eV, ⇣0 = 1.05, ⇣⇧ = 0.7 and three values of �0 = 0., .01, .02 in eV from top to
bottom. The kink is more pronounced in the MDC curve as discussed in text.

We observe in Fig. 1 that the kink becomes sharp when �0 decreases. The MDC curves display a
sharper kink than the EDC curves, this is easy to understand since the effective damping is smaller
in this case, and also the net change in velocity across the kink is greater, as discussed above. From
Eq. (28) we see various parameters that control �0, in case of laser ARPES, it is argued [14] that �
is small so we expect to see sharper kinks in this setup. Further, as T drops below Tc , the d-wave
superconductor has gapless excitations along the nodal direction �11⌫, and the quasiparticles seen
in this case are sharper. Theoretical considerations [33] show that in the superconducting state, a
reduction in the available gapless states responsible for the linewidth implies a reduction of �0 and
hence to a sharper kink.

We next discuss the feature of dynamical asymmetry in the spectra. It is also important to note that
the ECFL spectral function (27) has an unusual correction to the standard Fermi liquid part, embodied
in the caparison function µ(k,⇠). This function is odd in frequency, thus disturbing the particle hole
symmetry of the Fermi liquid part, and it grows in importance as we approach the insulating state
since ⇥0 ↵ ↵⇥0 as indicated in Eq. (33). It is also interesting that the spectral line shape in the
calculation of Anderson and Casey (AC) [34] as well as Doniach and Sunjic (DS) [35] also have such
odd in ⇠ corrections to the Fermi liquid part. In fact the AC result may be viewed as the vanishing of
the scale ⇥0 ✏ kBT so that the ground state is non Fermi liquid like. At finite T and ⇠ the AC and DS
theories are parallel with the ECFL line shapes regarding the asymmetry as remarked in Ref. [8], and
wewish to make a few comments about the experimental tests for such an asymmetry, going beyond
standard measures such as the skewness factor.

DS [35] make the interesting point that the asymmetry is best isolated by looking at the inverse of
the spectral function in a plot of

1
A(k,⇠)

vs (⇠ � E⇤k )
2, (47)

where E⇤k is the peak location in the EDC. With this plot, a Fermi liquid yields two coincident straight
lines above and below E⇤k , whereas an asymmetric contribution, as in Eq. (27) or the DS line shape [35],
would split into two distinct non linear curves, from below and above E⇤k . The inversion of the spectral
function is an interesting device, since it refocuses attention on the asymmetric parts. For very similar
reasons Ref. [4] (Fig. 1 inset) also advocates plotting the inverse of the spectral function. On the other
hand an untrained examination of the EDC curves invariably focuses on the close proximity of the
peaks of A(k,⇠), these are arguably the least interesting part of the asymmetry story!

In fact armed with the explicit knowledge of the spectral function of the ECFL theory in Eq. (27),
we can aim to do better in establishing the asymmetry and in determining the various parameters.
We first redefine the frequency by subtracting off the EDC peak value

e⇠k = ⇠ � E⇤k , (48)
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so that the spectral peak occurs ate⇠k = 0. The inverse spectral function can be computed as a function
ofe⇠k and reads:

A(k, E⇤k )
A(k, E⇤k +e⇠k)

= 1 + euk

2�0
⇥ e⇠2

k

�0 cosh(uk)�e⇠k
, (49)

where the peak value of the spectral function ate⇠k = 0 is:

A(k, E⇤k ) = A0

2
euk . (50)

We next construct the object Q(e⇠k) from Eq. (49) by subtracting unity and cross multiplying:

Q(e⇠k) = e⇠2
k

A(k, E⇤k )/A(k, E⇤k +e⇠k)� 1
. (51)

This variable is designed to be ae⇠k independent constant in a simple Fermi liquid with a Lorentzian
line shape (i.e. Eq. (27) without the caparison function µ). Here Q has dimensions of the square of
energy, and when plotted againste⇠k in the small range surrounding zero i.e. |e⇠k| ⌃ �0 it exhibits a
linearly decreasing behavior withe⇠k within the ECFL spectral function (27)

Q(e⇠k) = � 2
0 (1 + e�2uk)�

�

2�0e�uk
�

e⇠k. (52)
Note that this function is flat for the usual Fermi liquid state without asymmetric corrections, since
in this case uk ↵ +⌘. If found in data, this linear in e⇠ behavior is the distinctive aspect of the
asymmetric line shapes. We can then read off various physical quantities once the curve of Q(e⇠k)
versus e⇠k is obtained. For this purpose we need the intercept Q(0) and the slope near the origin
(dQ(e⇠k)/de⇠k)0. Clearly the Q(e⇠k) function will deviate from a straight line sufficiently far from
e⇠k = 0, and it will also be contaminated with background terms as well as noise. However, with
high quality data this procedure could be useful in inverting the data to fit simple functional forms,
and to make decisive tests of the predictions of the theories containing asymmetry, namely the DS
and AC theories as well as ECFL.

3. Exact formulation in terms of a canonical Fermions

We will next rewrite this in canonical Fermi representation in an enlarged Hilbert space where
double occupancy is permitted, and the singly occupied states forma subspace.We regard the physical
subspace of states |⌃ ⌫ as those that satisfy the condition of single occupancy, i.e. D̂|⌃ ⌫ = 0 with the
double occupancy operator D̂ is given by:

D̂ =
X

i

D̂i, D̂i ⇧ CÑ
i�Ci�C

Ñ
i�Ci�, (53)

and Ci◆ and CÑ
i◆ denote the canonical Fermionic destruction and creation operators. The unphysical

states contain one or more doubly occupied states. In terms of these, the Gutzwiller projector over all
sites is written as:

P̂G =
Y

i

⇣

1� D̂i

⌘

. (54)

This projection operator can be introduced into a partition function to deal with unphysical states, as
we show below.

The next goal (see Table 1) is to write the most efficient representation in the enlarged space of
the t–J model Green’s functions, in terms of the canonical operators and the projection operator.
As pointed out in the introduction, we note that pairs of operators that are mutual adjoints in
the t–J model (e.g. X0◆

i = (X◆0
i )Ñ), are allowed to be represented by operators that violate this adjoint

property. The main result of this section is that this possibility leads to the most compact canonical
theory; we term it the non-Hermitian theory. However we first warmup with a short summary of the
more obvious Hermitian theory, which sets the stage for the main result.
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3.1. A Hermitian canonical representation with redundancy

Projected Fermi operators distinguished by the hats can be written in a familiar construction [36]
eCi◆ = Ci◆ (1� Ni◆̄ )

eCÑ
i◆ = CÑ

i◆ (1� Ni◆̄ ), (55)

where Ni◆ = CÑ
i◆Ci◆ , and Ni = P

◆ Ni◆ , with the property that these conserve the number of doubly
occupied sites locally:

[eCi◆ , D̂i] = 0, [eCÑ
i◆ , D̂i] = 0 (56)

and therefore also globally i.e. with D̂ in place of D̂i. It implies that any Hamiltonianwritten in terms of
these operators with hats commutes with the individual D̂i as well as the global D̂, and thus conserves
the local symmetry of themodel. Therefore acting within the physical subspace of states, (55) provide
a faithful realization of the Xab

i operators as X0◆
i � eCi◆ and X◆0

i � eCÑ
i◆ , and clearly satisfies the

mutual adjoint property. We are also interested in the product of two X ’s in order to represent the
kinetic energy term of the effective Hamiltonian below. The optimal choice is seen to be

X◆0
i X0◆

j � CÑ
i◆Cj◆

�

1� Ni◆̄ � Nj◆̄
�

. (57)

While the choice

X◆0
i X0◆

j �eCÑ
i◆
eCj◆ (58)

is also a faithful representation, it contains an extra term CÑ
i◆Cj◆Ni◆̄Nj◆̄ , over and above (57), which is

redundant since (57) already commutes with (54).
Using (57) we write a canonical expression for the Hamiltonian

HtJ ↵ Ĥeff = Ĥt + ĤJ , (59)

with

Ĥt = T̂eff � µ
X

i

Ni◆ ,

T̂eff = �
X

ij◆

tijC
Ñ
i◆Cj◆

�

1� Ni◆̄ � Nj◆̄
�

, (60)

we call this as the symmetrized kinetic energy in view of its obvious symmetry under the exchange
i� j, and write ĤJ ↵ 1

2

P

ij Jij
⇣

�Si.�Sj � 1
4NiNj

⌘

,with the spin and number operators written in terms
of C ’s and CÑ’s without hats (since the occupancy of a site is unaffected by the exchange term). We
easily verify that

[Ĥeff , D̂] = 0 = [Ĥeff , P̂G], (61)

therefore if we startwith a state satisfying D̂|⌃ ⌫ = 0, i.e. in the singly occupied subspace, the resultant
state Heff |⌃ ⌫ remains in this subspace; we do not create doubly occupied states. We note that (61)
implies that the operator (54) is invariant under time evolution through Heff :

P̂G( ) = P̂G(0). (62)

The partition functional as in (11), now defined with arbitrary 0:

Z = Tr e� Ĥeff T
⇣

e�ÂS P̂G(0)
⌘

, (63)

where the trace (unlike that in Eq. (11)), is over the entire canonical basis, i.e. includes doubly occupied
states. For the observables as well as the source terms ÂS , we use the replacement rules:

X0◆
i ↵eCi◆ , X◆0

i ↵eCÑ
i◆ , X◆◆ ⇣

i ↵ CÑ
i◆Ci◆ ⇣ , (64)
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to convert arbitrary expressions involving Xab
i into those with theeC,eCÑ. Note that the density or spin

density type variables are replaced by the canonical operators without a hat, since these commutes
with the local D̂i.

We can compute the Green’s functions in the enlarged (canonical) basis from

G◆i◆f (ii, f f ) = �

D

T
⇣

e�ÂSeCi◆i(i)
eCÑ
f ◆f (f ) P̂G(0)

⌘E

D

T
⇣

e�ÂS P̂G(0)
⌘E , (65)

evaluated [23] at ÂS ↵ 0. This relation can be replaced by differentiating the partition functional
(63) with the Fermi sources J, J⇤. Using the commutation of P̂G or D̂with all operators and (62), we are
free at this stage to locate place P̂G at any specific time, without affecting the results. This formulation
of the theory has parallels with the path integral representation of the electromagnetic field (QED) in
the temporal gauge, where the scalar potential is chosen to be zero (i.e. �(rt) = 0) [37,38]. In this case
the Gauss’s law condition ⇡.�E(r, t) = 0 needs to be imposed at each time slice. However upon using
[H, �E] = �⇡ ⇥ �B, this object commutes with the Hamiltonian [H, �⇡.�E] = 0, and therefore it suffices
to impose this condition at the initial time. The situation has a clear analogy with Eq. (63), where it
suffices to insert the projection operator at the initial time.

3.2. The hat removal rule and optimal non-Hermitian theory

The non-Hermitian theory arises when we inspect closely expressions of the type in (63), with
the time 0 chosen as the earliest time 0�. The general argument has been given in the introduction,
we consider its specific application to the present problem next. Discretizing the time variables and
expanding, we obtain a series containing expression of the type

const⇥
X

�i|Q1(1) . . .Qm(m)P̂G|i⌫,
so that the first operator from the right Qm(m) acts upon a state which is Gutzwiller projected. Now
the creation operators contained in the Q ( )’s are defined with the hats (see (55)) ensuring that
they never create doubly occupied states. Next observe that destroying a particle cannot create a
doubly occupied site. Therefore it cannot take a projected state out of this subspace! Therefore the
operator eCi◆ can as well be replaced by the destruction operator Ci◆ without a hat. We can iterate
this argument for the next operator, which also acts on a Gutzwiller projected state, and so forth,
leading to the hat removal rules. In this argument, we may replace the operator’s Q (m) by any
expressions involving the destruction operators aswell as creation operatorswith hats (as in (55)), and
the same argument holds. More formally we may summarize by saying that the destruction operator
conditionally commuteswith the projection operator, when right-operating on projected states:

[Ci◆ , P̂G]P̂G = 0, (66)

although [Ci◆ , P̂G] ◆= 0, as one readily checks. Thus the commutator lives in an orthogonal subspace
to that spanned by the Gutzwiller projected states. This property also extends to arbitrary functions
f̂ (f̂ ⇧ f̂ {Ci◆ }, {eCÑ

j◆ ⇣}) of the operators:

[f̂ , P̂G]P̂G = 0. (67)
This property is just a rewriting of the important block triangularity condition of the operators noted
in Eq. (8) leading to Eq. (7). We will make frequent use of this expression below.

We now turn to implementing this observation. Let us write the partition functional

Z = Tr e� Ĥeff T
⇣

e�ÂS P̂G(0�)
⌘

, (68)

and introduce the important abbreviation for averages:

��A(1)B(2) . . .⌫⌫ ⇧ 1
Z
Tr e� Ĥeff T

⇣

e�ÂS A(1)B(2) . . . P̂G(0�)
⌘

, (69)
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where notice that we located the projector at the initial time, by bringing it under the time ordering
symbol.

We now state the crucial hat-removal rule: in all expressions of the type (68) and (69), the hats on
all destruction operators can be removed

eCi◆ ( )↵ Ci◆ ( ), (70)

leaving the result unchanged. Notice that this rule can also be applied to Heff , and the source terms
ÂS containing the destruction operators Ci◆ . Note that the creation operators cannot be ‘un-hatted’ in
this fashion since these do create a doubly occupied site. Summarizing, we can use instead of (64), the
more compact non-Hermitian rule

X0◆
i ↵ Ci◆ , X◆0

i ↵eCÑ
i◆ = CÑ

i◆ (1� Ni◆̄ ), X◆◆ ⇣
i ↵ CÑ

i◆Ci◆ ⇣ . (71)

We thus rewrite the sources (10) as:

ÂS(i,  ) =
⇣

eCÑ
i◆ ( ) Ji◆ ( ) + J⇤i◆ ( )Ci◆ ( )

⌘

+ V◆ ⇣◆
i ( )CÑ

i◆ ⇣( )Ci◆ ( ), (72)

and the Green’s function with imaginary time 0 ⌃ i, j ⌃  is therefore written as:

G◆i◆f (ii, f f ) = ���Ci◆i(i)
eCÑ
f ◆f (f )⌫⌫, (73)

analogous to (65) but with an unprojected destruction operator. We will show below that this is the
most useful and compact expression for the Green’s function. To complete the description of this
theory, we turn to the task of specifying the Hamiltonian, and obtain the boundary conditions on the
time variables. The last task is somewhat nontrivial since the projection operator does not commute
with the other operators.

3.3. Hamiltonian in the symmetrized and minimal theories

In order to represent the Hamiltonian, the spin operators of the exchange part HJ are unambigu-
ously expressed in terms of the Ci◆ and CÑ

i◆ operators without hats as in (71), since they preserve the
occupation of a site. For the kinetic energy we could choose to work with (60), and thereby gain some
advantage of dealing with a Hermitian Hamiltonian. This leads to the equations of motion termed the
the symmetrized theory in Ref. [6]. Alternately we can implement the hat removal rule for the kinetic
energy as well:

T̂eff = �
X

ij◆

tijeC
Ñ
i◆Cj◆ . (74)

This minimal version of the kinetic energy is clearly non-Hermitian. However, it has exactly the same
action as the symmetrized version (59), when right-operating on the physical Gutzwiller projected
states, as proved above. This leads to equations of motion of the minimal theory noted in Ref. [6] and
elaborated upon in Refs. [10,9]. For completeness, we provide in Section 7.2 a brief derivation of these
equations for the minimal case, using the above canonical representation, in place of the Schwinger
equations.

3.4. Kubo–Martin–Schwinger antiperiodic boundary conditions

In working with the expressions (68), (71) and (73), we have assumed that all the times j are
positive and satisfy 0 ⌃ j ⌃  . The Green’s function (12) satisfies the Kubo–Martin–Schwinger
(KMS) anti-periodic boundary conditions [39]

G(a i = 0, b f ) = �G(a i =  , b f ), (75)

G(a i, b f = 0) = �G(a i, b f =  ), (76)
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Table 2

A summary of the representations of the Green’s functions. The non-Hermitian minimal theory provides the most compact set
of equations of motion, which are identical to those from the Hubbard–Gutzwiller theory in the second column. The absence
of the adjoint property for the non-Hermitian theory arises from the asymmetric hat removal between the destruction and
creation operators in the first two rows of the last column.

Hubbard–Gutzwiller
theory

(Canonical) Hermitian theory (Canonical) Non-Hermitian theory

Operators: X◆0
eCÑ◆ = CÑ◆ (1� N◆̄ ) eCÑ◆ = CÑ◆ (1� N◆̄ )

X0◆
eC◆ = C◆ (1� N◆̄ ) C◆

X◆◆ ⇣
i CÑi◆ Ci◆ ⇣ CÑi◆ Ci◆ ⇣

Partition
Functional: Z

TrtJ e� HtJ T
⇣

e�ÂS
⌘

Tr e� Ĥeff T
⇣

e�ÂS P̂G(0)
⌘

;

Arbitrary time 0 (0 ⌃ 0 ⌃  ).

Tr e� Ĥeff T
⇣

e�ÂS P̂G(0�)
⌘

Green’s
function:
�G(1, 1⇣)

�T (e�Âs X0◆
1 X◆ ⇣0

1⇣ )⌫
D

T
⇣

e�ÂSeC◆ (1)eCÑ
◆ ⇣ (2)P̂G(0)

⌘E

Arbitrary time 0 (0 ⌃ 0 ⌃  ).

D

T
⇣

e�ÂS C◆ (1)eCÑ
◆ ⇣ (2)P̂G(0

�)
⌘E

Remarks: H = HÑ in the defining
representation.

Symmetrized theory H = HÑ (i) Symmetrized theory: Ĥeff = HÑ
eff

(ii) Minimal theory: Ĥeff ◆= ĤÑ
eff

where the fixed time f (i) in the first (second) equations is assumed to satisfy 0 ⌃  ⌃  . These
conditions are usually proven by using the cyclic invariance of the trace [24], and translates easily to
the canonical representation (65), witheC andeCÑ replacing the X operators (64).

In using the non-Hermitian representation (71) as in (73), we cannot use cyclicity of trace since the
operatoreC does not commute with PG. Remarkably enough, the conditional commutativity (66) and
(67) suffices to guarantee the required antiperiodicity. In physical terms these proofs follow from the
observation made above, the creation operators with hats, and destruction operators (without hats)
preserve a Gutzwiller projected state within that subspace.

For simplicity we present the case with sources turned off i.e. A ↵ 0, the more general case
follows by a similar argument. From the definitions of the Green’s functions, Eq. (76) is true since
Tr

⇣

e� Heff Ca◆ (i)[eCÑ
b◆ ⇣(0), P̂G]

⌘

vanishes identically from Eq. (56).
In order to prove that Eq. (75) remains true, we need to show that the expression

Tr
⇣

e� Heff
eCÑ
b◆ ⇣(f )[Ca◆ (0), P̂G]

⌘

(77)

vanishes, despite the non vanishing of the commutator in the expression. For this purpose, we utilize
the conditional commutator (66) to write [Ca◆ (0), P̂G] = [Ca◆ (0), P̂G](1 � P̂G). We next use cyclicity
of trace and the simple identity (for any Q̂ ): Tr

⇣

(1� P̂G)Q̂ P̂G
⌘

= 0, to write the required expression
(77) in the form

Tr
⇣

(P̂G � 1)e� Heff
eCÑ
b◆ ⇣(f )P̂GCa◆ (0)

⌘

. (78)

Using (P̂G)2 = P̂G, we rewrite this as:

(P̂G � 1)e� Heff
eCÑ
b◆ ⇣(f )P̂G = [P̂G, e� Heff

eCÑ
b◆ ⇣(f )]P̂G.

This expression vanishes on using the conditional commutator (67), thereby proving the required
result (75).

The two canonical theories providing an exact mapping of the original theory are summarized in
Table 2.

4. The auxiliary Green’s function and the caparison function using canonical Fermions

We next discuss the rationale for decomposing the Green’s function into an auxiliary Greens
function and a caparison function as in Ref. [4], using a simple argument from the exact formula
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(73). This important part of the theory is also encountered in Section 6. In its simplest version this
decomposition can be illustrated using the minimal theory, where the averages are defined as in
Eq. (68), with the projection operator pinned at the initial time. We recall the Green’s function from
Eq. (73)G◆i◆f (ii, f f ) = ���Ci◆i(i)

eCÑ
f ◆f (f )⌫⌫, with the averages from Eq. (69). Expanding the eCÑ

operator this becomes

G◆i◆f (ii, f f ) = ���Ci◆i(i)C
Ñ
f ◆f (f )⌫⌫+ ��Ci◆i(i)C

Ñ
f ◆f (f )Nf ◆̄f (f )⌫⌫. (79)

We next define the auxiliary Green’s function as:

g◆i◆j(ii, jj) = ���Ci◆i(i)C
Ñ
j◆ (j)⌫⌫, (80)

and regarding the spin, space and time indices as matrix indices with a matrix inverse g

�1. By
separating the disconnected and connected parts (_c) of the second term in (79) we write

��Ci◆i(i)C
Ñ
f ◆f (f )Nf ◆̄f (f )⌫⌫ = �g◆i◆f (ii, f f )�Nf ◆̄f (f )⌫+ ��Ci◆i(i)C

Ñ
f ◆f (f )Nf ◆̄f (f )⌫⌫c . (81)

The connected part is written in terms of a second self energy ⌃ defined as

⌃◆i◆f (ii, f f ) = g

�1
◆i◆k

(ii, kk)⇥ ��Ck◆
k

(
k

)CÑ
f ◆f (f )Nf ◆̄f (f )⌫⌫c, (82)

and assembling these we rewrite (79) as the product relation [4]
G◆i◆f (ii, f f ) = g◆i◆k(ii, kk)µ◆

k

◆f (kk, f f ),

µ◆i◆f (ii, f f ) = ↵(if )
�

1� �N◆̄i(i)⌫
�

+ ⌃◆i◆f (ii, f f ). (83)
There is a slight ambiguity in defining the two objects g and µ, since we have the freedom of adding
a common function to the two parts of Eq. (79) that cancels out in the physical Greens function. Apart
from this, we expect that the two objects in Eq. (83) are exactly equivalent to the auxiliary Greens
function and the caparison factor in Eqs. (17)–(19) as found from the Schwinger method.

We observe from the expression (82) that if the averages are (temporarily) computed in a standard
Feynman Dyson theory, then ⌃ is essentially the self energy of a Hubbard type model, made
dimensionless by dropping an explicit interaction constantU . Indeed this is the key observationmade
in Ref. [4], on the basis of the ✏ expansion, where the two self energies are argued to be generically
Fermi liquid-like and similar to each other. An energy scale (⇥) emerges froma ratio of their imaginary
parts, and controls the significant asymmetry seen in the spectral functions.

5. The �-Fermions

A natural question is whether Eq. (16), explicitly containing the parameter ✏, can arise in a
microscopic theorywhere✏ enters in a fundamentalway, as opposed to the ‘‘engineering approach’’ in
Section 2.3. A set of ✏-Fermi operators are defined below, as generalized version of the non-Hermitian
representation (71)with a parameter✏ ✓ [0, 1]providing a continuous interpolation between the free
Fermi and extremely correlated limits:

X◆0
i (✏)↵ CÑ

i◆ (1� ✏CÑ
i◆̄Ci◆̄ )

X0◆
i (✏)↵ Ci◆

X◆◆ ⇣
i (✏)↵ CÑ

i◆Ci◆ ⇣ . (84)
Clearly ✏ = 0 gives us back the canonical Fermion operators, whereas ✏ = 1 gives the Gutzwiller
projected Hubbard X operators [3] as in (71), provided the states are Gutzwiller projected. A feature
of this representation is the loss of the adjoint property, i.e.

�

X◆0
i (✏)

�Ñ ◆= X0◆
i (✏), unless ✏ = 0.

These operators satisfy a ✏ dependent (graded) Lie algebra with fundamental brackets that are
partly Fermionic and partly Bosonic. Using the canonical anticommutation relations of the C, CÑ

operators, we work out the fundamental Fermionic bracket:

{X0◆i
i (✏), X◆j0

j (✏)} = ↵ij{↵◆i◆j � ✏ ◆i◆jX
◆̄i◆̄j
i (✏)}. (85)
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We next evaluate the fundamental Bosonic bracket

[X0◆i
i (✏), X◆j◆k

j (✏)] = ↵ij↵◆i◆j X
0◆k
i (✏) (86)

[X◆i0
i (✏), X◆j◆k

j (✏)] = �↵ij↵◆i◆kX
◆j0
i (✏). (87)

Here (87) requires a brief calculation [40] invoking the Pauli principle vanishing of CÑ
◆C

Ñ
◆ ↵ 0. On

the other hand (86) is elementary, due to the absence of ✏ in both sides of the equation. At ✏ = 1
these reduce to the relevant subset of the Hubbard algebra [3] found from the fundamental definition
Xab
i = |a⌫�b|.
The representation (84) does not at general ✏ reproduce the ‘‘half bracket’’, or product relations

expected for projection operators. We find that

X◆0
i (✏)X0◆ ⇣

i (✏) ◆= X◆◆ ⇣
i (✏), (88)

X0◆ ⇣
i (✏)X◆0

i (✏) ◆= X00
i ↵◆◆ ⇣ . (89)

The exceptions are at ✏ = 0, where it is trivially true, and non trivially at ✏ = 1, where Gutzwiller
projection of the allowed states does restore this property when right-operating on the projected
states. In the Green’s functions below, we will equate the averages of both sides of Eq. (88). This
equality of the averages acts as the number constraint and fixes the chemical potential µ. In doing
so, the average of Eq. (89) is not constrained and takes on a suitable value determined by the
anticommutation relation (85).

This representation can be used to define a many-body problem where the ✏ dependent EOMs
for the Green’s functions constructed from (84) can be written down. Observe that the EOMs for
the Green’s functions only require the use of (85) and the Heisenberg equations of motion, and in
turn these arise from the basic Lie commutators (anticommutators) of the type given in (86) and
(87). The calculation does not ever require the use of product relations of the type (88). It then
follows that we can replace the t–J Hamiltonian and the operators in the original theory by their
✏-versions, i.e. replacing Xab

i ↵ Xab
i (✏), and thereby obtain equations that yield (16). This procedure

then provides a (continuous) interpolation between the free Fermi and extremely correlated regimes
by varying ✏ from 0 to 1. Let us first demonstrate this by a brief calculation.

5.1. The ✏-Fermion theory equations of motion

Using the ✏ Fermions, we define the Green’s function as

G(✏)
◆i◆f

(ii, f f ) = ��TX0◆i
i (i, ✏)X

◆f 0
f (f , ✏)⌫(✏) (90)

where with arbitrary Â

�Â⌫✏ ⇧ �
Tr e� Heff (✏)T

⇣

e�ÂS (✏)Â
⌘

Z(✏)
,

Z(✏) = Tr e� Heff (✏)T
⇣

e�ÂS (✏)
⌘

. (91)

In this expression Heff (✏) is given by Eq. (92) and ÂS(✏) is obtained from (10), with the replacement
Xab
i ↵ Xab

i (✏):

Heff (✏) = �
X

ij

tijX◆0
i (✏)X0◆

j (✏)� µ
X

i

Ni◆ + ✏
1
2

X

ij

Jij
✓

�Si.�Sj �
1
4
Ni◆Nj◆ ⇣

◆

+ u0 ✏
X

i

Ni�Ni�, (92)
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where u0 is now the ‘‘second chemical potential’’. The scaling of the J term with ✏ is optional, and
done here so that we obtain the Fermi gas at ✏ = 0. Using Eq. (84), we see that this Hamiltonian is
linear in ✏ and interpolates between the free Fermi gas and the fully interacting model, when acting
on suitably projected states. The equation of motion of G(✏) can be obtained using the commutation
relations (85)–(87), the calculation is parallel to that in Appendix A. In brief, Eqs. (132) and (133) are
unchanged by working with X (✏)’s, and in place of Eq. (137) we obtain

g

�1
0,◆i,◆j(ii, jj)G

(✏)
◆j◆f

(jj, f f ) = ↵(i � f )↵ij(1� ✏ ⌦◆i◆f (ii))

� ✏
X

j◆j

tij(◆i◆j)
D

T
⇣

X ◆̄i◆̄j
i (i)X

0◆j
j (i) X

◆f 0
f (f )

⌘E

(✏)

+ 1
2

X

j◆j

Jij(◆i◆j)
D

T
⇣

X ◆̄i◆̄j
j (i)X

0◆j
i (i)X

◆f 0
f (f )

⌘E

(✏)

� 1
2
✏u0

X

◆j

(◆i◆j)
D

T
⇣

X ◆̄i◆̄j
i (i)X

0◆j
i (i)X

◆f 0
f (f )

⌘E

(✏)
, (93)

where the ✏ dependence of the X operators is implicit. The higher order Green’s functions may be
expressed as functional derivatives with respect to the Bosonic source V , in the same fashion as in
Appendix A. The exchange term Jij does not pick up a factor of ✏ through the EOM since it conserves
double occupancy. We can choose to additionally scale it with ✏ as Jij ↵ ✏Jij, so that at ✏ = 0 we
obtain the Fermi gas. This choice seems reasonable in the liquid phase of the electrons, in other phases
it is easy enough to recover from this scaling if needed. To save writing the u0 term is absorbed as
Jij ↵ Jij � u0↵ij, with this the resulting equation is

⇣

g

�1
0,◆i,◆j(ii, jj)� ✏ X̂◆i◆j(ii, jj)� ✏ Y1◆i◆j(ii, jj)

⌘

⇥ G(✏)
◆j◆f

(jj, f f )

= ↵if ↵(i � f )
�

↵◆i◆f � ✏ ⌦◆i◆f (ii)
�

. (94)

The constitutive relation determining the chemical potential is taken as

ni◆ = �X◆0
i ( , ✏)X0◆

i (�, ✏)⌫(✏),
= G(✏)

◆◆ (i, �,  ), (95)

rather than ni◆ = �X◆0
i ( , ✏)X0◆

i ( , ✏)⌫(✏) [41]. This limiting process corresponds to enforcing the
half bracket relation Eq. (88) as an average. (95) is exact for the fully projected operators where ✏ = 1,
while for other values of ✏ it is guided by the requirement of continuity in ✏. In the same spirit, we
express the function ⌦ in Eq. (16) as

⌦◆◆ ⇣(i ) = ◆◆ ⇣G◆̄ ⇣◆̄ (i�, i ), (96)

while the direct computation using Eq. (85) would yield identical times, rather than the split times
in Eq. (96). An iteration scheme for solving these equations using ideas of the skeleton expansion is
detailed in Refs. [6,7], and hence we skip the details.

A very simple example can be given to illustrate the role of ✏ and u0, where the skeleton expansion
is avoided. Let us consider the atomic limit of the ✏-Fermions theory. We consider the Hamiltonian
H0 = �µ

P

◆ N◆ + ✏u0N�N� with u0 ⌥ 0. The Green’s function in Eq. (90) can be calculated easily
using the EOM technique as:

G(i⇠n) = 1� n◆̄
i⇠n + µ

+ (1� ✏)n◆̄
i⇠n + µ� ✏u0

. (97)

At ✏ = 0 or 1, this yields the exact atomic limit result, and provides a smooth interpolation between
these limits. The positive energy pole at ✏u0�µ does not contribute to the occupancy for a sufficiently
large u0 and low T . In the more realistic case with non zero hopping discussed in Refs. [6,7], the
energy u0 is non-trivially fixed by a second sum rule (20), and the iteration procedure is more
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complex, involving the skeleton expansion. While the atomic limit example is quite explicit, it does
not generalize in any simple way to the case of finite hopping, and therefore is somewhat trivial.

We next remark on some consequences of the ✏ expansion in the intermediate region ✏ < 1,
that follow from general principles. Let us first summarize the high frequency limit of the Green’s
functions. When i⇠n ↵⌘, the local Green’s function falls off as G(i⇠n)↵ aG/i⇠n. Here the constant
aG = �{Ĉ, ĈÑ}⌫, with Ĉ, ĈÑ the two appropriate operators involved in G, it is a measure of the total
fraction of states. In the Hubbard model aG = 1, since we have canonical operators, and implicitly
|⇠n|⌦ U as well. However for the t–J model we obtain aG = (1�n/2), with a net deficit of n/2 states
from the Hubbard model. This deficit is accounted for by the upper Hubbard band that is ignored in
the t–J model. The lower Hubbard band thus contains a fraction 1 � n/2 of all the states, of which
we account for n/2 as the occupied states (with two spin projections available), and 1 � n as the
unoccupied part of the lower Hubbard band. These 1� n states are available for charge excitations in
the t–J model, and freeze out towards the insulating limit. Summarizing, in this picture we have n/2
occupied and 1 � n unoccupied states in the lower Hubbard band, and n/2 states at high energy of
O(U).

In the ✏ expansion, from Eq. (16) we have aG = 1 � ✏⌦ , where ⌦ is further expanded in ✏. On
enforcing the number sum rule (95) we find that the effective number of states described by this
theory can be decomposed into n/2 occupied states and (1 � n) + (n/2 � ✏⌦ ) unoccupied states.
These are to be taken as the low energy sector of a fiduciary Hamiltonian. The fraction (n/2 � ✏⌦ )
vanishes only when ✏ = 1 and is otherwise an unspecified surplus of states in the low energy sector.
An unbalanced state count of this type is to be expected when we have non-unitary evolution.
Indeed in the second order ✏ expansion carried out numerically, a similar excess of states is found
[7, Section (2), last paragraph]. Another related consequence is that the spectral function positivity,
requiring unitary evolution, can no longer be guaranteed in finite orders of the ✏ expansion. This
feature is well recognized in Ref. [4], where it is noted that the occupied states with ⇠ < 0 are
essentially unaffected by this problem.

6. Analogy with the Dyson–Maleev representation of spin operators

The non-Hermitian representation in Eq. (71) of the Gutzwiller projected electron operators, when
used with the averaging in Eq. (69), was shown in Section 3.2 to provide an exact mapping of the t–J
model. Reflecting on this result, the author realized recently that themapping Eq. (71) is the Fermionic
analog of the Dyson–Maleev representation for spin operators [16,17], used to understand spin wave
interactions in magnets (see Table 3).

With the advantage of hindsight, this connection seems natural. The Gutzwiller projected
electronic Xab operators defined by Hubbard [3], generate a non canonical algebra of Fermions that
is (partly) given in Eqs. (85)–(87) with ✏ = 1. On the other hand the spin operators provide the best
studied non canonical Bosonic algebras. The spins are not quite Bosons, they are equivalent to ‘‘hard
core’’ Bosons—with infinite on site repulsion, in parallel to the infinite U in the extremely correlated
electron problem. In order to avoid dealing with the infinite energy of the hard core, several other
representations of spins were invented, such as the Holstein Primakoff method [44]. Dyson’s use of a
non-Hermitian representation provides themost compact canonical description of the spin operators.
In fact it is analogous to the non-Hermitian mapping of the Fermionic Gutzwiller problem in Eq. (71).

Dyson’s representation, later streamlined by Maleev [17], may be written with ni = bÑi bi as

S+
i = (2s) bÑi

⇣

1� ni

2s

⌘

S�i = bi
Szi + s = ni, (98)

where �Si.�Si = s(s + 1) and bi, b
Ñ
i are canonical Bose operators. The Boson vacuum state bi|vac⌫ = 0

is mapped as |vac⌫ � |�,�,� . . . �⌫, so that the action of bÑi creates spin reversals. Their number
is cut off such that ni ⌃ (2s), thereby defining the physical states. Under these conditions Eq. (98) is
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Table 3

A comparison of the Dyson–Maleev representation for spins and the non-Hermitian representation (71) for two component
Fermions ◆ = ±1 with ◆̄ = �◆ . At ✏ = 1 the Fermion mappings provide a faithful representation of Gutzwiller projected
Fermi operators Xab

i , acting to the right on states with single occupancy, since their action produces states that remain in this
space. The representation is non self adjoint, i.e. its left operation on Dirac bra states is not faithful. The situation has an exact
parallel in the Dyson–Maleev representation. The Dyson projection operator P̂D for integer 2s and the Gutzwiller projection
operator P̂G at ✏ = 1, play a similar role in filtering out unphysical states. The role of the parameter ✏ away from 0, 1 is similar
to that of 1

2s , extending the Dyson–Maleev representation to spin values that are neither integer or half integer. The last three
rows show the auxiliary Green’s function, the caparison function and the second self energy in terms of the Bosons from Eqs.
(100) and (101). These follow from the work of Harris, Kumar, Halperin and Hohenberg [18] adapted to the ferromagnet. The
corresponding Fermionic objects are discussed in Section 4 and detailed in Eqs. (82) and (83).

Spins: The Dyson–Maleev mapping Fermions: The non-Hermitian
mapping

Destruction operator S�i bi X0◆
i Ci◆

Creation operator S+
i (2s) bÑi (1� ni

2s ) X◆0
i CÑi◆ (1� ✏Ni◆̄ )

Density operator(s) Szi + s ni = bÑi bi X◆◆ ⇣
i CÑi◆ Ci◆ ⇣

Projection operator P̂D
Q

i{
P2s

m=0 ↵ni,m} P̂G
Q

i(1� Ni�Ni�), for ✏ = 1
Vacuum | �� . . . �⌫ |00 . . . 0⌫ |Vac⌫ |00 . . . 0⌫
Small parameter & its
range

1
2s

1
2s ✓ [0, 1] ✏ ✏ ✓ [0, 1]

Auxiliary Green’s
function

g(i, j) = ���bibÑj ⌫⌫ g(i, j) = ���Ci◆ C
Ñ
j◆ ⌫⌫

Caparison function µ(i, j) = ↵ij(1� 1
2s �nj⌫)+ 1

2s⌃ (i, j) µ(i, j) = ↵ij(1�✏⌦ )+✏⌃ (i, j)
Second Self energy ⌃ ⌃ (i, j) = g

�1(i, a)��b
a

bÑj nj⌫⌫c ⌃ (i, j) =
g

�1(i, a)��C
a◆ C

Ñ
j◆Nj◆̄ ⌫⌫c

shown to provide a faithful representation of the angularmomentumoperators, when right-operating
on physical states. Under the action of the operators in (98), the physical states form an invariant
subspace of the extended Bose Hilbert space, and are selected by projection. The Dyson projection
operator P̂D acts on the Bose state space and leaves the physical states unchanged while annihilating
states with ni > (2s).

It is now evident that the Dyson–Maleev representation has a strong formal similarity to the
minimal representation (71). The Dyson projector P̂D plays a role parallel to that of the Gutzwiller
projector P̂G in (71) in our theory. The parallel further deepens in the path integral representation of
the Fermions that we discuss below. The interesting work of Douglass [42], following Langer’s [43]
path integral program for Bosons, employs the projection operator P̂D in the same spirit to our usage
below.

The work of Harris, Kumar, Halperin and Hohenberg (HKHH) [18] extended Dyson’s method to
two sublattice antiferromagnets, and provided a non trivial generalization to study the lifetime of
the excitations. Details of the ECFL formalism turn out to have points of overlap with those in HKHH
that are worth noting. In particular HKHH decompose the physical Green’s function into a space time
convolution of two parts. These parts are precisely the Bosonic analogs of the ECFL breakup of the
physical Green’s function, into an auxiliary Green’s function g(k) and a caparison function µ(k), as
detailed in Ref. [4] and in Section 4.

The computation of the Green’s function by HKHH [18] was carried out for the two sublattice
antiferromagnet. In order to avoid dealing with the added complexity of the two sublattice problem,
we translate theirmethod to theDyson problemof the dynamical Green’s function of the ferromagnet.
We use a notation that brings out the close parallel with the product ansatz used in ECFL [4].

The calculation, paraphrasing that of HKHH, proceeds as follows. In order to compute the imaginary
time Green’s function G(i, j) = ���S�i S+

j ⌫⌫ with the shorthand spacetime notation i ⇧ (ri, i), the
repeated index summation (integration) convention and denoting the averages as ��Q ⌫⌫ = Tr(e� H
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TQPD)/Tre� HPD, we write from (98)

1
2s

G(i, j) = �
⌧⌧

bib
Ñ
j

✓

1� 1
2s

nj

◆��

. (99)

Separating out the disconnected part we write ��bibÑj nj⌫⌫ = ��bibÑj ⌫⌫�nj⌫ + ��bibÑj nj⌫⌫c , and defining the
auxiliary Green’s function g(i, j) = ���bibÑj ⌫⌫ as well as its inverse through g(i, k)g�1(k, j) = ↵(i, j),
we arrive at

1
2s

G(i, j) = g(i, j)
✓

1� 1
2s
�nj⌫

◆

+ 1
2s

g(i, k) ⌃ (k, j), (100)

⌃ (i, j) = g

�1(i, a)��b
a

bÑj nj⌫⌫c . (101)

We use a notation with sums over repeated bold indices everywhere. We can rewrite (100) as a
convolution of the auxiliary Green’s function g and a caparison function µ, in the form 1

2sG(i, j) =
g(i, k)µ(k, j), where µ(i, j) = ↵ij(1� 1

2s �nj⌫) + 1
2s⌃ (i, j). The auxiliary Green’s function is defined in

terms of its own self energy ⇧ through the usual Dyson equation g

�1(i, j) = g

�1
0 (i, j)� ⇧(i, j). Thus

the physical Green’s function G is determined in terms of the two self energies ⇧(k,⇠) and ⌃ (k,⇠).
Written in (k, i⇠) space, this is identical to the functional form in ECFL theory Eq. (21)!

The corresponding Fermionic objects are discussed in Section 4 and detailed in Eqs. (82) and (83).
On comparing the two we recognize that the structure of Eqs. (100) and (101) is the exact parallel of
the ECFL theory for the Green’s function written in the notation of Ref. [4]. In the HKHH paper, the
objects evaluated amount to these two ECFL self energies, by the correspondence⌃ (k,⇠)� ⇤(k,⇠)
(see [18, Eq. (C10)]), and ⇧(k,⇠)� ⌅(k,⇠) (see [18, Eq. (2.22)]). It is worth noting further that the
role of the parameter ✏ in the ECFL theory is in close parallel to that of 1

2s in the magnon problem.
Expansions in these two ‘‘small parameters’’ serve to organize the calculations.

The product ansatz in ECFL [4,6] was originally arrived at in Ref. [4] by analyzing the Schwinger
equations and insisting on a canonical Green’s function to be factored out from the physical G.
The calculation of HKHH, on the other hand, was through a different route using insights from
the Feynman diagrams applied to the four Boson operators in (99). It is satisfying that the two
independent calculations, one for Gutzwiller projected Fermions and the other for hard-core Bosons,
lead to such a close parallel, expressed most naturally in the twin self energy representation
(100) and (101).

A few additional comments on the role of the projection operator in the two problems are relevant
here. Dyson demonstrated in his non-Hermitian representation that magnon interactions at low
temperatures lead to T 4 type corrections to themagnetization of the ideal spinwave theory. He argued
that the projection operator P̂D is largely irrelevant in the ferromagnet, and provided an estimate of
corrections to the low T behavior arising from this neglect. For the antiferromagnet, HKHH similarly
argued that the projector is unimportant at low T , and gave an estimate of the expected corrections.
The corrections are larger than in the ferromagnet, and yet smaller than most quantities of interest
at low T . The density of excitations is small at low T in the magnetic problem, and thus provides
a basis for ignoring the projection operator. However in the Fermion problem studied here, the
particle density is never too small in the interesting regime, and hence the projection operator must
be respected. Interestingly enough, the projector does not explicitly appear in the Schwinger EOM
(16), but it does determine the choice of the correct constitutive relation (14). Thus the projection
operator plays a significant role in enforcing the Luttinger–Ward theorem [45] for the volume of the
Fermi surface.



188 B.S. Shastry / Annals of Physics 343 (2014) 164–199

Another major difference between the Fermionic and the spin problems is the role of the second
Lagrange multiplier u0, when the parameter ✏ < 1. In the Fermi problem, it is essential to change the
Hamiltonian by adding the term ✏uo

P

i Ni�Ni�, in addition to replacing the projected Xab
i by Xab

i (✏).
This is required in order to satisfy the shift identities, and as explained in Ref. [6], the parameter u0
is fixed by a number sum rule on the auxiliary Green’s function. The problem of magnetic excitations
does not have a counterpart to this term. However, we can imagine extending the Dyson–Maleev
and HKHH formalism to an extremely correlated Bose liquid with a fixed number of Bosons, e.g. 4He
on a suitable substrate giving rise to a lattice model with hard core repulsion. In such a case, a
corresponding theory parallel to ECFL can be developed, requiring both the shift identities and a
second Lagrange multiplier u0 disfavoring multiple occupancy to satisfy these.

7. Path integrals

7.1. Canonical path integral representation

We now introduce path integrals to represent the partition functional (68), wherein the operators
are replaced by anticommuting c-numbers, i.e. the Grassmann variables.Wewill keep the discussions
to a minimum since excellent references can be consulted for details [46–49]. We map the operators
as Ci◆ ↵ ci◆ , eCi◆ ↵ eci◆ ⇧ ci◆ (1 � c⇤i◆̄ ci◆̄ ), CÑ

i◆ ↵ c⇤i◆ , eC
Ñ
i◆ ↵ ec⇤i◆ ⇧ c⇤i◆ (1 � c⇤i◆̄ ci◆̄ ). The time

dependence is dealt with using a standard Trotter decomposition of the non commuting pieces [49].
Handling theGutzwiller projector is discussed belowand inAppendix C. It is understood thatwhen the
Trotter indexM is finite, we have a discretized time representation, so that whenM ↵⌘, we obtain
the continuous time path integrals. We work initially with the discrete time version since somewhat
subtle identities such as the Pauli principle and the Gutzwiller projection identities can be verified
explicitly. We now write the partition functional Z (68), in terms of Grassmann variables at discrete
times ci◆ (j) and c⇤i◆ (j), and a global integration over all Grassmann variables with the conventional
definition [49]:

Z (M)[J⇤, J, V] =
Z

c
PG(1, 0) e�A

(M)
Tot ,

ATot = A
(M)
0 + A

(M)
S + A

(M)
t + A

(M)
J . (102)

We detail the various contributions next; the free Fermi term is given by

1
⇥

A
(M)
0 =

M�1
X

j=0

⇥

c⇤i◆ (j+1)↵j ci◆ (j)� µ nj◆ (j)
⇤

, (103)

with the finite difference operator ↵j defined through

↵j F(j) ⇧
1
⇥

�

F(j+1)� F(j)
 

. (104)

As M ↵⌘, we note that ↵j reduces to the derivative operator ⇢ , and we obtain the integral
A0 =

R  

0 d c⇤i◆ ( )(⇢ �µ)ci◆ ( ), and in that limit Z (M) ↵ Z[J⇤, J, V]. The source termA
(M)
S (j+1, j)

obtained from (72) is given by

A
(M)
S =

X

i

⇥

ec ⇤i◆ (j+1) Ji◆ (j+1) + J⇤i◆ (j+1)ci◆ (j)
⇤

+
h

V◆ ⇣◆
i (j+1)c⇤i◆ ⇣(j+1)ci◆ (j)

i

. (105)

As in (72), the projected variable with a hat appears in the creation operator and nowhere else in this
expression. The Hamiltonian (59) gives rise to two parts of the action. The hopping term is given by

A
(M)
t = ⇥

X

j

Teff (j)↵
Z  

0
d Teff ( ), (106)



B.S. Shastry / Annals of Physics 343 (2014) 164–199 189

with Teff from Eq. (60) or Eq. (74):

T Sym
eff (j) = �

X

lm◆

tlm c⇤l◆ (j+1)cm◆ (j)⇥
�

1� nl◆̄ (j)� nm◆̄ (j)
�

,

TMin
eff (j) = �

X

lm◆

tlm c⇤l◆ (j+1)cm◆ (j)⇥
�

1� nl◆̄ (j)
�

, (107)

where (107) corresponds to the symmetrized theory of (64) and (107) to the minimal version of (71).
The exchange part of the action is given by

A
(M)
J = ⇥

X

j

HJ(j)↵
Z  

0
d HJ( ),

HJ(j) ⇧ �
1
4

X

lm

Jlm ◆1◆2 ⇥ c⇤l◆1(j+1)c⇤m◆̄1(j+1)cm◆̄2(j)cl◆2(j). (108)

Where possible we simplify the notation by dropping the superscript M; most expressions provide
sufficient context for this and there should be no confusion. Thus we will write G

(M)
◆◆ ⇣(ai, bf ) ↵

G◆◆ ⇣(ai, bf ) and Z (M) ↵ Z etc. below. When no confusion is likely we will refer to Z[J⇤, J, V] as
simply Z , and also abbreviate terms such as Heff (j+1, j) to Heff (j) or even more simply to Heff .
Eq. (102) is almost in the form of a canonical partition function for unprojected electrons, but with an
important difference. The extra term in the integration measure is the Gutzwiller projector written in
Grassmann variables. These variables arise at the initial and next time instant only and the rest of the
time variables have only the standard measure of unity. Explicitly we find

PG(1, 0) ⇧
Ns
Y

i=1

�

1� c⇤i�(1)ci�(0)c
⇤
i�(1)ci�(0)

�

, (109)

it has all creation (destruction) operators at j = 1 (j = 0), andNs is the number of sites. In Appendix D,
we summarize the Pauli principle and Gutzwiller identities obeyed by the present coherent state
representation, these represent an important aspect of the strong correlation problem. We will also
recycle the notation of (63) for the average in this distribution of any function Q of the Grassmann
variables:

��Q ⌫⌫ = ⇠Q⇠
Z

, with ⇠Q⇠ =
Z

c
PG(1, 0)e�A Q , (110)

a useful abbreviation (110), and drop the superscript (M). This representation of the path integral
with a constraining projection factor at only the initial time has a resemblance to the that in the
canonical quantization of the electromagnetic field in the temporal gauge [37,38], as already noted
in the introduction. The Green’s functions follow from Eq. (73) using ↵/↵J(j)↵ 1

(⇥ )
d/dJ(j) [50]:

G◆i◆f (ii, f f ) = 1
Z
⇠ec ⇤f ◆f (f ) ci◆ (i)⇠. (111)

7.2. Equations of motion from path integral representation

In this section we obtain the Schwinger equations of motion of ECFL (see Ref. [6] and especially
Appendix A Eq. (138)), directly from the path integral representation given above thus providing a
non trivial check on the representation. To obtain Eq. (138), we initially set the Fermionic sources to
zero, the Bosonic sources are turned off at the very end. The equations ofmotion aremost easily found
using a Grassmann integration identity:

Z

c
PG(1, 0)

↵

↵c⇤i◆i(i+1)

h

ec ⇤f ◆f (f+1) e�ATot
i

= 0. (112)

This identity is a straight forward generalization of the theorem on vanishing of a total derivative [46],
including a non trivial measure PG (109) where the time arguments are greater than all time



190 B.S. Shastry / Annals of Physics 343 (2014) 164–199

arguments in (109), i.e. i, f ⌥ 1. It is proved by the usual logic for Grassmann variables; the derivative
↵

↵c⇤i◆i (i+1)
is in addition to an integration over c⇤i◆i(i+1) contained in the overall integration. We next

recall that the highest possible degree of a polynomial in any Grassmann variable is unity. The above
expression vanishes upon further noting that Grassmann integration and Grassmann differentiation
are identical. The same identity is valid if we replace ec ⇤f ◆f (f+1) by any other allowed Grassmann
variable U , subject to the double occupancy restriction, and similarly with V (see Ref. [51]). In
summary, an abstract equation of motion, following from

R

PG ↵
↵V (Ue�ATot ) = 0 and Fermionic U, V

reads
�

�

�

�

↵U
↵V

�

�

�

�

+
�

�

�

�

U
↵AS

↵V

�

�

�

�

+
�

�

�

�

U
↵A0

↵V

�

�

�

�

+
�

�

�

�

U
↵At

↵V

�

�

�

�

+
�

�

�

�

U
↵AJ

↵V

�

�

�

�

= 0. (113)

7.3. Equation for G◆i◆f (i, f )

Our first task is to find an equation for the Green’s function [50]—we use (113) with U = ec ⇤f ◆f (f )
and V = c⇤i◆i(i). We compute the various pieces of (113) next.

Denoting

b⌦◆i◆f (i) ⇧ ◆i◆f c⇤i◆̄i(i+1)c i◆̄f (i), (114)

and using the convention that repeated spin indices are summed over, we obtain the first result:

↵

↵c⇤i◆i(i+1)
ec ⇤f ◆f (f+1) = ↵if ↵if

�

↵◆i◆f �b⌦◆i◆f (i)
 

. (115)

We obtain

1
⇥

↵A0

↵c⇤i◆i(i+1)
= ↵i ci◆i(i)� µ ci◆i(i), (116)

1
⇥

↵AS

↵c⇤i◆i(i+1)
= V

◆i◆j
i (i+1) ci◆j(i) +

�

↵◆i◆j �b⌦◆i◆j(i)
 

Ji◆j(i+1), (117)

1
⇥

↵A
Sym
t

↵c⇤i◆i(i+1)
= �tijcj◆i(i) + tij

⇥

⌦̂◆i◆j(ii) cj◆j(i) + c⇤j◆̄i cj◆̄i cj◆i + c⇤j◆̄i ci◆̄i ci◆i
⇤

,

1
⇥

↵AMin
t

↵c⇤i◆i(i+1)
= �tijcj◆i(i) + tij⌦̂◆i◆j(ii) cj◆j(i)

1
⇥

↵AJ

↵c⇤i◆i(i+1)
= �1

2
Jij◆i◆j c⇤j◆̄i(i+1)cj◆̄j(i)ci◆j(i), (118)

We combine the two terms as:

1
⇥

↵(At + AJ)

↵c⇤i◆i(i+1)
= �

X

j

tijcj◆i(i) + Ai◆i(i+1, i), (119)

the first (linear) term in Fermions is separated out in this expression, and Ai◆i , detailed below in Eq.
(120), is obtained by combining all the three Fermion contributions in Eqs. (117) and (118). In the
minimal case we get from Eqs. (107), (108), (114) and (115)

AMin
i◆i = tijb⌦◆i◆j(ii) cj◆j(i)�

1
2
Jijb⌦◆i◆j(ji)ci◆j(i), (120)
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in agreement with Eq. (22) of Ref. [6], and the symmetrized case is obtained in a similar way.
Combining these (with J ↵ 0) we get the EOM in discrete time space:

hn

µ� ↵i � V
◆i◆j
i (i+1)

o

↵i,j + tij
i

⇠ec ⇤f ◆f (f+1)cj◆i(i)⇠ � ⇠ec ⇤f ◆f (f+1)Ai◆i(i+1, i)⇠

= ↵if ⇠(↵◆i◆f �b⌦◆i◆f (i))⇠
↵i,f

⇥
. (121)

Wenext take the continuum limit in time i; with⇥ ↵ 0, and using
↵i,f
⇥
↵ ↵(i�f ), and using the

non interacting Fermi Green’s function from (136), and implementing the basic Schwinger identity for
representing higher order correlation functions as source derivatives:

⇠ec ⇤f ◆f (f )Ai◆i(i)⇠ = X̂◆i◆j(ii, jj)⇠ec ⇤f ◆f (f )cj◆j(j)⇠ (122)

where X̂ is a functional derivative operator defined more completely below in (130). With this
preparation we can rewrite Eq. (121) as

⇣

g

�1
0,◆i,◆j(ii, jj)� X̂◆i◆j(ii, jj)

⌘

⇠ec ⇤f ◆f (f )cj◆j(j)⇠ = ↵if ⇠(↵◆i◆f �b⌦◆i◆f (i))⇠↵(i � f ). (123)

Here and elsewhere since j repeats in product, it is assumed to be integrated between 0 ⌃ j ⌃  ,
this rule is analogous to the spin index summation rule. We next divide by Z , use (110) to define the
Green’s function, and also define

Y1◆i◆j(ii, jj) = 1
Z

(X̂◆i◆j(ii, jj)Z), (124)

to rewrite (123) in the same form as Eq. (138)
⇣

g

�1
0,◆i,◆j(ii, jj)� X̂◆i◆j(ii, jj)� Y1◆i◆j(ii, jj)

⌘

⇥G◆i◆j(ii, jj) = ↵if ↵(i � f )
⇥

↵◆i◆f � ⌦◆i◆f (i)
⇤

, (125)

where

⌦◆i◆f (i) ⇧ ��b⌦◆i◆f (i)⌫⌫. (126)

This is readily seen to be identical to the direct definition given before in (135). We next use ĩ ⇧
(i, i, ◆i) as an abbreviation for the (space, time, spin) indices, and use the repeated index summation
convention. Here summation stands for spin and spatial sums, and temporal integrals in the standard
intervals.With thiswe canwrite X̂◆i◆j(ii, jj)� X̂ ĩ j̃, and similarly for g�10 ,G and Y1. The variable (126)
is local and needs the extra definition ⌦◆i◆f (ii)↵if ↵(i�f )� ⌦ ĩ f̃ and also denote ↵if ↵◆i◆f ↵(i�f )�
↵ ĩ f̃ . With these, the matrix product form of Eq. (123) reads:

⇣

g

�1
0, ĩ j̃
� X̂ ĩ, j̃ � Y1 ĩ, j̃

⌘

G j̃, f̃ = (↵ ĩ f̃ � ⌦ ĩ f̃ ). (127)

This is exactly the form of the Schwinger equation for the Green’s function obtained from the
continuous time Heisenberg equations of motion (138) in [4,6], using the above abbreviation
convention.

In order to obtain an expression for X̂ , we note a useful relationship involving the action on the
partition functional (102) of the operator D◆i◆j(i) ⇧ ◆i◆j↵/↵V

◆̄i◆̄j
i (from Eq. (39) of Ref. [6])

D◆i◆j(i)Z[V] = �⇠⌦̂◆i◆j(i)⇠, (128)

so that:

⇠ec ⇤f ◆f (f+1)AMin
i◆i ⇠ = �tijD◆i◆j(i)⇠ec ⇤f ◆f (f+1)cj◆j(i)⇠+ 1

2
JijD◆i◆j(j)⇠ec ⇤f ◆f (f+1)ci◆j(i)⇠, (129)
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and comparing with Eq. (122) we conclude

X̂◆i◆j(ii, jj) = ↵(i � j)(�tijD◆i◆j(i) + ↵ij
X

k

1
2
JikD◆i◆j(ki)), (130)

where the derivative D◆i◆j(ki) is at spatial site k and time i. The corresponding Y1 (with a similar
convention as above) in Eq. (124) is

Y1◆i◆j(ii, jj) = �↵(i � j)

 

�tij⌦◆i◆j(i) + ↵ij
X

k

1
2
Jik⌦◆i◆j(ki)

!

. (131)

Analogous expressions for the symmetrized case, for Ai, X̂ and Y1 parallel to Eqs. (130), (131) and
(120), can be obtained by using the symmetrized version (top line) of Eq. (117). This expression agrees
with Eq. (43) of Ref. [6], and their minimal version obtained after dropping the second and fourth
term. We have thus verified that the exact equations of motion are obtained from the path integral
representation outlined here, constituting a non trivial check on the formalism.

8. Conclusions

In this work we have presented a simpler method to obtain the ECFL theory that complements the
Schwinger method used earlier. This new method brings an important analogy to the Dyson–Maleev
theory to attention, and this connection helps us to get a different perspective on the main results
of ECFL, in particular the novel non-Dysonian representation of the Greens function is placed on a
firm foundation. The path integral method is used to set up an alternate quantum field theory with a
non Hermitian Hamiltonian, and it is proven to be valid by reproducing the Schwinger equations of
motion.

We draw particular attention to the scaling result for the spectral function (34) and (35) in
Section 2.4. Here the low energy spectral function is shown to satisfy a simple relation involving the
hole density that throws light on the ever shrinking regime of validity of the Landau Fermi liquid, as
we approach the insulating state. Finally the discussion of the alternateways to analyze the ARPES line
shapes discussed in Section 2.5 should be of interest to the ARPES community, as also the discussion
of the electronic origin of a kink in the EDC energy dispersion.
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Appendix A. Summary of the minimal theory and its Schwinger equations of motion

In order to make the discussions reasonably self contained, we provide a brief discussion of the
minimal equations ofmotion for theGreen’s function. These are obtained through the usual Schwinger
method used in Refs. [4,6]. These equations are a subset of the ones given in Ref. [6], and can be
obtained by omitting certain extra terms therein, which were added to satisfy a symmetry property.
We term these equations are the minimal theory, since no terms are added or dropped, and the
expressions are not reducible by any other argument. We also indicate the generalization to include
the parameter ✏ in these equations, to facilitate comparing with the equations in this work.

Using the Hamiltonian (9) we note the important commutator (given in Ref. [6]):

[HtJ , X
0◆i
i ] =

X

j

tijX
0◆i
j + µX0◆i

i �
X

j◆j

tij(◆i◆j)X
◆̄i◆̄j
i X0◆j

j + 1
2

X

j◆=i

Jij (◆i◆j)X
◆̄i◆̄j
j X0◆j

i . (132)

Temporarily ignoring the Fermionic sources:

[ÂS(ii), X
0◆i
i ] = �V

◆i◆j
i X0◆j

i , (133)
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and combining with the Heisenberg equation of motion, we see that the Green’s function satisfies the
EOM

⇢iG◆i◆f (i, f ) = �↵(i � f )↵ij(1� ⌦◆i◆f (ii))

�
D

T
⇣

e�ÂS [HtJ + ÂS(i, i), X
0◆i
i (i)] X◆f 0

f (f )
⌘E

(134)

where the local Green’s function

⌦◆a◆b(ii) = ◆a◆bG◆̄b◆̄a(i
�
i , ii). (135)

Substituting and using the Fermi gas (i.e. free) Green’s function:

g

�1
0,◆i,◆j(ii, jj) =

n

↵◆i◆j
⇥

↵ij(µ� ⇢i) + tij
⇤

� ↵ijV
◆i◆j
i (i)

o

↵(i � j), (136)

we obtain (using the repeated index summation and integration convention of Ref. [6])

g

�1
0,◆i,◆j(ii, jj)G◆j◆f (jj, f f ) = ↵(i � f )↵ij(1� ⌦◆i◆f (ii))

�
X

j◆j

tij(◆i◆j)
D

T
⇣

X ◆̄i◆̄j
i (i)X

0◆j
j (i)X

◆f 0
f (f )

⌘E

+ 1
2

X

j◆j

Jij(◆i◆j)
D

T
⇣

X ◆̄i◆̄j
j (i)X

0◆j
i (i)X

◆f 0
f (f )

⌘E

. (137)

We next express the higher order Green’s function in terms of the derivatives of the lower one to
obtain the Schwinger EOM:

⇣

g

�1
0,◆i,◆j(ii, jj)� X̂◆i◆j(ii, jj)� Y1◆i◆j(ii, jj)

⌘

G◆j◆f (jj, f f )

= ↵if ↵(i � f )
�

↵◆i◆f � ⌦◆i◆f (ii)
�

, (138)

where we used the functional derivative operator

D◆i◆j(ii) = ◆i◆j
↵

↵V
◆̄i◆̄j
i (i)

(139)

and the composite derivative operator

X̂◆i◆j(ii, jj) = ↵(i � j)

 

�tijD◆i◆j(ii) + ↵ij
X

k

1
2
JikD◆i◆j(ki)

!

, (140)

where the derivative D◆i◆j(ki) is at spatial site k and time i. The corresponding Y1 (with a similar
convention as above) in Eq. (124) is

Y1◆i◆j(ii, jj) = �↵(i � j)

 

�tij⌦◆i◆j(ii) + ↵ij
X

k

1
2
Jik⌦◆i◆j(ki)

!

. (141)

Eqs. (138), (140) and (141) define the minimal theory. For reference we note that Ref. [6] gives these
equations, and goes on to add terms that account for the symmetrized theorywith aHermitianHeff .We
also note that Eq. (138) can be generalized to include the ✏ parameter by scaling X̂◆i◆j , Yi◆i◆j , ⌦◆i◆j ↵
✏X̂◆i◆j , ✏Yi◆i◆j , ✏⌦◆i◆j .
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Appendix B. Coherent state definitions

We use standard anticommuting Grassmann variables [46] to represent the canonical Fermions C
and CÑ for each spin and site. In brief we note the anticommuting property

�

ci, c⇤j
 

= 0 =
�

ci, cj
 

=
�

c⇤i , c
⇤
j
 

=
n

ci, C
Ñ
j

o

. Suppressing j and spin index the Fermi coherent states are given as usual by:

|c⌫ = e�c CÑ |vac⌫ =
�

1� c CÑ
�

|vac⌫

�c| = �vac|e�C c⇤ = �vac|
�

1� C c⇤
�

�c|c ⇣⌫ = 1 + c⇤c ⇣ = ec
⇤c⇣ , (142)

where |vac⌫ is the vacuum state. We use the abbreviation to denote coherent state integrals:
Z

c
=

Z

dc⇤ dc. (143)

The basic integrals are
Z

c

�

1, c⇤, c, cc⇤
�

= (0, 0, 0, 1)

Z

c
e�c

⇤c = 1. (144)

The completeness relation reads:
Z

c
e�c

⇤c |c⌫�c| = |vac⌫�vac| + CÑ|vac⌫�vac|C ⇧ 1, (145)

and the trace over Fermionic variables is given by:

TrA =
Z

c
e�c

⇤c ��c|A|c⌫. (146)

Appendix C. Path integral representation

We now introduce path integrals to represent Eq. (68) leading to (102). Towards this end let us
write

 Ĥeff + ÂS =
Z  

0
Ĥ( )d

Ĥ( ) ⇧ Ĥeff +
X

i

ÂS(i,  ). (147)

The integral is represented by a finite sum over M intervals, and the limit M ↵⌘ taken at the end,
thus

Z  

0
Ĥ( )d ↵ lim

M↵⌘
⇥

X

j=1,M

Ĥ(j), (148)

where we defined

j = ⇥ ⇥ j = j  
M

,

⇥ =  

M
, j = 1,M. (149)
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Thus with Ĥ(j) ⇧ Ĥ(j) arranged to be in normal ordered form (creation operators to the left of the
destruction operators) we write Trotters formula for the exponential

Z (M) =
Z

c(0)
e�c

⇤
i◆ (0)ci◆ (0) ��c(0)|e�⇥Ĥ(M ) e�⇥Ĥ(M�1) . . . e�⇥Ĥ(2)e�⇥Ĥ(1) P̂G|c(0)⌫

=
Z

c
e�

PM
j=1 c⇤i◆ (j)ci◆ (j) �c(M)|e�⇥Ĥ(M )|c(M � 1)⌫ . . . |c(2)⌫�c(2)|

⇥ e�⇥Ĥ(2)|c(1)⌫�c(1)|e�⇥Ĥ(1) P̂G|c(0)⌫. (150)

Anti periodic boundary conditions are used: c(M) = �c(0) and we set at each time slice j the
coherent state |c(j)⌫ = Q

i◆ |ci◆ (j)⌫ as a global product over all sites and both spins, and the symbol
R

c
represents integration over all the sites spins and time slices. The site index i and spin ◆ are implicitly
summed over. Recall that P̂G is brought to the extreme right of the product. We calculate as usual:

�c(j+1)|c(j)⌫ = ec
⇤(j+1)c(j)

�c(j+1)|e�⇥Ĥ(j+1)|c(j)⌫ ⇧ ec
⇤(j+1)c(j)�⇥H(j+1,j) + O(⇥ 2)

H(j+1, j) ⇧
�c(j+1)|Ĥ(j+1)|c(j)⌫
�c(j+1)|c(j)⌫

. (151)

The last term needs careful attention, we note

�c(1)|e�⇥Ĥ(1) P̂G|c(0)⌫ = �c(1)|(1�⇥Ĥ(1)) P̂G|c(0)⌫+ O(⇥ 2)

= �c(1)|c(0)⌫(1�⇥H(1, 0)) PG(1, 0) + O(⇥ 2)

= �c(1)|c(0)⌫e�⇥H(1,0) PG(1, 0) + O(⇥ 2), (152)

where Eq. (109) details the expression for PG(1, 0), it contains variables at the initial and next time
instant only. Combining all terms, we get the expression (102). We have thrown out terms of O(⇥ )2

in obtaining Eq. (102), andhence it is important to keep track of the Pauli principle identities, discussed
above in Eqs. (156) and (158). Note that for arbitrary 

� |CÑ
i◆ |j⌫ = c⇤i◆ ( )ec

⇤
i◆ ( )ci◆ (j) = � ↵

↵ci◆ (j)
� |j⌫. (153)

In view of this relation we note the following mappings:

�⌫ |CÑ
i◆ |j⌫ ↵ �

↵

↵ci◆ (j)
�⌫ |j⌫,

�⌫ |Ci◆ |j⌫ ↵ ci◆ (j)�⌫ |j⌫,
�j|CÑ

i◆ |⌫⌫ ↵ c⇤i◆ (j)�j|⌫⌫,

�j|Ci◆ |⌫⌫ ↵ ↵

↵c⇤i◆ (j)
�j|⌫⌫, (154)

Let us show how the commutation works here:

(CCÑ + CÑC)|c⌫ =
✓

�C ↵

↵c
+ CÑc

◆

|c⌫ =
✓

↵

↵c
C � cCÑ

◆

|c⌫ =
✓

↵

↵c
c + c

↵

↵c

◆

|c⌫ = |c⌫. (155)

Appendix D. Pauli and Gutzwiller exclusion identities

It is worth highlighting a few conventions about (102) and related expressions. These are designed
to retain some of themost important features of strongly interacting electrons on a lattice. In contrast,
in a theory of electrons in the continuum, these constraints are of no special consequence since
coincident spatial points have a measure of zero. We first discuss the Pauli principle related rules
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referring to the same spin spices, and then the Gutzwiller projection related rules relating to opposite
spin species, these are operative when two electronic operators have coincident space and time
coordinates.

• (I)When two coincident times in a product of operators on the same lattice site and same spin arise,
we follow the convention of immediate evaluation of the product. By evaluation, we understand
that the product of two similar Grassmann variables is set to zero, and for dissimilar Grassmann
variables (e.g. c and c⇤) at a common time, both of them are integrated out immediately. This leads
to the basic set of Pauli exclusion identities at equal times as one easily verifies:

ci◆ (j)c⇤i◆ (j) ↵ 1
c⇤i◆ (j)ci◆ (j) ↵ �1
ci◆ (j)ci◆ (j) ↵ 0

c⇤i◆ (j)c⇤i◆ (j) ↵ 0. (156)

• (II) We denote the number operator as

ni◆ (j) ⇧ c⇤i◆ (j+1) ci◆ (j), (157)

where we observe that the c⇤ has the immediately later time argument than that of c , this comes
about from representing � j + 1|CÑC |j⌫ = c⇤(j+1)c(j) ⇥ �j + 1|j⌫. Using this we will verify the
second set of Pauli exclusion identities

ni◆ (j+1)ni◆ (j) = ni◆ (j)

c⇤i◆ (j+1)ni◆ (j) = 0
ni◆ (j)c⇤i◆ (j) = c⇤i◆ (j+1)

ni◆ (j)ci◆ (j) = 0

ci◆ (j)ni◆ (j�1) = ci◆ (j�1). (158)

(III) We next obtain the important Gutzwiller exclusion identity. Calling the ith term in the product
(109) as P (i)

G (1, 0); we see that

ni�(1)ni�(1)P
(i)
G (1, 0) = ni�(1)ni�(1)

�c⇤i�(2)ci�(0)c⇤i�(2)ci�(0) � 0. (159)

The last line follows upon expanding 2(⇧ 1 + ⇥ ) about 1. The assumption that terms of
O(⇥ ) are negligible is implicit in the entire path integral formulation. This shows that the double
occupancy type terms ni�(1)ni�(1) that occur at any site lead to vanishing contribution, thus
enforcing Gutzwiller projection. We can extend this argument to other times j ⌥ 1:

ci�(j)ci�(j) . . . P (i)
G (1, 0) = 0, (160)

where the dots indicate contributions from intermediate times. These contributions, after
Grassmann integration over the terms at intermediate times, must necessarily end up with
. . . ci�(1)ci�(1)P

(i)
G (1, 0). Expanding this factor leads to ci�(1)ci�(1) � ci�(0)ci�(0), and

therefore vanishes to O(⇥ ), as in the argument in (159).

Appendix E. Interpreting the caparison factor in the Schwinger method

Within the Schwinger method, or the related path integral formulation given above, the
decomposition of G is best done by rescaling the source terms by a factor determined through a self
consistent argument given next. A convenient method is to work in the presence of the Fermionic
sources, which allows us to start with the non vanishing average of a Fermi operator:

⌘i◆i(i) ⇧
1
Z
⇠X0◆i

i (i)⇠ = 1
Z
⇠ci◆i(i)⇠, (161)
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and further abbreviate ⌘i◆i(i)� ⌘ ĩ. A creation variable average ⌘ ⇤
ĩ
⇧ 1

Z ⇠X
◆i0
i (i)⇠ is also useful. The

variable ⌘ ĩ satisfies the functional differential equation that we study next:

(g�1
0, ĩ, j̃
� X̂ ĩ j̃)(Z⌘ j̃) = Z(↵ ĩ, k̃ � ⌦ ĩ, k̃)J k̃, (162)

or using Eq. (124)

(g�1
0, ĩ, j̃
� X̂ ĩ j̃ � Y1 ĩ j̃) ⌘ j̃ = (↵ ĩ, k̃ � ⌦ ĩ, k̃)J k̃. (163)

This equation can be arrived at within the path integral representation (73), by using a variant of (112)
after omitting the Fermionic creation type variable in the square bracket; and of course with a non
vanishing Fermi source term. Alternately we can take the Heisenberg equations of motion in terms of
the original expressions in terms of the X operators (11) and (13). The agreement between the two
methods can be checked easily, and provides a strong check on the path integral formulation.

The Green’s function is found from a variant of Eq. (13):

G ĩ f̃ � ⌘ ⇤f̃ ⌘ ĩ = ↵⌘ ĩ

↵J f̃
, (164)

and on taking the limit J ↵ 0, J⇤ ↵ 0, all the single Fermi expectations ⌘ , ⌘ ⇤ vanish. Taking the J
derivative of (164), we see that (127) follows, so we will work with this equation from here.

The main objective from this point onwards, is to cast Eq. (163) or Eq. (127) into a form where the
expressions on right are in the canonical form, i.e. where the time dependent ⌦ term is gotten rid of in
favor of a suitable constraint [4,52,53]. The occurrence of the factor 1� ⌦ multiplying the source J in
Eq. (163) suggests that one should scale the source J by a suitable time dependent factor to obtain new
sources I. The factor can be adjusted self consistently, so as to extract a canonical Green’s function.
Thus we scale

J ĩ = (µ�1) ĩ j̃ I j̃, (165)
so that

↵

↵J f̃
= ↵

↵I k̃
µ k̃ f̃ , (166)

where (µ�1) is the matrix inverse of µ. These equations have inverses that are easily obtained. The
matrix µ is dependent on the Fermi sources only indirectly, and this dependence may be neglected
since the Fermi sources are turned off in the sequel. However it is allowed to be a functional of the
Bosonic sourcesV , thereby giving us considerable flexibility in defining it,wemust also then be careful
in locating it relative to the operator X̂ , since it contains derivatives with respect to V .

In view of Eq. (166) we obtain the product relation
G ĩ f̃ = g ĩ k̃ µ k̃ f̃ + ⌘ ⇤f̃ ⌘ ĩ,

g ĩ k̃ = ↵⌘ ĩ

↵I k̃
. (167)

The goal is to choose µ such that the so defined g satisfies a canonical equation, i.e. the analog of Eq.
(127), but without the ⌦ term on the right. For this purpose we can differentiate Eq. (163) with the
scaled source field I k̃, taking care to observe the non commutation of I k̃ with the derivative term X̂ .
This process yields the equations:

(g�1
0, ĩ, j̃
� X̂ ĩ j̃ � Y1 ĩ j̃) g j̃ k̃ = (↵ ĩ, j̃ � ⌦ ĩ, j̃)(µ

�1) j̃ k̃ �
h

X̂ ĩ j̃(µ
�1) l̃ k̃

i

g j̃ m̃µ m̃ l̃, (168)

where the square brackets demarcate the terms acted upon, by the derivative operators in X̂ . Eq. (168)
exhibits a separation of variables, all the dependence onµ is confined to the right hand side, and hence
we set both sides to the identity matrix:

(g�1
0, ĩ, j̃
� X̂ ĩ j̃ � Y1 ĩ j̃) g j̃ k̃ = ↵ ĩ k̃, (169)
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and

(↵ ĩ, j̃ � ⌦ ĩ, j̃)(µ
�1) j̃ k̃ �

h

X̂ ĩ j̃(µ
�1) l̃ k̃

i

g j̃ m̃µ m̃ l̃ = ↵ ĩ k̃. (170)

Multiplying through with µ and using
h

X̂ ĩ j̃(µ
�1) l̃ k̃

i

µ m̃ l̃ = �
h

X̂ ĩ j̃µ m̃ l̃

i

(µ�1) l̃ k̃, (171)

we rewrite Eq. (170) as

µ ĩ f̃ = (↵ ĩ f̃ � ⌦ ĩ f̃ ) + g j̃ k̃

h

X̂ ĩ j̃µ k̃ f̃

i

. (172)

We next show that Eqs. (169) and (170) can be rewritten in terms of the two self energies ⇧ and ⌃
used in Refs. [4,6]. We need the relation analogous to Eq. (171) to simplify Eq. (169):

h

X̂ ĩ j̃g j̃ k̃

i

= �g j̃ k̃

h

X̂ ĩ j̃g
�1
k̃ l̃

i

g l̃ k̃. (173)

Therefore we write the two equations as

(g�1
0, ĩ, j̃
� ⇧ ĩ j̃ � Y1 ĩ j̃) g j̃ k̃ = ↵ ĩ k̃,

µ ĩ f̃ = (↵ ĩ f̃ � ⌦ ĩ f̃ ) + ⌃ ĩ f̃ , (174)

where the two self energies ⇧ and ⌃ are functions obtained by iteration, and have a finite limit on
turning off the Bosonic source V . These are obtained from the above as

⇧ ĩ j̃ = �g m̃ k̃

h

X̂ ĩ m̃g
�1
k̃ j̃

i

⌃ ĩ f̃ = g j̃ k̃

h

X̂ ĩ j̃µ k̃ f̃

i

. (175)

Using the definition of X̂ and of various vertex functions, we can verify that these are precisely the
pair of equations that we obtained in Refs. [4,6] for the two self energies of G.
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The following errors should be corrected in the paper.

(1) Page 172 below Eq. (22).
Replace
k̂ = (Ek � E

k

F

).Ek
F

/|Ek
F

|
by
k̂ = (Ek � E

k

F

).r"
k

/|r"
k

|.
(2) Page 175 Second paragraph.

Replace
‘‘Upon turning off . . . ’’
by
‘‘For Q > 0, upon turning off . . . ’’.
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(3) Page 175 Third line after Eq. (44).
Replace
sign(k̂)
by
sign(�Q ).

(4) Page 175 Fourth line after Eq. (44).
Replace
sign(k̂)
by
sign(�Q ).

(5) Eq. (45) should read

E

⇤(k
kink

) = � 1
r � 1

�0 � �0.
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