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Abstract

Anderson localization is known to be inevitable in one-dimension for generic disordered models.
Since localization leads to Poissonian energy level statistics, we ask if localized systems possess
‘additional’ integrals of motion as well, so as to enhance the analogy with quantum integrable systems.
We answer this in the affirmative in the present work. We construct a set of nontrivial integrals of
motion for Anderson localized models, in terms of the original creation and annihilation operators.
These are found as a power series in the hopping parameter. The recently found Type-1 Hamiltonians,
which are known to be quantum integrable in a precise sense, motivate our construction. We note that
these models can be viewed as disordered electron models with infinite-range hopping, where a similar
series truncates at the linear order. We show that despite the infinite range hopping, all states but one
are localized. We also study the conservation laws for the disorder free Aubry—Andre model, where the
states are either localized or extended, depending on the strength of a coupling constant. We formulate
aspecific procedure for averaging over disorder, in order to examine the convergence of the power
series. Using this procedure in the Aubry—Andre model, we show that integrals of motion given by our
construction are well-defined in localized phase, but not so in the extended phase. Finally, we also
obtain the integrals of motion for a model with interactions to lowest order in the interaction.

1. Introduction

The simplest theoretical model to study localization for non-interacting particles in the presence of disorder was
proposed by Anderson [1]. A single particle localized state has a wavefunction that decays exponentially about
some point in space over a characteristic localization length. In three-dimensions, localized states exist below a
certain energy (the mobility edge) for a given strength of disorder. A disordered electronic system is thus
localized if its Fermi energy lies below the mobility edge. In one- and two-dimensions, an infinitesimal amount
of disorder is sufficient to localize all single particle states and thus a disordered non-interacting electronic
system is always localized [2, 3].

Recent developments in the area of eigenstate thermalization [4—6] relate closely to the above well
established notions of Anderson localization. In this context, it is believed that an isolated localized eigenstate
does not thermalize, in the sense that no subsystem of it can be brought into thermal equilibrium by exchanging
heat with the rest of the system. An analogous statement can be made about information, as defined through an
appropriate partial trace of the density matrix. A related feature of such a system is the lack of level repulsion in
its energy level spectrum. This can be thought of as arising from the presence of almost degenerate states
localized so far apart that they are unable to hybridize to lift the degeneracy.

The effect of interactions on such systems is very interesting. Interactions among the elementary degrees of
freedom generically tend to drive the system towards thermalization and delocalization [7, 8]. This tendency
competes with the the one that causes localization in the presence of disorder. Understanding the resultant
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phenomenon of many body localization, that is observed for sufficiently strong disorder, is currently a very
active area of research [9—13].

Another class of systems that fail to thermalize are integrable ones. These often contain a variable parameter
(such as interaction or external field strength, which we denote here as y) and possess a set of similarly dynamical
(i.e. depending on the parameter) integrals of motion. Standard examples of such systems are the one-
dimensional Hubbard and XXZ models. In these examples, the integrals of motion I are polynomial in y with
the order of the polynomial [14-21] increasing with k. An arbitrary linear superposition of all integrals
Q = >, axly—also an integral in its own right—is an infinite power series in y. Gaudin magnets [22, 23] on the
other hand provide examples of integrable models where all conserved charges® are linear in y. It should be
emphasized that there is no generally accepted precise notion of integrability in quantum mechanics [24, 25] in
contrast to classical mechanics where it is unambigous. However, we do not dwell on this issue in present work’.
The only aspect important for us here is the existence of parameter-dependent conservation laws.

Conserved charges greatly constrain the dynamics of integrable systems. As a result, when started off from an
arbitrary initial state in isolation, these systems do not evolve in a way that causes thermalization in the sense of
the above paragraph [6, 31]. Additionally the usual space—time symmetries result in degeneracies in the energy
level spectrum, and hence alack of level repulsion [32]. The addition of perturbations destroys such
conservation laws and restores level repulsion, although the strength of the perturbations has a non-trivial finite-
size dependence [33-35].

In this context, it is natural to ask in what ways are localized systems similar to integrable ones. In particular
we may ask if (parameter dependent) conservation laws, similar to those in integrable systems exist for localized
systems. It has been argued in the context of many-body localization that they do, and results related to the
growth of entanglement in these systems are predicated on their existence [36—38]. However, obtaining the
structure of the conserved charges directly in terms of microscopic parameters remains a challenge and effective
renormalization procedures need to be employed instead [10, 39]. The situation is less complicated in the
absence of interactions since the Hamiltonian is that of a single particle. Nevertheless, obtaining the charges
systematically and analytically in terms of the microscopic parameters of the Hamiltonian is non-trivial. In this
paper we outline the procedure to do so. We also elucidate the connection between localization and conserved
charges.

In this work we study a general one-dimensional model with on-site disorder that can interpolate between
models with long-range hopping and the more standard Anderson-type one. The starting point is a Type-1
Hamiltonian reviewed in [25-30]. This was introduced as the most simple model of quantum integrability in
finite dimensional spaces. This model has infinite ranged hopping, and as such has no inbuilt metric or length
scale. We first show by calculating its participation ratio (PR) [40, 41] the perhaps surprising result that all states
except one are localized. This is done as follows: an eigenstate |¢)) of the Hamiltonian is expanded in a basis of
position eigenstates on the lattice as [1)) = Y, ¢|k), where klabels the position eigenstates and ¢, are the
coefficients in the expansion. The PR for this state is then defined as

(Zklcklz)z

PR, = ) ey

e

Itis usually understood that PRy, ~ O (1) indicates localization while PRy, ~ O (N)-delocalization, where Nis
the number of sites. While this definition is valid for a fixed wave function, we may also define the PR at a given
energy, as later in the paper, where an averaging over disorder realizations is carried out, at a fixed energy.

The Type-1 model has a known set of conservation laws, which inspire the construction of a generic
Anderson-type model having only nearest-neighbor hopping. In 1d it is well known that for this model, all single
particle eigenstates are localized for any strength of the disorder. The conserved charges of this model are then
constructed by analogy with the Type-1 Hamiltonian. These charges are expressed as a power series in the
hopping, whose coefficients we determine by means of an algorithm. We also show that the series, upon disorder
averaging over a ‘non-resonant’ ensemble-defined below, is convergent. This provides numerical evidence that
the ensemble chosen and the procedure of averaging the coefficients in the conserved charges over the ensemble
is meaningful.

We then turn our focus to a model which contains both localized and delocalized phases (i.e. phases in which
all single particles states are either localized or delocalized). This is the Aubry—Andre model [42], in which the
random potential is replaced by a quasi-periodic one. This allows us to test our criterion for the convergence of
the power series and clearly elucidate the connection of the conserved charges to localization. Thus, the

6 . . . . .
We use the term conserved charges interchangeably with conservation laws or integrals of motion.

4 By integrable we will generally mean quantum many-body models colloquially recognized as such, see examples in this paragraph. The
only exception are Type-1 Hamiltonians that stem from a recently proposed well-defined notion of quantum integrability [25-30].
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convergence (divergence) of the power series representation of conserved charges can indeed be identified with
the presence (or absence) of localization and the localization—delocalization transition can be located using the
charges. Finally, we investigate the effect of interactions and argue that a power series in the interaction becomes
intractable and thus obtain the the conserved charges only to first order in it.

We emphasize that the main feature of our construction is that the conservation laws do not depend
explicitly on the wavefunctions of the single particle energy eigenstates. In fact, the recursion relations we obtain
for the coefficients of the expansions of the conserved charges are the same for all generic one-dimensional
models. Our approach is thus completely model independent requiring no knowledge of exact solutions or
properties of energy eigenfunctions.

Another important aspect of the construction of conservation laws we emphasize here, which has not been
discussed before is ‘gauge freedom’ of a certain kind, defined more precisely later. We show that a judicious
choice of gauge can bring out important features of the conserved charges, such as the truncation of their series
representation at finite order. These features can be obscured in gauges that arise in constructions of these
charges from direct applications of standard methods such as the Rayleigh—Schrédinger series or the locator
expansion.

2. Lattice models

We consider a general Hamiltonian of non-interacting particles hopping on a one-dimensional lattice with an
on-site potential

H=H(y) = Zeini - thijcich, )
i ij

where c,-T and ¢; are fermionic creation and annihilation operators, n; = ciT ¢; is the number operator, ¢; is the on-
site disordered potential, and #; is the hopping between sites i and j. The parameter y is a real number introduced
for convenience, which; it allows us to perform an expansion of the conserved charges in its powers.

Our general strategy to construct construct conserved charges for this models will be to first consider the
‘unperturbed’ Hamiltonian which only has the on-site potential. The conserved charges for this Hamiltonian are
simply the operators n;, which are independent and commute with each other and the Hamiltonian. It can also
be readily seen that the eigenstates of this Hamiltonian are completely localized on the individual sites. Thus the
zeroth order Hamiltonian trivially describes a localized system with conserved charges. We now show that upon
introducing the hopping, new conserved charges Q; appear, which can still be labeled by the site indices i while
the system remains localized. To do this, we consider different types of hopping parameters t;;.

3. Type-1 Hamiltonians

We now summarize a known set of conserved charges Q;. We rework the construction in [25, 27, 28], in a fashion
that suggests a natural generalization for short ranged models. These charges are linear in the hopping (or the
parameter y), and commute exactly with the Hamiltonian of the Type-1 family. The Type-1 Hamiltonian is
obtained from equation (2) by specializing to infinite ranged hopping t;; = ~;7;, with arbitrary parameters -,.
Specializing toj = 0 we write down the charge Qg
Qu=ro — y Y ——Ttox(efex + cfew)—afm — BYml, )
k=0€0 — €k -

where of and 3! are yet to be determined. The commutator of Qy and H vanishes to linear order in y by
construction.The surviving term is of O (y?) and is given by

1 . ¥ . + .
[Q(), H] = y2 Zﬁ [A(O)]: k)(c()} Cj - C}‘CO) + B(O) > k)(ckl Cj - CJTCk)] - 0) (4)
jk €0 — k

where

A(0, j, k) = toctiy — ato;
B(0, j, k) = tojtor — Biti- )

A few words on the form of equation (3) are appropriate here. The last two terms —am;, — (391, commute with
H (y = 0) trivially, since they are expressed in terms of the number operators. These actually represent a
particularly convenient ‘gauge choice’, their presence enables the second order term O (y?) to vanish, and thus
the commutator series to truncate exactly for the Type-1 matrices. The requirement that [Qo, H] = 0 is satisfied
by the following form of ¢;;
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Figure 1. PR of eigenstates of a Type-1 Hamiltonian for y = .004, N = 10° in ascending order according to the energy. Each ¢; and ~;
is an independent random number uniformly distributed in an interval (—1, 1). Larger circle near the left top corner indicates the
ground state, which is extended. Left inset is the same as above, but averaged over 10° realizations of disorder and compared to
equation (15) for the same y, N, w. Theright inset shows the PR (except the ground state) for N = 10° equally spaced ¢;, 7; = 1 and
y = .004 similarly compared to equation (15) (the two curves are indistinguishable).

tz] =%
of =7;
0 =% (6)

this gives A (0, j, k) = B(0, j, k) = 0.Itis straightforward to extend this definition to arbitrary Q;, and further
toshow that [Q;, Q;] = 0 V4, j, so the operators Q; are indeed the conserved charges of the Hamiltonian H
[26,27]. The Hamiltonians described by t;; of the form given in equation (6) are called Type 1 [25, 27], and can
also be interpreted geometrically as representing a ‘d-simplex’ [43].

3.1. PR for Type-1 Hamiltonians
All single particle states of Type-1 Hamiltonians (6), except possibly the ground state for y > 0 or the highest
energy state for y < 0 arelocalized, see e.g. figure 1.

This can be understood in more detail from the exact solution for the spectrum of these models [27]. Exact
un-normalized single particle eigenstates of the Hamiltonian (6) are

Nob
E) = S5 o) @)
i:OE — €

and the corresponding eigenvalues E (energies) are solutions of the equation

P ®)

i—oE— e Y

Suppose ¢; are ordered in the ascending order. By plotting the left hand side of equation (8) as a function of E,
one can verify thatithas N — 1realroots E), E,, ...Ey_1located between consecutive ¢;,1.e. ¢;_1 < E; < €.
The remaining root Ej is also real and is below ¢, (ground state) for y > 0 and above ey_; for y < 0 (highest
excited state).

Equations (7) and (8) also provide an exact solution for one fermion (Cooper) pair and one spin flip sectors
of the BCS and Gaudin models, respectively

Hgcs = Zficitfcia - yZCiTlCiTTC]'TC]'l’

Lo=T,] ij
L EE
Hi(y)=sf —yy ——, ©)
j=i€i — €j

where ¢;, are spin-full fermions and s; are quantum spins of arbitrary magnitudes s;, see [27] for details. For the
BCS (Gaudin) model one needs to replace c; — c}l ch [s;"]in equation (7), set 7, = 1[4/2s;]and the
corresponding eigenvalue is equal to 2E [2s;(E — )~ !] rather than E. Our results for the PR of Type-1
Hamiltonians therefore also apply to these sectors of these models.

4
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The PR defined through equation (14) reads

4 T
[Zi (E — €)* ]
Z 'V? .

HE — &)

PRy = (10)

For concreteness we take y > 0. Then, the ground stateis Ey < ¢). We assume that most +;, are of the same
order of magnitude and consequently the vector with components +; is delocalized. Further, we take ¢; tolieina
fixed interval that does not scale with N, e.g. from —w to w.

For excited states E is between €;_1 and €. The summations in the numerator and denominator of
equation (10) both come from ¢; in a small vicinity of ¢ for large Nand convergeas >, n~?and }°, n™*,
respectively, where n = |i — k|. The numerator and the denominator scale as [yi / 6%)?and ”yf / 5%, where
6 o< 1/N is the mean level spacing between ¢; in the vicinity of ;. Therefore, PR, is of order 1 (much smaller
than N) meaning excited states are always localized. Figure 1 shows PR for N = 10° uncorrelated random ¢;
uniformly drawn from an interval (—1, 1) and the same distribution of -,.

Consistent with our numerical results, we estimate the largest PR for excited states to scale as In N, i.e.

PRE™ ~ a/lnN, (11)

for large N, where a depends on N much weaker than In N. Such values of PR come from clusteringin ¢;.
Indeed, suppose spacings §; = ¢;.1 — ¢; between mof¢; forifrom kto k + mare all much smaller than 6,
and, moreover, ;1 — ¢ < Ok_1. It follows from equation (10) that PR, ~ PR, ., ~ m because theabove
¢; contribute most to these PRs. Normalized spacings s; = ¢;/6 are distributed according to the Poisson
distribution P (s)ds = e~*ds. The probability of having m spacings between 0 and sy < 11is then roughlys;’. We
need msy < landalso Nsj" = 1so that at least one such clustering occurs®. This implies 7 ~ In N /In(In N)
and equation (11) follows. Numerically we find that typical values of « & 1 — 3 and averaged over disorder

& =~ 1.7, atleastfor N = 2* — 2" Note that according to this argument such large values of PR typically come in
pairs spaced by m + 1, roughly equal to the value of the PR itself. We also stress that, in contrast to the largest
PR, a typical (and average) PR is something between one and three for any N (does not scale) as can be seen from
figure 1.

Itis interesting to compare this In N behavior to the flat band localization studied earlier [44, 45]. The latter
leads to a (weakly) divergent PR in the localized regime, a phenomenon that is viewed as corresponding to
critical (power law type) localization. The Type-1 Hamiltonian kinetic energy may also be viewed as a ‘flat band’
model, with a flat dispersion for all except one state. Indeed, for t;; = +;; all but one eigenvalues of the second
term in equation (2) are zero. The non-zero eigenvalue (ground state for y > 0) corresponds to the
eigenstate ,¢;|0).

Let us consider limits y — 0and y — oo separately. When y — 0 all states are localized as expected.
Indeed, equation (8) implies E;, — ¢, summations in equation (10) are dominated by the i = kterm and we
obtain PR, = 1forallk. When y — oo excited states are localized as before because Ey for k > 1 remains
trapped in the interval (ex_;, €). The ground state energy on the other hand diverges— equation (8) implies
Ey — —y>; ’yl.z. Then, ¢; are negligible as compared to E, in equation (10) and

2
[Z07]
>

which is of order N according to our choice of .. The ground state is therefore delocalized for y — oo.It
undergoes a localization—delocalization crossover at a certain y., which we estimate below in this section.

Itis possible to evaluate the PR analytically to leading orderin 1/N for distributions of ¢; and ~; with
negligible short range fluctuations (such that the spacing 6; = ¢, — ¢; changes slowly with i—|6;,, — &|/6;is
oforder 1/N for all i—and similarly for +,). For simplicity, let us take constant +;, which we can set to one with
no loss of generality, and equally spaced ¢;,1.e. §; = 6 = 2w/N.

For excited states, we write E;, = ¢, — a6, where 0 < o < 1,and solve equation (8) for oy to the leading
orderin 1/N as described in appendix B of [46]. Thisyields

PRg, = (12)

cot oy, = i + lln6’(—~_W
Ty T W — €

= f(&). (13)

We note that A = y /6 is the proper dimensionless coupling constant in the sense that it must stay finite in the
N — oo limit. This is because the second summation in equation (2) scales as N* for ti = Y and our choice of

8 More precisely, the probability that m of ¢; occur in an interval of length é for Poisson distribution is e~!/m!, which however still leads to
the same estimate (11).
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7.- Therefore, weneed y o< 6 o< 1/N so that both terms in equation (2) are extensive in the thermodynamic
limit. For the BCS Hamiltonian in equation (9), so defined A is the dimensionless superconducting
coupling [47].

Equations (10) becomes to leading orderin 1 /N

2
0o 1 1
[Z”O((Tl + ak)2 + (n + 1— ak)Z):|

2 0((11 + o)t - (n+1-— ak)4)

which evaluates to

3 3 4+ 3N (e)
1 + 2cos?max 1 4+ 3f2 (&)

PRy, = (15)

This answer is in good agreement with numerics already for N = 20, see also figure 1. Note that 1 < PRg, < 3.

We saw above that the ground state energy Ey — —ooas y — 00, while Eg — ¢ for y — 0. Let ybe large
enough that E is well separated from €. Then, we can replace summation in equation (8) with integration and
obtain

Eo—w 6 2w
n——_—_

1 = - = . (16)
Ey+w y Ny
Performing the same replacement in equation (10) and using equation (16), we derive
PRy, — N (17)

1+ 2cosh(6/y) '

Note thatin thelimit y — oo, PR, = N in agreement with equation (12). This expression also allows us to
estimate the value y. beyond which the ground state becomes extended. We obtain A = y./6 ~ 1/In N. This
also corresponds to the coupling for which the gap in the spectrum A = E; — Ej = —w — Ejbecomes
comparable to the spacing 6. For a superconductor described by the BCS model (9) this localized-extended
crossover translates into a normal-superconducting one[48, 49]. As N — oo this crossover becomes a quantum
phase transition at A = 0, i.e. any infinitesimal coupling is sufficient to make the ground state extended
(superconducting). Thelocalized character of the excited states for the specific case of 7. = 1hasbeen
demonstrated in a previous work as well [43].

4. A model with finite-ranged hopping

We now consider the following Anderson-type model in one-dimension with nearest neighbor hopping

H= Zfini - ytZ(cfc,'H + h.c).
— Hy + yH,. (18)

This corresponds to the case with t; = ¢ for |[{ — j| = 1and 0 otherwise for the general Hamiltonian in
equation (2). Hy is the zeroth order Hamiltonian with only the on-site potential and H, contains the hopping. It
is known that all single particle eigenstates of this Hamiltonian are localized [1, 3].

4.1. Construction of the conserved charges

Proceeding as for the case of Type-1 Hamiltonians, we focus on the conserved charge Q,, corresponding to the
sitei = 0, which to lowest order is equal to 1. However, in this case Qg is not simply linear in y. In fact, it can be
argued that the an expansion of Qg in the hopping does not truncate at any finite order in the thermodynamic
limit. Indeed, as explained in the Introduction, conserved charges are generally infinite power series in y. We
thus assume Q; of the form

Q; = Py + yP, + y*Pir+-+, (19)

where Py = ngand P, P,...are operators to be determined in terms of the microscopic parameters subject to
the condition [Q;, H] = 0. For concreteness, we first take our one-dimensional system to be a finite-sized ring
of N + Isites going from 0 to N.

Since the Hamiltonian H and all the zero order charges n; are quadratic in the creation and annihilation
operators, we take all the operators Py, P, ... to be similarly quadratic, i.e.

6
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Figure 2. Schematic diagram showing hopping terms present in the operators P; — P,. The base site 0 is in the middle and its neighbors
are sites 1 and N, since we imposed periodic boundary conditions. Lines connecting pairs of sites indicate the presence of the
corresponding hopping term in the operator P,,. Note that the range of the hopping in P, increases with .

EZUOM(OC;Qs (20)

where the symmetric coefficients 77(’”) () = n("’) (i) are to be determined. We have

[Qi, H] = [Pio, Hol + > " ([P, Hil + [Pim+1, Hol)

The requirement that the commutator vanishes to all orders in y requires

[Pim> Hi] + [Pim+1, Hol = 0 (21)
and yields a recursion relation among 7's

HEEDG) = S ROG) + L0 Z[(tam("”(l) — ()l (22)

€2 —
with initial conditions nﬁ) (i) = 6;403. The diagonal term RV represents a ‘gauge’ freedom, since the
corresponding term in P,,, commutes trivially with Hy. We further discuss this freedom below. Specializing to
the case of nearest neighbor hopping equation (18) and with i = 0, it can be verified that terms present in P,,, are
of the form

* 1y Cm + Ghco)s

(m) T
nor)nN,(m,I)[CO CN—(m-1) T+ Cltlf(mfl) col,

Dijmli—jl—even<m 771] (c ¢+ c "¢, (if mis even),

Dijemi—jl—odd<m 7711 (c G+ ¢ fe) (if mis odd).

This is shown schematically in figure 2 for the first few Py,,,.

The Q/ s are related to each other by translating all site indices in the above relations by an appropriate
number. By construction, they all commute with H. Since H is generally non-degenerate, this implies Q; also
commute among themselves, [Q;, Q;] = 0V i, j. To see this, first recall that for Hermitian matrices
[A, B] = [A, C] = Oimplies[B, C] = Oas long as eigenvalues of A are non-degenerate. All operators involved

in the above construction of Q; are of the form A = Z ii¢; ¢j where Aj;isa Hermitian N x N matrix, which

represents operator A in the sector with total particle number n = 1.Moreover, the commutativity of any two
such operators is equivalent to that of the underlying matrices. Eigenvalues of the Hamiltonian inthen = 1
sectoraty = 0 are ¢;, which are assumed to be distinct, i.e. the corresponding matrix is non-degenerate at y = 0.
By continuity of the eigenvalues in y, it remains non-degenerate in some finite interval (until the first level
crossing) of the real axis containing y = 0. Thus, [Q;, Q;] = 0V 4, j in thisinterval of y. But, as can be seen e.g.
from the above construction of Qy, commutativity of Q; on any finite interval of values of y implies that they
commute for all y.

We noted above that commutation relations (21) and consequently recursion relations (22) do not constrain
the diagonal part of the coefficients 7™, i.e. R} 0m for m > 1. The choice of R, M (7) however does affect the off-
diagonal part of n® for k > m. In our construction of Q; we set R (m 7y = 0 forall m > 1, since this leads to the

most compact description of these objects. we will refer to this as the standard gauge. Conserved charges Q;
resulting from any other choice R{"™ (i) uniquely relate to our standard gauge Q;’s, a brief calculation shows their
relationship is
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Q= Qi+ Xy YRMGQ- (23)
Another advantage of our choice of a gauge is in a simple relationship between the Hamiltonian (18) and the
conserved charges, namely

H = ZE,‘ Q,‘. (24)

To see this, consider the difference

H=-Y6Qi=yW + y*W, + y*Wit--, (25)

where W;are y-independent operators. Note that the zeroth order term cancels in the difference. Since H
commutes with all Q;, the right -hand side (rhs) of equation (25) must also commute. This implies in particular
[W1, ;] = 0 foralli(from the coefficient at the lowest power of y in the commutator of the rhs with Q;), which in
turn means that W, = 3, r! n;. Now note that the left-hand side (lhs) has zero diagonal matrix elements, i.e. no
terms of the form ¢, ¢,.. This is because the zeroth order term is absent, while higher order terms have no diagonal
matrix elements since 775:") = Oforall m > 1in our gauge (and similarly the diagonal is absent in other Q;).
Then, the diagonal matrix elements must vanish on the rhs as well, to all orders in y. In particular, ril = 0,1.e.

W = 0and

H=Y6Q=y"W, + y’Ws+ .. (26)

Applying the same argument to the rhs of this equation we similarly obtain W; = 0 etc., until we finally arrive at
equation (24).

4.2. Type-1 Hamiltonians redux
We have seen above that the conserved charges are power series in the hopping. This is unlike the case of Type-1
Hamiltonians, where the power series truncates after the first term. The gauge where the series truncates
corresponds to having distinct terms for 7 = 1, one can see in equation (3) (the gauge terms are indicated in the
lower braces).

Itis an amusing exercise to determine the correct gauge terms that lead to truncation, starting from the
recursion relations equation (22). To obtain Type-1 Hamiltonians we set t;; = Y SO that the recursions
simplify to

m - m - 1 - 65[ m) . m)y .
NV G) = 64 RV — — 2 (v — YIG))
€qa — €p
ISOED S FIORIRTS 27)
j
With the initial condition 772%) (i) = 6;, 63, we obtain at the first level
. . 2o (1 — 6,
7' = 6w RMG) + %(&b — i) (28)
a— €

At this point we pause and ask if we can choose the gauge term R{" (i) such that nffb) (i) can be made to vanish
identically, so that the iterations stop at the first level. From equation (27) we see that the relevant condition is the
vanishing of (Yé;) i) — Yb(;) (i)). Using equation (27) compute

2 ! 2
. . i i

YQ0) = % RO + ——(1 = ) = 83— (29)
€q — € j €j — €

We may choose R(V so that the term in braces vanishes, thus leading to the truncation of the iterations. From
equation (28) we have the complete first order term, and we can proceed to construct the charge (denoting the
currents by the symbol Q)

Qi = n; +y> Vi)l (30)
ab

which is identical to that in equation (3).

The use of the gauge term here is very special, and guided by our understanding of this model. On the other
hand, we could by default set all the gauge terms R to zero, giving us the irreducible (i.e. standard gauge)
currents. These no longer truncate even for Type-1 Hamiltonians. For completeness we note the second order
term for the current in this (standard) gauge
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7] ) % Z ’71’7] (CiTCj + C}.C,‘)
Ej — €; 61' — €

Qi=ni+ (y+y>,

i i

+ y2y? x > aVo cfcj + O(y?). (31)
wp (€a — €) (€4 — €))

Thus the Type-1 Hamiltonians allow for variety of expressions of the constants of motion. To establish their
equivalence in general is a subtle problem, where some surprising results have been found quite recently in [30].

This type of gauge choice, made explicit in our construction could be exploited further to test the possibility
that the series can take simpler forms, as compared to a brute force expansions to infinite order. We leave this
interesting question for future investigation.

4.3. Currents found from the Rayleigh—Schrodinger (locator) expansion

A natural question that arises is the relationship between the currents found above and those found from a brute
force expansion of the projection operators of the Anderson model in powers of the coupling constant y. The
model has a formal single particle eigenfunction expansion in the form

() = uu(y)¢10), (32)
k

with an initial condition localized say at the site 0 as 1o (0) = 6. The projector Q = |¥(y)) (¥(y)|canbe
expanded in a series in y

Q= Z“oj“g;cfka = P(0) +y13(1) +y213(2) 4o (33)
ik
so that the basic expansion of the wave functions in a Rayleigh—Schrodinger (RS) series in y generates the

conserved currents. We can use the standard result in text books” to write a perturbative expansion for the state
at site 0 with standard normalization to ugy = 1as

N (y)) = c4l0) + > uokci|0), (34)
k=0

with a power series expansion for 1y

1 it toot
Uok = — 0k + yzz kltlo _ )’2 00tk0 - + o(y3) (35)
€0 — €k =0 (€0 — e)(e0 — &) (€0 — &)

Using this expansion, we may generate the series equation (33), the result is explicitly stated below in

equation (38). From this series we can verify to second order, that this series differs from that in the standard
gauge equation (19) by specific gauge terms. The advantage of equation (19) is that this gauge invariance is
manifest in the construction by the nested commutators. On the other hand, equations (33)—(35), corresponds
to a particular gauge picked out by the R—S method, and the currents found here are some linear combinations of
the ones in equation (19) as in equation (23).

It seems to us that the series in equation (19) possesses an essential simplicity relative to the Rayleigh—
Schrodinger series equations (33)—(35). The R—S perturbation expansion simultaneously determines the energy
eigenvalue, and for this purpose very specific gauge terms are needed. On the other hand all terms in
equation (19) are generated by completely off diagonal terms, those terms that avoid multiple visits to any site.
This leads to simpler recursion relations, as in equation (22), relative to the RS series. For this reason our
numerical work in this paper uses the series in equation (19).

4.4. Locator expansion for Type-1 Hamiltonians

The Rayleigh—Schrodinger series can also be constructed for Type-1 Hamiltonians using the exact eigenstates |E)
Wel e

Y (E—e&)(E~-¢€)

yas shown in equation (33). In the limit y — 0, the roots of equation (8) tend to ¢;. We take the root E — ¢, to

with eigenvalues E as given in equations (7) and (8). The projector |E) (E| = 3 can be expanded in

obtain Q the conserved charge corresponding to site 0 calculated using the Rayleigh—Schrodinger gauge. Other
roots yield other Q;. Expanding equation (8) for Ein ynear E = ¢, we get

2
E=eco— 2 + y%zg i —+ 007, (36)
i=0€0 — €

~Y _ 2 .
Since, the projector diverges in y — 0 limit, we define our conserved charge as Qy = %UE ) (E| to make it
0

well behaved. Qp is given by

o For example, see equation (5.1.44) Sakurai 1994 Modern Quantum Mechanics (London: Pearson Education).
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Figure 3. Plot indicating convergence of conserved charges (see equations (19) and (20)) of the Anderson model (18) for N = 500. |r|
represents a typical mth coefficient 77;]'.’ averaged over a distribution of the on-site disorder ¢;, see the end of section 4.5. The plot shows
the logarithm of the average as a function of m. ¢; are drawn from the eigenvalues of real symmetric matrices whose elements are
Gaussian random variables of variance o = 0.1,0.25and 0.4, and we set yt = 1.
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60 = np + .
Yo j=0 E—¢ v ij=0(E — &) (E — €))

(E = ¢p)*
~2
o

Then, replacing — y2fy§ and then E — ¢, we have obtained 60 asa combination of Q; (see equation (3))

as follows

2 i 2
Gy= Q- yS NI g, (38)

i=0 €0 — €
Other ak can be obtained with the replacement 0 — k. Unlike Qy, there is no indication of the series truncating
atany finite order for Qy.

4.5. Convergence of the power series

The conserved charges constructed above depend on the microscopic parameters of the Hamiltonian, i.e. the
hopping and on-site energies. As we shall show later, the same Hamiltonian can have alocalized and delocalized
phase depending on the values of these parameters. It is thus important to understand if and how the conserved
charges themselves differ in the two phases. More precisely, how do the conservation laws ‘know’ whether a
particular choice of microscopic parameters produces a localized or delocalized phase?

The answer has to do with their convergence since they are expressed as power series in the microscopic
parameters and particle operators. We thus need to state in what sense the power series are convergent. A
reasonable condition for convergence is a sufficiently rapid decay of the coefficients ng’ with increasing .
However, this is complicated by the fact that there are energy difference denominators in the coefficients 77;’.1 that
can cause them to blow up when the on-site energies at two different sites are equal. To avoid this, we restrict
ourselves to a particular type of disorder that may be termed ‘non-resonant’. By this we mean any ensemble of ¢;,
which shows ‘level repulsion’, i.e. the probability of finding ¢; very close to each other is very small.

From the random matrix theory, we know that the eigenvalues of a generic matrix display level repulsion in
their eigenvalues of various degree, the Gaussian orthogonal ensemble (GOE) [50] of real symmetric matrices
has the least level repulsion. This condition ensures that perturbative resonances from small denominators, that
would otherwise cause individual terms in the expansions of the conserved charges to diverge, are prohibited.
This choice is similar to the one involving limited level attraction recently adopted in the context of many-body
localization [51].

We have verified that this distribution of onsite energies gives us localization (as indicated from a calculation
of the PR) immediately upon switching on the hopping term. Thus, this particular choice of onsite energies,
which is of great convenience from the point of view of calculations, is also not unphysical. The on-site energies
¢; are drawn from the eigenvalues of a real symmetric matrices whose elements are taken from a Gaussian
random distribution with fixed variance. The eigenvalues of these matrices are assigned randomly to different
sites. Different random assignments then constitute different realizations of disorder, which can then be
averaged over to check for convergence. The result of this procedure is shown in figure 3, where ¢; are drawn
from the eigenvalues of real symmetric matrices whose elements are taken from a Gaussian distribution of
variance o = 0.1, 0.25 and 0.4. It can be seen that the ™ decrease rapidly with increasing order of power series m

10
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Figure 4. PR of eigenstates of the Anderson model (18) for N = 500 numbered in ascending order according to the energy levels. On-
site disorder ¢; is drawn from the eigenvalues of real symmetric matrices whose elements are Gaussian random variables of variance
0 =0.1,0.25and 0.4, and we set yt = 1. Blue dashed line corresponds to the typical value of PR in delocalized phase.

indicating convergence. We have also checked the convergence of the power series for ¢; drawn from the
eigenvalues of non-integrable t — t' — V model, which also follow a GOE distribution [33, 52].
Since nZ.’ contain more than one term for each m, we checked the convergence of a typical term, which is of
om
(€ay = €by)(€ay — €1)) - (€ayy — €by)
labels between N — (m — 1) and m as can be seen from figure 2. Thus, the only values of ¢; involved are are

those chosen from [ex_(n—1), €n] (€0 is at the center) such that ¢,, = ¢, Viand max|a; — b| = m.

As the aim of this work is to construct conserved charges in localized systems, it is legitimate to ask whether
this slightly non-standard choice of disorder distribution produces localization. We have verified this through
numerical exact diagonalization by calculating the PR. We find that the PR for different eigenstates is indeed
close to zero for systems of size N = 500 as shown in figure 4, consistent with localization. We thus conclude
that our model with on-site energies taken from a GOE distribution does indeed produce alocalized phase. A
similar exercise to construct the conservation laws for the above model has been carried out in [53]. In that work
too, the conserved charges have been constructed as infinite operator series but whose coefficients correspond to
the amplitudes of a particle to be on the sites of a square lattice whose sides are the physical one-dimensional
lattice. The recursion relation obtained is between conserved charges on different sites and the convergence of
the series is assumed to follow from the exponential decay of the eigenfunctions of the Hamiltonian. In our
calculations, we construct the conserved charges directly in terms of the microscopic parameters of the
Hamiltonian and our convergence criterion is not based on any assumption about the nature of the eigenstates
of the Hamiltonian. In fact, as we show in the next section, the convergence of the series for the conserved
charges can be used to identify the delocalized and localized phases instead of the eigenfunctions.

the form

.Recall that the m™ order term in the calculation of Q, involves sites with

5. Aubry—Andre model

Having constructed the conserved charges for a model with finite-range hopping and defined a condition for
convergence of the power series for them, we can further investigate the meaning of our convergence criterion.
In particular, since our goal is to identify the validity of our construction of the conservation laws with the
presence of localization, the power series should fail to converge according to our criterion in a delocalized
phase.

We thus require a non-interacting model with disorder in one-dimension which has a delocalized phase.
While any model with finite-range hopping and an on-site random potential in one-dimension always produces
localization [1, 3], a quasi-periodic potential can produce localized and delocalized phases. Such a model is the
Aubry—Andre model [42] given by the Hamiltonian

H = hZcos(Zﬁwj)c}cj — %Z(c}cﬁl + h.c.), (39)
j j

where 3is an irrational number. The parameter h can be tuned to effect a transition from alocalized phase (for
h > 1)toadelocalized phase (for i < 1) [42]. We note that this model is usually studied with an additional term
that introduces a p-wave pairing gap [54], but we set it equal to zero for our analysis.

The localized phase here is one in which all single particle states are localized and similarly all single particle
states are delocalized in the delocalized phase. The transition between these phases happens at h = 1. Since the
Hamiltonian in equation (39) is also of the form (18), we can use the expressions obtained for the 77;]’.’ in the
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Figure 5. Conserved charges for Aubrey—Andre model converge for b > 1 (localized phase) and diverge for h < 1 (delocalized
phase). Here |7 represents a typical mth coefficient ng’ in equation (20) (see the end of section 4.5), N = 900 and [ = @ The plot
shows log || as a function of m.

previous section to construct the conserved charges. These will now depend on the parameter h (i.e. y — (2 h)~!
in the previous section) and if the criterion for convergence postulated by us is a valid one to detect localization,
we should observe the power series to converge in the localized phase (h > 1) and diverge in the delocalized
phase (h < 1). Thisisindeed the case as we see e.g. from figure 5, which shows that a typical matrix element of
1™ goes to zero quite rapidly with increasing m for h > 1but diverges for h < 1. Thus, we have established that
our convergence criterion is valid for identifying the localization—delocalization transition.

6. Interactions

We now turn to systems with interactions. The simplest way to introduce interactions to models we studied here
is through a nearest neighbor density—density term. Let us, for example, add such a term to equation (18)

H= Zeini - tyZ(cfc,'H + h.c.) + VaniH

= Hy + V6H, (40)

where we redefined H,, as compared to equation (18).

We assume that the particles here are spineless fermions. It is tempting to try a construction of the conserved
charges starting from a zeroth order Hamiltonian that combines the on-site and interaction terms since they
commute with each other and their eigenstates are localized at every site. However, the interaction term is
quartic in creation and annihilation operators and so the conserved charges can no longer be assumed to be
power series in the hopping with each term quadratic in the creation and annihilation operators. Such an
assumption leads to no solution for the coefficients since the commutators keep producing terms with
increasingly longer trails of creation and annihilation operators as one goes to higher orders in the hopping. A
more profitable exercise is to try to obtain the conserved charges as power series in the hopping but only to the
first order in the interaction. While these are not exact, they offer a reasonable approximation in the limit of
small interaction strength. Weak interactions typically should not destroy the localization present in the non-
interacting limit and thus conserved charges should continue to exist.

Weknow from our previous calculation that the operator of the form Qy = ny + 3=, 7751 y"c c; commutes

with Hy. Let us now define a new operator Q = Qg + V4Q tolinear order in Vand calculate the commutator

[Q, H]=[Qo + VéQ, Hy + V6H]
=V ([6Q, Hol + [Qo, 6H]) + O(V?). (41)

We choose 6Q such that [6Q, Hy] + [Qq, 6H] = 0, so that Q and H commute to O(V). We assume the form
0Q = X, Yrav €/ cs¢/' ¢, Note this is quartic in the creation and annihilation operators since the interaction
term is as well. Thus

[5Q> HO] + [QOJ 5H] =0

12
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We now assume that 1), can be written as a power series in y, i.e. ¢, = >, A2 y®. Equating the
coefficients at different orders of y, one can in principle obtain A} in terms of the nZ? for the case with V = 0.In
fact, it can be seen that ata given order m, the AP are linear combinations of the ng.“ and the A,”",. One can also
impose constraints arising from the anti-commutation of the fermionic operators, the Hermitian nature of the
conservation laws and the number of non-zero components of the ngﬂ) to severely constrain the number of non-

zero components of Ajy".
Let us, for example, derive 6Q to the first order in y,i.e. we set m = 1. We have

1 1 1 1
DM ekt = Mg Cimer 1} M€ Ciest = My ;1610
ki

=Y A" (-6 + 6 — &+ &) ¢ el ey

rstv

Since, only 7]},,- ,,and 771!’1._ | are non-zero, the non-zero A are given by the following equations:

1
M1,k
A1k+1,k,k+1,k+1 _ Alk,k+1,k+1,k+1 _ +1,
€k+1 — €k
771
_ _ k—1,k
ARKZLRELERL g k= LD
€k—1 — €k
771
kk+1
ARRKELE _ plkkkeT +
€k — Ck+1
771
k+2,k+1
Alk’k’k+2’k+1 :Alk’k’k+l’k+2 — ToRHL
€k+2 — €k+1

The corresponding expression for 6Q to order y is
§Q=yVY A c e/ e,

rstv

1 1
M1,k N Me—1,k -
= yVy | —— (], ok + f D me + ———— (e + ¢ k- )Mk
e | k1 — €k €k—1 — €k
m, m,
kk+1 k+2,k+1
+ 7”k(C;§+1Ck + C;Ckﬂ) + 7”k(51j+2Ck+1 + C;+1Ck+2) .

€k — €k+1 €k+2 — €k+1

Other approaches to construct conservation laws for interacting systems have been proposed including a
recent one where the interacting problem is mapped onto a non-Hermitian problem on a lattice in operator
space [53]. A convergence criterion for the resultant series based on the operator norm is then used to identify
localized and delocalized phases.

7. Conclusions and discussion

Inspired by the Type-1 Hamiltonian system, we have demonstrated a scheme to obtain the conserved charges for
non-interacting disordered models displaying localization in one-dimension. One of our motivation was an
observation of similarities between localized and integrable systems, such as the absence of level repulsion and
the absence of thermalization. Our conserved charges are exhibited as a power series in the hopping, and using a
suitable convergence criterion, we show that the convergence (or divergence) of conserved charges tracks the
presence (or absence) of localization. An interesting issue of ‘gauge dependence’ of the conserved charges is
unearthed and explored. Itis shown that a full understanding of the gauge dependence leads to considerable
simplifications of the charges in some cases. On the other hand, straightforward Rayleigh—Schrodinger
perturbation theory or equivalent schemes, commit one to a particular gauge that is often inconvenient.

This work provides a novel link between the concepts of localization and integrability. Our results hold
within the context of the 1d Anderson model, where all states are localized, and the Andre—Aubry model, where
(all) states undergo a transition tuned by a coupling constant. It is not immediately obvious how to extend these
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results to a higher dimensional Anderson model with a mobility edge separating the two classes of states. The
Aubry—Andre model exhibits an interesting kind of duality which allows the localized and delocalized phases to
be mapped onto each other with the roles of the hopping and onsite potential exchanged. The duality
transformation is expressed in terms of new fermonic operators given by ¢ = %Zn exp (i27k3) c,,, which are

eigenstates of the momentum operator with eigenvalue: k = kF,_; mod E,, where F,, is the nth Fibonacci
number and L = E, [55, 56]. In terms of these fermionic operators the Hamiltonian (39) becomes

il = lZcos(ZﬁﬂE)ng — lZ(cgc;;_H + h.c). (42)
h  h73 27

The Hamiltonian satisfies the duality relation: H (h)/h = H (1/h). We have shown that for the Aubrey-
Andre Hamiltonian written in real space, one can construct set of conserved charges that converge for
0 < h < 1.Because of the duality of the model one can construct similar conserved charges in terms of ¢ and
cg . The power series of these charges converge when 0 < 1/h < 1andboth sets of charges divergeath = 1.
Thus, the duality of the model allows us to explicitly construct conservation charges in one phase given that they
exist in the other.

This can be better understood by noting that localization is a basis dependent concept. We have been using
localization (as is the standard practice) to mean localization in real space. To obtain the conserved charges for
such alocalized phase, we start from a Hamiltonian whose eigenstates are perfectly localized in real space and
then add terms perturbatively in the hopping. Similarly, the delocalized phase of the Aubry—Andre model is
localized in momentum space and one can then obtain its conserved charges by starting with a Hamiltonian
perfectlylocalized in momentum space (tight binding model) and then add terms perturbatively in the on-site
potential. This is the essence of the duality outlined above. Thus, the conserved charges also carry labels
indicating the space (real or momentum) where the system is localized. What is important though is that once
the basis in which the system is localized is identified and the conserved charges are constructed accordingly,
they are sensitive to the onset of delocalization in that basis and can be used to locate localization—delocalization
transitions.

The importance of the basis can be further understood when one compares the behavior hard-core bosons
with that of spinless fermions in the Aubry—Andre model [57, 58]. The duality between the localized and
delocalized phases is destroyed for hard-core bosons. As a result, the relaxation of real space local observables in
the localized phase is different from their conjugates in momentum space in the delocalized phase. This feature is
absent for spinless fermions where the duality holds and as a consequence, conserved charges of the type derived
in this work exist in both phases.

While it is only possible to construct these charges to lowest order in the interaction using our procedure,
their fate upon the introduction of interactions can in principle be investigated numerically, which we defer toa
future work'’.
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