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Abstract
Anderson localization is known to be inevitable in one-dimension for generic disorderedmodels.
Since localization leads to Poissonian energy level statistics, we ask if localized systems possess
‘additional’ integrals ofmotion aswell, so as to enhance the analogywith quantum integrable systems.
We answer this in the affirmative in the present work.We construct a set of nontrivial integrals of
motion for Anderson localizedmodels, in terms of the original creation and annihilation operators.
These are found as a power series in the hopping parameter. The recently foundType-1Hamiltonians,
which are known to be quantum integrable in a precise sense,motivate our construction.Wenote that
thesemodels can be viewed as disordered electronmodels with infinite-range hopping, where a similar
series truncates at the linear order.We show that despite the infinite range hopping, all states but one
are localized.We also study the conservation laws for the disorder free Aubry–Andremodel, where the
states are either localized or extended, depending on the strength of a coupling constant.We formulate
a specific procedure for averaging over disorder, in order to examine the convergence of the power
series. Using this procedure in theAubry–Andremodel, we show that integrals ofmotion given by our
construction are well-defined in localized phase, but not so in the extended phase. Finally, we also
obtain the integrals ofmotion for amodel with interactions to lowest order in the interaction.

1. Introduction

The simplest theoreticalmodel to study localization for non-interacting particles in the presence of disorder was
proposed byAnderson [1]. A single particle localized state has awavefunction that decays exponentially about
some point in space over a characteristic localization length. In three-dimensions, localized states exist below a
certain energy (themobility edge) for a given strength of disorder. A disordered electronic system is thus
localized if its Fermi energy lies below themobility edge. In one- and two-dimensions, an infinitesimal amount
of disorder is sufficient to localize all single particle states and thus a disordered non-interacting electronic
system is always localized [2, 3].

Recent developments in the area of eigenstate thermalization [4–6] relate closely to the abovewell
established notions of Anderson localization. In this context, it is believed that an isolated localized eigenstate
does not thermalize, in the sense that no subsystemof it can be brought into thermal equilibriumby exchanging
heat with the rest of the system. An analogous statement can bemade about information, as defined through an
appropriate partial trace of the densitymatrix. A related feature of such a system is the lack of level repulsion in
its energy level spectrum. This can be thought of as arising from the presence of almost degenerate states
localized so far apart that they are unable to hybridize to lift the degeneracy.

The effect of interactions on such systems is very interesting. Interactions among the elementary degrees of
freedomgenerically tend to drive the system towards thermalization and delocalization [7, 8]. This tendency
competes with the the one that causes localization in the presence of disorder. Understanding the resultant
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phenomenon ofmany body localization, that is observed for sufficiently strong disorder, is currently a very
active area of research [9–13].

Another class of systems that fail to thermalize are integrable ones. These often contain a variable parameter
(such as interaction or external field strength, whichwe denote here as y) and possess a set of similarly dynamical
(i.e. depending on the parameter) integrals ofmotion. Standard examples of such systems are the one-
dimensionalHubbard andXXZmodels. In these examples, the integrals ofmotion Ik are polynomial in ywith
the order of the polynomial [14–21] increasingwith k. An arbitrary linear superposition of all integrals
Q a Ik k k= å —also an integral in its own right—is an infinite power series in y. Gaudinmagnets[22, 23] on the
other hand provide examples of integrablemodels where all conserved charges6 are linear in y. It should be
emphasized that there is no generally accepted precise notion of integrability in quantummechanics [24, 25] in
contrast to classicalmechanics where it is unambigous. However, we do not dwell on this issue in present work7.
The only aspect important for us here is the existence of parameter-dependent conservation laws.

Conserved charges greatly constrain the dynamics of integrable systems. As a result, when started off from an
arbitrary initial state in isolation, these systems do not evolve in away that causes thermalization in the sense of
the above paragraph [6, 31]. Additionally the usual space–time symmetries result in degeneracies in the energy
level spectrum, and hence a lack of level repulsion [32]. The addition of perturbations destroys such
conservation laws and restores level repulsion, although the strength of the perturbations has a non-trivial finite-
size dependence [33–35].

In this context, it is natural to ask inwhat ways are localized systems similar to integrable ones. In particular
wemay ask if (parameter dependent) conservation laws, similar to those in integrable systems exist for localized
systems. It has been argued in the context ofmany-body localization that they do, and results related to the
growth of entanglement in these systems are predicated on their existence [36–38]. However, obtaining the
structure of the conserved charges directly in terms ofmicroscopic parameters remains a challenge and effective
renormalization procedures need to be employed instead [10, 39]. The situation is less complicated in the
absence of interactions since theHamiltonian is that of a single particle. Nevertheless, obtaining the charges
systematically and analytically in terms of themicroscopic parameters of theHamiltonian is non-trivial. In this
paperwe outline the procedure to do so.We also elucidate the connection between localization and conserved
charges.

In this workwe study a general one-dimensionalmodel with on-site disorder that can interpolate between
models with long-range hopping and themore standardAnderson-type one. The starting point is a Type-1
Hamiltonian reviewed in [25–30]. This was introduced as themost simplemodel of quantum integrability in
finite dimensional spaces. Thismodel has infinite ranged hopping, and as such has no inbuiltmetric or length
scale.Wefirst show by calculating its participation ratio (PR) [40, 41] the perhaps surprising result that all states
except one are localized. This is done as follows: an eigenstate ∣yñof theHamiltonian is expanded in a basis of
position eigenstates on the lattice as c kk k∣ ∣yñ = å ñ, where k labels the position eigenstates and ck are the
coefficients in the expansion. The PR for this state is then defined as

c

c
PR . 1k k

k k

2 2

4

( )∣ ∣
∣ ∣

( )å
å

=y

It is usually understood that OPR 1( )~y indicates localizationwhile O NPR ( )~y -delocalization, whereN is
the number of sites.While this definition is valid for a fixedwave function, wemay also define the PR at a given
energy, as later in the paper, where an averaging over disorder realizations is carried out, at afixed energy.

The Type-1model has a known set of conservation laws, which inspire the construction of a generic
Anderson-typemodel having only nearest-neighbor hopping. In 1d it is well known that for thismodel, all single
particle eigenstates are localized for any strength of the disorder. The conserved charges of thismodel are then
constructed by analogywith the Type-1Hamiltonian. These charges are expressed as a power series in the
hopping, whose coefficients we determine bymeans of an algorithm.We also show that the series, upon disorder
averaging over a ‘non-resonant’ ensemble-defined below, is convergent. This provides numerical evidence that
the ensemble chosen and the procedure of averaging the coefficients in the conserved charges over the ensemble
ismeaningful.

We then turn our focus to amodel which contains both localized and delocalized phases (i.e. phases inwhich
all single particles states are either localized or delocalized). This is the Aubry–Andremodel [42], inwhich the
randompotential is replaced by a quasi-periodic one. This allows us to test our criterion for the convergence of
the power series and clearly elucidate the connection of the conserved charges to localization. Thus, the

6
Weuse the term conserved charges interchangeably with conservation laws or integrals ofmotion.

7
By integrable wewill generallymean quantummany-bodymodels colloquially recognized as such, see examples in this paragraph. The

only exception are Type-1Hamiltonians that stem from a recently proposedwell-defined notion of quantum integrability [25–30].
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convergence (divergence) of the power series representation of conserved charges can indeed be identifiedwith
the presence (or absence) of localization and the localization–delocalization transition can be located using the
charges. Finally, we investigate the effect of interactions and argue that a power series in the interaction becomes
intractable and thus obtain the the conserved charges only tofirst order in it.

We emphasize that themain feature of our construction is that the conservation laws do not depend
explicitly on thewavefunctions of the single particle energy eigenstates. In fact, the recursion relations we obtain
for the coefficients of the expansions of the conserved charges are the same for all generic one-dimensional
models. Our approach is thus completelymodel independent requiring no knowledge of exact solutions or
properties of energy eigenfunctions.

Another important aspect of the construction of conservation lawswe emphasize here, which has not been
discussed before is ‘gauge freedom’ of a certain kind, definedmore precisely later.We show that a judicious
choice of gauge can bring out important features of the conserved charges, such as the truncation of their series
representation at finite order. These features can be obscured in gauges that arise in constructions of these
charges fromdirect applications of standardmethods such as the Rayleigh–Schrödinger series or the locator
expansion.

2. Latticemodels

Weconsider a general Hamiltonian of non-interacting particles hopping on a one-dimensional lattice with an
on-site potential

H H y n y t c c , 2
i

i i
ij

ij i j( ) ( )†�å å= = -

where ci
† and ci are fermionic creation and annihilation operators, n c ci i i

†= is the number operator, i� is the on-
site disordered potential, and tij is the hopping between sites i and j. The parameter y is a real number introduced
for convenience, which; it allows us to perform an expansion of the conserved charges in its powers.

Our general strategy to construct construct conserved charges for thismodels will be tofirst consider the
‘unperturbed’Hamiltonianwhich only has the on-site potential. The conserved charges for thisHamiltonian are
simply the operators ni, which are independent and commutewith each other and theHamiltonian. It can also
be readily seen that the eigenstates of thisHamiltonian are completely localized on the individual sites. Thus the
zeroth orderHamiltonian trivially describes a localized systemwith conserved charges.We now show that upon
introducing the hopping, new conserved chargesQi appear, which can still be labeled by the site indices iwhile
the system remains localized. To do this, we consider different types of hopping parameters tij.

3. Type-1 Hamiltonians

Wenow summarize a known set of conserved chargesQj.We rework the construction in [25, 27, 28], in a fashion
that suggests a natural generalization for short rangedmodels. These charges are linear in the hopping (or the
parameter y), and commute exactly with theHamiltonian of the Type-1 family. The Type-1Hamiltonian is
obtained from equation (2) by specializing to infinite ranged hopping tij i jg g= , with arbitrary parameters jg .
Specializing to j=0wewrite down the chargeQ0

Q n y t c c c c n n
1
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where k
0a and k

0b are yet to be determined.The commutator ofQ0 andH vanishes to linear order in y by
construction.The surviving term is of O y2( ) and is given by
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A fewwords on the formof equation (3) are appropriate here. The last two terms n nk k k
0 0

0a b- - commutewith
H y 0( )= trivially, since they are expressed in terms of the number operators. These actually represent a
particularly convenient ‘gauge choice’, their presence enables the second order term O y2( ) to vanish, and thus
the commutator series to truncate exactly for the Type-1matrices. The requirement that Q H, 00[ ] = is satisfied
by the following formof tij
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this gives A j k B j k0, , 0, , 0( ) ( )= = . It is straightforward to extend this definition to arbitraryQj, and further
to show that Q Q i j, 0 ,i j[ ] = " , so the operatorsQi are indeed the conserved charges of theHamiltonianH
[26, 27]. TheHamiltonians described by tij of the form given inequation (6) are called Type 1 [25, 27], and can
also be interpreted geometrically as representing a ‘d-simplex’ [43].

3.1. PR for Type-1Hamiltonians
All single particle states of Type-1Hamiltonians (6), except possibly the ground state for y 0> or the highest
energy state for y 0< are localized, see e.g.figure 1.

This can be understood inmore detail from the exact solution for the spectrumof thesemodels[27]. Exact
un-normalized single particle eigenstates of theHamiltonian (6) are

E
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and the corresponding eigenvaluesE (energies) are solutions of the equation
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Suppose i� are ordered in the ascending order. By plotting the left hand side of equation (8) as a function ofE,
one can verify that it has N 1- real roots E E E, , N1 2 1¼ - located between consecutive i� , i.e. Ei i i1� �< <- .
The remaining root E0 is also real and is below 0� (ground state) for y 0> and above N 1� - for y 0< (highest
excited state).

Equations (7) and (8) also provide an exact solution for one fermion (Cooper) pair and one spin flip sectors
of the BCS andGaudinmodels, respectively

H c c y c c c c
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where cis are spin-full fermions and si
G
are quantum spins of arbitrarymagnitudes si, see [27] for details. For the

BCS (Gaudin)model one needs to replace c c ci i i
† † †l m ³ si[ ]+ in equation (7), set 1ig = s2 i[ ]and the

corresponding eigenvalue is equal to E2 s E2 i i
1[ ( ) ]�- - rather than E. Our results for the PR of Type-1

Hamiltonians therefore also apply to these sectors of thesemodels.

Figure 1.PR of eigenstates of a Type-1Hamiltonian for y .004= , N 103= in ascending order according to the energy. Each i� and ig
is an independent randomnumber uniformly distributed in an interval 1, 1( )- . Larger circle near the left top corner indicates the
ground state, which is extended. Left inset is the same as above, but averaged over 103 realizations of disorder and compared to
equation (15) for the same y N w, , . The right inset shows the PR (except the ground state) for N 103= equally spaced i� , 1ig = and
y .004= similarly compared to equation (15) (the two curves are indistinguishable).
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The PRdefined through equation (14) reads
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For concreteness we take y 0> . Then, the ground state is E0 0�< .We assume thatmost ig are of the same
order ofmagnitude and consequently the vector with components ig is delocalized. Further, we take i� to lie in a
fixed interval that does not scale withN, e.g. from w- tow.

For excited statesEk is between k 1� - and k� . The summations in the numerator and denominator of
equation (10) both come from i� in a small vicinity of k� for largeN and converge as nn

2å - and nn
4å - ,

respectively, where n i k∣ ∣= - . The numerator and the denominator scale as k
2 2 2[ ]g d and i

4 4g d , where
N1d µ is themean level spacing between i� in the vicinity of k� . Therefore, PREk is of order 1 (much smaller

thanN)meaning excited states are always localized. Figure 1 shows PR for N 103= uncorrelated random i�
uniformly drawn froman interval 1, 1( )- and the same distribution of ig .

Consistent with our numerical results, we estimate the largest PR for excited states to scale as Nln , i.e.

NPR ln , 11E
max

k
( )a»

for largeN, whereα depends onNmuchweaker than Nln . Such values of PR come from clustering in i� .
Indeed, suppose spacings i i i1� �d = -+ betweenm of i� for i from k to k+m are allmuch smaller than k 1d -
and,moreover, k m k k 1� � - d-+ - . It follows from equation (10) that mPR PRE Ek k m 1» »+ + because the above

i� contributemost to these PRs. Normalized spacings si id d= are distributed according to the Poisson
distribution P s s sd e ds( ) = - . The probability of havingm spacings between 0 and s 10 � is then roughly s0

m.We
need ms 10 - and also Ns 1m

0 = so that at least one such clustering occurs8. This implies m N Nln ln ln( )»
and equation (11) follows. Numerically wefind that typical values of 1 3a » - and averaged over disorder

1.7ā » , at least forN=24 – 212. Note that according to this argument such large values of PR typically come in
pairs spaced by m 1+ , roughly equal to the value of the PR itself.We also stress that, in contrast to the largest
PR, a typical (and average)PR is something between one and three for anyN (does not scale) as can be seen from
figure 1.

It is interesting to compare this Nln behavior to theflat band localization studied earlier [44, 45]. The latter
leads to a (weakly) divergent PR in the localized regime, a phenomenon that is viewed as corresponding to
critical (power law type) localization. The Type-1Hamiltonian kinetic energymay also be viewed as a ‘flat band’
model, with aflat dispersion for all except one state. Indeed, for tij i jg g= all but one eigenvalues of the second
term in equation (2) are zero. The non-zero eigenvalue (ground state for y 0> ) corresponds to the
eigenstate c 0i i ∣†g ñ.

Let us consider limits y 0l and y l ¥ separately.When y 0l all states are localized as expected.
Indeed, equation (8) implies Ek k�l , summations in equation (10) are dominated by the i=k term andwe
obtain PR 1Ek = for all k.When y l ¥ excited states are localized as before because Ek for k 1. remains
trapped in the interval ,k k1( )� �- . The ground state energy on the other hand diverges— equation (8) implies
E y i i0

2gl - å . Then, i� are negligible as compared toE0 in equation (10) and

PR , 12E
i i

i i

2 2

40 ( )
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å

g

g
=

which is of orderN according to our choice of ig . The ground state is therefore delocalized for y l ¥. It
undergoes a localization–delocalization crossover at a certain yc, whichwe estimate below in this section.

It is possible to evaluate the PR analytically to leading order in N1 for distributions of i� and ig with
negligible short rangefluctuations (such that the spacing i i i1� �d = -+ changes slowlywith i— i i i1∣ ∣d d d-+ is
of order N1 for all i—and similarly for ig ). For simplicity, let us take constant ig , whichwe can set to onewith
no loss of generality, and equally spaced i� , i.e. w N2id d= = .

For excited states, wewrite Ek k k� a d= - , where 0 1ka< < , and solve equation (8) for ka to the leading
order in N1 as described in appendix B of[46]. This yields

y

w

w
fcot

1
ln . 13k

k

k
k( ) ( )�

�
�pa

d
p p

= +
+
-

º

Wenote that yl d= is the proper dimensionless coupling constant in the sense that itmust stay finite in the
N l ¥ limit. This is because the second summation in equation (2) scales asN2 for tij i jg g= and our choice of

8
More precisely, the probability thatm of i� occur in an interval of length δ for Poisson distribution is e m1 !- , which however still leads to

the same estimate (11).
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ig . Therefore, we need y N1dµ µ so that both terms in equation (2) are extensive in the thermodynamic
limit. For the BCSHamiltonian in equation (9), so definedλ is the dimensionless superconducting
coupling[47].

Equations (10) becomes to leading order in N1

n n

n n
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, 14E
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which evaluates to
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=
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This answer is in good agreement with numerics already forN=20, see alsofigure 1. Note that1 PR 3Ek- - .
We saw above that the ground state energy E0 l -¥ as y l ¥, while E0 0�l for y 0l . Let y be large

enough thatE0 is well separated from 0� . Then, we can replace summation in equation (8)with integration and
obtain

E w

E w y

w

Ny
ln

2
. 160

0
( )d-

+
= =

Performing the same replacement in equation (10) and using equation (16), we derive

N

y
PR

3

1 2 cosh
. 17E0 ( )

( )
d

=
+

Note that in the limit y l ¥, NPRE0 = in agreement with equation (12). This expression also allows us to
estimate the value yc beyondwhich the ground state becomes extended.We obtain y N1 lnc cl d= » . This
also corresponds to the coupling forwhich the gap in the spectrum E E w E1 0 0D = - » - - becomes
comparable to the spacing δ. For a superconductor described by the BCSmodel (9) this localized-extended
crossover translates into a normal-superconducting one[48, 49]. As N l ¥ this crossover becomes a quantum
phase transition at 0l = , i.e. any infinitesimal coupling is sufficient tomake the ground state extended
(superconducting). The localized character of the excited states for the specific case of 1ig = has been
demonstrated in a previouswork as well[43].

4. Amodel withfinite-ranged hopping

Wenow consider the followingAnderson-typemodel in one-dimensionwith nearest neighbor hopping

H n yt c c

H yH

h.c. .

. 18
i

i i
i

i i 1

0 1

( )

( )

†�å å= - +

= +

+

This corresponds to the case with t tij = for i j 1∣ ∣- = and 0 otherwise for the generalHamiltonian in
equation (2).H0 is the zeroth orderHamiltonianwith only the on-site potential andH1 contains the hopping. It
is known that all single particle eigenstates of thisHamiltonian are localized [1, 3].

4.1. Construction of the conserved charges
Proceeding as for the case of Type-1Hamiltonians, we focus on the conserved chargeQ0, corresponding to the
site i=0, which to lowest order is equal to n0. However, in this caseQ0 is not simply linear in y. In fact, it can be
argued that the an expansion ofQ0 in the hopping does not truncate at anyfinite order in the thermodynamic
limit. Indeed, as explained in the Introduction, conserved charges are generally infinite power series in y.We
thus assumeQi of the form

Q P yP y P , 19i i i i0 1
2

2 ( )= + + +"

where P ni0 0= and P P,i i1 2¼are operators to be determined in terms of themicroscopic parameters subject to
the condition Q H, 0i[ ] = . For concreteness, wefirst take our one-dimensional system to be afinite-sized ring
of N 1+ sites going from0 toN.

Since theHamiltonianH and all the zero order charges ni are quadratic in the creation and annihilation
operators, we take all the operators P P, ...i i1 2 to be similarly quadratic, i.e.
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P i c c , 20im
jk

jk
m

k j( ) ( )( ) †åh=

where the symmetric coefficients i ijk
m

kj
m( ) ( )( ) ( )h h= are to be determined.We have

Q H P H y P H P H, , , , .i i
m

m
im im0 0

1
1 1 0[ ] [ ] ([ ] [ ])å= + ++

+

The requirement that the commutator vanishes to all orders in y requires

P H P H, , 0 21im im1 1 0[ ] [ ] ( )+ =+

and yields a recursion relation among sh¢

i R i t i i t
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, 22ab
m

ab a
m ab

a b j
aj jb

m
aj
m

jb
1 1( ) ( ) [( ( ) ( ) ] ( )( ) ( ) ( ) ( )

� � åh d
d

h h= +
-
-

-+ +

with initial conditions iab ia ib
0 ( )( )h d d= . The diagonal term Ra

m 1( )+ represents a ‘gauge’ freedom, since the
corresponding term in Pim commutes trivially withH0.We further discuss this freedombelow. Specializing to
the case of nearest neighbor hopping equation (18) andwith i=0, it can be verified that terms present in P m0 are
of the form

• c c c c ,m
m

m m0 0 0( )( ) † †h +

• c c c c ,N m
m

N m N m0, 1 0 1 1 0[ ]( )
( ) †

( ) ( )
†h +- - - - - -

• c c c cij m i j m ij
m

i j j i, even ( )( ) † †
- hå +¹ - = (ifm is even),

• c c c cij m i j m ij
m

i j j i, odd ( )( ) † †
- hå +¹ - = (ifm is odd).

This is shown schematically infigure 2 for thefirst few P0m.
The Q si¢ are related to each other by translating all site indices in the above relations by an appropriate

number. By construction, they all commutewithH. SinceH is generally non-degenerate, this impliesQi also
commute among themselves, Q Q, 0i j[ ] = ∀ i j, . To see this, first recall that forHermitianmatrices
A B A C, , 0[ ] [ ]= = implies B C, 0[ ] = as long as eigenvalues ofA are non-degenerate. All operators involved
in the above construction ofQi are of the form A A c cij ij i j

ˆ †= å , whereAij is aHermitianN×Nmatrix, which

represents operator Â in the sector with total particle number n=1.Moreover, the commutativity of any two
such operators is equivalent to that of the underlyingmatrices. Eigenvalues of theHamiltonian in the n=1
sector at y=0 are i� , which are assumed to be distinct, i.e. the correspondingmatrix is non-degenerate at y=0.
By continuity of the eigenvalues in y, it remains non-degenerate in somefinite interval (until thefirst level
crossing) of the real axis containing y=0. Thus, Q Q, 0i j[ ] = ∀ i j, in this interval of y. But, as can be seen e.g.
from the above construction ofQ0, commutativity ofQi on anyfinite interval of values of y implies that they
commute for all y.

We noted above that commutation relations (21) and consequently recursion relations (22)do not constrain
the diagonal part of the coefficients m( )h , i.e. Rr

m( ), for m 1. . The choice of R ia
m ( )( ) however does affect the off-

diagonal part of k( )h for k m> . In our construction ofQiwe set R i 0a
m ( )( ) = for all m 1. , since this leads to the

most compact description of these objects. wewill refer to this as the standard gauge. Conserved charges Qi
~

resulting from any other choiceR ia
m ( )( ) uniquely relate to our standard gaugeQiʼs, a brief calculation shows their

relationship is

Figure 2. Schematic diagram showing hopping terms present in the operators P1 – P4. The base site 0 is in themiddle and its neighbors
are sites 1 andN, sincewe imposed periodic boundary conditions. Lines connecting pairs of sites indicate the presence of the
corresponding hopping term in the operator Pm. Note that the range of the hopping in Pm increaseswithm.
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Q Q y R i Q . 23i i
m

m

r
r

m
r( ) ( )( )å å= +~

Another advantage of our choice of a gauge is in a simple relationship between theHamiltonian (18) and the
conserved charges, namely

H Q . 24
i

i i ( )�å=

To see this, consider the difference

H Q yW y W y W , 25
i

i i 1
2

2
3

3 ( )�å- = + + +"

whereWi are y-independent operators. Note that the zeroth order term cancels in the difference. SinceH
commutes with allQi, the right -hand side (rhs) of equation (25)must also commute. This implies in particular
W n, 0i1[ ] = for all i (from the coefficient at the lowest power of y in the commutator of the rhswithQi), which in
turnmeans thatW r ni i i1

1= å . Nownote that the left-hand side (lhs) has zero diagonalmatrix elements, i.e. no
terms of the form c cr r

† . This is because the zeroth order term is absent, while higher order terms have no diagonal
matrix elements since 0rr

m( )h = for all m 1. in our gauge (and similarly the diagonal is absent in otherQi).
Then, the diagonalmatrix elementsmust vanish on the rhs aswell, to all orders in y. In particular, r 0i

1 = , i.e.
W 01 = and

H Q y W y W . 26
i

i i
2

2
3

3 ( )�å- = + + "

Applying the same argument to the rhs of this equationwe similarly obtain W 02 = etc., until wefinally arrive at
equation (24).

4.2. Type-1Hamiltonians redux
Wehave seen above that the conserved charges are power series in the hopping. This is unlike the case of Type-1
Hamiltonians, where the power series truncates after thefirst term. The gaugewhere the series truncates
corresponds to having distinct terms form=1, one can see in equation (3) (the gauge terms are indicated in the
lower braces).

It is an amusing exercise to determine the correct gauge terms that lead to truncation, starting from the
recursion relations equation (22). To obtain Type-1Hamiltonianswe set tij i jg g= , so that the recursions
simplify to

i R i Y i Y i

Y i i

1

. 27

ab
m

ab a
m ab

a b
ab
m

ba
m

ab
m

j
aj
m

j b

1 1( ) ( ) ( ( ) ( ))

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )
� �

å

h d
d

h g g

= -
-
-

-

=

+ +

With the initial condition iab ia ib
0 ( )( )h d d= , we obtain at the first level

i R i
1

. 28ab ab a
a b ab

a b
ib ia

1 1( ) ( ) ( ) ( ) ( )( ) ( )
� �

h d
g g d

d d= +
-

-
-

At this point we pause and ask if we can choose the gauge term R ia
1 ( )( ) such that iab

2 ( )( )h can bemade to vanish
identically, so that the iterations stop at the first level. From equation (27)we see that the relevant condition is the
vanishing of Y i Y iab ba

1 1( ( ) ( ))( ) ( )- . Using equation (27) compute

Y i R i 1 . 29ab a b a
i

a i
ia ia

j

j

j i

1 1
2 2

( ) ( ) ( ) ( )( ) ( )⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭� � � �åg g

g
d d

g
= +

-
- -

-

¢

Wemay choose R 1( ) so that the term in braces vanishes, thus leading to the truncation of the iterations. From
equation (28)wehave the complete first order term, andwe can proceed to construct the charge (denoting the
currents by the symbol Q

~)

Q n y i c c , 30i i
ab

ab a b
1 ( ) ( )( ) †åh= +~

which is identical to that in equation (3).
The use of the gauge termhere is very special, and guided by our understanding of thismodel. On the other

hand, we could by default set all the gauge terms R m( ) to zero, giving us the irreducible (i.e. standard gauge)
currents. These no longer truncate even for Type-1Hamiltonians. For completeness we note the second order
term for the current in this (standard) gauge
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Q n y y c c c c

y c c O y . 31

i i
j

j

j i i j

i j

j i
i j j i

i
a b

a b

a i a j
i j

2
2

2 2

,

3

( ) ( )

( )( )
( ) ( )

† †

†

� � � �

� � � �

å å

å

g g g

g
g g

= + +
-

´
-

+

+ ´
- -

+

¢

¹

¢

Thus the Type-1Hamiltonians allow for variety of expressions of the constants ofmotion. To establish their
equivalence in general is a subtle problem,where some surprising results have been found quite recently in [30].

This type of gauge choice,made explicit in our construction could be exploited further to test the possibility
that the series can take simpler forms, as compared to a brute force expansions to infinite order.We leave this
interesting question for future investigation.

4.3. Currents found from theRayleigh–Schrödinger (locator) expansion
Anatural question that arises is the relationship between the currents found above and those found from a brute
force expansion of the projection operators of the Andersonmodel in powers of the coupling constant y. The
model has a formal single particle eigenfunction expansion in the form

y u y c 0 , 32
k

k k0∣ ( ) ( ) ∣ ( )†åY ñ = ñ

with an initial condition localized say at the site 0 as u 0k k0 0( ) d= . The projector Q y y∣ ( ) ( )∣= Y ñáY can be
expanded in a series in y

Q u u c c P yP y P0 1 2 33
j k

j k j k
,

0 0
2ˆ ˆ ( ) ˆ ( ) ˆ ( ) ( )†*å= = + + + "

so that the basic expansion of thewave functions in a Rayleigh–Schrödinger (RS) series in y generates the
conserved currents.We can use the standard result in text books9 towrite a perturbative expansion for the state
at site 0with standard normalization to u 100 = as

y c u c0 0 , 34
k

k k0
0

0∣ ( ) ∣ ∣ ( )† †åY ñ = ñ + ñ
¹

with a power series expansion for u0k

u y
t

y
t t

y
t t

O y . 35k
k

k l

kl l

k l

k

k
0

0

0

2

0

0

0 0

2 00 0

0
2

3

( )( ) ( )
( ) ( )

� � � � � � � �å= -
-

+
- -

-
-

+
¹

Using this expansion, wemay generate the series equation (33), the result is explicitly stated below in
equation (38). From this series we can verify to second order, that this series differs from that in the standard
gauge equation (19) by specific gauge terms. The advantage of equation (19) is that this gauge invariance is
manifest in the construction by the nested commutators. On the other hand, equations (33)–(35), corresponds
to a particular gauge picked out by theR–Smethod, and the currents found here are some linear combinations of
the ones in equation (19) as in equation (23).

It seems to us that the series in equation (19) possesses an essential simplicity relative to the Rayleigh–
Schrödinger series equations (33)–(35). The R–S perturbation expansion simultaneously determines the energy
eigenvalue, and for this purpose very specific gauge terms are needed.On the other hand all terms in
equation (19) are generated by completely off diagonal terms, those terms that avoidmultiple visits to any site.
This leads to simpler recursion relations, as in equation (22), relative to the RS series. For this reason our
numerical work in this paper uses the series in equation (19).

4.4. Locator expansion for Type-1Hamiltonians
TheRayleigh–Schrödinger series can also be constructed for Type-1Hamiltonians using the exact eigenstates E∣ ñ

with eigenvalues E as given in equations (7) and (8). The projector E E ij
c c

E E
i j i j

i j
∣ ∣ ( )( )

†

� �
ñá = å

g g

- -
can be expanded in

y as shown in equation (33). In the limit y 0l , the roots of equation (8) tend to i� .We take the root E 0�l to

obtain Q0
~

the conserved charge corresponding to site 0 calculated using the Rayleigh–Schrödinger gauge. Other
roots yield other Qi

~
. Expanding equation (8) forE in ynear E 0�= , we get

E y y O y . 36
i

i

i
0 0

2 2
0
2

0

2

0

3( ) ( )�
� �åg g
g

= - +
-

+
¹

Since, the projector diverges in y 0l limit, we define our conserved charge as Q E EE
0

0
2

0
2 ∣ ∣( )�= ñá

~
g
- tomake it

well behaved. Q0
~

is given by

9
For example, see equation (5.1.44) Sakurai 1994ModernQuantumMechanics (London: Pearson Education).
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E

E c c

E E
. 37

j

j j j

j i j

i j i j

i j
0 0

0

0 0

0 0 0
2

0
2

, 0

( ) ( )
( )( )

( )
† † †�

�
�

� �å åg

g

g

g g
= +

- +

-
+

-
- -

~

¹ ¹

Then, replacing yE 2
0
20

2

0
2

( )� gl
g
- and then E 0�l , we have obtained Q0

~
as a combination ofQi (see equation (3))

as follows

Q Q y
Q Q

O y . 38
i

i i

i
0 0

0

0
2 2

0

0

3( ) ( )
� �å

g g
= -

+
-

+~

¹

Other Qk
~

can be obtainedwith the replacement k0 l . UnlikeQk, there is no indication of the series truncating
at anyfinite order for Qk

~
.

4.5. Convergence of the power series
The conserved charges constructed above depend on themicroscopic parameters of theHamiltonian, i.e. the
hopping and on-site energies. Aswe shall show later, the sameHamiltonian can have a localized and delocalized
phase depending on the values of these parameters. It is thus important to understand if and how the conserved
charges themselves differ in the two phases.More precisely, how do the conservation laws ‘know’whether a
particular choice ofmicroscopic parameters produces a localized or delocalized phase?

The answer has to dowith their convergence since they are expressed as power series in themicroscopic
parameters and particle operators.We thus need to state inwhat sense the power series are convergent. A
reasonable condition for convergence is a sufficiently rapid decay of the coefficients ij

mh with increasingm.

However, this is complicated by the fact that there are energy difference denominators in the coefficients ij
mh that

can cause them to blowupwhen the on-site energies at two different sites are equal. To avoid this, we restrict
ourselves to a particular type of disorder thatmay be termed ‘non-resonant’. By this wemean any ensemble of i� ,
which shows ‘level repulsion’, i.e. the probability offinding i� very close to each other is very small.

From the randommatrix theory, we know that the eigenvalues of a genericmatrix display level repulsion in
their eigenvalues of various degree, theGaussian orthogonal ensemble (GOE) [50] of real symmetricmatrices
has the least level repulsion. This condition ensures that perturbative resonances from small denominators, that
would otherwise cause individual terms in the expansions of the conserved charges to diverge, are prohibited.
This choice is similar to the one involving limited level attraction recently adopted in the context ofmany-body
localization [51].

We have verified that this distribution of onsite energies gives us localization (as indicated from a calculation
of the PR) immediately upon switching on the hopping term. Thus, this particular choice of onsite energies,
which is of great convenience from the point of view of calculations, is also not unphysical. The on-site energies

i� are drawn from the eigenvalues of a real symmetricmatrices whose elements are taken from aGaussian
randomdistributionwith fixed variance. The eigenvalues of thesematrices are assigned randomly to different
sites. Different randomassignments then constitute different realizations of disorder, which can then be
averaged over to check for convergence. The result of this procedure is shown in figure 3, where i� are drawn
from the eigenvalues of real symmetricmatrices whose elements are taken from aGaussian distribution of
varianceσ=0.1, 0.25 and 0.4. It can be seen that the mh decrease rapidly with increasing order of power seriesm

Figure 3.Plot indicating convergence of conserved charges (see equations (19) and (20)) of theAndersonmodel (18) forN=500. ∣ ∣h
represents a typicalmth coefficient ij

mh averaged over a distribution of the on-site disorder i� , see the end of section 4.5. The plot shows
the logarithmof the average as a function ofm. i� are drawn from the eigenvalues of real symmetricmatrices whose elements are
Gaussian randomvariables of variance s = 0.1, 0.25 and 0.4, andwe set yt=1.
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indicating convergence.We have also checked the convergence of the power series for i� drawn from the
eigenvalues of non-integrable t t V- ¢ - model, which also follow aGOEdistribution [33, 52].

Since ij
mh containmore than one term for eachm, we checked the convergence of a typical term,which is of

the form tm

a b a b am bm1 1 2 2( )( ) ( )� � � � � �- - ¼ -
. Recall that the mth order term in the calculation of Q0˜ involves sites with

labels between N m 1( )- - andm as can be seen from figure 2. Thus, the only values of i� involved are are
those chosen from ,N m m1[ ]( )� �- - ( 0� is at the center) such that a bi i� �¹ , i" and a b mmax i i∣ ∣- = .

As the aim of this work is to construct conserved charges in localized systems, it is legitimate to askwhether
this slightly non-standard choice of disorder distribution produces localization.We have verified this through
numerical exact diagonalization by calculating the PR.Wefind that the PR for different eigenstates is indeed
close to zero for systems of sizeN=500 as shown infigure 4, consistent with localization.We thus conclude
that ourmodel with on-site energies taken from aGOEdistribution does indeed produce a localized phase. A
similar exercise to construct the conservation laws for the abovemodel has been carried out in [53]. In that work
too, the conserved charges have been constructed as infinite operator series butwhose coefficients correspond to
the amplitudes of a particle to be on the sites of a square lattice whose sides are the physical one-dimensional
lattice. The recursion relation obtained is between conserved charges on different sites and the convergence of
the series is assumed to follow from the exponential decay of the eigenfunctions of theHamiltonian. In our
calculations, we construct the conserved charges directly in terms of themicroscopic parameters of the
Hamiltonian and our convergence criterion is not based on any assumption about the nature of the eigenstates
of theHamiltonian. In fact, as we show in the next section, the convergence of the series for the conserved
charges can be used to identify the delocalized and localized phases instead of the eigenfunctions.

5. Aubry–Andremodel

Having constructed the conserved charges for amodel with finite-range hopping and defined a condition for
convergence of the power series for them,we can further investigate themeaning of our convergence criterion.
In particular, since our goal is to identify the validity of our construction of the conservation lawswith the
presence of localization, the power series should fail to converge according to our criterion in a delocalized
phase.

We thus require a non-interactingmodel with disorder in one-dimensionwhich has a delocalized phase.
While anymodel with finite-range hopping and an on-site randompotential in one-dimension always produces
localization [1, 3], a quasi-periodic potential can produce localized and delocalized phases. Such amodel is the
Aubry–Andremodel [42] given by theHamiltonian

H h j c c c ccos 2
1

2
h.c. , 39

j
j j

j
j j 1( ) ( ) ( )† †å åbp= - ++

whereβ is an irrational number. The parameter h can be tuned to effect a transition from a localized phase (for
h 1> ) to a delocalized phase (for h 1< ) [42].We note that thismodel is usually studiedwith an additional term
that introduces a p-wave pairing gap [54], but we set it equal to zero for our analysis.

The localized phase here is one inwhich all single particle states are localized and similarly all single particle
states are delocalized in the delocalized phase. The transition between these phases happens at h=1. Since the
Hamiltonian in equation (39) is also of the form (18), we can use the expressions obtained for the ij

mh in the

Figure 4.PR of eigenstates of the Andersonmodel (18) forN=500 numbered in ascending order according to the energy levels. On-
site disorder i� is drawn from the eigenvalues of real symmetricmatrices whose elements areGaussian randomvariables of variance
s = 0.1, 0.25 and 0.4, andwe set yt=1. Blue dashed line corresponds to the typical value of PR in delocalized phase.
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previous section to construct the conserved charges. Thesewill nowdepend on the parameter h (i.e. y h2 1( )l -

in the previous section) and if the criterion for convergence postulated by us is a valid one to detect localization,
we should observe the power series to converge in the localized phase (h 1> ) and diverge in the delocalized
phase (h 1< ). This is indeed the case aswe see e.g. from figure 5, which shows that a typicalmatrix element of

mh goes to zero quite rapidly with increasingm for h 1> but diverges for h 1< . Thus, we have established that
our convergence criterion is valid for identifying the localization–delocalization transition.

6. Interactions

Wenow turn to systemswith interactions. The simplest way to introduce interactions tomodels we studied here
is through a nearest neighbor density–density term. Let us, for example, add such a term to equation (18)

H n ty c c V n n

H V H

h.c.

, 40
i

i i
i

i i
i

i i1 1

0

( )

( )

†�å å å
d

= - + +

= +

+ +

wherewe redefinedH0 as compared to equation (18).
We assume that the particles here are spineless fermions. It is tempting to try a construction of the conserved

charges starting from a zeroth orderHamiltonian that combines the on-site and interaction terms since they
commutewith each other and their eigenstates are localized at every site.However, the interaction term is
quartic in creation and annihilation operators and so the conserved charges can no longer be assumed to be
power series in the hoppingwith each termquadratic in the creation and annihilation operators. Such an
assumption leads to no solution for the coefficients since the commutators keep producing termswith
increasingly longer trails of creation and annihilation operators as one goes to higher orders in the hopping. A
more profitable exercise is to try to obtain the conserved charges as power series in the hopping but only to the
first order in the interaction.While these are not exact, they offer a reasonable approximation in the limit of
small interaction strength.Weak interactions typically should not destroy the localization present in the non-
interacting limit and thus conserved charges should continue to exist.

We know fromour previous calculation that the operator of the form Q n y c cijm ij
m m

i j0 0
†h= + å commutes

withH0. Let us nowdefine a newoperator Q Q V Q0 d= + to linear order inV and calculate the commutator

Q H Q V Q H V H

V Q H Q H O V

, ,

, , . 41
0 0

0 0
2

[ ] [ ]
([ ] [ ]) ( ) ( )

d d
d d

= + +
= + +

Wechoose Qd such that Q H Q H, , 00 0[ ] [ ]d d+ = , so thatQ andH commute toO(V).We assume the form
Q c c c crstv rstv r s t v

† †d y= å . Note this is quartic in the creation and annihilation operators since the interaction
term is aswell. Thus

Q H Q H, , 00 0[ ] [ ]d d+ =

Figure 5.Conserved charges for Aubrey–Andremodel converge for h 1> (localized phase) and diverge for h 1< (delocalized
phase). Here ∣ ∣h represents a typicalmth coefficient ij

mh in equation (20) (see the end of section 4.5),N=900 and 5 1

2
b = - . The plot

shows log ∣ ∣h as a function ofm.
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Wenow assume that rstvy can bewritten as a power series in y, i.e. A yrstv
rstvy = åa a

a. Equating the
coefficients at different orders of y, one can in principle obtainArstv

m in terms of the ij
mh for the case withV=0. In

fact, it can be seen that at a given orderm, the Arstv
m are linear combinations of the ij

mh and the Am
rstv

1- . One can also
impose constraints arising from the anti-commutation of the fermionic operators, theHermitian nature of the
conservation laws and the number of non-zero components of the ij

m( )h to severely constrain the number of non-
zero components of Arstv

m .
Let us, for example, derive Qd to thefirst order in y, i.e. we setm=1.We have

c c n c c n n c c n c c
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Since, only i i, 1
1h + and i i, 1

1h - are non-zero, the non-zero A1
rstv are given by the following equations:
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The corresponding expression for Qd to order y is
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Other approaches to construct conservation laws for interacting systems have been proposed including a
recent onewhere the interacting problem ismapped onto a non-Hermitian problemon a lattice in operator
space [53]. A convergence criterion for the resultant series based on the operator norm is then used to identify
localized and delocalized phases.

7. Conclusions and discussion

Inspired by the Type-1Hamiltonian system,we have demonstrated a scheme to obtain the conserved charges for
non-interacting disorderedmodels displaying localization in one-dimension. One of ourmotivationwas an
observation of similarities between localized and integrable systems, such as the absence of level repulsion and
the absence of thermalization.Our conserved charges are exhibited as a power series in the hopping, and using a
suitable convergence criterion, we show that the convergence (or divergence) of conserved charges tracks the
presence (or absence) of localization. An interesting issue of ‘gauge dependence’ of the conserved charges is
unearthed and explored. It is shown that a full understanding of the gauge dependence leads to considerable
simplifications of the charges in some cases. On the other hand, straightforward Rayleigh–Schrödinger
perturbation theory or equivalent schemes, commit one to a particular gauge that is often inconvenient.

This work provides a novel link between the concepts of localization and integrability. Our results hold
within the context of the 1dAndersonmodel, where all states are localized, and the Andre–Aubrymodel, where
(all) states undergo a transition tuned by a coupling constant. It is not immediately obvious how to extend these
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results to a higher dimensional Andersonmodel with amobility edge separating the two classes of states. The
Aubry–Andremodel exhibits an interesting kind of duality which allows the localized and delocalized phases to
bemapped onto each other with the roles of the hopping and onsite potential exchanged. The duality
transformation is expressed in terms of new fermonic operators given by c k cexp i2k L n n

1 ( ¯ )¯ p b= å , which are

eigenstates of themomentumoperator with eigenvalue: k kF Fmodn n1
¯= - , where Fn is the nth Fibonacci

number and L Fn= [55, 56]. In terms of these fermionic operators theHamiltonian (39) becomes

H

h h
k n c c

1
cos 2

1

2
h.c. . 42

k
k

k
k k 1( ¯) ( ) ( )

¯
¯

¯
¯
† ¯å åbp= - ++

TheHamiltonian satisfies the duality relation: H h h H h1( ) ( )= .We have shown that for the Aubrey-
AndreHamiltonianwritten in real space, one can construct set of conserved charges that converge for

h0 1< < . Because of the duality of themodel one can construct similar conserved charges in terms of ck̄ and
ck̄

†. The power series of these charges convergewhen h0 1 1< < and both sets of charges diverge at h=1.
Thus, the duality of themodel allows us to explicitly construct conservation charges in one phase given that they
exist in the other.

This can be better understood by noting that localization is a basis dependent concept.We have been using
localization (as is the standard practice) tomean localization in real space. To obtain the conserved charges for
such a localized phase, we start from aHamiltonianwhose eigenstates are perfectly localized in real space and
then add terms perturbatively in the hopping. Similarly, the delocalized phase of the Aubry–Andremodel is
localized inmomentum space and one can then obtain its conserved charges by startingwith aHamiltonian
perfectly localized inmomentum space (tight bindingmodel) and then add terms perturbatively in the on-site
potential. This is the essence of the duality outlined above. Thus, the conserved charges also carry labels
indicating the space (real ormomentum)where the system is localized.What is important though is that once
the basis inwhich the system is localized is identified and the conserved charges are constructed accordingly,
they are sensitive to the onset of delocalization in that basis and can be used to locate localization–delocalization
transitions.

The importance of the basis can be further understoodwhen one compares the behavior hard-core bosons
with that of spinless fermions in the Aubry–Andremodel [57, 58]. The duality between the localized and
delocalized phases is destroyed for hard-core bosons. As a result, the relaxation of real space local observables in
the localized phase is different from their conjugates inmomentum space in the delocalized phase. This feature is
absent for spinless fermionswhere the duality holds and as a consequence, conserved charges of the type derived
in this work exist in both phases.

While it is only possible to construct these charges to lowest order in the interaction using our procedure,
their fate upon the introduction of interactions can in principle be investigated numerically, whichwe defer to a
futurework10.
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