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t-t ′- J model in one dimension using extremely correlated Fermi-liquid theory
and time-dependent density matrix renormalization group
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We study the one-dimensional t-t ′-J model for generic couplings using two complementary theories, the
extremely correlated Fermi liquid theory and time dependent density matrix renormalization group over a broad
energy scale. The two methods provide a unique insight into the strong momentum dependence of the self-energy of
this prototypical non-Fermi liquid, described at low energies as a Tomonaga-Luttinger liquid. We also demonstrate
its intimate relationship to spin-charge separation, i.e., the splitting of Landau quasiparticles of higher dimensions
into two constituents, driven by strong quantum fluctuations inherent in one dimension. The momentum
distribution function, the spectral function, and the excitation dispersion of these two methods also compare well.
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I. INTRODUCTION

In varying dimensions the t-J model continues to attract
attention owing to its relevance in cuprates and other important
strongly interacting electronic systems. The model embodies
very strong correlations, which lie outside the regime of valid-
ity of perturbation theory, and thus pose a challenging problem.
Our main goal in this work is to obtain an understanding of the
properties in one dimension (1D), over a wide energy range.

At low energies the bosonization technique has been widely
applied to the (closely related) Hubbard model [1–5]. For
large U several nonperturbative methods have been devised
to study the t-J model for general dimensions, including the
study of finite clusters [6,7] and large-N based slave particle
mean-field theories [8]. In 1D we also have exact results using
Bethe’s ansatz [9–14] at special values of the parameters of
the model, and also for long-ranged versions [15] of the t-J
model, using techniques developed in the Haldane-Shastry
models. Photoemission experiments [16] have been carried
out to study the spectral properties of several quasi-1D metals,
relevant to the t-J model.

To study a wider energy range, including the low to
intermediate and high energy regimes, we employ and compare
the results from two complementary techniques. In 1D, the
density matrix renormalization group (DMRG) [17] provides
nearly exact results for the ground state and can also be used
for finite temperature and spectral properties. Ground state
DMRG has been used to give the phase diagram of the t-J
model over a broad range of parameters in Ref. [18]. Here
we study dynamics using the time dependent density matrix
renormalization group (tDMRG). tDMRG [17,19] has been
used to obtain virtually exact spectral functions for spin chains,
but only a few times for doped Fermi systems. One such time
was a tDMRG treatment of the t-J model, obtaining spectral
functions for the system at finite temperature [20]. In this
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work we use tDMRG only at T = 0, but we have pushed
much farther in terms of system size, accuracy, and frequency
resolution than in Ref. [20]. This accuracy is needed to resolve
the detailed features of the self-energy, which has not been
done before with tDMRG.

The other technique used is the extremely correlated Fermi
liquid (ECFL) theory [21]. This analytical theory, which can
treat a large class of large U problems, including the t-J
model, uses Schwinger’s functional differential equations for
the electron Green’s function. These equations are systemati-
cally expanded in a parameter λ ∈ [0,1], representing partial
Gutzwiller projection. The O(λ2) theory leads to a closed set
of coupled equations [21,22] for the Green’s function. This
treatment has been benchmarked in high dimensions and in 2D.
In infinite dimensions, dynamical mean field theory (DMFT)
[23] provides a solution to the Hubbard model, and ECFL has
been benchmarked recently [24,25] against exact results from
the single impurity Anderson model, and DMFT in d = ∞
[26,27]. The limiting case U = ∞ has been explored in detail
in Ref. [28]. The agreement at low energies is good enough to
yield accurate results for the low T resistivity, a highly sensitive
variable. In 2D, ECFL has been applied recently to cuprate
superconductors [29,30]. It is therefore interesting to see how
well this scheme deals with the physics of 1D. The equations
used here have the character of a skeleton graph series. We have
checked that the second order skeleton graphs for the Hubbard
model in 1D already displays characteristics of spin-charge
separation and non-Fermi liquid spectral functions, while the
nonskeleton, i.e., bare perturbation theory does not.

Understanding the extent of momentum dependence of the
Dysonian self-energy � in various dimensions is one of the
goals of the present paper. While the d = ∞ models have a
momentum independent self-energy, momentum dependence
of � is inevitable in lower dimensions. However there is a
scarcity of reliable information on its extent and location. In
most published work, the self-energy in 1D is rarely presented
[31], or even calculated, since standard solutions directly deal
with the Green’s function. In contrast we focus on unraveling
the (�k,ω) dependence of the Dysonian self-energy in 1D and
comparing with its higher dimensional counterparts.
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II. OVERVIEW

In the present paper we solve the d = 1 t-t ′-J model for
generic parameters using the same set of ECFL equations as in
higher dimensions. We calculate from the two theories the mo-
mentum distribution function, self-energy, spectral function,
and excitation dispersion over a broad energy scale.

In the low k,ω regime exhibiting non-Fermi liquid behavior,
reasonable agreement is found between the two and the exact
diagonalization (ED) data in the velocities of spinons and
holons [6], as well as the Tomonaga-Luttinger liquid (TLL)
theory in anomalous exponent [18]. Extending the O(λ2)
ECFL equations to higher orders holds the promise of a better
agreement. At higher energies, where few studies exist, the
agreement between the two theories is quite good already. A
valuable insight gained at low energies is the close relationship
between a momentum dependent ridge in the Im �(k,ω) and
the spin-charge separation.

III. MODEL AND PARAMETERS USED

The Hamiltonian of the 1D t-t ′-J model is

HtJ = −t
∑
〈ij〉

Xσ0
i X0σ

j − t ′
∑
〈〈ij〉〉

Xσ0
i X0σ

j − μ
∑

i

Xσσ
i ,

+ J
∑
〈ij〉

(
�Si.�Sj − 1

4
Xσσ

i Xσ ′σ ′
j

)
, (1)

where repeated spin indices are summed, Xσ0
i = PGC

†
iσ PG,

X0σ
i = PGCiσPG, Xσσ ′

i = PGC
†
iσCiσ ′PG with PG = �i(1 −

ni↑ni↓) as the Gutzwiller projection operator. 〈ij 〉 and 〈〈ij 〉〉
refers to summing over first and second neighbor pairs,
respectively.

For this model [21,29] we compute the results from the two
theories at density n = 0.7, second nearest neighbor hopping
t ′/t = 0,0.2 and J/t = 0.3,0.6. We avoid the special cases of
t ′ = 0 = J since this leads to a degenerate spectrum, with a
charge sector that is isomorphic to the spinless Fermi gas. The
ECFL results are shown at various T while the tDMRG results
are at T = 0 where most reliable calculations are possible.
t = 1 is the energy unit and will be neglected below.

The tDMRG methods used are very similar to those used
in Ref. [32]. We start by obtaining the ground state |0〉 using
DMRG on a rather long but finite chain, withL = 400, and then
apply ĉ0 or ĉ

†
0 to a site 0 near the center, forming |ψ(t = 0)〉. We

use a Trotter based time evolution algorithm, with fermionic
swap gates to handle next-nearest neighbor terms. We specify
a density matrix eigenvalue truncation cutoff of 3 × 10−8

during the evolution, subject to a constraint on the maximum
number of states kept of m = 3000. (Results were checked by
comparing to m = 2000.) We evolve out to a time t = 50. At
t = 50, the normalization of |ψ(t)〉 had decreased by a few
percent, a small error affecting primarily the widths of any
sharp peaks. The space and time dependent Green’s function

FIG. 1. Momentum distribution nk for ECFL (yellow) at T = 0.005 and tDMRG (blue) at T = 0 with n = 0.7, J = 0.3, 0.6, and t ′ = 0, 0.2.
In all cases these two methods agree well especially in the occupied region and both give a power law singularity at kF . The small discrepancy
in the unoccupied region corresponds to the 3kF feature in the exact solutions discussed in Ref. [9]. This subtle singularity is missed by the
O(λ2) equations.
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FIG. 2. n = 0.7, J = 0.3, t ′ = 0: Imaginary self-energy ρ�(k,ω) at low ω and k − kF from both methods. Both give a dominant (k,ω)
dependent ridge running from left to right, and a less prominent feature running from top-left to bottom-right. Both of them pass through the
k = kF ,ω = 0 region. The dominant ridge is responsible for the appearance of the twin peaks structure in the spectral functions which represents
the spin-charge separation. The peaks for k < kF ,ω < 0 are seen in the left half of the electronic spectral function in Fig. 6 panels (a) and (b),
while the peaks for k > kF ,ω > 0 are seen in the right half of the same figures. As seen in Fig. 5 panel (c), the peak in the self-energy ρ�

directly leads to a dip in the electronic spectral function ρG, provided the real part is small.

is obtained by sandwiching ĉi or ĉ
†
i between the ground state

and |ψ(t)〉 for all i. Linear prediction is used to extend the
time dependent Green’s function out to t = 100, after which
the data is windowed and Fourier transformed. This calculation
represents the most accurate and detailed study to date of the
spectral properties of the model at T = 0.

IV. MOMENTUM DISTRIBUTION FUNCTION

In 1D t-J model, nk shows a power law singularity at
kF [2,5], a signature of the TLL, unlike a jump in higher
dimensions as Fermi liquid behavior. This feature is observed
from both methods in Fig. 1 for different t ′ and J . Due to the
second order approximation, the weak 3kF singularity related
to shadow band [9,12] is not observed in ECFL results. Besides
this weak effect, nk from both methods agrees well, especially
in the occupied side, showing that ECFL describes the correct
t ′ and J dependent behaviors.

V. SELF-ENERGY

Next we present the Dysonian self-energy in terms of its
spectral function ρ� defined as

ρ�(k,ω) = − 1

π
Im �(k,ω). (2)

It is derived separately from the Green’s functions in ECFL
and tDMRG methods. In tDMRG, � can be found from G

by inverting the Dyson relation G−1 = G−1
0 − �. The ECFL

theory produces two (non-Dysonian) self energies 
,� [21],
and the resulting G can again be inverted to find the standard
Dysonian �. Both ECFL (T = 0.005) and tDMRG (T = 0)
self-energies are shown in Fig. 2 for comparison.

In Fig. 2, the two theories have a similar pattern of k

dependence, a dominant ridge running from left to right, and
a less prominent feature running from top-left to bottom-right.
They pass through the k = kF ,ω = 0 region. The ridge leads
to the appearance of twin peaks in the spectral functions
representing spin-charge separation. In the higher energy

region in Fig. 3, both theories agree well and are similar to
their higher dimensional counterparts.

A powerful feature of ECFL theory is that it allows us
to vary temperature without extra effort, at least in the low
to intermediate temperature region. In Fig. 4, ρ� at kF is
presented in several temperatures. The bump becomes higher
with increasing temperature though no obvious change in
larger scale [panel (b)]. This is expected because warming
softens the peak height of spectral function at kF , which is
ρG(kF ,0) = 1/(π2ρ�(kF ,0) in panel (c). The central peak
height ρ�(kF ,0) scales as T α with α ≈ 1.1, as opposed to
α = 2 expected for a Fermi liquid. Although T = 0.005 is the
lowest temperature in the current numerical scheme for second
order ECFL due to the finite lattice size (up to L = 2417 and
Nω = 217), we extrapolate the curve to T = 0.

The peak at kF disappears at zero T and is replaced by a
minimum at the origin corresponding to a singular peak in
the spectral function, consistent with earlier studies [2,12].
The self-energy approaches zero as |ω|γ , where γ ≈ 1.3.
This behavior is difficult to observe in our present tDMRG
implementation, because the finite time cutoff, leads to a
broadening. The peak and its k dependence is recovered on
moving away from kF , causing spin-charge separated peaks at
T = 0.

FIG. 3. n = 0.7,J = 0.3: ρ�(k,ω) vs ω at marked k/kF ’s, from
ECFL at T = 0.005 (a) and tDMRG at T = 0 (b) in a large scale.
The two sets of results are similar on a broad energy scale, and are
comparable to higher dimensional results. The low energy behavior
is discussed below.
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(a) (b)

(c)

FIG. 4. ρ�(kF ,ω) from ECFL is shown in (a) for several T at
J = 0.3,t ′ = 0. The central peak ρ�(kF ,0) scales as T 1.1, in contrast
to Fermi liquid behavior T 2. Extrapolating to T = 0 the double
minimum structure disappears, leaving behind a ∼|ω|1.3 dependence.
(b) displays the self-energy in larger scale where changing T barely
makes a difference. (c) shows the spectral function softened by
warming.

VI. SPECTRAL FUNCTION

We also compare the spectral functions from both methods.
In Fig. 5 panels (a) and (b) both show a single peak at kF and
double peaks away from kF representing spinons and holons,

respectively. Panel (c) puts together the spectral function away
from kF and different parts of its formula:

ρG(k,ω) = ρ�(k,ω)

[ω + μ − εk − Re�(k,ω)]2 + π2ρ2
�(k,ω)

.

(3)

It shows that ω + μ − εk − Re�(k,ω) is very small in the
frequency range that spans the two peaks and confirms that the
visible twin peaks result from a peak in ρ� in the middle. Thus
the location of the ridge lies in the minimum between spinon
and holon peaks in the spectral function in panels (a) and (b),
and in fact the ridge causes the twin peaks. The exponents
in panel (d) match reasonably with those from the TLL at
J = 0.3 and also at 0.6 (where ζ ′ ∼ −.49 versus ζ ′ ∼ −0.46
from Ref. [18]). We take the Luttinger parameter Kρ ≈ 0.53
at J = 0.3,t ′ = 0 from Fig. 4 in Ref. [18]. Then we calcu-
late ζ = γρ = (Kρ + K−1

ρ − 2)/8 ≈ 0.05 [1,4]. Therefore the
anomalous exponent is ζ ′ = ζ − 1

2 = −0.45. The calculation
is similar forJ = 0.6 withKρ ≈ 0.56 from Fig. 4. The tDMRG
spectral function in panel (b) is too soft to extract the anomalous
exponent, because its finite time cutoff leads to the broadening
of spectral peaks in the low ω region.

FIG. 5. Energy distribution curves (EDCs) at t ′ = 0, J = 0.3: (a) and (b) (same legends marking k/kF ) displaying the spinon and the holon
for k �= kF . Panel (c) at k = .9kF shows that the peak in (πρ�)2 (dashed black) coincides with the dip in the spectral function ρG(ω) (solid
gold), while (ω + μ − εk − Re �)2 (magenta dots) is small everywhere. This implies that the twin peaks originate in the intervening peak of
self-energy. Panel (d) also at k = .9kF shows the fitting procedure for finding the anomalous exponent ζ ′ ≡ ζ − 1

2 for the spinon [1,4], we fit
to .59(ω − ωpeak)ζ

′
(dashed blue), the best fit value is ζ ′ ∼ −0.44, close to the TLL result −0.45 [18].
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FIG. 6. J = 0.6,t ′ = 0. The spectral function of the tDMRG (T = 0) with an intrinsic time window (a) and the ECFL (T = .005) with
(b) and without (c) a comparable time window. The introduction of a time window brings the two theories to the same scale. The central peak
and the spinon peaks are of comparable height while the holon peak of ECFL is less prominent due to second order approximation.

FIG. 7. Dispersion of excitations from both ECFL at T = 0.005 (gold dots) and tDMRG at T = 0 (blue dots), and the available ED data
(red) [6]. The error bars in the tDMRG estimates are from the time window broadening. The tDMRG results are consistent with the ED results,
while the ECFL holon dispersion deviates somewhat.
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In Fig. 6 we compare the spectral function of the tDMRG
with the ECFL theory. The latter is presented both with
and without Gaussian windowing by a suitable time constant
comparable to that in our tDMRG work. As one might expect,
the scales of the two theories differ if we compare the raw
(unwindowed) figures but become very close upon windowing.

VII. DISPERSION RELATION OF SPINONS AND HOLONS

We extract the excitation dispersion relation from spectral
function in Fig. 7. According to Ref. [6], in the selected
parameter region n = 0.7, J = 0.3, 0.6 and t ′ = 0, 0.2, the
holon velocity vc is larger than the spinon velocity vs . The
error bars in the tDMRG originates from the broadening of
the lines due to finite time windowing. Within the error bar,
the DMRG agrees with the available ED data [6]. We expect
that the neglected higher order terms in the ECFL theory would
play a role in improving the holon velocity and also intensities.

VIII. CONCLUSION AND DISCUSSION

In this paper, we present the self-energy for the 1D t-t ′-J
model from both ECFL and tDMRG and specify its char-
acteristic low energy strongly momentum-dependent cross
ridge, qualitatively different from higher dimensional cases,
responsible for the spin-charge separation in spectral function.
This perspective is different from the ones discussed in earlier
studies on this model in 1D [5,6,9–14,18,20,33]. The existence
of a ridge structure in the imaginary self-energy, represents a

nontrivial exact statement about the momentum dependence
of the 1D model.

We also compare the spectral function, the excitation
dispersion, and the momentum distribution function between
both methods. They agree qualitatively in the low energy
region, both capturing clear signatures of the TLL and more
quantitatively at larger energy scales where the system behaves
like it does in higher dimensions.

In summary we have shown in this paper that the ECFL
equations capture the essential physics of 1D systems, namely
spin-charge separation and non-Fermi liquid Green’s functions
in parallel to the behavior displayed by the tDMRG solution. A
remarkable conclusion of this paper is that ECFL theory works
in the widely different regimes of infinite dimensions [24], two
dimensions [29,30], and 1D. This observation lends support to
the overall scheme in general dimensions as well.
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