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Abstract. Calculations are reported of the static and dynamic properties of an effective 
Heisenberg model of Fe with exchange interactions extending to fifth-nearest neighbours. 
Exchange parameters chosen to fit the spin wave dispersion curve at room temperature lead 
to little short-range order above T,  and to a neutron scattering function S(q, U) which is 
compatible with Lynn’s ‘constant w’ plots. The dispersion curve obtained by plotting the 
positions of peaks in ‘constant w’ plots is in excellent agreement with the observed one but 
it does not correspond to propagating spin waves above T,. Our results do not, however, 
reproduce the observed rapid drop of intensity at low frequency in ‘constant q’ scans. 

There has recently Seen considerable controversy over the nature of the paramagnetic 
state, above the Curie temperature T,, of the ferromagnetic transition metals Fe and Ni. 
Mook eta1 (1973) and Lynn (1975) have proposed, on the basis of their inelastic neutron 
scattering measurements, that propagating spin-wave modes with wavevectors q 0.2 
A-’ exist at temperatures up to 1.4 T, in Fe and even higher in Ni. To explain the 
existence of such modes Prange and Korenman (1979 and references therein) have 
postulated that a large amount of temperature-independent short-range order exists far 
above T, in these metals. Edwards (1980) has pointed out that this is incompatible with 
specific heat data on Fe. In fact to a first approximation the thermodynamic properties 
of Fe correspond to the mean-field treatment, with no short-range order above T,, of a 
spin 1 Heisenberg model. This may be understood on the basis of the work by Evenson 
et a1 (1970) and Cyrot (1970), who showed how a system of interacting local moments 
can emerge from an itinerant-electron picture. The connection between recent devel- 
opments of this viewpoint by Roth (1978), Hasegawa (1979) and Hubbard (1979) and 
a mean-field treatment of a Heisenberg model, augmented by smaller terms of an 
itinerant nature, has been stressed by Edwards (1980). Recent calculations by You et a1 
(1980) indicate that in Fe the exchange interaction extends to fourth- or fifth-nearest 
neighbours, and that the more distant neighbours interact antiferromagnetically. You 
et a1 (1980) suggest that compensation of this sort, with competing ferromagnetic and 
antiferromagnetic interactions, may lead to the giant short-range order postulated by 
Prange and Korenman (1979). 

It is surprising that there appear to be no published calculations of the dynamics of 
the paramagnetic Heisenberg model with interactions beyond nearest neighbours. In 
this Letter we report such calculations for the first time, together with calculations of the 
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equilibrium (static) properties. In particular, we consider a BCC lattice with interactions 
out to fifth-nearest neighbours as is appropriate for Fe. We show the following: 

(i) Strongly competing ferromagnetic and antiferromagnetic interactions can lead to 
giant short-range order but the paramagnetic susceptibility, like the specific heat, is very 
different from that observed in Fe. 

(ii) Exchange parameters chosen to fit the low-temperature spin-wave dispersion 
curve of Fe lead to satisfactory static properties with little short-range order and to a 
neutron scattering function S(q ,  w) compatible with Lynn's (1975) 'constant w' plots. In 
fact we use parameters appropriate to FessSilz on which alloy Lynn's detailed measure- 
ments were made. We could not use precisely the parameters of You et a1 (1980) since 
they lead to negative spin-wave energies for small q at T = 0. We cannot, however, 
explain the rapid drop of intensity at small w observed in 'constant q' plots (Lynn 1975, 
1981). 

To evaluate the paramagnetic static properties we use the spherical model with 
S = 1, which is a good approximation to the Heisenberg model except near T,. Thus 
writing the Heisenberg model in Fourier form 

H =  - 4 J ( q ) S ( q ) * S (  - (1) (1) 

C(q) (2) 

(3)  

4 
we have 

( S z ( q )  Sz( - 4 ) )  = ~ B T [ J ( O >  - J ( q )  + X-'I 
with the inverse susceptibility x-' determined by the sum rule 

iS(S + 1) = N-' x C(q) 

(SES:) = N-' Z,exp( - i q*R, )C(q ) .  

4 
where Nis  the number of atoms. The correlation between a spin at the origin and its nth 
nearest neighbour at R ,  is given by 

(4) 
9 

In figure 1 results are given for the reduced inverse susceptibility 11-l S(S + l)/3kBTc as 
a function of TIT, and for the reduced correlation function 

r (n)  = (s:si)/[is(s + 111 
at T = 1.28 T, for nth-nearest neighbours. The exchange parameters are specified in the 
caption by a, /3 and ywhich are respectively J2/J1, J3/Jl  and J5/J1 where J ,  is the exchange 
parameter for nth nearest neighbours. We set J4 = 0 for convenience since 
the difficult geometry of the fourth-nearest neighbours leads to algebraic complexity 
in our subsequent evaluation of the dynamic properties. Case I1 corresponds to a 
least-squares fit of Lynn's (1975) room temperature spin wave dispersion curve and 
case I11 is a highly compensated situation leading to r(1) = 0.82 = cos 35". The giant 
short-range order postulated by Prange and Korenman (1979) corresponds to 
r(1) = cos 36" (Edwards 1980). The observed susceptibility x of BCC Fe follows a 
Curie-Weiss law quite closely with a Curie constant only about 30% larger than the 
mean field value for the S = 1 Heisenberg model. The huge susceptibility of case I11 
is thus in sharp disagreement with experiment. Although we have only presented 
results for one set of parameters which lead to r( 1) = cos 35", any Heisenberg model 
with both strong ferromagnetic correlations out to a few atomic distances and a 
ferromagnetic ground state has a greatly enhanced susceptibility above T,. This is 
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Figure 1. The calculated reduced inverse susceptibility x-’S(S + l)/3koTC as a function 
of T/T, for: (I) the nearest-neighbour case (Y = /3 = y = 0;  (11) (Y = 1.412, /3 = 1.625. y = 
-1.152; (111) c y =  1.412, /3= - 0.512, */= - 0.060. Here (Y, and y are J d J 1 ,  J J J I  and 
J 5 / J I ,  where J ,  is the exchange interaction between nth neighbours. The parameters for 
curve I1 were obtained from a fit to Lynn’s room temperature spin wave data and curve 
111 represents a strongly compensated case with the amount of short-range order postulated 
by Prange and Korenman. The inset shows the reduced correlation functions r ( n )  for 
n = 1, 2, , , , 5 in cases I ,  I1 and I11 with horizontal scale linear in distance. 

because we found it necessary to make the coefficient of q2 in J(0) - J ( q )  very small 
to  satisfy these conditions. As a result, fluctuations at many wavevectors become large 
so that T, is considerably reduced from its mean field valueTFf. For T 9 rf the reduced 
inverse susceptibility curve always lies parallel to the mean field curve M, SO 

that x is strongly enhanced for T, < T GTFf. The susceptibility in case I1 is very close 
to that for the nearest-neighbour case I and agrees qualitatively with the observed 
x. We conclude that the Prange-Korenman picture is unlikely to apply to Fe and 
therefore does not provide a viable explanation of Lynn’s neutron data (1975). 

To calculate the neutron scattering functions S(q, U) we use the three-pole 
approximation of Lovesey and Meserve (1973) for the relaxation shape function F(q,  
U). The relation between S and F is 

where x(q) is the static wavevector-dependent susceptibility. In the three-pole 
approximation 

S(q,  U) = hm[1 - exp( - f i w ~ ~ B T ) l r l  x(q)’)F(q, ( 5 )  

(6) 
1 z6162 
n [ot(u2 - 61 - F ( 4 ,  U) = - + (U2 - 6J2 

where 

61 = (d), 
t = (n&/2) - (7) 

6162 = ((U2 - ( m y }  

and, for a given q ,  (GI?) and (u4) are the second and fourth moments of F ,  which may 
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be expressed in terms of static correlation functions. Following Lovesey and Meserve, 
we approximate the four-spin correlation functions which appear in (04) by products 
of two-spin correlation functions given by equation (4). For the spherical model this 
procedure is exact and ~ ( q )  is given by ( k B T ) - l C ( q )  with C(q) determined by equation 
(2). We have calculated F(q,  U) as a function of w,  at various temperatures in the 
range 1.28 T, < T <  m, for values of q along various symmetry axes in both sc and 
BCC lattices. Many different sets of exchange parameters extending to fourth (sc) or 
fifth (BCC) nearest neighbours were considered. In general the shape function has 
either one maximum at w = 0 or two maxima, one at a non-zero frequency. The latter 
situation implies a peak in S(q, o) at a non-zero frequency and hence a (damped) 
propagating mode. In no case did we find a propagating mode for qiq,,, < 0.4, where 
qmax corresponds to the zone boundary in the direction considered. The minimum 
value of q at which a propagating mode exists tends to decrease with increasing range 
of interaction. We have not considered the case of strong compensation because in 
this regime, which is anyway not applicable to Fe, factorisation of the four-spin 
correlation functions may be inaccurate. Of greatest interest are the results for case 
I1 considered above, with exchange parameters a, /3, y for the BCC lattice chosen to 
fit Lynn's room temperature spin wave dispersion curve for Fe&il*. In fact in the 
(110) direction, the spin wave energies depend on J 1  and J 2  only through the sum 
J1 + J z .  We chose a = J2/J1 = 1.412 in accordance with results of You et a1 (1980) and 
the values of /3 and y then follow by curve fitting. The absolute energy scale is fixed 
by choosing the nearest-neighbour exchange parameter J1 = 9.89 meV so that the 

q' 4,m 

Figure 2. The calculated scattering function S(q,  U) as a function of q in the (110) direction 
for parameters appropriate to FessSil2, case I1 of figure 1, at T =  1.28 T,. The curves 
correspond to three different values of w specified in meV. 
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observed room temperature curve lies 15% lower than the calculated dispersion curve 
at T = 0, this renormalisation being of the magnitude expected (e.g. see Lynn 1975). 
The root mean square error in the fit to the dispersion curve is less than 3 meV. The 
calculated value of T, is then 1290 K compared with the observed 970 K. To compare 
with Lynn’s data we take T = 1.28 T, and q in the (110) direction. We find that F(q ,  
w) shows peaks in the ‘constant q’ plots as a function of w for q 2  0.6 qmax, but for 
q < 0.6 qmax is monotonic. However, in ‘constant w’ plots, which is how the experi- 
mental data is recorded, the calculated S(q, w )  always shows a pronounced peak as 
a function of q,  as shown for three values of w in figure 2. It is the position of such 
peaks in the experimental data which Lynn plots as a dispersion curve and in figure 
3 we compare this with our similarly plotted theoretical curve for T = 1.28 T,. The 
experimental curve is apparently independent of temperature between T, and 1.4 T, 
and we find that, even for the largest value of w plotted, the theoretical value of q 
increases by less than 2% on raising the temperature from 1.28 T, to 1.4 T,. The 
observed region corresponds to qiq,,, < 0.5 and the dispersion curve does not cor- 
respond to propagating modes in our theory. Lynn fits his ‘constant w’ plots to a 
gaussian ‘spin wave peak‘ plus sloping background. If the background lines are taken 
to slope downwards. more steeply asymmetric curves of the type shown in figure 2 are 
obtained. Korenman and Prange’s theory, assuming giant short-range order, predicts 
a gaussian peak and the existence of propagating modes within regions of local order. 
Liu (1976) has previously applied a semi-empirical theory of the Heisen- 
berg model above T, to calculate ‘constant w’ plots similar in shape to ours. He  
compares with experimental data on Ni (Mook et a1 1973) and Fe (Lynn 1975) and 
concludes that there is no convincing indication of propagating modes. Our theory, 
leading to the same conclusion, is more firmly based and calculates the renormalisation 
of the ‘dispersion curve’ accurately (see figure 3 ) .  We conclude that a Heisenberg 
model, with exchange parameters leading to reasonable static properties, does not 
lead to spin wave peaks in ‘constant q’ plots for qiq,,, < 0.6. The conclusion is 
particularly convincing since we have shown, by comparing with numerical integration 
of the equations of motion for a one-dimensional model with long-range interactions, 
that the method of moments tends to favour propagating modes, at least when there 
is little short-range order, so factorisation of the four-spin correlation function is a 
good approximation. Thus although we understand the form of Lynn’s ‘constant w’ 
scans and the renormalisation of the dispersion curve, we are unable to explain the 
existence of peaks in his ‘constant q’ plots (Lynn 1975, 1981). Notice, however, that 
the peak arises solely from a ‘hole’ in the spectrum at low frequency, the high 
frequency part being broad, as would be expected if there is little short-range order. 
We have no explanation of this rapid drop in intensity at low frequency but argue that 
it is unlikely to be vast short-range magnetic order for reasons given above. 

We have assumed that the Heisenberg model can be roughly applied to Fe even 
though the local moments which exist above T, do not correspond to localised 
electrons. A similar theory of Ni would be dubious since local moments are unlikely 
to exist above T, in this case (Pettifor 1980). In applying the Heisenberg model it was 
essential to use fairly long-range interactions for two reasons. First, as is well known 
(Collins et a1 1969), the low-temperature spin wave dispersion curve demands it .  
Secondly, the shift in the dispersion curve from low temperature to T > T, is found 
to be considerably larger for the nearest-neighbour model than that shown in figure 
3 for interactions of longer range. Clearly our model cannot explain the observed 
sudden loss of intensity in the room-temperature spin waves which occurs at about 
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Figure 3. Experimental (broken curve) and theoretical (full curve) dispersion curves for 
FessSilz at T =  1.28 T, in the (110) direction. These were obtained by plotting the locus 
of peaks in constant w scans. The theory used parameters corresponding to case I1 in 
figure 1. The dotted curve is the experimental spin wave dispersion curve at room 
temperature, which was used to determine these exchange parameters. 

100 meV in both Fe and Ni where the modes encounter the Stoner continuum. Above 
T, the experimental evidence for a similar sudden effect, which might support the giant 
short-range order concept, seems slender. A more gradual loss of intensity under the 
peaks in ‘constant w’ plots is compatible with our results and this is unrelated to a ‘Stoner 
cut-off‘ above T,. 
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