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We address the problem of resistivity saturation observed in materials such as the A-15 compounds. To
do so, we calculate the resistivity for the Hubbard-Holstein model in infinite spatial dimensions to second
order in on-site repulsion U ≤ D and to first order in (dimensionless) electron-phonon coupling strength
λ ≤ 0.5, where D is the half bandwidth. We identify a unique mechanism to obtain two parallel quantum
conducting channels: low-energy and band-edge high-energy quasi-particles. We identify the source of the
hitherto unremarked high-energy quasiparticles as a positive slope in the frequency dependence of the real
part of the electron self-energy. In the presence of phonons, the self-energy grows linearly with the
temperature at high T, causing the resistivity to saturate. As U is increased, the saturation temperature is
pushed to higher values, offering a mechanism by which electron correlations destroy saturation.
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Introduction.—Resistivity has been observed to saturate at
high temperatures in certain materials, such as the A-15
compounds, while growing without bound in others, such as
the cuprates [1–8]. Resistivity saturation has been seen as a
signature of electron-phonon interactions [9] and weak
electron-electron interactions. Many theoretical mechanisms
have been proposed to address the problem of resistivity
saturation [1,10–17]. In this Letter, we offer a unique
mechanism: the presence of two parallel quantum conducting
channels consisting of the usual low-energy and the less
obvious high-energy quasiparticles. These emergent objects
derive from electron-phonon interactions. This is the main
idea of our work, namely, the role of the hitherto unnoticed
high-energy (i.e., band edge) quasiparticles, residing at or
beyond the edge of the bare band. The demonstration of this
idea requires only low order perturbation theory.
In particular, we evaluate the bare diagrams to leading

order in the electron-phonon coupling. It would also have
been possible to resum an infinite subset of diagrams by
doing a self-consistent version of the same approximation.
Moreover, for low energies, these are the only diagrams
which contribute (Migdal’s theorem) [18]. However, in our
work, it is in fact the high-energy quasiparticles that play a
key role, and therefore the use of Migdal’s theorem is no
longer justified. Therefore, all higher order diagrams enter
into the series on equal footing. In the case of weak
electron-phonon coupling, the approximation used here is
rigorously justified, while for the case of intermediate or
strong coupling, we consider it to be the most unbiased. It
has also been shown in recent work that self-consistent
diagrammatic approximations can lead to wrong results in
certain cases [19]. Because of the nature of our approxi-
mation, we restrict λ ≤ 0.5.
In the presence of phonons, the high-energy quasiparticles

lead to resistivity saturation. The mechanism we propose has

a unique signature in the local density of states(LDOS),
which acquires peaks at or beyond the edge of the bare
band. Therefore, it can be identified experimentally using
Angle resolved photoemission spectroscopy (ARPES)/
ScanningTunneling microscopy (STM) measurements. It
also has a distinct signature in the optical conductivity
(see the Supplemental Material, Fig. (5) [20]), and can
therefore be identified using the latter as well.
We study the Hubbard-Holstein model on the Bethe

lattice in the limit of infinite spatial dimensions. The
electrons interact through on-site repulsion U, and couple
to an Einstein phonon mode with dimensionless electron-
phonon coupling strength λ. We perform perturbation
theory to second order in U and to first order in λ. We
compute the dc resistivity over a large range of temperature.
We find that it displays resistivity saturation. In Fig. 1,
we plot the resistivity ρ measured in units of μΩ cm,
as a function of the temperature T for T ≤ 1000 K. We
computed this resistivity for three sets of parameters:
[ðU=D Þ ¼ 0.5; λ ¼ 0.25], [ðU=D Þ ¼ 0.5; λ ¼ 0.5], and
[ðU=D Þ ¼ 1; λ ¼ 0.5] where D is the half bandwidth.

FIG. 1. The dc resistivity vs temperature for the Hubbard-
Holstein model for three sets of parameters: [ðU=D Þ ¼ 0.5;
λ ¼ 0.25], [ðU=D Þ ¼ 0.5; λ ¼ 0.5], and [ðU=D Þ ¼ 1; λ ¼ 0.5],
with D estimated as 2000 K. The prolonged region of negative
curvature found in the middle set is observed in the A-15
compounds Nb3Sn and Nb3Sb [2].
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These values seem compatible with the perturbative scheme
employed. For the middle set of parameters, the calculated
resistivity happens to be in good quantitative agreement
with the resistivity observed in the A-15 compounds Nb3Sn
and Nb3Sb [2]. In particular, note the negative curvature
of the resistivity vs temperature curve for T ≳ 500 K.
For either weaker electron-phonon coupling or stronger
electron-electron interactions, the saturation temperature
increases beyond the scale that is probed in experiments.
While previous studies of transport have focused on the

conduction of low-energy quasiparticles, we identify a
parallel quantum conduction channel, consisting of high-
energy quasiparticles defined by peaks in the spectral
function, at, or beyond, the edge of the bare band that
are sharp enough to be identifiable under certain condi-
tions. In contrast to the low-energy quasiparticles, which
are scattered more strongly at higher temperatures, the
high-energy quasiparticles are pushed to higher energies
with increasing temperature, and are therefore scattered
more weakly. Denoting the resistivity of the low- and high-
energy quasiparticles by ρideal and ρsat, respectively, the
overall resistivity is given by the parallel resistor formula

1

ρ
¼ 1

ρideal
þ 1

ρsat
; ð1Þ

where ρideal (ρsat) is defined at all temperatures as the
low (high)-frequency contribution to the integral in
Eq. (5) [detailed in the Supplemental Material Eqs. (SM-1),
(SM-2) [20]].
As the temperature increases, the high-energy channel

short circuits the low-energy channel, and the resistivity
saturates. The high-energy quasiparticles are visible in the
local density of states (LDOS), which develops peaks at high
energies as the temperature is increased, while the central
peak, associated with the low-energy quasiparticles, simul-
taneously shrinks. This is a prediction of our theory which
can be tested using scanning tunneling microscopy (STM).
In Fig. 2, we plot the LDOS AðωÞ at T ¼ 1000 K for the
same parameters as used in Fig. 1. The high-energy peaks
are diminished by either decreasing λ or by increasing U.

The model and calculation.—The Hamiltonian for
our model containing disorder, interactions, and a local
Einstein mode phonon [21] is the following:

H ¼
X

k

ðεk − μÞa†kak þ ω0

X

q

b†qbq þ U
X

i

ni↑ni↓

þ gffiffiffiffiffiffi
Ns

p
X

k;q

a†kþqakðbq þ b†−qÞ þ
X

j

εjnjσ; ð2Þ

where ak is the electron destruction operator in momentum
state k, εk is the dispersion of the lattice, bq is the phonon
destruction operator in momentum state q, ω0 is the energy
of all phonon modes, U is the on-site Hubbard repulsion,
Ns is the number of sites in the lattice, and g is the electron-
phonon coupling energy. The εj are quenched random site
energies, which are treated within the Born approximation
[22], whereby the impurity averaged noninteracting elec-
tron Greens function is broadened G−1

0 → G−1
0 þ iη and

η ¼ niπDðεFÞhε2ji.
The electrons hop on the infinite-dimensional Bethe

lattice, which has the density of states for energy
ε ∈ ½−D; D &,

DðεÞ ¼ 2

πD

"
1 −

#
ε
D

$
2
%
1=2

; ð3Þ

where D is the half bandwidth. For the remainder of the
Letter, all energies will be measured in units of D ∼
2000 K [23].
Following Ref. [21] (see Supplemental Material [20]

for details), for T ≳ ω0, the electron-phonon self-energy,
computed to Oðg2Þ, is expressed as

ρΣel;ph
ðω − μelÞ ¼

πλAelðω − μelÞ
2

× T; ð4Þ

where λ, defined by g2 ≡ ½ðπDλω0Þ=4&, is a dimensionless
measure of the electron-phonon coupling strength. For any
dynamical object QðωÞ, ρQðωÞ≡ −ð1=πÞℑm ½QðωÞ&, and
the subscript “el” refers to quantities computed in the
absence of phonons (g ¼ 0), using second order perturba-
tion theory in the Hubbard U. Finally, AðωÞ is the LDOS,
obtained by integrating ρGðϵ;ωÞ over ϵ, the latter obtained
from ΣðωÞ using Dyson’s equation.
The dc conductivity can be expressed in terms of the

spectral function via the formula [24]

σ ¼ 2

πT
σIRM

Z
dωfðω − μelÞf̄ðω − μelÞIðω − μelÞ; ð5Þ

where fðωÞ≡ ½1=ðeβω þ 1Þ&, f̄ðωÞ≡ 1 − fðωÞ, and
β≡ ð1=TÞ. The spectral intensity IðωÞ is defined as

FIG. 2. The LDOS at T ¼ 1000 K for the same sets of
parameters as in Fig. 1. The peaks located beyond the edges
of the bare band are signatures of the high-energy quasiparticles,
and are a prediction of our theory which can be tested using STM.
Figures 4, 8 display the T variation of A.
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Iðω − μelÞ ¼ π2
Z

dϵ ϕðϵÞρ2Gðϵ;ω − μelÞ; ð6Þ

where σIRM ≡ ð1=ρIRMÞ, ρIRM is the Ioffe-Regel-Mott
limit of the resistivity, and the transport function is given
explicitly as ϕðϵÞ ¼ Θð1 − ϵ2Þ × ð1 − ϵ2Þð3=2Þ. We will
measure the resistivity in units of ρIRM ≈ 258 μΩ cm
[25]. In the limit that ρΣðω − μelÞ ≪ D [24,25],

Iðω − μelÞ ≈
1

2

ϕ½Rðω − μelÞ&
ρΣðω − μelÞ

; ð7Þ

where ΣðωÞ ¼ ΣelðωÞ þ Σel;phðωÞ, Rðω − μelÞ≡ ωþ Δμ−
ℜeΣðω − μelÞ, and Δμ≡ μ − μel tends to 0 as T → ∞.
Both μ and μel are determined through the particle sum rule
for the Green’s function. The approximation Eq. (7)
is excellent for the dominant frequency range at all
temperatures.
In our treatment of Eq. (5), we eschew the popular

Sommerfeld approximation [26,27] fðνÞf̄ðνÞ → TδðνÞ,
since it misleadingly throws out the contribution from
the high-energy peaks in IðνÞ. In Eq. (7), we note that the
spectral intensity I can be large at any frequency where
the imaginary self-energy is small, and the real part of the
inverse Green’s function is also small.

Results.—We choose the parameters as follows. We set
the density to n ¼ 0.7. Since our calculation does not
incorporate any Mott physics, the exact value of the density
does not change the qualitative features of the results. We
choose the phonon energy ω0 ¼ 0.015. Since the temper-
ature regime of interest is in the semiclassical regime
(T ≫ ω0), the value of ω0 has very little bearing on the
results [see Eq. (4)]. We choose the impurity scattering
η ¼ 0.0012. η is chosen to be small but finite to ensure that
the resistivity does not abruptly drop to zero above a certain
temperature. Once again, in the range of experimentally
relevant temperatures, η has little bearing on the results.
Finally, we restrict λ ≤ 0.5 and U ≤ D , so that low-order
perturbation theory can be expected to give reliable results.
U ¼ 0.—In the case of U ¼ 0, the free electrons are

scattered by phonons and impurities. In Fig. 3, we plot the
resistivity for λ ¼ 0.25 and λ ¼ 0.5. In both cases, the
resistivity displays a maximum at T ≡ Tmax, before finally
increasing again at high temperatures. As λ increases, Tmax
decreases, while the height of the peak increases. In the
T → ∞ limit, the resistivity curves collapse onto a straight
line, whose slope is fixed by the impurity scattering of the
electrons. This picture differs from the textbook discussions
[28] of a monotonically increasing phononic resistivity.
In the latter, the electrons are modeled as an electron
gas with an infinite bandwidth, while here the narrow
electronic band is a key component, leading to high-energy

FIG. 3. ρdc vs T for λ ¼ 0.25, 0.5, and U ¼ 0. As λ increases,
Tmax decreases, while the height of the peak increases. In the
T → ∞ limit, the resistivity curves collapse onto a straight line.

FIG. 4. The LDOS for λ ¼ 0.5 and U ¼ 0 at T ¼ 0.1, 0.4, 1, 3.
For T ≲ Tmax, the central peak is a signature of the low-energy
quasiparticles, while for T ≳ Tmax, the two high-energy peaks are
signatures of the high-energy quasiparticles. The high-energy
peaks get pushed to higher energies with increasing temperature.
As the scattering rate of the high-energy quasiparticles decreases,
so does the resistivity (Fig. 3).

FIG. 5. ρΣ and ℜeΣ for λ ¼ 0.5 and U ¼ 0 at T ¼ 0.04. This
relatively low temperature is already in the semiclassical regime
(T ≳ ω0), where Eqs. (8) and (9) are excellent approximations.
The positive slope of ℜeΣ is responsible for the high-energy
quasiparticles (Fig. 4).

FIG. 6. The resistivity vs temperature curve for λ ¼ 0, 0.25, 0.5,
and U ¼ 1. For λ ≠0, the peak shifts to the left and becomes
sharper with increasing λ. Note that when T is restricted to
experimentally relevant values, i.e., T ≲ 0.5D , only the left half
of the peak appears, mimicking saturation (see Fig. 1).
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quasiparticles at or beyond the edge of the bare band. The
presence of the high-energy parallel conducting channel
causes a rollover and hence a maximum in the curve. In
fact, resistivity curves similar to those in Fig. 3 have also
been found in theoretical studies of the periodic Anderson
model and the Kondo lattice model [29–35], as well as
the half-filled Hubbard model close to the Mott transition
[36–39]. In these works, the resistivity is due entirely to
electron-electron correlations, while in the present work,
electron-phonon interactions are the driving force behind
the maximum in the resistivity vs temperature curve.
In Fig. 4, we plot the LDOS for λ ¼ 0.5 at T ¼ 0.1, 0.4,

1, 3. For T ≲ Tmax, the LDOS consists of a single central
peak, and hence the conductivity is dominated by the
low-energy channel (ρ ≈ ρideal). For T ≳ Tmax, the LDOS
consists of two high-energy peaks, and hence the conduc-
tivity is dominated by the high-energy channel (ρ ≈ ρsat).
As the temperature increases past Tmax, the high-energy
quasiparticles are pushed to increasingly higher energies
and have correspondingly smaller scattering rates, causing
the resistivity to decrease.
The existence of high-energy quasiparticles requires

Rðω − μelÞ to vanish at large values of the frequency.
This in turn requires that ℜeΣðω − μelÞ have positive slope
of order unity. In Fig. 5, we plot ρΣ and ℜeΣ at T ¼ 0.04.
Using Eq. (4) (for small η),

ρΣðω − μelÞ ¼
πλDðωÞ

2
× T; ð8Þ

ℜeΣðω − μelÞ ¼ πλ × T × ω

#
1 − Θðω2 − 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

ω2

r $
:

ð9Þ

The slope of ℜeΣðω − μelÞ increases linearly with T,
pushing the high-energy quasiparticles to higher energies,
causing their scattering rate to decrease. Meanwhile, the
scattering rate of the low-energy quasiparticles grows
linearly with T.
Finite-U.—In Fig. (6), we plot the resistivity vs temper-

ature curve for λ ¼ 0, 0.25, 0.5, and U ¼ 1. For λ ¼ 0, i.e.,
the Hubbard model, the resistivity is monotonic, but has a
kink at Tkink ≈ 0.4. For TFL < T < Tkink, the resistivity is
quasilinear with negative intercept, while T > Tkink, it is

quasilinear with positive intercept. Here, TFL is the Fermi-
liquid scale, below which the resistivity is quadratic with
temperature. These features are also observed in dynamical
mean-field theory studies of the Hubbard model in both the
cases of small and large U [24,40–42]. For finite λ, the
resistivity once again displays a maximum at Tmax. Tmax
decreases and the peak becomes sharper with increasing λ.
In Fig. 7, we plot the resistivity vs temperature curve for
λ ¼ 0.5 and U ¼ 0.1, 0.5, 1.0. Tmax increases with increas-
ing U.
In Fig. 8, we plot the LDOS for λ ¼ 0.5 and U ¼ 1 at

T ¼ 0.1, 0.4, 1, 3. For T ≲ Tmax, the central peak is a
signature of the low-energy quasiparticles, while for
T ≳ Tmax, the high-energy peaks are a signature of the
high-energy quasiparticles. Comparing with Fig. 4, the
high-energy peak values are smaller. This is a consequence
of the broadening of the imaginary part of the self-energy
beyond the edges of the bare band (see Fig. 5 and
Supplemental Material, Fig. 1 [20]) as U is increased.
Consequently, the conductivity in the high-energy channel
decreases, and Tmax shifts to the right with increasing U
(see Fig. 7).
Conclusion.—We have computed the resistivity vs

temperature curve in the Hubbard-Holstein model on
the infinite dimensional Bethe lattice, with weak to
intermediate electronic repulsion U ≤ D , and electron-
phonon coupling strength λ ≤ 0.5. For λ > 0, it has a
broad maximum, consistent with materials that display
resistivity saturation. For λ ¼ 0, it has a kink rather than a
maximum.
We have identified two parallel quantum conducting

channels, consisting of low- and high-energy quasipar-
ticles. The former dominates at low temperatures, causing
the resistivity to increase, while the latter dominates at high
temperatures, causing the resistivity to saturate. The tem-
perature scale of the saturation increases with both increas-
ing U and decreasing λ.
Therefore, our theory predicts resistivity saturation in

systems with narrow conducting bands, strong electron-
phonon coupling, and weak to moderate electron-electron
interactions.

FIG. 7. The resistivity vs temperature curve for λ ¼ 0.5 and
U ¼ 0.1, 0.5, 1.0. Tmax increases with increasing U.

FIG. 8. The LDOS for λ ¼ 0.5 and U ¼ 1 at T ¼ 0.1, 0.4, 1, 3.
For T ≲ Tmax, the central peak is a signature of the low-energy
quasiparticles, while for T ≳ Tmax, the high-energy peaks are a
signature of the high-energy quasiparticles.
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It is possible that resistivity saturation can be achieved by
more than one mechanism. The mechanism which we
propose (i.e., high-energy quasiparticles) has a distinct
signature in the LDOS [see Fig. (5)], which can be observed
using ARPES/STM, as well as in the optical conductivity
(see Fig. (5) of the Supplemental Material [20]).
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SM-I. SELF-ENERGY IN FINITE-U CASE.

We consider once again U = 1. In SM-Fig. (1), we
plot ⇢⌃(! � µel) for � = .5 at T = 0.1, 0.4, 1, 3. Just
as in the case of U = 0, it consists of a peak centered
near the origin, whose height grows in magnitude linearly
with T (see Fig.(5) of the main paper). However, in the
finite-U case, the tails spill over beyond the edges of the
bare band, causing the resistivity to increase in the high-
energy channel, and Tmax to increase with increasing U .
The corresponding R(! � µel) is plotted in SM-Fig. (2).
The maximum in ⇢⌃(!�µel) causes <e ⌃(!�µel) to have
a broad region of positive slope. The resulting R(! �
µel) bends towards the frequency-axis at high-energies,
leading to the high-energy quasiparticles.

SM-Fig 1: ⇢⌃ for U = 1 and � = 0.5 at T = 0.1, 0.4, 1, 3.
Compared with the U = 0 case (see Fig.(5) of the main pa-
per), the tails spill over beyond the edges of the bare band.

SM-Fig 2: R for U = 1 and � = 0.5 at T = 0.1, 0.4, 1, 3.
As the temperature is raised, R(! � µel) bends towards the
frequency axis at high-energies, leading to the high-energy
quasiparticles.

SM-II. CONDUCTIVITY IN THE LOW AND
HIGH FREQUENCY CHANNELS.

Rewriting Eq.(1) in terms of conductivities, we have

� = �ideal + �sat, (SM-1)

where �ideal is the conductivity of the low-energy quasi-
particles and �sat is the conductivity of the high-energy
quasiparticles. We can formally define each one as the
low- and high- frequency contributions to the integral in
Eq.(5):

�ideal

�IRM
=

2

⇡T

Z

|!|<!c

d!f(! � µel)f̄(! � µel)I(! � µel),

�sat

�IRM
=

2

⇡T

Z

|!|>!c

d!f(! � µel)f̄(! � µel)I(! � µel).

(SM-2)

We choose !c = 0.95 to be slightly smaller than the
edge of the bare band to capture the entire high-energy
quasiparticle in �sat. In Figs. (3) and (4), we plot �ideal,
�sat, and � as a function of T for the cases of U = 0;
� = 0.55, and U = 1; � = 0.5, respectively. At low
temperatures, � is dominated by the low-energy quasi-
particles, while at high temperatures, it is dominated by
the high energy quasiparticles. In both cases, the result-
ing resistivity vs. temperature curve has a maximum at
approximately the crossover temperature.

SM-Fig 3: �ideal, �sat, and � as a function of T for the
case of U = 0, � = 0.5. At low temperatures, � is domi-
nated by �ideal, while at high temperatures, it is dominated
by �sat. The crossover occurs at T ⇡ Tmax, the location
of the maximum in the resulting resistivity vs. temperature
curve (plotted as the dashed brown curve (scaled by a factor
of 20)).
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SM-Fig 4: �ideal, �sat, and � as a function of T for the
case of U = 1, � = 0.5. At low temperatures, � is domi-
nated by �ideal, while at high temperatures, it is dominated
by �sat. The crossover occurs at T ⇡ Tmax, the location of the
maximum in the resulting resistivity vs. temperature curve
(plotted as the dashed brown curve).

SM-III. OPTICAL CONDUCTIVITY

The high-energy quasi-particles have a distinct signa-
ture in the temperature-dependence of the optical con-
ductivity (Eq. (SM-14)). In SM-Fig. (5), we plot the
optical conductivity for � = 0.5 and U = 1, at T =
0.1, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0. The Drude peak, which is
present at all temperatures, corresponds to zero-energy
optical transitions between the central peak (in the spec-
tral function) and itself at low temperatures, and the
high-energy peaks and themselves at high-temperatures
(see Fig.8 of MS). For T & Tmax (see Fig.6 of MS),
the optical conductivity develops a feature at high-
frequencies, which both grows and moves to the right
with increasing temperature. This corresponds to opti-
cal transitions between the high-energy peaks, which are
growing and moving further apart with increasing tem-
perature (see Fig.8 of MS).

SM-Fig 5: The optical conductivity for � = 0.5 and U = 1, at
T = 0.1, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0. For T & Tmax, it develops
a high-frequency feature, which both grows and moves to the
right with increasing temperature. This feature corresponds
to optical transitions between the high-energy quasiparticle
peaks in the spectral function. Therefore, the high-energy
quasiparticles have a distinct and observable signature in the
optical conductivity.

SM-IV. DEPENDENCE OF Tmax ON � AND U .

In this section, we explore the dependence of Tmax on
� and U . Note that in the equation for the self-energy
(Eq.(4) of the main paper), � and T appear together. In
addition, the Fermi functions in the definition of the con-
ductivity (Eq.(5) of the main paper) have explicit tem-
perature dependence (the pre-factor of 1

T does not af-
fect the value of Tmax). Therefore in the Tmax ! 1
(� ! 0) limit, we expect Tmax / 1

� . In SM-Fig. (6),
plotting Tmax vs. 1

� for U = 0.1, 0.5, 1.0 reveals that

Tmax = Tmax,s

� +Tmax,0, where Tmax,0 and Tmax,s are un-
determined fit parameters. In the � ! 0 limit, this repro-
duces the expected result. Additionally, in SM-Fig. (7),
we plot Twidth vs. 1

� for U = 0.1, 0.5, 1.0, where Twidth

is the width at half-maximum of the peak in the resis-
tivity vs. temperature curve. Once again, we find that
Twidth = Twidth,s

� + Twidth,0, where Twidth,0 and Twidth,s

are undetermined fit parameters. We summarize the val-
ues of the fit parameters for various values of U in Table
I.

SM-Fig 6: Tmax vs. 1
� for U = 0.1, 0.5, 1.0, where Tmax

is the peak location in the resistivity vs. temperature curve.
It has the form Tmax =

Tmax,s

� + Tmax,0, where Tmax,0 and
Tmax,s are undetermined fit parameters.

SM-Fig 7: Twidth vs. 1
� for U = 0.1, 0.5, 1.0, where Twidth

is the peak width at half-maximum in the resistivity vs. tem-

perature curve. It has the form Twidth =
Twidth,s

� + Twidth,0,
where Twidth,0 and Twidth,s are undetermined fit parameters.
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TABLE I: Fit Parameters

U Tmax,0 Tmax,s Twidth,0 Twidth,s

0.1 0.1 0.075 0.1 0.09

0.5 -0.29 0.435 -0.56 0.65

1 -0.3 0.6 -0.52 0.87

SM-V. DETAILS OF PERTURBATIVE
CALCULATION.

To compute G(",!, µ), the single-electron propagator,
to O(g2), we use the following procedure. We first com-
pute ⌃el(!), the electron-electron scattering in the ab-
sence of phonons. The resulting single-electron prop-
agator, Gel(",!, µel), then scatters o↵ of the phonons,
producing ⌃el,ph(!). µel is chosen to ensure the correct
number sum rule for the electrons in the absence of the
phonons. The total scattering of the electron, ⌃(!), is
given by the sum: ⌃(!) = ⌃el(!) +⌃el,ph(!). G(",!, µ)
is given in terms of ⌃(!) using the usual Dyson’s equa-
tion. µ is then chosen to ensure the correct number sum
rule for the electrons in the presence of the phonons.
Since µ � µel is O(g2), it is consistent to replace µ by
µel in Gel.

Using second order perturbation theory in U , we find
that

⇢⌃el(! � µel) = U
2

Z
d⌫1d⌫2D(⌫1)D(⌫2)D(⌫1 + ⌫2 � !)⇥

⇥
f(⌫1 � µel)f(⌫2 � µel)f̄(⌫1 + ⌫2 � ! � µel) + f $ f̄

⇤
+ ⌘,

<e⌃el(!) ⌘ U
n

2
+

Z
d⌫

⇢⌃el(⌫)

! � ⌫
,

(SM-3)

where for any dynamical object Q(!), ⇢Q(!) ⌘
� 1

⇡=m(Q(!)), f(!) ⌘ 1
e�!+1 , f̄(!) ⌘ 1 � f(!) , and

� ⌘ 1
T . We find it convenient to shift the frequency

by the chemical potential, since the latter grows linearly
with T at high-T . ⇢Gel(✏,!) is obtained using Dyson’s
equation:

⇢Gel(✏,! � µel) = ⇢⌃el(! � µel)⇥
1

(! �<e ⌃el(! � µel)� ✏)2 + ⇡2 (⇢⌃el(! � µel))
2 .

(SM-4)

The chemical potential µel is fixed using the number
sum rule,

Z
d!Ael(! � µel)f(! � µel) =

n

2
, (SM-5)

where n is the density, and the onsite (i.e. local) spectral
function

Ael(! � µel) ⌘
Z

d✏ D(✏) ⇢Gel(✏,! � µel). (SM-6)

The self-energy due to the electron phonon interaction
is given by

⇢⌃el,ph(! � µel) = g
2
X

±
Ael(! ± !0 � µel)⇥

⇥
f
⌥(! � µel ± !0) + nB(!0)

⇤
,

(SM-7)

<e⌃el,ph(!) =

Z
d⌫

⇢⌃el,ph(⌫)

! � ⌫
, (SM-8)

where f
�(!) ⌘ f(!), f

+(!) ⌘ f̄(!), and nB(!) ⌘
1

e�!�1 is the Bose distribution function. Since !0 ⌧ 1,
Ael(!±!0�µel) ⇡ Ael(!�µel). In addition, for T & !0,P

± f
⌥(!�µel ±!0) ⇡ 1 and 1+2nB(!0) ⇡ 2T

!0
. There-

fore, for T & !0, to a very good approximation,

⇢⌃el,ph(! � µel) =
⇡�Ael(! � µel)

2
⇥ T, (SM-9)

where �, defined by g
2 ⌘ ⇡D�!0

4 , is a dimensionless mea-
sure of the electron-phonon coupling strength.
Putting everything together, the spectral function for

the electron is given by

⇢G(✏,! � µel) =
⇢⌃(! � µel)

(R(! � µel)� ✏)2 + ⇡2(⇢⌃(! � µel))2
,

(SM-10)

where R(! � µel) ⌘ ! +�µ�<e ⌃(! � µel), and �µ ⌘
µ� µel tends to 0 as T ! 1,

⌃(!) = ⌃el(!) + ⌃el,ph(!), (SM-11)

and µ is determined by the condition

Z
d!f(! � µel)A(! � µel) =

n

2
, (SM-12)

where

A(! � µel) =

Z
d✏ D(✏)⇢G(✏,! � µel) (SM-13)

is the LDOS.
Finally, the optical conductivity can be calculated from

the spectral function via the formula:

�(!)

�IRM
= 2⇡

Z
d✏�(✏)

Z
d!

0 [f(!0 � µel)� f(! + !
0 � µel)]

!

⇥⇢G(✏,!
0 � µel)⇢G(✏,!

0 + ! � µel),

(SM-14)

where �(✏) = ⇥(1� ✏
2)⇥ (1� ✏

2)
3
2 is the transport func-

tion. In the ! ! 0 limit, we recover Eqs. (5) and (6) in
the MS for the dc conductivity.


