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Extremely correlated Fermi liquid theory for the U = ∞, d = ∞ Hubbard model to O(λ3)
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We present the O(λ3) results from the λ expansion in the extremely correlated Fermi-liquid theory applied to
the infinite-dimensional t-J model (with J = 0) and compare the results with the earlier O(λ2) results as well
as the results from the dynamical mean-field theory. We focus attention on the T dependence of the resistivity
ρ(T ), the Dyson self-energy, and the quasiparticle weight Z at various densities. The comparison shows that all
the methods display quadratic-in-T resistivity followed by a quasilinear-in-T resistivity characterizing a strange
metal and gives an estimate of the different scales of these variables relative to the exact results.
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I. INTRODUCTION

The t-J model (1) provides an important context for un-
derstanding strongly correlated systems. It is closely related
to the U � t Gutzwiller-Hubbard-Kanamori [1] model. It is
formally equivalent to the U = ∞ model to which we add
superexchange interactions (1). It can be obtained from a
canonical transformation on the Hubbard model for large U ,
provided we throw out certain three center terms of O(t2/U )
[2]. In previous papers [3–5] we have developed the ex-
tremely correlated Fermi liquid (ECFL) theory to overcome
the most difficult features of the model, namely the U = ∞
limit which eliminates a substantial fraction of states in the
Hilbert space corresponding to double occupation of sites.
The resulting electrons are termed as Gutzwiller projected
electrons, satisfying a noncanonical algebra (2). As a result
the Feynman diagram based perturbation theory fails here,
and this motivated the development of the ECFL theory as
described elsewhere.

We note that the importance of the physics of strong cor-
relations has motivated considerable activity in the theoretical
community. On the analytical side, the dynamical mean-field
theory (DMFT) [6–14] has matured into a reliable tool. In
this technique, a generalized single-impurity Anderson model
must be solved. For our purposes the numerical renormaliza-
tion group (NRG) of Wilson and Krishnamurthy [15,16] is
sufficient [6], providing exact numerical results for resistivity
in this infinite-dimensional case. Quantum Monte Carlo meth-
ods may also be employed for DMFT problems [17].

The ECFL theory is based on an expansion in a parameter λ

that is analogous to an expansion of magnetic system models
such as the Heisenberg model, for large spin, i.e., an expansion
of relevant equations in powers of 1/2S. The parameter λ

connects the noninteracting Fermi gas limit at λ = 0 with
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the fully interacting limit at λ = 1. In the simple case of the
atomic limit [4], it can be demonstrated to be a conjugate
variable to the fraction of the number of doubly occupied
states relative to their maximum possible value. In this way
the role of λ may be viewed as that of (continuous) removal
of doubly occupied states as we tune it from 0 to 1.

More formally, the main underlying mathematical obser-
vation [3–5] is that the algebra of the Gutzwiller projected
electrons is similar to that of the Lie algebra of spin operators,
and hence allows the introduction of such a parameter that
enables a systematic expansion in powers of λ. The theory
has been developed so far using the O(λ2) expressions for
the self-energies in the problem, and applied in a variety of
situations including d = 0, i.e., the Anderson impurity model
[18], the d = 1 t-J model [19], the d = ∞,U = ∞ Hubbard
model [20,21] and closest to experiments, the d = 2 t-J model
[22–24]. At a formal level we have also established a system-
atic method for extending the expansion to high-order terms,
but in view of the additional technical difficulties presented by
them, the effect of the higher-order terms have not yet been
tested. This work reports the first results from the third-order
equations for the ECFL, applied to the case of the d = ∞
and U = ∞ Hubbard model. The results are compared with
results from DMFT as well as with earlier second-order equa-
tions. As noted above, the DMFT single-particle self-energy,
calculated accurately in Ref. [8] for the temperature range of
interest from NRG, yields also the exact result for the resistiv-
ity in d = ∞. This remarkable result follows from the exact
vanishing of the vertex correction [7] in the limit d = ∞. The
resistivity, a low-energy property of great importance in cor-
related systems, is the focus of the current work using ECFL.
We compare our results with those from Ref. [8], treating the
latter as a benchmark.

In Sec. II we summarize the basic aspects of the ECFL
theory. We define the t-J model and give an expression for the
single-electron Greens’s function of the Gutzwiller projected
electrons, and the two self-energies involved in the construc-
tion. We summarize the various approaches to the λ expansion
method, and explain the ideas behind the shift invariance of
the equations, which are of great importance in the t-J model.
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We then summarize the second- and third-order expressions
for the self-energies and cast these in a form that is convenient
for computation.

In Sec. III we discuss the two sum rules employed to fix
the two Lagrange multipliers in the problem. While one of
them is the familiar particle number sum rule, the other arises
from the exact equations of motion of the Greens’s function,
as derived in Appendix A.

Section IV presents the calculated results from the second-
and third-order expansions. We focus attention on the T de-
pendence of the resistivity ρ(T ), the Dyson self-energy, and
the quasiparticle weight Z at various densities. We compare
these results between the successive approximations, the exact
DMFT results, and the so-called Tukey window scheme used
earlier by us.

II. BASIC THEORY

A. Extremely correlated Fermi-liquid theory formulas for G
The general formalism underlying the theory of extremely

correlated Fermi liquids (ECFL) has been discussed ex-
tensively in recent works [4,5,25–27]. Here we record the
equations relevant to the present work and point out the origin
of the main equations in earlier works in detail. We start here
with the t-J model

H = −
∑
i jσ

ti jC̃
†
iσC̃ jσ − μ

∑
iσ

C̃†
iσC̃iσ

+ 1

2

∑
i j

Ji j

(
�Si.�S j − nin j

4

)
, (1)

where ti j are the band hopping parameters whose Fourier
transform εk is the band energy, ni = ∑

iσ C̃†
iσC̃iσ is the num-

ber operator at site i, and C̃†
jσ , C̃iσ are Gutzwiller projected

fermion operators [4,5] satisfying noncanonical anticommu-
tators{

C̃iσi , C̃†
jσ j

} = δi j
(
δσiσ j − σiσ jC̃

†
iσ̄i

C̃iσ̄ j

)
, and

{
C̃iσi , C̃ jσ j

}
= 0, (2)

where σ̄ = −σ .
In ECFL theory, the Green’s function for the t-J model

is given as the product of an auxiliary (canonical) Green’s
function g and a caparison function μ̃:

G(k, iωm) = g(k, iωm) × μ̃(k, iωm), (3)

with the fermionic Matsubara frequency ωm = kBT (2m +
1)π and k(= �k ) is the wave number. These factors of G are
expressed in terms of self-energies 	 and 
 as

μ̃(k, iωm) = 1 − n

2
+ 	(k, iωm), (4)

g−1(k, iωm) = iωm + μ −
(

1 − n

2

)
εk − 
(k, iωm), (5)

where n is the number of electrons of both spin per site

n = 〈ni〉 = 2

βNs

∑
k,m

eiωm0+G(k, iωm) (6)

and Ns is the number of sites in the lattice, and we set the
lattice constant a0 → 1. Here 
 plays the role of a Dyson-

type self-energy for the canonical Green’s function g(k, iωn)
and 	 is a frequency dependent correction to μ̃(k). These
equations are valid in any dimension, and have been em-
ployed in different works in the special cases of d = ∞
[20,21,25,26,28], d = 1 [19] and d = 2 [22–24].

In this work we specialize to the d = ∞ case, which is
convenient for the purpose of studying the systematics of the λ

expansion [4,5,27]. Here we set J = 0 in Eq. (1) and deal with
what amounts to the U = ∞ Hubbard model. In this limit the
self-energies simplify [25,26] to the following k-independent
expressions:

	(k, iωn) = 	(iωn), (7)


(k, iωn) = χ (iωn) + εk	(iωn). (8)

Here we observe that the entire �k dependence of 
 is con-
tained in the band energy εk . Therefore it follows that we
can use ε as a proxy for the wave vector. We thus combine
Eqs. (4), (5), and (8) to write

g−1 = iωn + μ − μ̃(iωn)εk − χ (k, iωn). (9)

This equation, together with Eqs. (4) and (3), determines the
physical Green’s function G. Combining them we can for-
mally write G in the standard Dyson form

G(k, iωn) = 1

g−1
0 (k, iωn) − D(iωn)

, (10)

where g−1
0 (k, iωn) = iωn + μ − εk , and the manifestly k-

independent Dyson self-energy D as

D(iωn) = iωn + μ + χ (iωn) − iωn − μ

1 − n
2 + 	(iωn)

. (11)

For later use we record the positive-definite electron spectral
function ρG (k, ω) obtained by analytic continuation of G in
Eq. (10):

ρG (k, ω) = − 1

π
ImG(k, iωn)|iωn→ω+i0+ . (12)

In experimental literature the spectral function ρG (k, ω) is
denoted by A(k, ω). Following Eq. (12) we define a spectral
function obtained from g following the same procedure

ρg(k, ω) = − 1

π
Img(k, iωn)|iωn→ω+i0+ . (13)

Unlike ρG , the variable ρg is a mathematical object used in cal-
culations that finally yield the physical spectral function ρG.
We perform calculations of the generalized self-energies χ, 	

in a power series in λ with coefficients that depend on g (rather
than G), as described below. This expansion determines the
Dyson self-energy D through the rather complicated formula
Eq. (11), which is in the form of a ratio of two expressions.
This illustrates the advantage of the ECFL formalism, which
generates a highly nontrivial D, through relatively simple
self-energies χ, 	 given below.

B. The λ expansion

A basic tool in the ECFL theory is an expansion of the
fundamental, and in general intractable functional differential
equations, in powers of a parameter λ [3–5]. This parameter
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is a particular type of counter of the expansion, and is set
to unity after isolating its different powers in the expansion
of any physical quantity, such as the Greens’s function, or
a self-energy. As explained in Ref. [4] [see in particular
Eqs. (1)–(5)], the inspiration for the λ expansion originally
came from an observation in the case of the Hubbard model.
Herein the entire set of Feynman diagrams can be obtained
by a similar expansion of exact functional differential equa-
tions in powers of the interaction constant U . The strategy is
then to find corresponding functional differential equations for
the noncanonical Gutzwiller projected electrons of the t-J
model, and to invent a parameter that plays the role of U in
the Hubbard, albeit with a limited range. This program can
be carried out systematically in three independent ways, as
discussed next.

(A) Term-by-term iteration, i.e., O(λn) terms found by
taking functional derivative of terms of O(λn−1) [3–5].

It can be introduced as a parameter in the exact Schwinger-
Tomonaga functional differential equations determining the
Green’s functions [3,4], followed by a systematic expansion
of these equations [3–5,27]. The expansion itself can be done
by taking successive functional derivatives of previous terms,
as in Refs. [3–5].

(B) Generalized diagrams of O(λn) [27].
Yet another method of expansion is through a diagram-

matic expansion [27], modeled after the Feynman graph
representation of terms in the Schwinger-Tomonaga expan-
sion. It brings in a new class of diagrams, outside the category
described in Feynman diagrams, thanks to the noncanonical
nature of the fermion algebra (2). Reference [27] gives the
systematics of this procedure providing rules extending the
Feynman diagram rules. With the help of the new set of rules,
one can write down expressions for terms to an arbitrary order
n without having to list terms of a lower order n − 1. This
prior order listing is mandatory in the method (A), where we
functionally differentiate terms of O(λn−1) to generate terms
of O(λn).

(C) λ fermions (14), and their equations of motion of to
O(λn) [5].

Finally, and most directly, we can introduce λ through a
generalization of the anticommutation relations (2) by writing
the anticommutators [5]{

C̃iσi , C̃†
jσ j

} = δi j
(
δσiσ j − λσiσ jC̃

†
iσ̄i

C̃iσ̄ j

)
, (14)

where λ ∈ [0, 1]. These anticommutators, together with
{C̃iσi , C̃ jσ j } = 0 constitute a Lie algebra that defines λ

fermions, introduced in (Ref. [5], Sec. 5). At λ = 1 we recover
the Gutzwiller fermions (2), while at λ = 0 we recover canon-
ical fermions. The introduction of these λ fermions allows
us to interpolate continuously between canonical fermions
and Gutzwiller projected fermions. The anticommutators are
realized in terms of the canonical fermions using the corre-
spondence [5]

C̃†
jσ j

→ C†
jσ j

(
1 − λC†

jσ̄ j
Cjσ̄ j

)
, C̃jσ j → Cjσ j , and

C̃†
iσ̄i

C̃iσ̄ j → C†
iσ̄i

Ciσ̄ j . (15)

The equations for the Green’s functions for these λ fermions
can be similarly expanded systematically in powers of λ lead-

ing to expressions for the twin self-energies and other objects
to each order in λ.

This procedure has a close parallel in the familiar Kubo-
Anderson spin-wave expansion encountered in quantum
magnets. In the version of that expansion, due to Freeman
Dyson [29], the usual angular momentum Lie-algebra with
spin s:[

Sα
i , Sβ

j

] = iδi jε
αβγ Sγ

i , and �S j .�S j = s(s + 1) (16)

is realized using canonical bosons bi, b†
i their number opera-

tor ni = b†
i bi with the correspondence

S−
i = bi, S+

i = (2s)b†
i

(
1 − ni

2s

)
, and Sz

i = ni − s,

(17)

together with a projection operator PD that ensures that the
number of bosons per site is constrained to the finite number
ni � 2s. Proceeding in this way Dyson and Maleev [29,30]
showed that a formal series in powers of 1/2S is possible for
physically relevant variables. It is therefore clear that this ver-
sion of spin-wave expansion of quantum-magnets is parallel
to the λ expansion of Eq. (14) with the mapping λ ↔ 1/2S.
Details and references to applications in quantum magnets
using this approach are discussed in Ref. [5].

Finally, it is worth mentioning that a qualitative under-
standing of this parameter λ can be found in the simple
context of a single-site model. Here it can be seen explicitly
that varying λ in the range λ ∈ [0, 1] controls the fraction
of double occupancy between its uncorrelated value and zero
(see Ref. [4] Appendix A).

C. The shift invariance and the second chemical potential u0

At this stage we recall that the t-J model has a simple
invariance property

μ → μ − 1
2 u0, εk → εk − 1

2 u0. (18)

This property expresses the invariance of the band model,
when the center of gravity of the band is shifted by an arbitrary
constant 1

2 u0. We refer to u0 as the second chemical potential
of the problem, requiring a second constraint in addition to
the number sum rule (6). It becomes a strong constraint in the
ECFL theory, when we insist that Eq. (18) should be preserved
to each order in the λ expansion. The freedom of choosing
u0 can be utilized to impose a subsidiary constraint on g, as
discussed below.

For imposing this invariance, we will accordingly shift
both μ and εk in Eqs. (5), (8), (9), and (11). With this change,
and by incorporating the factors of λ mentioned above, we
record the basic equations (4), (5), and (9) with a factor of
λ multiplying the relevant terms as well as the constant u0

subtracted from μ as well as εk , as derived in Refs. [28,31],

μ̃(k, iωn) = 1 − λ
n

2
+ λ	(k, iωn), (19)

g−1(k) = iωn + μ − u0

2
−

(
εk − u0

2

)
μ̃(iωn) − λχ (iωn).

(20)
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From Eq. (19) it follows that when λ → 0, we get μ̃ → 1 and
hence g reduces to the noninteracting Green’s function. The
task undertaken in the next section is an expansion of this
equation together with Eq. (20) in powers of λ, giving g−1

and μ̃ to O(λ3). Since 	 and χ have a prefactor of λ, their
expansion to [O(λ)] O(λ2) generates an expansion to [O(λ2)]
O(λ3) of μ̃ and g−1. The O(λ2) and O(λ3) expressions are
taken from Refs. [27,28,31].

D. The λ expansion for the self-energies

We expand the two self-energies 	, χ [see Eqs. (4), (19),
and (20)] in powers of λ as

	 = 	[0] + λ	[1] + λ2	[2] + · · · , (21)

χ = χ[0] + λχ[1] + λ2χ[2] + · · · , (22)

which suffices to determine μ̃ and g−1 to O(λ3). We first
record the lowest order terms [27]

	[0] = 0, (23)

χ[0] = −
∑

p

g(p)eiωp0+(
εp − u0

2

)
= u0ng

4

−
∑

p

g(p)εpeiωp0+
, (24)

where
∑

p ≡ kBT
Ns

∑
�pωp

, and Ns is the number of lattice sites.
We defined ng using

ng = 2
∑

p

g(p)eiωp0+
. (25)

For brevity the factor eiωp0+
is omitted in the following, when-

ever we sum over a single g. Here ng is a formal construct and
should not be confused with the number density of physical
electrons n, the latter is given in terms of G in Eq. (6). In
practice, ng turns out to be quite close to n at low T .

Incorporating the terms in Eq. (24), we write

μ̃(k, iωn) = 1 − λ
n

2
+ λ2	[1](k, iωn) + λ3	[2](k, iωn)

+ O(λ4), (26)

g−1(k) = iωn + μ′ −
(

εk − u0

2

)
μ̃(iωn) − λ2χ[1](iωn)

− λ3χ[2](iωn) + O(λ4), (27)

where

μ′ = μ − u0

2
− λχ[0]

= μ − u0

2
− λ

(
u0ng

4
−

∑
p

g(p)εp

)
. (28)

In the sum rule (45) we require the true μ obtained from μ′.
For this purpose we use the expression

μ = μ′ + u0

2

(
1 + n

2

)
−

∑
p

g(p)εp (29)

obtained after setting λ = 1. We make an extra technical
assumption of replacing ng in Eq. (28) with n, the particle den-
sity in order to accelerate convergence. The resulting spectral
functions using n are very close to those using ng whenever
both methods converge. To completely define the scheme
(26) and (27) we need formal expressions for 	[ j](k) and
χ[ j](k) with j = 1, 2. They are given as functions of k below,
and analyzed later to show that these are independent of the
wave vector �k and functions only of the Matsubara frequency
ωk = π

β
(2k + 1).

1. Second order

The second-order λ expansion [see Eqs. (10) and (11) in
Ref. [28] ] gives us the following two self-energy parts:

	[1](k) = −
∑

pq

(εp + εq − u0)g(p)g(q)g(p + q − k),

(30)

χ[1](k) = −
∑

pq

(
εp+q−k − u0

2

)
(εp + εq − u0)g(p)g

× (q)g(p + q − k). (31)

2. Third order

The third-order λ expansion [see Eqs. (65b)– (65g) with
J = 0 in Ref. [27] ] gives us 	2 as

	[2](k) = −4
∑
pql

I (k, p, l, q)g(k + q − l )
(
εp − u0

2

)(
εl − u0

2

)
−

∑
pql

I (k, p, l, q)g(q + l − p)
(
εp − u0

2

)(
εl − u0

2

)

−
∑
pql

I (k, p, l, q)g(p + l − q)
(
εp − u0

2

)(
εq − u0

2

)
−

∑
pql

I (k, p, l, q)g(k + l − p)
(
εp − u0

2

)(
εq − u0

2

)

−
∑
pql

I (k, p, l, q)g(l + p − k)
(
εp − u0

2

)(
εl − u0

2

)
+ n

2

∑
pq

g(p)g(q)g(k + q − p)
(
εp − u0

2

)
, (32)

with I (k, p, l, q) = g(p)g(l )g(q)g(k + q − p), while χ[2](k) is given [see Eqs. (66b)– (66g) with J = 0 in Ref. [27] ] by the sum
of the following terms:
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χ[2](k) = −
∑
pql

J (k, p, l, q)g(l + q − p)
(
εl+q−p − u0

2

)
− 4

∑
pql

J (k, p, l, q)g(k + q − l )
(
εq − u0

2

)
−

∑
pql

J (k, p, l, q)g(k + l − p)
(
εq − u0

2

)
−

∑
pql

J (k, p, l, q)g(p + l − q)
(
εq − u0

2

)
−

∑
pql

J (k, p, l, q)g(k + l − p)
(
εk+l−p − u0

2

)
, (33)

with J (k, p, l, q) = (εp − u0
2 )(εl − u0

2 )g(p)g(l )g(q)g(k +
q − p).

By Fourier transforming in space, i.e., by going to real
space, it is readily seen that the dependence on �k drops off
and hence both 	 and χ are only functions of the frequency
iωn. This Fourier transformation is facilitated by observing
that most factors of g are accompanied by a corresponding
factor of (εp − u0

2 ) of the same momentum p.

E. Further simplification of formulas

The formulas (30)–(33) can then be expressed more simply
in terms of the following objects:

gloc,m(iωk ) ≡ 1

Ns

∑
�k

(εk )mg(k, iωk ), (34)

g0(iωk ) ≡ gloc,0(iωk ), (35)

g1(iωk ) ≡ gloc,1(iωk ) − u0

2
gloc,0(iωk ), (36)

and the bilinear objects

γm,n(i�k ) ≡ 1

β

∑
ωp

gm(iωp)gn(i�k − iωp), (37)

ζm,n(i�k ) ≡ 1

β

∑
ωp

gm(iωp)gn(i�k + iωp). (38)

We caution the reader that in this paper the object g0 is
defined in Eq. (35). It is different from a noninteracting
Green’s function, as sometimes denoted in the literature. We
note the symmetries γm,n(i�k ) = γn,m(i�k ) and ζm,n(i�k ) =
ζn,m(−i�k ). In the diagonal case of m = n, these definitions
and symmetries reduce to the standard identities for the “bub-
ble” diagram. The formulas for ψ and χ then become

	[1](iωk ) = −2
1

β

∑
ωq

γ1,0(iωk + iωq)g0(iωq), (39)

	[2](iωk ) = −4
1

β

∑
ωq

γ 2
1,0(iωk + iωq)g0(iωq)

− 1

β

∑
ωq

ζ 2
0,1(iωk − iωq)g0(iωq)

− 1

β

∑
ωq

ζ1,1(iωk − iωq)ζ0,0(iωk − iωq)g0(iωq)

− 1

β

∑
ωq

ζ1,0(iωk − iωq)ζ0,0(iωk − iωq)g1(iωq)

− 1

β

∑
ωq

ζ0,0(iωk − iωq)ζ0,1(iωk − iωq)g1(iωq)

+ 1

β

n

2

∑
ωq

ζ0,1(iωk − iωq)g0(iωq), (40)

and

χ[1](iωk ) = −2
1

β

∑
ωq

γ1,0(iωk + iωq)g1(iωq), (41)

χ[2](iωk ) = − 1

β

∑
ωq

ζ0,1(iωk − iωq)ζ1,1(iωk − iωq)g0(iωq)

−4
1

β

∑
ωq

γ 2
1,0(iωk + iωq)g1(iωq)

− 1

β

∑
ωq

ζ 2
1,0(iωk − iωq)g1(iωq)

− 1

β

∑
ωq

ζ1,1(iωk − iωq)ζ1,0(iωk − iωq)g0(iωq)

− 1

β

∑
ωq

ζ1,1(iωk − iωq)ζ0,0(iωk − iωq)g1(iωq).

(42)

Substituting the expressions (39)–(42) into Eqs. (26) and (27)
and setting λ = 1, we obtain the basic equations to third order
in λ. To get the corresponding second-order equations we
simply drop the third-order terms (40) and (42).

III. FIXING μ AND u0

The numerical evaluation of Eqs. (26) and (27) begins after
setting λ = 1 in these equations. We need two constraints to
determine the two parameters μ (or μ′) and u0 (see Sec. II C).
The sum rule

nG = 2
∑

p

G(p)eiωp0+ = n, (43)

which is equivalent to =2
∑

k

∫
dωρG (k, ω) f (ω) [Eq. (6)]

fixes the total electron density. The factor of two arises from
spin summation. For the second sum rule there are two alter-
natives as noted next.

(i) In our earlier work [3,4] we imposed another sum rule

ng = 2
∑

p

g(p)eiωp0+ = n. (44)
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FIG. 1. Resistivity plots for density 0.7 to T = 0.2. Here
the resistivity ρ0 is defined [28] [see Eq. (40)] as the inverse
of the characteristic conductivity σ0 = e2 h̄
(0)/D, with 
(0) =
1

a3
0
ρDOS (0)〈(vx

k )2〉εk=0 and a0 the lattice constant. The red plots are

second order with the u0 sum rule, the blue are third order with the
u0 sum rule, the green are the DMFT results (using an extrapolation
from higher density results) and the purple are second order without
the u0 sum rule using the Tukey window scheme. In this and other
subsequent plots the DMFT results were kindly provided by Profes-
sor Žitko.

At low T this sum rule can be argued for using the Luttinger-
Ward theorem [see Eq. (16) in Ref. [3] ] at low T , and in
the absence of alternatives at all T . For electrons at densities
0.7 � n <∼1, by enforcing this sum rule, the spectral functions
generate (low amplitude) tails spread over very high energies.
These tails are unexpected on physical grounds and are thus
unwanted. To curtail these tails, a Tukey-type energy window

was introduced in Ref. [28] [see Eqs. (33) and (34)]. This
window cuts off the high-energy tails, and we then renor-
malize the spectral weight inside the window to satisfy the
unitary sum rule

∫
ρg(k, ω)dω = 1 at each k [32]. This proce-

dure leads to compact spectral functions that seem physically
reasonable. They compare reasonably with exact results from
DMFT at low T and low ω, as shown in Ref. [28] and later
in Refs. [20,21]. We shall refer to spectral functions obtained
using Eq. (44), and the above energy windows, as the Tukey
window scheme results. These are displayed below in Figs. 1
and 2 at relevant densities.

(ii) In this work we study an alternate method where we
impose a different sum rule from the earlier ones. The sum
rule used is an exact relation that the spectral function must
satisfy, given the Hamiltonian of the system and the standard
commutation relations. The details of its derivation can be
found in Appendix A. In the case of infinite dimensions where
the exchange energy J = 0 we find the exact sum rule

∑
k

∫
dωρG (k, ω) f (ω)(ω + μ − εk ) = 0, (45)

where f (ω) = (1 + eβω )−1 is the Fermi function. For the
record we also note the sum rule for the model on the 2-d
square lattice with a finite J . Here the exact expression for the
exchange energy is not known, and we quote the result from a
Hartree approximation:

∑
k

∫
dωρG (k, ω) f (ω)(ω + μ − εk ) = −Jn2

2
. (46)

FIG. 2. Resistivity plots for densities 0.75, 0.8, and 0.85. The resistivity ρ0 is defined in the caption of Fig. 1. The red plots are second
order with the u0 sum rule, the blue are third order with the u0 sum rule, the green are the DMFT results and the purple are second order
without the u0 sum rule using the Tukey window scheme. The insets show the resistivity on a smaller temperature scale.
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This sum rule has been used throughout this paper for our
second and third-order code, and the results are compared
with earlier ones where the Tukey window cutoff was used.

(iii) We found in several tests that solutions found any
two of these sum rules already seems to satisfy the third one
reasonably well, but not exactly so. While using Eq. (44)
is attractive at low-T since it captures the Luttinger-Ward
Fermi surface exactly, it does create long tails extending to
high energies requiring further cutoff schemes such as the
Tukey window discussed in Ref. [28]. To explore other pos-
sibilities, we avoid using this sum rule. In the present work
only Eqs. (43) and (45) are used. See Appendix B for further
details.

IV. RESULTS AND DISCUSSION

Let us first summarize the steps followed in this calculation
of the solution of the ECFL equations to O(λ3). The O(λ2)
calculation follows by neglecting the third-order terms. The
task is to solve Eqs. (26) and (27) for g, μ̃ after setting λ = 1,
with 	[ j], χ[ j] with j = 1, 2 given by Eqs. (39) and (40).
Here g, 	, and μ̃ are calculated from Eqs. (26) and (27) in
terms of 	, χ , which are given in terms of g, 	 [Eqs. (41)
and (42)], thus forming a self-consistent nonlinear set of
equations for these functions. The external parameters needed
for this calculation are the density n and the temperature T ,
while the internal parameters are μ and u0. As discussed in
Sec. III, in the present work these internal parameters are
determined using Eqs. (43) and (45). Equations (41) and (42)
are expressible as convolutions of suitable functions and can
be efficiently evaluated using fast Fourier transforms.

The calculations in d = ∞ are performed using the popular
Bethe lattice semicircular density of states

ρDOS (ε) = 2

πD2

√
D2 − ε2, (47)

so that D is the half bandwidth usually estimated as D ≈
O(1) eV, i.e., D ≈ 104 K. The calculations presented here are
at temperatures T � 0.1D, and are the first ones using the new
u0 sum rule Eq. (45).

In Fig. 1 we display the resistivity at n = 0.7 for 0 � T �
0.2D from the second- (red) and third-order (blue) calcula-
tions using Eq. (45) and compare with the exact DMFT results
(green) at U = ∞ and d = ∞ for these parameters. We also
display the results (purple) from the second-order Tukey win-
dow scheme [i.e., using the Eq. (44) together with the Tukey

window]. These are seen to be close to the exact DMFT result
for T <∼ 0.05D, and somewhat overshoot the other estimates as
we raise T . Both the second- and third-order results obtained
using Eq. (45) (red and blue curves), show a quadratic-in-T
behavior (i.e., ρ ∝ T 2) for T <∼ 0.02D. This is similar to the
behavior of the exact DMFT curve (green). At higher T (say
T <∼ 0.05D) both curves display a quasilinear regime ρ ∝ T ,
which is sometimes referred to as the “strange-metal” regime.
At even higher T , these two curves separate out. In general,
the third-order curve (blue) is closest to the exact DMFT
result (green) over the entire T regime. The DMFT results,
however, display a bend and subsequent second quasilinear
regime with a different slope and zero-intercept relative to the
first, as the temperature increases above T >∼ 0.10D. While
present to some extent in all three ECFL calculations, it is
most pronounced in the second-order curve (red).

In Fig. 2 we compare the resistivities obtained from the
second-order scheme (red), the third-order scheme (blue),
the Tukey window scheme (purple), and the exact DMFT
results (green) at higher electron densities n, i.e., lesser hole
doping δ = 1 − n. The insets show the comparison at very
low T <∼ 0.02D and the main figures present a larger regime
0 � T � 0.08D. In going from second to third order, we see
that the resistivities are closer to the DMFT results at all den-
sities. The Tukey window scheme on the other hand, is quite
close to DMFT for n < 0.85, while for n = 0.85 it becomes
an overcorrection.

In Fig. 3 we display the second chemical potential u0 in
the second and third-order results and compare those with the
Tukey window scheme results. Results are shown only up to
n = 0.85 since upon going past this limit, the third order u0

grows beyond ≈4D rendering the convergence of the scheme
as somewhat unstable.

In Fig. 4 we display the imaginary part of the Dyson
self-energy ρ (ω) = − 1

π
Im(ω) at low temperature (T =

0.001D). In Fig. 5 these results are shown over a smaller
energy scale |ω| � 0.1D highlighting the lowest lying exci-
tations of the electrons. Our results show a Fermi-liquid-type
quadratic shape near zero frequency that lines up well with
DMFT results. Note that these plots display spectral asymme-
try between particle and hole type excitations, as previously
discussed [25,33].

In Fig. 4 we observe a pronounced peak in the DMFT self-
energy for the somewhat high-energy excitations ω ≈ −0.2D.
This peak is missing in all of our ECFL estimates. As a
consequence the DMFT electron spectral functions ρG (k, ω)

FIG. 3. The second chemical potential u0 (see Sec. II C) for densities 0.7, 0.8, and 0.85. The red plots are second order with the u0 sum
rule, the blue are third order with the u0 sum rule and the purple are second order without the u0 sum rule using the Tukey window scheme.
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FIG. 4. The imaginary part of the Dyson self-energy for densities 0.7, 0.8, and 0.85, at T = 0.001D. The red plots are second order with
the u0 sum rule, the blue are third order with the u0 sum rule, the green are the DMFT results and the purple are second order without the u0

sum rule using the Tukey window scheme.

in Eq. (12) are more compact in ω than any of the ECFL
estimates on the ω < 0 (i.e., occupied) side. The peak occurs
at fairly deep hole excitation energies ≈1000 K (taking D =
1 eV). It should be noted that this peak does not influence the
low-T resistivity, which is our primary focus here. In general,
this peak, and certain other high-energy features are influ-
enced by the details of the cutoff schemes used for solving the
ECFL equations. It seems difficult to reproduce these features
at low orders in λ. Fortunately, there are several other methods
that work at high energies, including the method of moments.
For low excitation energies, say T � 400 K, there are very
few methods available. Here the ECFL methodology is quite
successful in calculating the resistivity with the computed
spectral functions.

The quasiparticle weight Z is obtainable from the self-
energy as Z = {1 − ∂

∂ω
Re(ω)}−1. The strong correlation

physics problem usually leads to fragile quasiparticles, i.e.,
Z � 1 in the proximity of the Mott-Hubbard insulator at
δ = 0. The reduction of its magnitude (from unity for the
Fermi gas) is of especial interest, since it is one of the primary
causal agents for the unusual transport and spectral properties
in strongly correlated matter. The calculated Z is displayed
in Fig. 6 as a function of the hole density (δ = 1 − n) and
is seen to be �1 as δ � 0.25. The Z from our calculations
compares quite well to the DMFT results. As noted earlier
[25], the latter are well fit by Z ≈ δ1.39. The third-order u0

sum-rule results are closer to the DMFT results for Z than
the second-order results at all densities, and both of these

FIG. 5. Spectral function plots for densities 0.7, 0.8, and 0.85, at T = 0.001D for a smaller frequency range. The red plots are second order
with the u0 sum rule, the blue are third order with the u0 sum rule, the green are the DMFT results and the purple are second order without the
u0 sum rule using the Tukey window scheme.
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FIG. 6. Z for densities 0.7–0.85 (δ = 0.15−0.3). The red plots
are second order with the u0 sum rule, the blue are third order with
the u0 sum rule, the green are the DMFT results which fit well to
Z = δ1.39 [25], and the purple are second order without the u0 sum
rule using the Tukey window schemes.

overestimate the Z for δ � 0.25. In comparison the Tukey
window scheme results are closer to the DMFT results but
underestimate Z for δ � 0.25. As in the case of the resistivity,
the Tukey scheme becomes an overcorrection at δ = 0.15.

V. CONCLUDING REMARKS

The ECFL theory has been developed so far using the O(λ)
expressions for the self-energies in the problem and applied
in a variety of situations including d = 0, i.e., the Anderson
impurity model, the d = 1 t-J model, the d = ∞,U = ∞
Hubbard model and closest to experiments, the d = 2 t-J
model. At a formal level we have also established a systematic
method for extending the expansion to high-order terms, but
in view of the additional technical difficulties presented by
them, these have not yet been tested. This work reports the first
results from the third-order equations for the ECFL, applied
to the case of the d = ∞ and U = ∞ Hubbard model, where
independent DMFT results are available from the numerical
renormalization group. This enables us to quantify the role of
the third-order terms and to compare with the second-order
results.

The introduction of an exact sum rule for the t-J model
allows us to bypass the somewhat ad hoc Tukey window
cutoff scheme used in previous ECFL resistivity computations
[20,21,28]. In both the case of the second- and third-order
results, the resistivity curve from ECFL agrees in both shape
and scale with the one from DMFT, with a quadratic in
temperature Fermi-liquid regime, followed by a quasilin-
ear strange-metal regime. Both ECFL and DMFT predict
a monotonic decrease in the quasiparticle weight as one
approaches half filling. In both the case of resistivity and
quasiparticle weight, third-order ECFL improves upon the
second-order ECFL at all densities, in comparison to DMFT.
The Tukey scheme constitutes a further correction at lower
densities, but at higher densities it constitutes and overcor-
rection, overshooting the DMFT results. Finally, both ECFL
and DMFT find the quadratic quasiparticle minimum in the
Dyson self-energy at low frequencies, while DMFT has a
higher (negative) frequency peak, which is absent from the

low-order ECFL results. It is encouraging that in going from
second to third order in the ECFL computation we obtain
better agreement with DMFT.
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APPENDIX A: THE SECOND SUM RULE

We give a brief derivation of the sum rule valid in infinite
dimensions:∑

k

∫
dωρG (k, ω) f (ω)(ω + μ − εk ) = 0. (A1)

We start with the Hamiltonian (energy minus μN) written
in terms of the Hubbard operators [3,4],

H = −
∑
i, j,σ

ti jX
σ0
i X 0σ

j − μ
∑
i,σ

X σσ
i

+ 1

2

∑
i, j

Ji j

(
�Si · �S j − 1

4
nin j

)
. (A2)

We rewrite this in the form

= −
∑
i, j,σ

ti jX
σ0
i X 0σ

j − μ
∑
i,σ

X σσ
i + Vex, (A3)

where the exchange energy is

Vex = −1

4

∑
i jσσ ′

σσ ′Ji jX
σσ ′
i X σ̄ σ̄ ′

j

= 1

4

∑
i j,σ

Ji j
(
X σ σ̄

i X σ̄ σ
j − X σσ

i X σ̄ σ̄
j

)
, (A4)

and define the electron Green’s function

Gσiσ f (iτi, f τ f ) = − 1

ZG
Tr e−βH Tτ

(
X 0σi

i (τi )X
σ f 0
f (τ f )

)
, (A5)

where ZG = Tr e−βH . Taking the time derivative with respect
to τi and then setting τ f = τi + 0+, σi = σ f = σ , and the sites
i = f we get

∂τiGσσ (i, i+) = μ
〈
X σσ

i

〉 + ∑
j

ti j
〈
X σ0

i X 0σ
j

〉
+ 1

2

∑
jσ ′

Ji jσσ ′〈X σσ ′
i X σ̄ σ̄ ′

j

〉
, (A6)

where we dropped a term containing δ(τi − τ f ) (since we
are considering the limit τ f = τi + 0+). Summing over σ ,
denoting τ = τi − τ f , and summing over site index i (replaced
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by a �k sum), we get

2∂τ

∑
�k

G(�k, τ )|τ→0− = μN − 〈T 〉 − 2〈Vex〉. (A7)

It is convenient to introduce the general formula for the
Greens’s function in terms of the spectral function in the time
domain

G(�k, τ ) =
∫

dνρG (�k, ν)e−ντ [ f (ν)�(−τ ) − f̄ (ν)�(τ )], (A8)

where f is the Fermi function and f̄ = 1 − f , and �(τ ) is
the Heaviside theta function. Substituting into Eq. (A7) and
transposing terms we get

−2
∑

�k

∫
dννρG (�k, ν) − μN + 〈T 〉 = −2〈Vex〉. (A9)

Using 2
∑

�k
∫

dνρG (�k, ν) = N and 2
∑

�k
∫

dνεkρG (�k, ν) =
〈T 〉, we get∑

k

∫
dωρG (k, ω) f (ω)(ω + μ − εk ) = 〈Vex〉. (A10)

In d = ∞ we set J = 0 and hence Vex vanishes and we get the
sum rule (A1).

In lower dimensions we are obliged to use some suitable
approximation to estimate 〈Vex〉. In the physically important
case relevant to cuprates of d = 2 on a square lattice (with
four neighbors), we may use a Hartree-type approximation

〈Vex〉 = −1

4

∑
i jσσ ′

σσ ′Ji j
〈
X σσ ′

i X σ̄ σ̄ ′
j

〉 ∼ −1

4

∑
i jσ

Ji j
〈
X σσ

i

〉〈
X σ̄ σ̄

j

〉
= −n2

8
NsZcJ, (A11)

where J is the nearest-neighbor exchange energy and Zc is the
number of nearest neighbors in the lattice.

APPENDIX B: PROGRAM NOTES

Our program at both second and third order uses a
rootfinder with two equations and two variables to solve for
μ′and u0. We use Eqs. (45) and (43) as mentioned in the text.
We note that the third-order program is significantly more
stable with this choice of sum rules.

It is generally true that, whichever two sum rules are cho-
sen, the third will be approximately satisfied. Since the nG rule
and new u0 sum rule are used, nG is exactly equal to n, while
ng is only approximately equal to n. As mentioned previously,
the ng value generally ends up 10% to 15% higher than n.
When used in Eq. (28), the different value of ng can cause
noise under iteration, resulting in a failure to converge. This
effect is particularly pronounced for the O(λ3) program. So
we approximate ng with n in our chemical potential [Eq. (29)],
which gives very similar results in all well-behaved cases we
compared. It should be noted that multiplying n by a constant
to bring it closer to ng also causes failure to converge at third
order; for best results the n approximation should be used.

Here we would also like to outline the parameters under
which our programs are well behaved. The O(λ2) program
converges with relative ease for a wide range of temperatures
and densities. We tested densities around 0.5–0.9 and temper-
atures from 0.001 to 0.2 with good results. The O(λ2) program
also functions well with the ng sum rule substituted for the nG

sum rule.
The third-order program is generally more unstable than

second order. It converges comfortably for densities 0.7–
0.85 over our full temperature range, 0.001–0.02. Beyond
those densities the program rapidly becomes more difficult
to run. For lower densities it is possible to push the pro-
gram to converge a little below 0.6. For higher densities in
particular the third-order program consistently has signifi-
cant difficultly converging, although it does seem possible to
stretch it slightly higher (to 0.87 or so) with a careful crawl
from lower densities. We recommend this technique not be
extended beyond optimal density (0.85).

[1] M. C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963); J. Hubbard,
Proc. R. Soc. London A 276, 238 (1963); J. Kanamori, Prog.
Theor. Phys. 30, 275 (1963).

[2] A. B. Harris and R. V. Lange, Phys. Rev. 157, 295 (1967).
[3] B. S. Shastry, Phys. Rev. Lett. 107, 056403 (2011).
[4] B. S. Shastry, Phys. Rev. B 87, 125124 (2013).
[5] B. S. Shastry, Ann. Phys. (NY) 343, 164 (2014).
[6] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.

Mod. Phys. 68, 13 (1996).
[7] A. Khurana, Phys. Rev. Lett. 64, 1990 (1990).
[8] X. Deng, J. Mravlje, R. Žitko, M. Ferrero, G. Kotliar, and A.

Georges, Phys. Rev. Lett. 110, 086401 (2013).
[9] W. Xu, K. Haule, and G. Kotliar, Phys. Rev. Lett. 111, 036401

(2013).
[10] W. Wu, X. Wang, and A. M. S. Tremblay, Proc. Natl. Acad. Sci.

USA 119, e2115819119 (2022).
[11] E. W. Huang et al., Science 366, 987 (2019).
[12] K. Held, Adv. Phys. 56, 829 (2007).
[13] W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).

[14] A. Ferretti, A. Ruini, E. Molinari, and M. J. Caldas, Phys. Rev.
Lett. 90, 086401 (2003).

[15] K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).
[16] H. R. Krishna-murthy, J. W. Wilkins, and K. G. Wilson, Phys.

Rev. B 21, 1003 (1980).
[17] N. Blümer, Phys. Rev. B 76, 205120 (2007); E. Gull, A. J.

Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer, and P.
Werner, Rev. Mod. Phys. 83, 349 (2011).

[18] R. Žitko, H. R. Krishnamurthy, and B. S. Shastry, Phys. Rev. B
98, 161121(R) (2018); B. S. Shastry, E. Perepelitsky, and A. C.
Hewson, ibid. 88, 205108 (2013).

[19] P. Mai, S. R. White, and B. S. Shastry, Phys. Rev. B 98, 035108
(2018).

[20] W. Ding, R. Žitko, and B. S. Shastry, Phys. Rev. B 96, 115153
(2017).

[21] W. Ding, R. Žitko, P. Mai, E. Perepelitsky, and B. S. Shastry,
Phys. Rev. B 96, 054114 (2017).

[22] B. S. Shastry and P. Mai, Phys. Rev. B 101, 115121
(2020).

035108-10

https://doi.org/10.1103/PhysRevLett.10.159
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1143/PTP.30.275
https://doi.org/10.1103/PhysRev.157.295
https://doi.org/10.1103/PhysRevLett.107.056403
https://doi.org/10.1103/PhysRevB.87.125124
https://doi.org/10.1016/j.aop.2014.02.005
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/PhysRevLett.64.1990
https://doi.org/10.1103/PhysRevLett.110.086401
https://doi.org/10.1103/PhysRevLett.111.036401
https://doi.org/10.1073/pnas.2115819119
https://doi.org/10.1126/science.aau7063
https://doi.org/10.1080/00018730701619647
https://doi.org/10.1103/PhysRevLett.62.324
https://doi.org/10.1103/PhysRevLett.90.086401
https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1103/PhysRevB.21.1003
https://doi.org/10.1103/PhysRevB.76.205120
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/PhysRevB.98.161121
https://doi.org/10.1103/PhysRevB.88.205108
https://doi.org/10.1103/PhysRevB.98.035108
https://doi.org/10.1103/PhysRevB.96.115153
https://doi.org/10.1103/PhysRevB.96.054114
https://doi.org/10.1103/PhysRevB.101.115121


EXTREMELY CORRELATED FERMI LIQUID THEORY FOR … PHYSICAL REVIEW B 106, 035108 (2022)

[23] P. Mai and B. S. Shastry, Phys. Rev. B 98, 205106 (2018).
[24] B. S. Shastry and P. Mai, New J. Phys. 20, 013027 (2018).
[25] R. Žitko, D. Hansen, E. Perepelitsky, J. Mravlje, A. Georges,

and B. S. Shastry, Phys. Rev. B 88, 235132 (2013).
[26] E. Perepelitsky and B. S. Shastry, Ann. Phys. (NY) 338, 283

(2013).
[27] E. Perepelitsky and B. S. Shastry, Ann. Phys. (NY) 357, 1

(2015).
[28] B. S. Shastry and E. Perepelitsky, Phys. Rev. B 94, 045138

(2016).

[29] F. J. Dyson, Phys. Rev. 102, 1217 (1956).
[30] S. V. Maleev, J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 1010

(1957) [Sov. Phys. JETP 6, 776 (1958)].
[31] These follow from Eqs. (7)–(9) of Ref. [28], where we replaced

aG by 1 − λn/2 using the number sum rule (43) for the physical
particles.

[32] This sum rule is a consequence of the 1/ω falloff of g [see
Eq. (5), and limω→∞ 
(iω) → 0].

[33] B. S. Shastry, Phys. Rev. Lett. 109, 067004 (2012).
[34] J. Town et al., Comput. Sci. Eng. 16, 62 (2014).

035108-11

https://doi.org/10.1103/PhysRevB.98.205106
https://doi.org/10.1088/1367-2630/aa9b74
https://doi.org/10.1103/PhysRevB.88.235132
https://doi.org/10.1016/j.aop.2013.09.010
https://doi.org/10.1016/j.aop.2015.03.010
https://doi.org/10.1103/PhysRevB.94.045138
https://doi.org/10.1103/PhysRev.102.1217
https://doi.org/10.1103/PhysRevLett.109.067004
https://doi.org/10.1109/MCSE.2014.80

