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Abstract. The method of moments is used to investigate the spin dynamics of paramagnetic 
EuO and EuS. The theory predicts correctly those wavevectors for which a ‘spin wave’ peak 
appears in the spectrum. Furthermore the calculated position of this peak, when one occurs, 
agrees well with experiment. This suggests that earlier work, in which the same method was 
applied to an effective Heisenberg model for Fe, was correct in predicting that this model 
has no ‘spin wave’ peaks in the wavevector range covered experimentally. 

1. Introduction 

There has been a great deal of interest in the paramagnetic state of ferromagnetic 
materials, particularly the transition metals, Ni and Fe. A ‘spin wave’ peak in the neutron 
scattering spectrum of Fe (Lynn 1975,1981) and Ni (Mook et a1 1973, Lynn and Mook 
1981) has been interpreted as evidence for considerable short-range magnetic order 
(SRMO) above the transition temperature T,, and many consequences of this assumption 
of large SRMO have been worked out by Korenman etal(l977) and Prange and Korenman 
(1979). However, it has been argued (Edwards 1980, Shastry et a1 1981, the latter 
referred to as SEY), that the observed specific heat and susceptibility of Fe are incom- 
patible with large SRMO. Furthermore, as has been remarked by Als-Nielsen (1976), the 
correlation length of Fe in the critical region close to T, is very similar to that of the 
insulators EuO, EuS whose interactions are known and which do not have vast SRMO 
above T,. Also the main featuresof the ‘constant-w’ plots in Lynn (1975) can be explained 
(SEY) by an effective Heisenberg model for Fe with little SRMO. However, this theory 
predicts no peaks in ‘constant-q’ scans in contrast to experiment. It is clearly, therefore, 
of interest to establish whether this discrepancy is due to the approximations made by 
SEY in studying Heisenberg model dynamics, or whether some other explanation must 
be found. 

In order to answer this question we have applied precisely the same approximations 
to EuO and EuS, which are definitely good Heisenberg systems and for which the 
interactions are accurately known (Bohn et a1 1980, Mook 1981). Recently neutron 
scattering experiments (Bohn et all981, Mook 1981) have been carried out which find 
a peak in constant-q scans above T, but only for q close to qmax, the zone-boundary 
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wavevector in the chosen direction, whereas in Fe a peak was observed down to O.2qm,, 
(Lynn 1981). Furthermore, the peaks observed in EuO (Mook 1981) are less sharp than 
those in Fe. (Spectra have not yet been published for EuS, only spin wave energies.) We 
find that the theory predicts correctly those wavevectors where a ‘spin wave’ peak occurs 
in EuO and EuS and also gives an accurate value of the position of this peak. When such 
a peak is present, the shape of the spectrum is a little inaccurate, in particular the theory 
tends to underestimate the height of the peak. None the less, the main features of the 
experimental results are well reproduced by the theory. This gives us confidence that 
the principal conclusion of SEY is correct; namely that there are no ‘spin wave’ peaks 
in the experimental range of q ,  in an effective Heisenberg model of Fe with reasonable 
interaction parameters. The discrepancy between theory and Lynn’s constant-q plots, 
therefore, remains. 

In 0 2 the method of calculation is described and our results are presented in 0 3 along 
with experimental data. Section 4 discusses the significance of the results, while technical 
details of the computations are relegated to an Appendix. 

2. Method 

The Heisenberg Hamiltonian for EuO and EuS can be written as 

H = - J , S , .  SI (1) 
(11) 

where S, is an S = $operator on site i of an FCC lattice, each distinct pair in equation (1) 
is counted once and the J ,  are exchange interactions. In table 1 we give the experimental 
values of the nearest neighbour (NN) and next nearest neighbour (NNN) interactions, 
denoted by J 1  and J2 respectively. For EuS they were taken from Bohn et af  (1980) who 
actually included up to the fifth neighbour couplings in their fit to the low-temperature 
spin wave data. However, the third to fifth neighbour interactions were found to be very 
small so we have set them to zero for convenience. 

Table 1. J1 and J2 are the first- and second-neighbour interactions used in these calculations. 
For EuO they are taken from Mook (1981) and for EuS they are the values given by Bohn 
et a1 (1980, 1981). We have neglected the small third to fifth neighbour couplings bound by 
Bohn er al. T,(expt) is the experimental value of T, given by Mook and Bohn et a1 while 
T,(theory) is our calculated value using the spherical approximation described in the text. 
TyF is the mean field prediction for T,. All the data are in K.  

J I  J 2  T,(expt) T,(theory) TpF 

EuO 1.25 0.25 69.8 66.5 86.6 
EuS 0.442 -0.20 16.6 13.8 21.5 

Static properties are evaluated by the spherical approximation in which 

Tis  the temperature, kB is Boltzmann’s constant, Jq is the Fourier transform of Jil and 
x(q)  is the static wavevector-dependent susceptibility. From now on we set kB, and also 
h ,  equal to unity, so energies and frequencies will be in units of K. x[ =x(q = O)] is 
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determined by the sum rule 
1 
N q  
-E C(q) = iS(S + 1). (3) 

We consider only the paramagnetic phase where correlations are isotropic, i.e. 
(S@(q)S@( -4)) = &&(q). In equation (2) the classical fluctuation-dissipation theorem 
has been used. This is correct if w 4 T where w is a typical fluctuation frequency. It is 
hence exact at q = 0 for any T and spin S ,  since S(q = 0) is a constant of the motion, and 
also for S = 01 at any T.  It is a very good approximation for all q if S = 5 and T 2 T,, the 
transition temperature, which is the case discussed here. Even for S = 1, which is 
appropriate for Fe, it represents a fairly good approximation above T,. We note also 
that the main discrepancy between the theory of SEY and Lynn’s (1975, 1981) 
constant-q plots is a large drop in measured intensity at small w,  where the condition 
w 4 Tis well satisfied. 

At T, one has x-’ = 0 so the transition occurs when 

Evaluating the q integral numerically by the methods discussed in the Appendix we 
obtain the values of T, in table 1. The spherical approximation underestimates T, 
somewhat whereas mean field theory, according to which 

T,MF = JS(S + l)J,=o, ( 5 )  
gives quite a substantial overestimate. 

As q + 0, JO - Jq = 2(J1  + J2)(qa”)’where a” is the nearest-neighbour distance of 
the FCC lattice. If a is the conventionally defined lattice parameter (e.g. Kittell976) then 
a” = a/d/2.  Equation (2) therefore has the Ornstein-Zernicke form C(q) cc (q2 + 
E2)-’ at long wavelengths, where the correlation length, 5, is given by 

Results for c/a” at selected temperatures are presented in table 2 for EuO and table 3 
for EuS. Consider next the real-space correlation function (Sisi) where n = 1 , 2  . , , , 
denotes first, second . . . neighbours. With perfect spin alignment this would equal 
S ( S  + 1)/3 so we define a normalised correlation function r,, by 

which has a maximum value of unity. Results for rl are also shown in tables 2 and 3. 

S(q, w)  where 
The neutron scattering cross section is proportional to the dynamical structure factor 

S(q, w )  = dt elwr(Sz(q, r)SL( -4, 0)). 

It is much more difficult to obtain reliable time-dependent correlation functions than 
equal-time averages such as equation (2). Amongst the various approximation schemes 
the three-pole approximation (e.g. Lovesey and Meserve 1973, Lovesey 1974) seems to 
us to have been the most successful, so we have used it for these calculations as well as 
for the earlier work on Fe(SEY). One relates S(q,  w )  to the relaxation shape function 
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Table 2. (EuO) rl is the reducednearest-neighbour correlation function for EuO, normalised 
to unity for perfect spin alignment, at different values of T/T,  according to the spherical 
approximation. Interactions used in the calculations are given in table 1. E is the magnetic 
correlation length and aNN is the distance between nearest-neighbour magnetic atoms. q+ is 
the wavevector beyond which a 'spin wave' peak in the shape function F(q,  U )  is observed 
as a function of w for fixed q. The results shown are for q in the (1, 1, 1) direction and are 
presented as a fraction of qmar, the zone-boundary wavevector in this direction. The experi- 
mental results are from Mook (1981). e w  is the energy of the 'spin wave' peak in K and 
results are presented for 9 = qmar in the (1, 1, 1) direction. The agreement between theory 
and experiment is most satisfactory. The experimental values of usw are the maxima of 
Mook's fits to his data, the full curves in figure 2 of Mook (1981). 

Theory Expt Theory Expt 

Between 

Between 

Between 

1.0 0.239 3: 0.68 0.5 and 1.0 32.5 32 

1.27 0.136 1.32 0.76 0.5 and 1.0 25.0 25 

2.0 0.066 0.55 0.82 0.5 and 1.0 20.0 23 

Table 3. (EuS) Same as for table 2 except that data refer to EuS, the wavevectors are in the 
(1, 0,O) direction, and the experimental results are from Bohn et a1 (1981). 

TIT, ri 8 a N N  q + / q m a x  (1,030) usw (1,0,0) 
4 = q m a x  9 = 0 . 8 q m a x  

Theory Expt Theory Expt Theory Expt 

Between 

Between 
1.0 0.317 2 0.63 0.6 and 0.8 15.5 15 13.5 11.5 

1.5 0.157 0.86 0.68 0.6and0.8 11.5 12 10.0 8.5 

F(q,  o) in the standard way 

and F(q,  o) is then approximated by 

(d), and (04), are the second and fourth frequency moments of Fwhich can be expressed 
in terms of static correlation functions (Marshall and Lovesey 1971). In particular 
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(04), is given in terms of four-spin correlation functions, which, following Lovesey and 
Meserve (1973), we approximate by products of two-spin correlation functions given by 
equation (2). We find that 

The method of evaluating the double wavevector sums in equation (13) is summarised 
in the Appendix. The shape function F(q,  o) in equation (10) has either one peak, at 
o = 0, if & > 2 4  or three peaks, at o = 0 and o = +osw7 if < 2&. We shall call the 
maximum at o = wsw (ew is a rather complicated function of the 6s) the ‘spin wave’ 
peak. In the next section it will be seen that such a peak can appear even when there is 
little SRMO (they are of course then rather broad and not very high) so the terminology 
‘spin wave’ may be somewhat inappropriate. 

3. Results and comparison with experiment 

First of all we describe the available experimental data. For EuO Mook (1981) presents 
spectra for the relaxation function R(q ,  w )  = x(q)F(q, w )  at T/T, = 1.0, 1.27 and 2.0. 
At each of these temperatures ‘spin wave’ peaks are seen in the (1, 1, 1) direction for 
q/qmax = 1.0 but not for q/qmax = 0.5 where qmax is the zone-boundary wavevector in the 
direction considered. In the case of EuS, Bohn et a1 (1981) do not present spectra but 
give the frequencies of ‘spin waves’ where they exist. From their figure 2 one infers that 
‘spin waves’ occur in the (1,0,0) direction at TIT, = 1.0 and 1.5 for qiq,,, = 0.8 and 1.0 
but not for q/qmax S 0.6. This information is summarised in tables 2 and 3. 

Denoting by q* the wavevector beyond which peaks appear we have calculated q* 
for EuO and EuS for the relevant temperatures and directions. We have also calculated 
the ‘spin wave’ energy wW, when a ‘spin wave’ peak appears, and present this infor- 
mation in tables 2 and 3 alongside the corresponding experimental results. Clearly the 
theory is rather successful in predicting where peaks appear and also gives quite accu- 
rately the ‘spin wave’ energies. This success suggests that the method may in general be 
accurate in predicting the existence or otherwise of paramagnetic ‘spin waves’ and gives 
additional confidence in the main results of SEY. 

Notice the nearest-neighbour correlation function rl, for EuO, is very small at 
T/T, = 2.0, where a rather broad peak is found experimentally and theoretically. This 
shows that strong SRMO is not necessary to get a peak in the response. A more extreme 
case is for EuS with q = qmax in the (l7O7O) direction where the calculated peak persists 
up to T = C O ,  at which there are no correlations at all. We therefore feel that the word 
‘spin wave’ is rather misleading when used to describe such broad features. In certain 
cases the equations of motion themselves can give such a peak, which may then be 
enhanced by SRMO. 

We believe that persistence of peaks in the (1, 0, 0) direction of EuS is due to the 
second-neighbour interaction, Jz, being negative. It appears that ‘compensation’ of this 
sort can increase the likelihood of ‘spin waves’ and it should be noted that the second- 
neighbour bonds are along the (1,0,0) direction. This suggests that different behaviour 
may occur in the (1 , 1 , l )  direction and indeed our calculations find no spin waves at all 
in this case. It would be interesting to check this prediction by experiment. Values of 
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Table 4. (EuS). Calculated values of SI and 62 (in units of K2, where k~ = h = 1) for EuS at 
different temperatures, directions and for different values of q/qmaxr where qmar is the 
zone-boundary wavevector in the chosen direction. The calculated shape function can easily 
be obtained from equation (10) of the text once 6 ,  and S, are known. A ‘spin wave’ peak 
appears if S, < 26,. 

(1,O. 0) (1.1.1) (1 ,1 ,0 )  
qlqmax T/T,  = 1.25 1.75 1.25 1.75 1.25 1.75 

0.25 61 
62 

0.50 61 
62 

0.75 61 
62 

1 .o 61 
S, 

1.69 
54.0 

21.2 
83.6 

75.8 
121.0 

113.0 
140.0 

2.39 
56.2 

17.9 
73.2 

54.0 
91.3 

77.1 
99.0 

0.928 
50.3 

8.24 
67.2 

22.7 
85.3 

30.8 
93.3 

1.57 1.85 2.64 
54.2 53.9 56.5 

8.85 18.1 16.5 
65.9 79.7 73.0 

21.0 54.7 42.6 
77.9 109.0 88.3 

27.5 92.5 66.1 
83.0 130 96.4 

d1 and & for different directions are given in table 4. For EuO, where J 2  is positive, there 
is a much smaller difference between our results in the two directions, see table 5. From 
equation (10) and the data in tables 4 and 5 it is trivial to construct the shape function for 
different directions and temperatures. We hope this will stimulate experimentalists to 
perform new measurements in other directions to test our predictions. 

A more severe test of the theory, which is, however, not necessary for the main 
conclusions of SEY, is to compare the shape of the spectrum with the experimental data. 
In figure 1 we show the calculated shape functionF(q, U) andexperimental points (Mook 
1981) for EuO at T = 1.277‘, with q in the (1, 1, 1) direction for q = OSq,,, and q = 
= qmax. The vertical scale is arbitrary. For q = 0.5qm,, where no ‘spin waves’ are found, 
the theory agrees fairly well with experiment. However, for q = qmax, where a ‘spin 
wave’ peak is seen the theoretical curve rises at low o whereas the experimental points 
decrease. This has the effect of making the experimental peak more pronounced than 
in the theory. None the less, we emphasise that the theory predicts well the 
wavevectors at which peaks appear and gives the shape of the spectrum reasonably well 
when ‘spin waves’ are not predicted. Furthermore, when ‘spin waves’ appear, the peak 
positions, although not their height, are accurately given by the theory. 

Table 5. (EuO). As table 4,  but for EuO 

(1 ,0 ,0)  (1,1,1) (1,1,0) 
qlqmar TIT, = 1.25 1.75 1.25 1.75 1.25 1.75 

0.25 61 

62 
0.50 61 

62 
0.75 61 

& 
1.0 61 

62 

23.3 
378.0 

194.0 
612.0 

486.0 
863.0 

632.0 
971.0 

27.2 
370.0 

157.0 
513.0 

355.0 
658.0 

452.0 
718.0 

14.9 
353.0 

128.0 
523.0 

352.0 
711.0 

476.0 
794.0 

19.1 
353.0 

108.0 
455.0 

259.0 
560.0 

339.0 
604.0 

28.1 
386.0 

228.0 
630.0 

528.0 
870.0 

652.0 
973.0 

31.4 
374.0 

178.0 
518.0 

377.0 
652.0 

461.0 
712.0 
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Figure 1. Full curves are the calculated relaxation shape function F(q,  w) for E u O  at T = 
1.27Tc with q in (1, 1. 1) direction. Upper curve is for y = 0.5y,,, and the lower is for y = 
qmar, where q,, is the zone-boundary wavevector in this direction. The vertical scale is 
arbitrary. The circles are the experimental results of Mook (1981) for F(q,  U),  again in 
arbitrary units. The calculated curves are from equation (10) of the text, with, in units of K2, 
curve (a) 6, = 127, & = 518; curve (b )  6, = 465, S, = 779. 

4. Discussion 

The main conclusion is that the three-pole approximation is rather successful in pre- 
dicting when peaks appear in the spectrum of a ferromagnetically coupled Heisenberg 
system above T,.. To be precise we refer to peaks in the shape function F(q,  w) as a 
function of w at fixed q.  The method also gives quite accurately the energy of these 
peaks, when they occur. It is less successful in predicting the detailed shape of the 
spectrum in the spin wave region. 

The agreement between experiment and our calculations on EuS and EuO, gives us 
confidence in the results of SEY who applied the same approximations to an effective 
Heisenberg model of Fe. Their main conclusion is that such a model. with reasonable 
interaction parameters, has little SRMO and no ‘spin wave’ peaks above T, in the experi- 
mental range of q. One is therefore led to the conclusion that the peaks observed by 
Lynn (1975,1981) must be due to some, as yet not understood, itinerant effect. This is 
puzzling because Edwards (1982) has argued that itinerant contributions should be small 
for Fe, which is predicted to have good local moments (Hasegawa 1979, Hubbard 1979a, 
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b). At the same time the hypothesis of large SRMO (Korenman et a1 1977, Prange and 
Korenman 1979) seems incompatible with the susceptibility (SEY) and also with cor- 
relation length in the critical region. Furthermore, recent calculations on itinerant 
models (Hasegawa 1981, Moriya 1982) find only a small amount of SRMO above T,, 
consistent with the Heisenberg calculations of SEY. In fact, Wang et a1 (1982) (see also 
Prange 1981) and You et a1 (1980) have calculated the exchange parameters of an 
effective Heisenberg model of Fe starting from a microscopic (i.e. itinerant) picture. 
Wang et a1 find that the resulting model has little SRMO above T,. The interactions given 
by You er a1 actually lead to a negative spin wave stiffness, D, at T = 0, although 
including s bands in the calculation rectifies this defect. SEY argue that any set of 
interactions which does not have an anomalously small D should have little SRMO above 
T,. Consequently there is no theory at present which predicts, rather than assumes, large 

It seems that more experimental and theoretical work is needed to clarify this 
confusing situation for Fe. For EuO and EuS, however, we believe that our calculation 
provides a quantitative theory for the existing experiments. It may also provide an 
impetus for further experiments designed to scan other directions in q-space, in order to 
verify our predictions. 

SRMO. 
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Appendix 

In this Appendix we discuss how the wavevector sums are evaluated numerically. We 
use a cubic Brillouin zone which actually contains twice each wavevector of the FCC zone 
but has the advantage that the range of integration is simple. If a is the standard lattice 
parameter of the FCC lattice (e.g. Kittel 1976) then each wavevector component is 
integrated from -2du to 2nla. The NN spacing U" is related to a by U" = a / d 2 .  

J ,  is given by 

J* = 4Jl[cos(qxa/2) cos(q,a/2) + cos(q,a/2) cos(q,a/2) 

+ C O S ( ~ , U / ~ )  C O S ( ~ , U / ~ ) ]  + ~ J ~ [ c o s ( ~ , u )  + cOS(qya) + C O S ( ~ ~ U ) ]  (Al)  

so evaluation of the static two-spin correlation functions in equation (2) requires integrals 
of the type 

1 FCCzone 
- c f(cos(q,a/2), cos(q,a/2), cos(q,a/2)) 
N s  

which can be manipulated to give 
dr dy dz 

f(c0s x ,  cosy, cos 2). 

Each integral in (A2) is performed by Gauss-Chebyshev quadrature, i.e. for each 
component 
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m 

" d x  1 -g(cosx) e - 2 g(c0sxJ mr=i  

where 
x i  = (2i - 1 ) ~ / 2 m .  

Later we shall need to integrate functions of sines as well as cosines for which the 
equation analagous to equation (A3) is 

2m 
1 

j_:ngg(cos x ,  sin x )  2 - 2m i = ~  2 g(cos xi, sin x , )  

where xi is still given by equation (A4). 
Thus m3 points have to be evaluated for the three-dimensional integral (A2) and 

(2m)3 points are needed if the integral involves sines. The method is very accurate, even 
for fairly small values of m,  except at T, where the vanishing of the denominator in 
equation ( 2 )  for q = 0 makes convergence slow. In this case one can show that the 
leading error varies as m-'. Hence by evaluating the integral for m = II and 2n and 
forming the combination 212, - I, the leading error is eliminated and convergence is 
much more rapid. 

The second moment, given by equation (12), is easily evaluated. Writing 

Since only NN and NNN interactions are included pq is obtained simply for all q once rl 
and r2 have been evaluated. 

The fourth moment is more complicated. To save computer time we shall manipulate 
equation (13) so that only single wavevector summations are necessary. Equation (13) 
breaks up naturally into a sum of four terms so we write 

Consider A3 first of all: 

Now 
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using equation (2) and the fact that the average over k of J k  - J q - k  is zero. From (A9) 
and (A10) one has 

A3 = 2p;(x-l + Jo - J q )  ( A l l )  

which does not involve any further integrals once pq and x-' are known. 
Next we discuss Aq, which is given by 

1 
A4 =7x N k . p  C ( k ) C ( p ) ( J q - k  - J k ) ( J p - J k ) ( J k + p - J q - k - p ) .  (A12) 

From equation (2) we have 

C(k)Cb)(J~ - j k )  = qc(P) - c(k)l* (A131 
The term in (A13) involving C(k)  gives zero when substituted into (A12). Fourier 
transforming the remaining term then gives 

A4 = - 2 T z J $ [ 1  - co~(q.Rj,)](SfSf) (A141 
I 

which again does not involve any new integrals. 
A2 is given by: 

2 
N k , p  

A2 =-jx C ( k ) C ( p ) ( J q - k  -Jk)2(Jp -Jq-k-p) 

(A151 
L 

N k  
=-E C ( k ) ( J q - k - J k ) ' p q - k  

which only involves a single three-dimensional sum over k .  Jq - and pq - kcan be expressed 
in terms of cos(k',a/2) and sin (k'a/2), i = x ,  y or z ,  so each of the three components of k 
can be integrated as in equation (A5). 

A I  is the most complicated term. It is given by 
1 

A1 = 7 C(k)C(p)(Jq-k - J k ) ( J p  - J q - k - p ) ( J q - p  - J p ) .  ('416) N k , p  

From equation (A10) this can be rearranged to yield 

A1 = (x-' + J o ) ~ ;  + Ai 

where 

J(k + p )  is a function of the cos[(k' + pi)a/2], i = x ,  y or z .  The cosines are expanded so 
Ai is written as a sum of terms, each of which is a product of two independent sums over 
k ,  i.e. 
Ai = 4J1[ - ((cos(k,a/2) cos(k,~/2)))~ - ((sin(k,a/2) sin(k,a/2)))' 

+ (cos(k, a/2) sin( ky a/2)))* + (( sin(k,a/2) cos( k,a/2)))* 

+ 8 terms from permuting Cartesian indices] 
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+ 4 terms from permuting Cartesian indices] (-420) 
where 

%,(k) can be expressed in terms of the cos(k’a/2), sin(k’ai2). Hence each of the averages 
in (A20) is a three-dimensional integral, each component of which is evaluated according 
to equation (A5). 

(Al l ) ,  (A12), (A13), (A14) and (A20). 
The final expression for the fourth moment is obtained by combining equations (A8) 

Note added in proof. After this paper was submitted for publication we were informed of work by Lindgird 
(1982), who has also investigated Heisenberg model dynamics by a moments approach. He used a ‘two-pole’ 
approximation, in which the shape function is cut off at a frequency determined by the fourth moment. There 
are a number of other technical differences between his approach and ours but both methods give a reasonably 
good description of the dynamics of EuO. Lindgard also notes that the opposite sign of J2 for EuS leads to 
significantly different results. 
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