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An approximate calculation of the excitation spectrum of the Heisenberg linear chain is performed by
the Green’s-function technique. Apart from the usual transverse Green’s function, a longitudinal Green’s
function is also found useful. The decoupling procedure is not based on the two-sublattice picture, but
utilizes the knowledge of known exact results about the ground state of the linear chain and the insight
obtained from a model with explicitly known ground state. The equations are solved in a self-consistent
manner, and the spectrum, except near the edge of the Brillouin zone, compares well the exact des
Cloizeaux-Pearson result. We also provide an expression for the intensity for neutron-scattering studies;
this can be checked against measurements on CuCly2N(CsDs) (CPC).

1. INTRODUCTION

Recent work! on the dynamics of a spin- one-
dimensional Heisenberg antiferromagnet, di-
chlorobis(pyridine)copper(II) (CPC), by Endoh,
Shirane, Birgeneau, Richards, and Holt has fully
confirmed the des Cloizeaux—Pearson excitation
spectrum,® and has asked for “renewed theoretical
effort on the S=% system in one dimension.” Sub-
sequently, Hohenberg and Brinkman® have shown
that the spectral weight of the spin correlation
functions measured by neutron-scattering studies
is concentrated on these excited states. The des
Cloizeaux—Pearson eigenvalues are essentially
exact, but the scattering intensity is not exactly
known, because the corresponding wave functions
are very complicated. The antiferromagnetic
spin-wave theory provides a reasonable descrip-
tion of the scattering intensity but is widely off on
the spectrum. The purpose of the present work
is to develop an approximation scheme that does
better than the classical spin-wave theory for the
eigenvalue spectrum as well as for the scattering
intensity.

The Hamiltonian for the spin-% linear chain with
isotropic exchange is

§i'§i+1 (1)

1

H=2J

N
i=

(J>0, Neven, N+1=1, |§;|=21). The ground state?
has total spin S=0 and has energy —0.88629NJ.
The first excited states are spin S=1 states, and
the eigenvalues are given by?

hw=mJ|sing|. 2)

q is the wave vector measured with respect to that
of the ground state (the wave vector of the ground
state is 0 if N is a multiple of 4, and 7 if N is of
the form 4j+2, where j is an integer). We take

12

the lattice spacing to be unity. Note the character-
istic double periodicity of spectrum (2).

The classical spin-wave theory® is based on the
two-sublattice picture and uses the Holstein-
Primakoff transformation for each sublattice.

The underlying ground state is supposed to be the
Néel state: up spins on one sublattice and down
spins on the other. The excitation spectrum is

nw=2J|sink|. (3)

A general critique of this approach is found in the
work of Marshall.® The two-sublattice picture is
based on Néel’s insight into the physics of the
problem, but is not justified from Hamiltonian
(1). It is known that this picture is essentially the
molecular-field idea, the staggered field for the
antiferromagnets.” ® The Néel states are not
eigenstates of the Hamiltonian, and are quite dif-
ferent from the ground state, which has all the
(¥,2) states with total S,=0 contributing to it.
That the excitation spectrum (3) differs from the
exact one of Eq. (2) by a factor 2/7 has been re-
garded as mystifying,® but the double periodicity
of (3) is artificially produced, and the degeneracy
of these states is not correct.? Actually, spectrum
(3) becomes correct in the limit!® S—, while the
=} system is the extreme quantum limit.

To set up a simple approximation scheme, we
try to avoid the pitfalls of the spin-wave theory
for Hamiltonian (1). Fortunately, many exact
results are known about (1); these are collected
in Sec. II. We also known an antiferromagnetic
model, Eq. (4) below, with known ground state,*
from which we can derive useful insight and con-
firm many ideas of the approximation scheme.
Both these models, Eqgs. (1) and (4), do not show
long-range order in the ground state, and are
useful in the context of CPC. In Sec. IIl we write
the equations for Green’s functions for this prob-
lem. The main innovation here is the use of a
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longitudinal Green’s function in addition to the
more familiar transverse ones. As usual we get

a hierarchy of equations. Using the simplest de-
coupling possible, we terminate the hierarchy.
Section IV solves the set of equations for the linear
chain self-consistently, and compares the results
with the exact ones and experiments. Section V
discusses some features of the solution, and the
generalizations that could perhaps be made from
the approximation scheme.

II. EXACT RESULTS IN ONE-DIMENSIONAL MODELS

For the linear chain of Eq. (1) many exact re-
sults are known. The relevant points for our work
are as follows. The exact ground state is unique
and nondegenerate and has total spin S=0. For
the Heisenberg model, this result is proved by
Peierls,® Marshall,® and Lieb and Mattis'?; but
for the linear chain it could also be inferred from
the work of Hulthén.? It follows that the average
value (0|S? |0) is zero for every site i. The lowest
excitation spectrum was computed by des Cloizeaux
and Pearson,? as stated earlier. The correlation
functions in the ground state (S} S3) has not been
calculated by the Bethe-Hulthén method, although
the nearest-neighbor correlation function (S} S}, ,)
is known from the work of Orbach!® and Walker,*
A detailed knowledge of these functions (SfSj) can
be obtained from the short-chain results of Bonner
and Fisher,® who have also estimated the correla-
tion function for the infinite linear chain (Table I)
from short-chain calculations. The ground state
has no long-range order. The correlation func-
tions alternate in sign, and fall off with the sep-
aration between the spins. The alteration in sign
is reminiscent of Néel’s arrangement of spins. In
other words, although the ground state has a very
complicated structure, the correlation functions
have the behavior expected from the Néel picture.

All these points can be demonstrated explicitly
from the antiferromagnetic model with known
ground state, discussed earlier by one of us.™
The Hamiltonian here is a linear chain with the

next-nearest-neighbor (antiferromagnetic) inter-
action half that of the nearest neighbors:

N - =
S; * Sz (4)

i=1

N
H=2J%" §§,,+J
i=1

(>0, N+1=1, N+2=2). The ground-state ener-
gy is E,=—% NJ, and the ground-state wave func-
tions can be written

v*=(1,2](3,4]---[N-1, N]
+[2,3](4,5] -+ [N, 1], (5)

v-=[1,2][3,4]---[N=1, N]
-[2,3](4,5]---[N,1], (6)
with
[2,m]=a(t)Ben) - B(D)aln). (M

The first one, ¥*, belongs to the k=0 representa-
tion of the translation group. X T corresponds to
the unit translation, we have

T =¥* =00, (8)
Similarly, ¥~ belongs to the k=7 representation
T =¥~ =¢' ™y, 9)

We note that the ground state has spin 0 and
(0|S5|0) =0, vi. The order properties in these
ground states can be calculated explicitly for the
limit N—-« and they show only short-range order,
either in the longitudinal (S S7) or the transverse
(S7S;) correlation function. If the evanescent order
is studied for short chains, one gets a remarkable
result (Table II, cf. Table I), that the correlation
functions (0§ 0{,,) not only alternate in sign, but
settle down to a constant absolute value, very
much like what the Néel picture suggests. This
absolute value represents long-range order, which
diminishes with increasing number of spins in the
chain, and disappears ultimately. Since the
ground-state functions are so different from the
Néel states, this behavior of the correlation func-
tions is surprising, and reinforces the view that

TABLE 1. Correlation functions of the linear chain as calculated by Bonner and Fisher
(Ref. 8). (The last column is read from the figure of Ref. 8. (S{S%) can be exactly calcu-
lated, since the ground-state energy can be expressed in terms of this correlation function.)

No. of spins 4 6 8 10 %
4(S‘§S§) —~0.666 67 ~0.622 84 —0.608 52 -0.602 06 —~0.59086
4 S‘iS‘; ) 0.333 33 0.27735 0.261 04 0.254 07 0.25
4(S‘§S’Z) -0.30902 -0.251 94 -0.23117 -0.19
4(S%5%) 0.198 83 0.173 07 0.15
4(S%8%) —0.18781
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TABLE II. Spin correlation functions of the Hamiltonian (4). ‘4 indicates the state ¥*, Eq. (5), and “~” the state

¥~, Eq. (6).

No. of spins 6 8 10 12 o
State + —_ + —_ + - + - + -
(c50%) —0.333 —0.600 -0.556  —0.429 —-0.467 —0.529 -0.516 —0.484 -0.5 -0.5
(c§0% -0.333 0.200 0.111 —-0.143 . =0.067 0.059 0.030 —0.032 0 0
(05c%) 0.333 —0.200 -0.111 0.143 0.067 —0.059 -0.030 0.032 0 0
(cfo%) 0.111  —0.143 -0.067 0.059 0.030 —0.032 0 0
(af0%) 0.067 —0.059 -0.030 0.032 0 0
(c90%) 0.030 —0.032 0 0

the Néel states really give a good clue to them.
Note that in this model (4) it is possible to con-
struct a one-parameter family of ground states
that breaks the translational symmetry of the
problem. It might be possible to interpret the
linearity of the w — % relationship (as w-0) in
terms of the so-called Goldstone bosons.'® It
ought to be pointed out that the discussion of the
Goldstone theorem for antiferromagnetic models
is extremely poor and incomplete. Anderson®
first discussed the broken symmetry of antiferro-
magnets; since he invoked anisotropy fields in
the course of his argument that discussion applied
strictly to the strongly anisotropic or the Ising
limit. Later Anderson'® has given a physical dis-
cussion of the broken symmetry of the Heisenberg
Hamiltonian. A rigorous mathematical discussion,
such as exists for ferromagnets,'® has never been
given. The linear chain (1) also shows an asymp-
totic degeneracy (in the N— limit) in the ground
state, and the symmetry properties of the Hamil-
tonian have been the subject of controversy in the
literature.”

III. GREEN’S-FUNCTION EQUATIONS AND DECOUPLING

We shall consider only the zero temperature
theory. We define the transverse Green’s func-
tion'® as usual.

G (5, 7;t)=—i0(X0[[S;(#), 5] (0)]]0). (10)

O(t) is 1if >0 and zero otherwise. Zubarev!® has
introduced a convenient notation

(4; B)) ==-i0 (tX0][A(1), B(0)][0); (11)
so
G (2,7; 1) ={(Si5 ;) - (12)
We also need the longitudinal Green’s function
G* (4,75 1) = =i0(tX0 |57 (¢), S5 (0)][0)
={(S{; S0 . (13)

As far as we know, this has not been used earlier.
The ferromagnetic ground state is an eigenfunc-
tion of every S operator, and the equation of mo-
tion for G** is trivial. If one starts from the two-
sublattice picture of the antiferromagnet, the Néel
states are again eigenstates of the site spin opera-
tors S§, so that there also this Green’s function
G** is trivial. For the actual S=0 ground state,
however, the operator S; will produce spin-1 ex-
citations, and the longitudinal Green’s function

G** becomes relevant and it is important to treat
its equation of motion on the same footing as that
of G™*. Now

i 567,530 =000 [s7, 5711 0)
+(Is7, H; ). (14)
The inhomogeneous term can be written
(0][si, s71]0) =~25,,(0| 57 | 0). (15)

If one uses the two-sublattice picture one replaces
(0]S; |0) by S for one sublattice and —S for the
other. On the other hand, for the exact ground
state, this expectation value is strictly zero.
Thus the equation of motion with the first-order
time derivative has no inhomogeneous term

i G760 0= (st H] S (16)

To get an inhomogeneous term on the right, we
consider the second time derivative

—5872 GG g5 1) =0X0|([s7,H],57](0)
+(llsy,m),H];80) . an

That the second commutator plays a role in deter-
mining the excitation energy was recognized ear-
lier,' and is now given a natural explanation in
this setup.

For the longitudinal case,
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i G, 351 =5(0) (0[5, 55110)
+([S5,H]; S50 - (18)
The inhomogeneous term now disappears identical-
ly and we go on to the second time derivative:
—%G”(i,j;t)=6(t)<01[[57,H], 7110
+( L[5, 2], H];85)) - (19)

The inhomogeneous terms can be simplified by
using the notation for the correlation functions

K*B(i,j) =(0|S§s? |0y . (20)
Translational invariance would imply that

K*B(i,§) =K*8(F, - T,). (21)

We have
(o|[[s;7,H],s;110)
=2J,[K™* G, §) +2K%(i, j)]
-206,, Y JulK™* G, ) +2K%(, D]
' (22)
and
(o|[ls;,H], s5110)
:2J”K_+(i’j) - 261’/ Z J{gK-+(i, l) .
1
(23)

The full equations of motion can be written

o G330 =0 (OILIST, H), S7110) +4 3 Juud s (STSES = STSISis SP)) + 3 THU(ST; ST)

Ik
1#k

1

+2 ) Judw((STS St = SiSTSE; SN = DL JHUST S =2 D Jud (ST SEST = SiSi ST ST

1,k 1 1,k
kR#4 1#k

+ D THUSTISIN =4 ) Tud ul(SiSEST = SiSiSEs SN = D THKST; S (24)
1 I,k 1

R#*i

and

32 .. z 2 + - -z
— 5727, 331) =0() (O [187, 1, 57110) = 2 3 Jusul(Si SiST =SSt ST 7))
1,k
1#k

+2 3 T (ST ST SE = Si S Si S5 =2 3 Jud (ST SEST = SiSe ST 5 S7))

1,k Lk
R#1 1%k
+2 3 Tud (ST ST SE = STSISH ;SN +2 D0 JLUSTSi N =2 D THUSH ST - (25)
I,k 1 1
rR=i

These equations start the hierarchy of the Green’s function equations. We shall do a very simple decou-
pling of the hierarchy with the help of the correlation functions K%B, for example,

((STSEST; ST N = K**(ky D(ST; SN - (26)
When two indices are equal, we use the identities for spin-3 operators.
(9P =%, S7S;=1S;, SiSi=-1Sf, SiS;=Si+%, SiSy=-1S;, SiSi=3S{, SiSi==Si+3. (27

After decoupling we obtain the equations
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% .. vy .
— 572G @3 0) 220K (4, 9) +2K5 G, )] = 28, D7 TulK™* @, D) +2K7G, 1))
1

+2 3 Judw{G G, 33 K (1, k) +2K% (R, D] = G™* (k, j; K™ (1,4) + 2K, D]}

I,k

+2 ) Iy {67 (ky 55 DK™ G, D) +2K%G, D] = G (1, j; )[K™* (&, §) + 2K°(3, B)] }

1,k

=2 Y JH[67* G, 53 1) = G (L j; ONK™ G, D) + 2K G, D)
1

+2 3 JHGTHG 5O1 =K (1, 1) - 2K7(1, 1))
1

-2 J4GT (L g 1 =K G, 8) = 2K%%(3,4)) (28)
1

and

i . s s
- 572G (0, 431) =2J,K7* (G, ) - 28, D JuK TG, D)
1

=4 > Juduwl G (R, j3 K™ (G, D) = GG, 55 0K (1, B)]

+4 3 Judwl G (k, ;0K (1,3) = G™*(1, j; K™ (k, 1)]

1,k
+4 > JHIKT G, D67 (1,551 - K (1,i)G*(, j; 1))

1
+2 ZJ 1G* (0, ;)1 = 2K7* (1, )] 2ZJ 1G*(L, ;)1 -2K7* (G, 1)]. (29)

Note that the equations of motion (24) and (26) as well as the decoupling procedure are completely general,
and do not depend on the one-dimensional nature of the system. We now take the Fourier transform

G(i,j;1) =fdw eG4 w) =f dw e'“‘"% Z G(K, w) explik - (F; = F)]. (30)
T
Then we get
cep oy A ot oo ALK

G (k, w)—zﬂ(wg_ =)y © (&, w) m, (31)
with

4,0 =2 3 [1E-8) ~J@TIK™* @ +2K@)], (32)

3
@) = SO -I@IIE -3 - S @K @ +2K@)]

+FZJ(ﬁ')[J(E—ﬁ—G’)—J(—ﬁ—ﬁ')][K'*(ﬁ)+2K“(ﬁ)]
a q’
1 e 2 2 2 i w  x
+<1'ﬁZK +(q)—FZK”(q))ﬁZ:J(q)[J(—q)—J(k—ox)] (33)
q a a

q
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and
4,02 Y IE-8) -I@]E @, (34)
q
® =5 £ U® -T@IE-8 ~1@1 @ gz 3 I@E =55 -J4-T)]K @
q
2 (1-3 LE@) X900 - 1E- ). (35)
q q
Here invariant ground state, we have a further simplifi-
cation
J(q __ngj exp["lq (ri —I‘,)] (36) K—+(d)=2K12(a) . (44)
1 1t follows from (33) and (35) that
K(ﬁ) =FZK(1:]) eXP[—iﬁ' (?i _?j)]' (37) E12‘=EL2 (45)

i

We have J(§) =J(-§), K(§)=K(-q) from the symme-
try J4;=J;;,K(4,7) =K(j, ©). The energy eigenvalues
E, and E; are expressed in terms of the correla-
tion functions K~ and K**.

But the correlation functions can be expressed
in terms of the Green’s functions. For two opera-
tors A and B, we get'®

—§<0|A3]0)=f dwImG (). (38)
(4]
Hence we can write
K76, =078} [0)==2 [ dwImG™ (i, ji ),
o]
(39)

K“(i,j)=<0[SijlO)=—2f dwImG™(, j; w) .
0

(40)
From the expression of G™* and G**, we get

+(k zAr/ET: KZZ(E)=%AL/EL- (41)

Therefore, the equations for the correlation func-
tions are

K ®) = 2 IR -9 -7 @)
q

2Er N
x[K~* (@) +2K*@)], (42)
K*() -————Z[Jk -J @K (43)

We thus obtain four equations (33), (35), (42), and
(43) for determining four quantities E;, E;, K~*,
and K**.

For the isotropic Hamiltonian, with a rotationally

Thus we have a triply degenerate excitation spec-
trum, E; being doubly degenerate. We then have
two quantities to determine from two equations.
Dropping suffixes, we call these K and E.

IV. SOLUTION FOR THE LINEAR CHAIN

The equations to be solved for the linear chain
are

K(k)=——-1-—

2E k)]i\l]_ 2 [Tk~ a) -] K@) (46)

q

and

Bk =2 3 [Tk -

DIk - q)-J (@) K(q)

NZZJq - Ik -q") -J (@] K(a)

:G

+<1—£-Z_,"K(q > ZJ (@lI(@)-J(k-q)].
47

With only nearest-neighbor interaction, we get
J(¢)=2J cosq . (48)

Recalling that K(g) is an even function of g, we
get the equation for K(k) as

K(k)—— f 2J[cos(k - q) - cosq) K(q) dg . (49)
Hence

K(k)=4J(1 - cosk)I,/E , (50)
with
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1 m
Il__é;'/-‘-w cosqKl(q)dq . (51)
Define
1 ) 1 ™
Io~17§;,K(q)-2ﬂf_ﬂK(q)dq. (52)

The expression for the excitation energy is from
(47), (48), and (50)-(52):

E?(k)=16J%(1 - cosk)

X(§=31,+ 3l +1,+1 cosk), (53)

1 T
I,=-— cos?qK(q)dq . (54)
2 21r‘/_.11 a4 1

Hence, we get

(1 - cosk)Y 1,

K(k)z(%—%Io+§ll+12+11cosk)1/2’

(55)

and the three integrals I, I,, and I, can be ex-
pressed in terms of the parameter

a=(1/21)G-31,-31,+1,). (56)
From (52), (51), (54), (55), and (56), we obtain
Iy=@/mIY2m{[1+ (a +1)V2)/a" 2}, (57)
I==@Q/mMIY2((a+1)Y?
— (@ +1)In{[1+(a +1)2]/aV?}), (58)

I=@/mIY2(~ (@ +1)"2(3a +1)
+(Go?+ 20 +1)In{[1+(a+1)¥2] /a2y . (59)

Combining with the definition of @, Eq. (56), we
get the equation of self-consistency for « as

Sfla)
=(@+1ala +1)Y2mn{[1+(@ +1)"2]/a %} - (@ +1))
x((@+1)Y21n{[1+(@ +1)V2)/a"2} - 1) - }7°=0.

(60)

The solution of this equation — there is only one —
gives (Fig. 1)

o =0.0798. (61)
The integrals at this value of a are
1,=0.8765, 1,=0.4856, 1,=0.5089. (62)
Hence, we have the excitation spectrum:
E(k)=4J(1 - cosk)”2(0.5634 +0.4856 cosk)"/ 2,
(88)

Figure 2 shows the excitation spectrum which com-
pares well with the des Cloizeaux—Pearson spec-

0.5

[oR{e] o
f(a)

0,05

i
0,05 0.07 0.09 a

-0.05+

FIG. 1. Solution of Eq. (60) for «.

3 //, \\
/ \
// \
251 / \
/ \
/ \
/ ‘\
2+ / \
o / PRESENT \
~ / WORK \
S5t ) ‘
w // \\
/ dc-P \
kg \
p \
\
\
St \
\
\
\
A1
0 % ™
k =

FIG. 2. Excitation spectrum compared with the exact
des Cloizeaux—Pearson (dC—P) spectrum.
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trum except near k=7. As k-0,
E(k)=2.9J|k]. (64)

The Fourier transform of the spin correlation
function becomes

K(k)=0.4856(1 - cosk) 2/(0.5634 +0.4856 cosk)" 2.
(65)

This quantity is zero at £#=0 (which, in fact, is an
exact result), and has a broad maximum at 2=17.
The spin correlation function K(z, j) therefore does
not have a true long-range order. Its values can
be calculated at several points (Fig. 3) and it shows
the expected oscillating behavior.

The ground-state energy E, can be expressed in
terms of the correlation function

Eo=Y J,lK*G,§) +K* G, /)]
i,d

=3NJK(|r;-7;|=1)
=—~3NJI,=-1.4568NJ . (66)

As happens very often with truncation procedures of
Green’s functions, the ground-state energy is lower
than the true energy. Thus, truncation does not
have the good features of a variation calculation.

Of considerable interest to the neutron-scatter-
ing studies is expression (65) of K(k). Endoh et
al.! quote and use the classical result

K(g)=(1-cosq)/sing . (67)

os | |4<s§ Sa>

0.2 -

FIG. 3. Spin correlation function K (¢, j).

Normalized to the intensity at k=4m, the intensity

of scattering is

I(k)/I(3m) =(1.16)2(1 - cosk) 2/(1.16 +cosk)/ 2.
(68)

Figure 4 shows a plot of the above expression as
well as that of (67). Our curve lies lower than the
classical curve for large 2, as do the experimen-
tal points in Ref. 1, but a direct comparison with
experimental points requires form factor correc-
tions. Very close to k=~ 7, our approximation ob-
viously will not work.

V. CONCLUSION

The self-consistent solution of our equation
gives a fair description of the properties of the
Heisenberg linear chain. Of course, there are
some obvious defects. The quantity I, ought to be
0.5 exactly, but comes out to be higher 0.8765.
One can get a constrained solution, insisting on
I, tobe 0.5. This gives o =0.18, E(k)~2.3J|k| as
k=0, and E;=-0.7T65NJ. This is still a fair de-
scription, so that the violation of self-consistency
[Eq. (60)] is not serious.

We can also make contact with Anderson’s spin-
wave spectrum.® If we consider K~* =0, E; =0,
but let the transform of the longitudinal spin cor-
relation function be sharply peaked

K**(q) =%N5m, (69)
4+
35F
3_
g\i' 25F
I.5F

N N jn N
20° 60° % 100° 40°

4

k —>

FIG. 4. Normalized scattering intensity of Eq. (68).
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we get 77°w? =4J%sin%k, provided we ignore the last
two terms in Eq. (47) for E;. This shows why An-
derson did not get the degeneracy correctly. He
had ignored the longitudinal part of the spectrum.?°
We have noted that the decoupling scheme does
not specifically depend on the one dimensionality.
This, however, is no guarantee that a self-con-
sistent or even a constrained solution can be found
in the three-dimensional case. That some new
features might be expected can be seen as follows.
Our K(k) has only a broad maximum but no singu-
larity. It follows that there is no long-range order.
In order that K(z, j) be finite, oscillating in sign,

as the separation |T; ~T,| becomes large, we must
have a singularity in K(q) or K(q) must be a gen-
eralized function®! [cf. Eq. (69)]. Unfortunately,
the simple decoupling procedure used in this paper
does not harbor any hope of generating a singu-
larity. In three dimensions some long-range order
is expected; or, if Anderson’s agrument® is fol-
lowed, one must incorporate the broken symmetry
in the correlation functions. So the decoupling
scheme would require reexamination and possibly
modification before we can develop a theory of the
Heisenberg antiferromagnet in three dimensions.
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