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Continuum model of a Peierls system with a complex order parameter
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We consider the continuum version of a one-dimensional model in which fermions are coupled
with two phonon modes. Each mode is capable of producing dimerization, but together they are in
competition, and the true ground state corresponds to only one of the two order parameters being
nonzero in general. In the vicinity of a charged kink both order parameters are nonzero. We pro-
vide an analytical expression for the kink shape using the Fermi-level scheme which has been shown
to be exact in another context. The gap-state energy and creation energy of the kink are also calcu-
lated. The model considered interpolates between the polyacetylene model and a model with con-

tinuous chiral symmetry in relativistic field theory.

I. INTRODUCTION

Stimulated by the success of the polyacetylene model’
there have been many attempts to generalize it. One gen-
eralization consists of including one more phonon
mode.>3 The internal modes of the ions in many molecu-
lar crystals which couple with the electronic density are
examples. As a result of this extension the order parame-
ter describing the lattice dimerization is a complex num-
ber. In general the ground states correspond either to a
real or pure imaginary number. There are two kinds of
kinks connecting the two degenerate ground states. The
neutral kink has a real or pure imaginary order parameter
and a midgap state as in the case of polyacetylene. The
charged kinks have a complex order parameter. The posi-
tion of the gap state and the creation energy are sensitive
to the relative strength of the two electron-phonon cou-
plings.>? '

In this paper we study the continuum model of such a
system (Sec. II). Using the Fermi-level scheme* we solve
the coupled equations to obtain the charged kink shape
(Sec. ITI). We then examine the associated gap-state struc-
ture to estimate the creation energy (Sec. IV). Section V
contains some discussions about the continuum electronic
states and self-consistency of the solution.

II. CONTINUUM MODEL

In addition to the intersite displacement u, of the nth
ion we have an internal mode coordinate g, which couples
with the diagonal electronic charge density. Thus the
discrete Hamiltonian is

H=—1t4 3 [14alu, —u, . ))c) 4 1¢s +H.c.)
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" We have neglected kinetic energy of the ions. The spin in-

dex is dropped for convenience. The ¢’s are the usual fer-
mionic field operator. The number of fermions is as-
sumed to be N/2, where N is the number of ions. We de-
fine new variables by removing the rapidly varying phase
factors from the fermion amplitudes 1,’s and the classical
fields u, and g,. Thus

a,,=(——1)”¢2,,, bn=(—1)n¢2n——1 ’

A = A
Xn:Tqu an_Tan—l ’ (2.2)
0 0
2a = 2a
P, = P (u2n+1—u2n)r q>n=" (u2n_u2n—l)’
0 to

with 1 <n <N /2. A continuum theory is obtained by re-
placing the first differences by derivatives and equating X
and ® with X and ®, respectively. The resulting energy
functional®®? is

L
E= [ dx 3'[X(|ag|?—|ba|D

—D(atby+bia,)+(bhat—alb®)]
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where L=N/2, b'=db/dx, etc. 8E/8a*=0 and

8E /8b* =0 give the Dirac equations

(eg—X)ag :b;z —-®b, ,
2.4)
(€q+X)by=—a’y—da,

while 8E /8A=0 and 8E /8® =0 give the self-consistent
equations
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ay(x) and b,(x) are solutions of (2.4) with energy €,. In
(2.3) and (2.5) a runs over all occupied states.

III. FERMI-LEVEL SCHEME

In the Fermi-level scheme* one replaces the sum (2.5)
over all occupied states by the topmost extended state in
the filled valence band with energy €,. €gis determined by
Egs. (2.4) and (2.5) in the uniform ground state exactly as
in the case of polyacetylene. With this replacement we
have

D= || (py+pylab ,
3.1
X=|€|p)(b*—a?),

where

_ }\,ZN A 2a2NA1
p2_4K't0 2» P1= Ktq —P2 -

A; and A, approach 1/ | €| in the strong-coupling limit,
but here we take them as parameters to be fixed from
(2.5). Equation (3.1) together with Egs. (2.4),

(€p—X)a =b'—®b ,
(3.2)
(eg+X)b=—a'—®a ,

uniquely determine ®, X, a, and b. By rescaling the copr-
dinate and the lattice fields appropriately

x—x/(—¢€) ,
PP || , (3.3)
X—X|el ,

one arrives at the Dirac equations

b'=—a(l1—pib*—pya?,

(3.4)
a'=b(1 —plaz—pzbZ)
and the self-consistency equations
®=(p;+pjylab ,
(3.5)

X=p,(b*—a?).

In the following we will mainly be concerned with a one
kink solution such that

X —0,
x—>*too
(3.6
bd -1, b 1.
xX—> 4+ o0 X—> — o0

This corresponds to a positively charged kink in which
the gap state is empty. The negatively charged kink solu-
tion can be obtained by using the charge conjugation

transformation.?
An important conservation law which follows from
(3.4) is

2
ad bt — 2 (@24 b)+ PLa2p2const . (3.7)
P2 P2

This allows a? to be eXpressed in terms of b?,

p2a*=(—p1b)—(pp )2 |b>—1/p, |, (3.8

where p, =p;+p, and p_ =p, —p,. Equations (3.4) can
therefore be integrated to give

cosh(6x)

a(x)= ’
(p)V[sinh?(6x)+ 5 (1+6)]'/2
(3.9)
b (x)= —sinh(0x)
(p )V [sinh%(6x) + 3(1+6)]'/?
and
__—sinh(26x) __—(1-6%
Bx)= cosh(20x)+0’ X(x)= cosh(20x)+6 ~ (3.10)

6=(p_)""?/(p,)'/? depends only on the ratio of the two
coupling constants. Polyacetylene corresponds to p,=0
or 6=1. Equation (3.10) reduces to X=0 and
®(x)= —tanhx as it should be. Notice in (3.10) the length
scale is determined by 6~!. Therefore the width of the
charged kink or the coherence length is proportional to

1~1/|€|6 . (3.11)

In the limit p,=p,(0=0), ®>*+X*>=const. There is a
continuous chiral symmetry® because the Hamiltonian is
invariant under any rotation of the angle between ® and
X. We have also obtained the many kink generalizations
of solution (3.10). These are expressible in terms of Jaco-
bian elliptic functions.’

IV. GAP STATE AND KINK CREATION ENERGY

By knowing the lattice field configurations (3.10) in
principle, one can solve the Dirac equations for all the
eigenstates. For lack of an exact solution we will try a
power-series expansion for the bound state.

Through a change of variable

{=tanh(6x) , 4.1)
one finds as | §| —1, both a and b behave as

a—(1-¢»8, 4.2)
where

8=(1—€»)'2/26 . (4.3)

€ is the energy of the bound state to be determined. By
substituting the following expressions:

a=f(1-£%8%,
4.4
b=g(1—-¢%? o

in the Dirac equations, one has
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FIG. 1. Energy of the gap state € as a function of the cou-
pling ratio 6.
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—n6(1—§2)%+2§+2n98§ f,

where
n=(1+6)+£%(1-0) .

Since both f and g are analytic in [—1,1] we can try
power series with the right parity

(4.6)

f=cig+ o,
4.7)
g=cotef’+ -,
in the zeroth-order approximation
€e=1-6. (4.8)

Thus the gap state is split off from the band edge by an
energy 6. According to the uncertainty principle this is in
agreement with (3.11). Since the kink creation energy is
of the same order as the bound-state energy measured
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from the band edge, it is reasonable to assume that the
kink creation energy is also proportional to 6 | € | .

A more accurate estimate of € can be achieved by going
to higher-order terms in § as in (4.7). By comparing the
coefficients of the § terms in the first Dirac equation and
the constant terms and the £? terms in the second Dirac
equation, one has a set of homogeneous equations. The
secular equation determines € as a function of 6. The re-
sult is displayed in Fig. 1. It compares very well with a
direct numerical solution of the Dirac equations.

V. CONTINUUM STATES AND SELF-CONSISTENCY

In the case of polyacetylene (6=1) the continuum
states behave like a plane wave asymptotically, i.e., both
a(x) and b(x) are proportional to e™** for both x — +
and x — — «. In other words, the kink acts like a reflec-
tionless potential for the electrons. Therefore ®(x) in
(2.5) is functionally proportional* to a¥(x)b,(x)
+b%(x)ay(x) for every extended state a and the self-
consistency is automatic. From some numerical studies of
the Dirac equations it is found that this reflectionless
property of the kink potential is lost for 6-41. The deter-
mination of the continuum state is more complicated than
the polyacetylene case and for the moment it is unknown
if the solution (3.10) is exact or not.

To conclude, by using the Fermi-level scheme we have
solved the coupled electron-phonon equations (2.4) and
(2.5) for a complex Peierls system and have obtained the
shape and creation energy of the charged kink. The solu-
tion has the desired property of interpolating between the
pure amplitude kink (the polyacetylene case) and the
phase kink in the chiral-symmetry limit.
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