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INTRODUCTION

We present here a new approach to a purely lattice (Hubbard) model
for correlated Ferml systems. We first motivate the model, and describe
its features in physical terms. We then show how a many body theory can be

~developed, illustrating it with the example of a very strongly correlated

Hubbard model with a low density of holes, for which we show that a hole
density expansion exists.

In most strongly correlated electronic systems of interest, one has
two kinds of states, one a broad sp band or spd band, and the other d or £
configurations ( eg., £%7°, f% and f@ at each lattice site) with
hybridization between the two. In one common approach, the f electron
degrees of freedom are integrated out, leading to an interacting spd Fermi
liquid. This is done in two stages. If ome of the f electron
configurations is noticeably more stable than the others, e.g., Efn-l and

Efn+1 are much greater than Egn, the high lying states f“"1 and fn+1 are

virtual, and are eliminated to yield an (spd)spin (f)spin or Kondo
interaction In which real f charge fluctuations are absent. At low
temperatures, the f spin is quenched, but there is strong local self
interaction among the strongly renormalized spd electrons, i.e., local
spin fluctutions. The heavy fermion system is assumed to be a lattice
version of this.

Now charge fluctuations are absent only if the situation is
absolutely symmetric with respect to the configurations £U' and £07°, i.e.,
if Egn - Egn-l = Egn — Egnt+l and the hybridization matrix elements are the
same. Otherwise, the f charge can leak out; in a lattice there is an
intersite transfer term of the sort |V} f;o_ £im <al a; > Where f; 5
and a? create f and conduction electron excitations at sites i and j
respettively (with spin index 7). In general therefore, one has both £
charge excitations. {(and spin fluctuations) as well as strongly
renormalised spd electrons, i.e., a two component Fermi liquid.

The essential physics is presumably in the strongly correlated £
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electron system. If so, instead of eliminating the f electron degrees of
freedom, one should do exactly the reverse, namely eliminate the fast
conduction (spd) electron variables; this leads to a Hubbard like model
for the f electrons, with bare parameters possibly dependent on the
conduction electrons.

We thus consider a Hubbard model, with two configurations per site,
namely a doubly degenerate or magnetic configuration [0 > (electron,for
") and a nondegenerate nonmagnetic hole %osnfiguration 10> (for £17%). The
operators in this atomic representation ! are IiO"><iO | = i ana

|[io>dieof =x') . etc., . The Hamiltonian has the form oo
i i ¢ 4
H= 2 & (Xtro‘ ><¢>o) + Z tijxfroxoo'
.1',,0" ",‘,‘J,ﬂ" ; N
+ Z (t"J /U) Xo-'o-"XB"O' (‘)

' f
LJJ) G:d"

The states |40> and ]£O> differ in emergy by E. The matrix element
for hopping from site i to site j is t; ;. The last term is an
antiferomagentic coupling between electrons at sites i and j due to it
virtual process involving the high lying nonmagnetic two electron f£2F
state with Hubbard repulsion energy U. The model is characterized by a
bare kinetic energy scale zt, band filling or electron number

N_1<Lzo.xj6'6' >=1 - S, and an antiferromagnetic energy (tijg/U) = Eue
1

As is well known, the regime of small S and EA is one with strong
correlation, antiferromagnetic coupling and low effective Fermi energy. We
discuss this regign qualitatively and outline a quantitative approach for
U=, “$o that g is the only relevant parawmetér. The general Hubbard
model has, in addition, very low characteristic energies near the Mott
transition, i.e., near U <= Ucl.y. zt and for = (,

PHYSICAL DESCRIPTION

(i) U = (. Consider the infinitely correlated limit with a low density
of holes. At temperatures much higher than T; = STF= S(Zt), the system

is best described as a collection of disordered spins. In the U = 0o
limit, the system is very degenerate as all gpin configurations have the
same energy. The motion of a single hole ( = 1/N} in such_a medium has
been discussed by Brinkman and Rice® and by Ohata and Kubo”. Because of
the strong spin disorder, the hole mean free path is short, of order
interatomic spacing. A single (or independent) hole theory describes the
high temperature behaviour well,

At low temperatures T << T;, "the effect of hole motion is crucial.
The holes move around and homogenize the system which is thus a Fermi
liquid. A spin at any site loses its memory once a hole passes through, so
that there are spin fluctuations with a low energy scale Tpe The valence
at each site alsg fluctuates with the same energy scale. Since the Fermi
energy is also Ty, we have a Fermi liquid in which the kinetic energy and
interactions are both comparable.
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The obviocus question concerns the ground state. Nagaoka4 pointed out
that for one hole, the lowest energy state occurs when all spins are
parallel. This does not prove that the ground state for a finite hole
density is ferromagnetic. The method of static spin configurations used
in Refs. 2-4 is. a high temperature approach which does not access the
Fermi liquid regime. We shall see that the system is paramagnetic to
jowest order in hole demsity. There are interactions between electrons in
this Fermi liquid which favour non s-wave pairing or anisotropic
superconductivity.

(1i) Finite U :— For large but finite U, and say 6= 0, the ground state
is an antiferromagnetic insulator. Even for a small density of holes and
jin the absence of disorder effects the sytems is metallic. Is it
antiferromagenetically ordexed? If so, is it incommensurate or
commensurate? If not, what is the range of antiferromagnetic
correlations? There 1is a strong coupling between hole motion and
antiferromagnetic order; as the hole moves through it leaves behind a wake
of broken bonds. Thus either the hole does not move singly {a correlated
pair motion’ leaves the spin order undisturbed) or it does and long range
AF order is destroyed leaving only antiferromagnetic correlations. These
could promote attractive interaction between electrouns, the most
interesting regime being (zt) ~~ (zt2/U) where the hole depinning or
kinetic energy and the Neel energy are comparable.

MANY BODY THEORY

In the regime of stromg correlations, conventional methods fail. We
use a formalism developed for spin systems by Vaks, Larkin and Pikin~ and
applied to the Hubbard model by Zaitsev”. In standard many body
perturbation theoxry, the amplitude for a complicated process, i.e.. the
expectation value of a product of fermion operators can be written as a

—sum of products of all possible pairs (Wick’s theorem). This 1s ultimately
based on the anticommutdtors of two fermions being ¢ numbers. In a system
such as that described by Eq.l, operators are defined with respect to
specific initial and final states, so that their anticommutators are not c

numbers, eg., {Xio_o, XiOO"’ ly = Xio_ o + 60_0_1 Xioo somewhat like spiln

operators. However a generalized Wick’s theorem is possible, based on the
Fact that the number of operators on the right side of the above relation
is one less that on the left. There are unow diagrammatic terms describing
on site correlation effects, of relative order {(1/z) in an expansion based
on intersite hopping (t,:) to z nearest neighbours. Such an inverse range
expansion developed by Vaks, Larkin and Pikin” fails for spin systems near
a critical point. But since ia the Hubbard model correlations gemerally
have a finite range the (1/z) expansion is likely to comverge.

= = +
i j i i i
Fig.l. The thick line domotes the true propagater, and
the thin line the bare propagator, with hopping
(dotted line) as perturbation.
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Let us consider, as an example, a calculation of the single particle
Green functions Gi" To zero order in & and 1/z, the self energy, > ik
is just the hoppiﬂg matrix element Tips and the Dyson equation can be
represented as in Fig.l. This self energy corresponds to a barebandwidth
of zt. To next order in z -, but still to order 59, one has terms which
correspond to spin disorder scattering™ .

However, there are movel terms to the self energy, to first order in
the hole density. These are shown in Figs.2a and 2b. They describe
scattering of an electron by spin and charge fluctuations
respectively. Spin and charge fluctuate because of hole motion; this is
seen in their propagators D, which are shown schematically in Fig.3, which
describes them as repeated propagation of electron hole pairs.

We thus find that

Dyzg) = 2T (z) [ 2, = Witz ™! ()
with _
Wz = tzﬁlhz G (W) 6 4 (Y + 2p) (2v)
¥,
Ve

A spectral density analysis of Tl shews that it is proportional to hole
density , as expected physically. Thus D (zm)N(l/ ) for frequencies
|zm[ < & t, and has a total strength of order unity since, e.g.,

P

<Xj_"___ Xi_!_ > = <X_}_+ > ~ 1/2 , Consequently the single particle self energy

Zk('vl) has a part of order unity which varies on an energy scale ¥V Q'St;

e
A0 40~ 4 I
Yo- ¥—0 0+ !
+Q 4 = 50 +0 (00,++)
(a) (b)

Fig.2. Fluctuation terms in the self energy. The thick wavy
line stands for transverse spin (a) and charge (b)
fluctuation propagators. '
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Fig.3. Fluctuation propagator D im terms of bare
propagator D® and polarisation T .
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(DT /) ~1/& . This is the cause of heaviness in the fermi system. the
spatial scale of D (z) and hence of Ek(ﬂ/) is unrenormalised, and thus
a z — expansion for qthem is convergent.

It is instructive to compare this system where heaviness is due to
coupling with diffusive low energy f£luctuations, and the electron phonon

system. In the latter, the fluctuation scale is <x2>:g (m/‘M)l‘l2 i.ea,

small, so that b2 ~(m/M)1/26 pe But since the energy scale over which

Y varies is also of order (m/M)llze F s ( 8% /W) ~ 1. In the present
case, fluctuation scale is of order unity, so that. Z (¥) ~ t, but the

energy scale is low ( 8t) and thus (% / %V)N(I/X ).

) Counting the number of hole 1ines in any diagram enables one to make
a hole density expansion, i.e., to schematically write

-1

TV(0,0) = A ® + BS 2 , where A has a z expansion, i.e.,

A=A, T+ Alz_l + Azz_z etce.. From this kind of form it follows that the

spin sgﬁceptibility Y.(0,0) which is proportional to 'ﬂ'(O,O)'_1 goes as
(AOE) to leading oxrder in hole density i.e.,it is finite and pesitive.
This result of a systematic expansion argues against a ferromagnetic
instability of a Nagaocka type. The large value of susceptibility is due
not to incipient ferromagnetism but to large remormalization effects of
Tocal spin, caused by hole motiom. The quasiparticle—quasiparticle
interaction due to these local fluctuations seems to be attractive; this
is being investigated..

To conclude, the low hole density Hubbard band {correlated £ system)
is a heavy fermion system with a crossover fromd disordered spins, low
density of independent holes, and short mean free path regime at high
temperatures to mobile holes, a Fermi liquid with well defined
gquasiparticles and spin and charge fluctuations at low
temperatures (T<<Ty = £l ' :

The Fermi liquid has a low energy scale, not exactly because of a

static blockage of sites,i.e., not because teffij ~ <X00>tij but because
excitations scatter off lowlying fluctuations. It is an intrinsically
many body system without 2 good one body narrow band limit. For low hole
densities (or in general if there is a low energy scale, e.g., even for
large & if (/U) is very small) a systematic small parameter expansion of
physical properties is possible in powers of & [or(t/U)] and-the inverse
ragge z - of the intersite hopping [in typical three dimensional systems,
z Tt (1/12)].
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