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The methods of Dyson, Lieb, and Simon are extended to prove the existence of 
N6el order in the ground state of the 3D spin-l/2 Heisenberg antiferromagnet 
on the cubic lattice. We also consider the spin-l/2 antiferromagnet on the cubic 
lattice with the coupling in one of the three lattice directions taken to be r times 
its value in the other two lattice directions. We prove the existence of N6el order 
for 0.16 ~< r ~< 1. For the 2D spin-l/2 model we give a series of inequalities which 
involve the two-point function only at short distances and each of which would 
by itself imply N6el order. 

KEY WORDS:  N6el order; spin-l/2 antiferromagnets; infrared bounds; 
Gaussian domination. 

The existence or absence of N6el order in various spin-l/2 Heisenberg 
antiferromagnets is still unresolved after 50 years of study. Interest in this 
question has been revived recently in the context of certain models 
proposed for high-To superconductors. In particular Anderson (2) suggested 
that the "resonating valence bond" (RVB) state, a state with strong 
antiferromagnetic correlations but without N6el order, is relevant in this 
context. There has been considerable subsequent debate on whether the 2D 
spin-l/2 Heisenberg antiferromagnet on the square lattice possesses N6el 
order. Recent numerical work of Liang e t  al. ~11) shows that the energy of 
the RVB state is very close to the energy of N6el-like states, but other 
recent numerical work of Reger and Young ~13) and Gross e t  aL (7) suggests 
the existence of N6el order. In view of the delicate nature of the question, it 
is important to review the rigorous results on the existence of N6el order 
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for quantum antiferromagnets and to extend them to the case of spin 1/2 in 
two and three dimensions. 

The rigorous results on the existence of N6el order in quantum 
Heisenberg antiferromagnets are all based on the work of Dyson et al., (3) 

who proved that there is N6el order at low temperatures if the spin is at 
least 1 and if the dimension is three or more, and for spin 1/2 if the dimen- 
sion is sufficiently large. This work extended the results of Fr6hlich et al. ~5) 

for the classical Heisenberg model. In two dimensions the Mermin-  
Wagne~Hohenberg  theorem states that there is no N6el order at low but 
nonzero temperatures, but the question of whether or not there is 
N6el order in the ground state is nontrivial. Jorda6-Neves and 
Fernando-Perez (1~ observed that the methods of D y s o n e t a l .  can be 
applied to the ground state in two dimensions. These methods show that 
the ground state of the two-dimensional Heisenberg antiferromagnet has 
N6el order if the spin is at least 1. (Because of a numerical error, they 
asserted the result only for spin greater than t; this numerical oversight was 
corrected in ref. 1.) Two of the most interesting cases from the physical 
point of view, spin 1/2 in two and three dimensions, have thus far eluded 
rigorous results. 

In this paper we show that a simple extension of the above methods 
proves the existence of N6el order for the case of spin 1/2 in three dimen- 
sions. We also consider a spin-l/2 model which interpolates between two 
and three dimensions. This model is the three-dimensional cubic lattice 
with the coupling constant in two of the three lattice directions taken to be 
1, but in the third lattice direction it is taken to be r. When r = 0 we 
recover the case of two dimensions, while r = 1 yields three dimensions. For  
this model we prove that there is Nbel order if 1 >~ r/> 0.16. (Although we 
only consider the ground states of these models, the techniques we use may 
be combined with the techniques of Dyson et al. for nonzero temperatures 
to prove the existence of a phase transition for 1/> r/> 0.16.) The case of 
spin 1/2 in two dimensions remains an open problem. Recently 
Gross e ta l .  (7~ have performed a quantum Monte Carlo simulation that 
shows that there is N6el order in the two-dimensional model. Of course one 
can argue that the two-point function does in fact decay to zero, but this 
decay is too slow to be seen in their simulation. We give a series of 
inequalities which involve the two-point function only at short distances, 
each of which by itself would imply N6el order. 

This paper consists of two parts. In the first part we recall the basic 
inequality and strategy from ref. 3. We then show how to extend these 
methods to the case of spin 1/2 in three dimensions and to the model that 
interpolates between two and three dimensions. The second part of the 
paper provides a simple p r o o f ~ i r e c t l y  adapted to the ground state--of  
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the key inequality from ref. 3. This proof is included for the convenience of 
the reader. It can be skipped on a first reading of the paper. 

To review the methods of Dyson et al. we consider a finite lattice A 
with an even number of sites in every direction and periodic boundary 
conditions. We define the Fourier transform of S 3, 

Sq = I AI - 1/2 ~ e iq-xs3 
x~A 

Here q is in the reciprocal lattice. The Fourier transform of the two-point 
function in the ground state is then 

g q = ( S  qSq))O 

where ( . )  denotes expectation in the ground state. Note that the ground 
state is unique for the antiferromagnet. (12) Dyson et al. proved a pointwise 
upper bound on the analog of this function for nonzero temperatures. 
Their bound holds for all values of q except Q. By Q we denote either 
(z, re) or (re, ~, rt), depending on whether we are considering two or three 
dimensions. The zero-temperature limit of their inequality (as derived in 
ref. 10) in dimension d is 

gq~L, qCQ (1) 

where fq=(eoEu/6dEq_Q) 1/2, Eq=~a~=l(1-cosqi), and - e o  is the 
ground-state energy per site. Note that fq depends on the spin S only 
through the dependence of eo on S. Inequality (1) is called an infrared 
bound, and a direct proof of it will be given later in this paper. 

For an antiferromagnet the existence of N6el order corresponds to gq 
containing a 6 function at Q in the infinite-volume limit. Let m 2 be the 
coefficient of this delta function. If we integrate gq (in the infinite-volume 
limit) over the Brillouin zone, we obtain the value of the two-point 
function at zero separation. The bound (1) then implies 

m Z + f  daqfo>>-f daq g q : S ( S +  1)/3 (2) 

where 

f daq=(27r) -d f~dql . . . f~dqa  

A simple argument by Anderson (reproduced in Appendix C of ref. 3) 
shows that eo ~< S(dS + �89 Thus, inequality (2) forces m 2 to be nonzero if S 
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is large enough. Numerical evaluation of the resulting integrals shows that 
in both two and three dimensions S = 1 is large enough. 

To extend these methods, we make use of another piece of information 
a b o u t  gq, namely 

f daq gq COS qi <SoS6i 3 = -eo/3d, i =  1, 2, 3 (3) 

Here 6i is the unit vector in the i direction. (The factor of 1/3d appears 
because there are d bonds per site in d dimensions and the expectation of 
S~3@3 is one-third of the expectation of S~" Sy.) If there is no N6el order, 
i.e., there is no 6-function at q = Q, then the upper bound (1) implies 

eo/3d<~ (eo/6d) w2 f 

where the positive part F+ 
is zero otherwise. 

daq(Eq/Eq Q)md-~( -  ~ cosq / )+  (4) 
i = I  

of a function F equals F when F is positive and 

Turning now to d =  3, we can evaluate the integral in (4) numerically 
and we find that the right side equals 0.0824(eo) 1/2. Thus, (4) implies that 
e0 ~< 0.550. However, taking the N6el state as a variational state shows that 
- e o  is less than - 3 / 4  for d =  3. This contradiction shows there must be 
N6el order when d = 3 and S = 1/2. 

In two dimensions the above argument only shows that eo~< 1.064. 
The numerical estimates (7 9,11,13) of eo are all around 0.67, so we cannot 
conclude from inequality (4) that there is N6el order when S = 1/2. 

The model that interpolates between two and three dimensions is 
obtained by considering a three-dimensional lattice with the Hamiltonian 

H= Z JxySx.Sy (5) 
{xy} 

where the coupling constant Jxy equals 1 for bonds {xy} in one of the first 
two coordinate directions and equals r for bonds in the third coordinate 
direction. We will prove that this model has N~el order if 1 ~> r >~ 0.16 and 
S =  1/2. 

Letting gq denote the Fourier transform of the two-point function for 
this model, we will show 

where 

O<~gq<~fq, qr  

r f q (e~E~/12E~_Q) 1/2 

Eq = 2 - cos ql - cos q2 "+" r(1 -- cos q3) 

(6) 

(7) 



N~el Order in Spin-l/2 Heisenberg Antiferromagnets 1023 

where - e 6  is the ground-state energy per site. We now consider the 
following mathematical problem. Assuming m 2 =  0, maximize I =  S d3q gq 
over all functions gq subject to both inequality (6) and to 

f d3q gq(COS ql + cos q2 + r c o s  q3)  = -e6/3  (8) 

which is the analogue of (3) when r #  1. If the maximum of I is less than 
1/4, then we have a contradiction, so  m 2 must be nonzero, i.e., there must 
be N6el order. 

We claim that the maximum of I is attained either by 

o r  

r gq = f q Z (  cOS q l  q- COS q2 + r c o s  q3 < 0~) 

gq = fqg(COS q l  q- COS q2 + r c o s  q3 > - ~ )  

(9a) 

(9b) 

for some e/> 0. The characteristic function Z(')  equals 1 if the expression 
inside (-) is true and 0 otherwise. Which of the two cases (9a) and (9b) we 
must choose and the value of the parameter e are determined by the 
constraint (8). For  a given value of r, we determine e by numerically 
computing the integral in (8) using (9). With this e we then compute L 
We do not know the exact value of e;,  so we carry out this calculation 
for several values of eo ranging from the N6el bound of (2 + r)/4 to the 
Anderson bound of (3 + r)/4. The critical value of r ranges from 0.16 when 
the N6el bound is used to 0.14 when the Anderson bound is used. 

To show that the maximum is attained by (9), let gq be a function 
which satisfies (6) and (8). Consider the two regions R+ and R_ defined as 
follows: 

R+ = {q: _ (cos ql  + COS q2 + r c o s  q3) > 0 and gq < fq} 

Suppose both these regions have nonzero measure. Then we can increase gq 
slightly in both regions in such a way that conditions (6) and (8) still hold. 
The new function has a larger L Thus, we need only consider gq such that 
only one of R+ and R has positive measure. 

Let us assume that R+ has nonzero measure and R_ has zero 
measure. We shall show that this leads to (9a). [The other case, leading to 
(9b), is similar.] Suppose gq is not given by (9a) for any c~. Then there 
exists an 7 > 0 such that both of the following sets have positive measure. 

R> = {q: (cos ql + cos q2 + r c o s  q3) > ~ and gq > 0}  

R < = {q: (cos ql + cos q2 + r c o s  q3) < ~ and gq < fq} 
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We can then decrease gq slightly in R> and increase it slightly in R< in 
such a way that (6) and (8) still hold. Since cos q~ +cos  q2 + r  cos q3 is 
greater on R> than on R<,  we must increase gq more than we decrease it, 
i.e., S d3q gq must get larger. Thus, the maximizing gq is given by (9a). 

Although we cannot prove the existence of N6el order for spin 1/2 in 
two dimensions, we will show how to obtain sufficient conditions for the 
existence of N6el order which only involve the two-point function at 
relatively short distances. Define ~(n) as follows: 

1 
)m / $ 3 S  3 \ ~(n) = ( - 1 (10) N 0 mOi / 

n + l m =  o 

for i = 1 or 2. (Recall that hi is the unit vector in the i direction.) The two 
cases of i =  1 or 2 give the same result because of the invariance under 
rotations of the lattice by ~z/2. If there is no N6el order, then the infrared 
bound implies 

n 

~,(n) = f dq 2(n 1+ l---~ ~ o  (-1)m [c~ + C~ ] gq 

<<. dq 2-~+1)  ( - 1  [cos(mqj)+cos(mq2)] fq (11) 
0 + 

The last integral is then computed numerically. Table I shows the resulting 
upper bound on ~(n). 

Table I. The Upper Bound on O(n) [See Eqs. (10) and (11)]  Which Follows 
from the Infrared Bound (1) and the Assumption That There Is No 

N6el Order in the 2D, S=1/2 Model, and the Value of O(n) Obtained 
Using the Numerical Results of Ref. 7 ~ 

~(n) using results 
n Bound on ~(n) of ref. 7 

1 0.228 0.184 
2 0.170 0.145 
3 0.137 0.124 
4 0.115 0.110 
5 0.099 O. 100 
6 0.088 0.093 
7 0.079 0.087 
8 0.072 0.082 

Their numerical results were obtained using a Monte Carlo simulation on a 24 x 24 lattice 
and may require sizable corrections arising from the lack of manifest rotation iuvariance in 
the simulations. A contradiction for any one value of n implies that there must  be N6el 
order. 
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Recently Gross et al. (7) have numerically computed the two-point 
function along a coordinate direction for distances up to 11. The numbers 
in the second column of Table I are the "raw" data from ref. 7 and should 
in principle be corrected for by extrapolating to zero temperature and 
infinite size, and for spin space isotropy. (We have simply assumed that the 
quoted (SzS  z) correlations at distance n are estimates for one-third of the 
infinite-volume (S" S )  correlations. The authors of ref. 7. have alerted us 
to the possibility of sizable corrections originating from the lack of manifest 
rotation invariance in the simulations.) 

We now give the proof of inequalities (1) and (6). Inequality (1) may 
be obtained by taking the zero-temperature limit of Dyson et al.'s bound on 
gq. It is possible to prove inequality (1) directly in the ground state. Such a 
direct proof has not appeared in the literature as far as we know, so we 
provide it here. We start with the model defined on a finite lattice with 
periodic boundary conditions. 

It is convenient to introduce the (positive) spectral weight function 

R ( O ) ) = ~ [ [ ( r 1 6 2 1 6 2  qr 2 ] 6 ( o ) - e . + e o )  

where r are the energy eigenstates, en are the corresponding eigenvalues, 
and r is the unique ground state. Then 

The susceptibility is 

gq = do) R(o)) 

Zq= f ?  do) R(o))o) -I 

By the Cauchy-Schwarz inequality, 

fro o ;o do) R(O)) ~< do) R(o)) co 1 do) R(o))o) 

The last integral is 

(12) 

fo~Zdo) R(fo)(D = 1( [ [Sq, H], S q] ) = 2eoEq/3d (13) 

for the usual Heisenberg model after some computation. (3) We will show 
later that 

1 1 
Zq<~4Eq_Q, qCQ (14) 
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Combining (12)-(14) yields (1). Note that in this argument the Cauchy- 
Schwarz inequality plays the role played by the Falk-Bruch inequality (4) in 
the nonzero-temperature case. 

For the model (5) which interpolates between two and three dimen- 
sions, the bound (14) holds with Eq_Q replaced by Eq_Q. The double 
commutator (13) equals 

2 [ ( 2 -  cos ql -- COS q2) Pl + r(1 -- COS q3) P3] 

where Pl and P3 are the expectations of Sx" Sy for bonds {xy} in the first 
and third lattice directions, respectively. We will show that 0~<p3~<Pl. 
This fact, together with e~ = 2p~ + rp3, implies that the double commutator 
is bounded above by e~oEq/3. This, in turn, implies (6). First of all, p3/>0,  
for if p 3 < 0 ,  we would have that - e ~ > 2 p l = < H l + H 2 > ,  where H 1 
(resp. H 2) is the interaction in the 1 (resp. 2) direction in the lattice. We 
could then lower the energy, - e6 ,  by replacing the ground state ~b o by the 
ground state for H ~ + H 2. I-This ground state is the product of the unique 
two-dimensional ground state for each (12) plane and has the property that 
,o 3 = 0.] NOW suppose that P3 > Pl and assume that the lattice is cubic (i.e., 
the number of sites in each direction is the same). Then we can simply 
rotate the lattice about the 1 axis so that directions 2 and 3 are 
interchanged. The energy would then be - p ~ -  r p l -  P3, which cannot be 
less than - e~  = &2pl - rp3. Thus, P3 ~< Pl. 

We now turn to the bound on the susceptibility, inequality (14). The 
Heisenberg antiferromagnetic Hamiltonian is unitarily equivalent to the 
Hamiltonian 

E ( 1 1  2 2  3 3  - -SxSy ~- SxSy - SxSy ) (15) 
{xy} 

The unitary transformation is rotation by zr about the 2 axis in the spin 
space at site x for all sites x with odd Ix[. We work in the usual basis in 
which the matrices of S ~ and S 3 have only real entries, while S 2 has only 
purely imaginary entries. Define T ~ = S  ~, T2=iS 2, T 3 - - S  3. Then the 
matrices T i all have only real entries and the above Hamiltonian is 

- ~ (T~T~y+T2TZy+T~T3y) (16) 
<xy) 

Let h =h~ be a real-valued function on the sites. We define an 
h-dependent Hamiltonian as follows: 

1 
y, T ~ - T ~ - h x + h y )  2] (17) H(h)=~ ~ E(T~x -T I~2+ (T~ -T2y )2+ (  3 3 

{xy} 
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When h = 0 this agrees with the above Hamiltonian except for a constant 
term. Let E(h) be the ground-state energy of H(h). We will show later that 

E(h)>~E(O), Vh (18) 

Hence 

d 2 

dx2F4, h) >.0 (19) 
2 = 0  

We use perturbation theory to compute this derivative and take h x to be 
cos q .x .  The unitary transformation of rotation by 7c about the 2 axis 
changes S 3 to ( - 1 )  Ixl S 3, and so changes Sq to Sq_Q. The bound (14) then 
follows from (19). 

Notice that (18) is equivalent to proving that E(h) attains its 
minimum when hx is a constant. Suppose E(h) attains its minimum at a 
function/~, and there is a bond {Xo Yo } with hx0 r hy 0. The energy E(h) may 
attain its minimum at more than one configuration, in which case we 
choose a minimizing configuration h with the least number of bonds {xy} 
with hx r hy. We will then construct another function h' which is also a 

t minimizer for E, but has fewer bonds with h" r hy. This contradiction will 
imply that E(h) must attain its minimum at hx = const. 

We draw a plane through the midpoint of the bond Xo Yo and perpen- 
dicular to the bond. We also draw a second plane parallel to the first but 
shifted by L/2. (L is the number of sites in a single lattice direction, which 
we assume to be even.) These two planes, which will be denoted collectively 
by P, divide the lattice into two halves which we refer to as the right and 
left halves. (Remember that we are using periodic boundary conditions.) 

We work in the usual real, orthonormal basis of S 3 eigenstates. Let 
~ ,  ~ denote the basis vectors associated with the left and right half 
Hilbert spaces, respectively, so ~ | 0~ is a basis for the full Hitbert space. 
It is crucial to note that the Hamiltonian H(h) has real matrix elements in 
this basis, so the ground state ~9 can be written as 

for real numbers c~.  We will think of c~  as the elements of a matrix which 
we denote by c. 

There are three types of bonds. Bonds with both endpoints in the left 
half will be referred to as "left" bonds. Bonds with one endpoint in the left 
half and one in the right half will be referred to as "crossing." The "right" 
bonds are defined in the obvious way. 
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We denote the bonds crossing P by {xiyi} with xi in the left half and 
yi in the right half. For these bonds we write 

(T~-  r~)2+ (Tx ~ -  T~)2+ (rx ~ - r ~ -  ~x + 1;y) 2 

~-  (Txl) 2 ~-  ( T y l )  2 - -  2T~ T~ + (r~) 2 + (T2) 2 -  2T~ T 2 

+ ( T 3 - h ~ ) 2 + ( T 3 - h , ) 2 - 2 ( T 2 - h x ) ( T 3 - h , )  (20) 

Define H L to be the sum of all the terms in H(h) labeled by left bonds plus 
the terms (T1)2 + (Tx~)2 + (T 3 -/~x) 2 from the crossing bonds. H R is defined 
analogously. Then 

H = H L + H R - - 2 Z [ T ~ T I + T 2 T ~ , + ( T 3 - - h ~ ) ( T 3 - - h y ) ]  (21) 
i 

Let 

x~'( (q4, ' ~  ~,~ ~,~ L P ,  ), z=~ = (0L (T~, -h~,)- 0,~) 

and similarly for H~ ,  X~ ~, Y~i, Z~  ~ with x, replaced by y,. It is important 
to note that all these matrix elements are real. (It is here that the reality of 
all the vectors and operators is used.) We let X L'~ denote the matrix whose 
(e, 7) element is X~( Then the transpose of X r'i is the same as the adjoint 
of X L'~. The latter is denoted by (XL~) *. The same notation and remark 
apply to the other quantities Y, Z, H. 

Remembering that the c~  are real, we obtain 

E(h) = (O, H(h)O) 

: E c ~ H ~  + E ~c,~H~", 

- 2 2  E c~r Y~(Yfsi+Z~'Zgi i) 
i ~lly5 

= Tr cctH L + Tr ctcH R - 2 ~ Tr[ctXL'ic(XR'i)* 
i 

+ c* YL'~c( yR.~), + c,ZC,~c(ZR,~), ] (22) 

The next step is to prove a trace inequality. Let c, M, N be matrices, 
not necessarily real. Then we shall prove that 

ITr c*McN*l 2 ~ Tr  cLMtczM Tr cRNc~N* (23) 

where cL = (cc*),/2 and cR = (ctc) 1/2. Both cr and cR are Hermitian positive 
semidefinite and, by the polar decomposition theorem, there is a unitary 
matrix U such that c = Uc R and c* = c R U*. Thus, by the cyclicity of the 
trace 

Tr c*McN* -- Tr AB 
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with 
p 1 / 2 T [ t  • / f []r l /2  p 1/2/u 1/2 

By the Schwarz inequality for traces 

ITr ctMcNt[ 2 <~ Tr A*A Tr BiB = Tr c~M*c~M Tr cRNcRN* 

with ~ = UcR U*. Since cd = Uc~ U* = cc*, and since cc* has a unique square 
root cr, we have that c~ = cL. This proves (23). 

To apply (23) to our case, consider M = X  L'i, N = X R ' (  Since 2ab<~ 
a 2 + b 2, w e  have 

2 Tr ctXL'ic(XR'~)* <~ Yr czXL'~cc(XL'~) * + cRXR'icR(XR'i)* (24) 

A similar inequality obviously holds with the X matrices replaced by Y or 
Z matrices. 

The definitions of eL and cR and (24) imply 

E(h) >>. Tr cZ H L + Tr c ] H  R 

- ~ Tr[ccXL'~cL(XL'i) * + CL YC'iCL( yc, i)t + cLZL, icL(ZL, i)t] 
i 

- ~ Tr[cRXa'icR(XR'i) * + cR YR'iCR( yR, i), + cRzR, icR(ZR, i)t] 
i 

(25) 

Let h f  denote the function which agrees with h~ on the right sites and on 
the left sites equals the reflection o f / ~  in the planes P. The h c is defined 
analogously. Recall that /~ r hy for at least one crossing bond. Hence, at 
feast one choice, h R or h L, has the property that it has strictly fewer bonds 
with h~ r hy than does the original h. 

Let 

~,,B 

with Ip R defined analogously using (ce)~. (Note that II@mll = NORII = I1~'11.) 
Then the right side of (25) equals 

l (0~ ,/4(h R) 0 R) + (0 ~, H(h ~) 0 L) t> �89 ~) + �89 ~) 

We have chosen /i so that E(h) is a minimum, so this inequality implies 
that E also attains its minimum at both h R and h L. This contradicts the 
minimality of the number of bonds such that h~r  so (18) is proven. 
This concludes the proof of (14). 

We have demonstrated the existence of N6el order in the ground state 
of the 3D spin-l/2 Heisenberg antiferromagnet. Although our methods do 
not work for the 2D model, they work surprisingly well for the model 
which interpolates between d =  2 and d =  3. The bound (1) o n  gq and the 
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value of the nearest neighbor correlation (3) are not by themselves 
sufficient to show the existence of Ngel order in d =  2 with S = 1/2, so the 
obvious question is what additional information might show the existence 
of Ngel order in this case. Rigorous lower bounds on the short-range 
correlations could prove the existence of Ngel order (see Table I). Another 
possibility is to improve the bound on gq. The two places where one could 
hope to improve this bound are to improve the bound on the susceptibility 
)~q (14) or to improve inequality (12) resulting from the use of the 
Cauchy-Schwarz inequality. For the 1D spin-l/2 Heisenberg 
antiferromagnet the exact value (6'14) of Xo is 1/Tr 2 while the bound (t4) 
equals 1/8 at q =  0. Thus, one cannot hope to improve the bound (14) by, 
for example, an overall factor of 2. If the Cauchy-Schwarz inequality (12) 
is close to being an equality, then R(co) must be close to a g-function at a 
single value of co. Although this appears unlikely, we have not been able to 
improve inequality (12). 
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