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ABSTRACT

We present a theory of Raman Scattering in the Hubbard model. The scattering of
light has resonant and non-resonant contributions. The resonant term gives rise to
scattering by spin degrees of freedom in the insulating case, for which we derive a
general form of the effective scattering Hamiltonian. The later involves four terms with
distinct symmetry properties, one of them being the ‘‘chiral”’ spin operator
> S; - (S x Sg). The corresponding four distinct correlation function can be
measured directly in the experiments with different scattering geometries. The non-
resonant term contributes to the scattering in the doped case and is shown to probe the
fluctuations of the ‘‘stress tensor’’. This quantity is not conserved and hence its
fluctuations at small q inherent in optical experiments, need not be small, in striking
contrast with the density fluctuation in usual metals.
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1. INTRODUCTION

Raman scattering has provided extremely important quantitative and qualitative
information on high-T . materials, both in the insulating and doped cases.! 3] Here we
will be concerned with the question of describing the non-phonon contribution to Raman
scattering within a unified theoretical framework. The commonly made classification of
‘““magnetic-Raman’’, and ‘‘electronic-Raman’’ scattering to describe the undoped and
doped cases is, from a fundamental point of view, artificial, especially in a Mott-Hubbard
system with its complex many-body behavior. Yet the Mott-Hubbard system is simple,
as it involves effectively just one or few bands with the result that the coupling to the
external electromagnetic field is readily parametrized. Specifically, when the photon
frequency is smaller than an appropriate band gap, the external field couples to the
electron through the phase of the hopping matrix element, i.e. via the Peierls coupling.
This will serve below as a starting point for the unified description of Raman scattering in
both insulating and doped cases. We shall reexamine the derivation of the effective
Hamiltonian for the ‘‘magnetic’’ Raman scattering in the insulating case, paying
patticular attention to the regime of validity and emphasizing the symmetry aspects. We
will show that for the incident light frequency comparable with Mott gap (i.e. under the
resonance conditions), the effective Hamiltonian involves a hierarchy of long range and
multiple spin terms, which however split naturally into four groups with distinct
symmetry properties. In particular we shall indicate a method to isolate scattering with
A, symmetry (odd under 2D square lattice reflections) which measures the fluctuations
of the topological charge, a quantity that is odd under time reversal. More generally, we
will show that the symmetry analysis allows us to disentangle the four correlation
functions from five measurements. In the doped case we shall argue that scattering is
dominated by the non-free electron effects and indicate the connection with optical
conductivity. We do not intend here to present detailed calculations in either phase, but
rather wish to outline the framework in which such calculations should be undertaken.
Finally the present theory of Raman scattering would apply to Hi— T, systems, if one
accepts Anderson’s*] assertion that these are Mott-Hubbard systems. Our conclusions,
anticipating somewhat the rest of the paper, are that this point of view is not only
consistent with the bulk of the data, but seems to be a natural, almost unique and in any
case a testable explanation of the Raman data.
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In Section 2 we shall derive the general expression for the Raman scattering intensity
starting from the Peierls coupling, then relate the scattering intensity to specific
correlation functions while emphasizing the symmetry aspects.

Section 3 deals with the case of the insulating phase. First the derivation of super-
exchange effective Hamiltonian governing the dynamics of the lower Hubbard band
(LHB) is reviewed. Next, the light scattering effective Hamiltonian is constructed using
the moment expansion, making explicit the distinction between the exchange and light
scattering effective Hamiltonians under the conditions of resonant scattering.

Section 4 addresses the doped case: the inapplicability of density fluctuation theory to
light scattering for the Hubbard model is discussed and the importance of the non-free
electron effects is emphasized.

Section 5 outlines the experimental implication of the theoretical analysis presented
below. Finally, Appendix A deals with the relation between the quasielastic limit of the
resonant Raman scattering metric element and the dielectric function. A brief account of
this work has appeared in Ref. 10.

2. GENERAL FORMALISM

For simplicity of presentation we confine ourselves to a one band Hubbard model; the
generalizations to a three band model, that reduces to the above under appropriate
projections, will be presented in a later publication. Consider Hubbard Hamiltonian
H = HT + Hy in the presence of an external transverse e-m-field, described by a vector
potential A:
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Introducing usual fourier components cxg = TI_N— Y exp(ik*r) cr5, and
k

Af = ¥ A® (@+x/2) exp (iq: r+%/2), we expand Eq. (1) out to second order in A
q
to find HT =Hp + Heyp, where Hp is the zero field hopping
Ty = Y lchpcr + he]andHy = =t ¥ T,
n
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with the current operator
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and the second rank stress tensor
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where €y = —2t ¥, cos kg is the usual band energy. Note that replacing &, ~ k?

o
yields the familiar coupling with T4g replaced by the density operator. In the second
quantized form the electromagnetic field operator A® becomes

Ag = gqlega-q + Euaa) @

where €, is the complex unit vector labelling photon polarization, overbar denotes
hc?
complex conjugation, gq = 0, 04 = clqlis the photon energy and ag is the

photon creation operator with energy momentum ®,q and appropriate polarization. From
here onwards we shall switch to the units where i = ¢ = 1.

In order to study the scattering we will write Eq. (2) as two terms

Heoup = v 4+ v where V() = —e £ jTA%; and v = % e? E’cq“P+q2

A% AEqZ. The basic Raman scattering cross section is proportional to the transition

rate R, which is obtained from the Golden rule
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R =73 |<fIMIli>[> 5 (B;-E;) , )
if

where M is the effective scattering operator causing a scattering between the initial state i
and some final state f. These states are direct products of the 1-photon states and
appropriate matter states (i.e. states of the Hubbard model) with energies E; = o; + g,
Ef = ®¢ + €, where €'s denote the eigenvalues of the Hubbard H. The initial and final
energy, momentum and polarization of the photon field are (o;, T();, €;) and (wy, l—()f, )
respectively with an energy momentum transfer Q = w¢—w;, andq = T()f_?i. The two
terms in H o,y have different character: VO can cause scattering only with the help of a
virtual intermediate state and hence is called the resonant term, whereas the term V(%)
can cause transitions between these states in lowest order and is non-resonant. After
elementary manipulations we write the ‘‘matter part’’, of the inelastic scattering, with an
energy momentum transfer £2,q summed over final states and averaged over initial states
with an appropriate Boltzman weight, as

R(Q,Q) =3 P gy gur<tl MIi>[25 (eg—£;~Q) ©)
f.i

where M = My + My,
<fIMyli> = efef <fl12fli> )

and

fl_') R | |_-" INF
<fIMgli> = ) <fl(k, ~ep)lv><vi(_g, - eli>

v €y — & — W

> . > T
<flG-k, - eDlv><vl Gy, - epli>
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€y — €} + ¢

The transition matrix element given in Eqn. 8 defines the resonant scattering operator
Mg = C?E? Mgh
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w0

MEP(1) = [ di e i e+, ik o ©)
0

Combining resonant and non-resonant contribution one defines the effective scattering
operator M = e{’E? MmeB.
— 0
MO = 7B 4 MgP .

The scattering rate as a function of energy and momentum transfer probes the
correlation function of M:

R=13 e P& dre® <ilMi(0) Myvli> (10)
i
The scattering operator M = Mmeb ef‘E? can be decomposed into four terms
corresponding to one dimensional irreducible representation of the 2-d square lattice
symmetry groups C 4y

M = % Oa, (e}E} + e¥e) an
+ 2 O, (]} - efeD)
+ = Op,(eI&} + efE)
+ Lo, @t - e

2

where we introduced operators O, labeled by representation v e {Aj,A,,B;,B2} (in
the notation of Hammermesh3)) with A; transforming like x? + yz, B-like x% — y2,
Aj-like x>y — y3x and B-like xy. The lattice symmetry implies that there are only
four independent correlation functions <0}0, > = C, 8, contributing to the

scattering rate in Eqn. 10.

The above symmetry consideration are of crucial importance in interpreting the
polarization dependence of Raman scattering. Indeed, the scattering observed in
experiment with different scattering geometries can be expressed in terms of correlation
functions Cy,.
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In Table I below we summarize the result for the three commonly used experimental

configuration with linearly polarized light (A},, B, and By, in the notation of Ref. 1-

3) as well as for scattering of left circularly polarized light into left or right polarization
(denoted LL and LR respectively).

Table I
€; ef R
I e | G+HN2 | G+9HN2 | Ca, + Cy,
I [ By | R+5HN2 | G-9N2 | Cp, + Ca,
I Bzg X ;’ CA2 + C132
IV | LR | R+i§)N2 | G-i§)N2 | Cp, + Cg,
V |LL | G+i§)N2 | R+i§)N2 | Ca, + Ca,

One may note that in contrast with the linear response phenomena (e.g. dielectric tensor)

the information obtained from experiment with linearly polarized light is insufficient to

determine the scattering of circularly polarized light. Intuitively this can be understood

as the result of the interference between incoming and outgoing waves which becomes

observable in the Raman experiment because of the bilinear dependence of the scattering

matrix element on the e-m fields.

Thus we observe that there are four independent scattering geometries which allow us

to measure the correlation functions
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CA1 = % [2R; + Rg -~ Ry — Ryyl (12a)
Ca, = 5 [Rp + Ry - Ryy] (12b)
Cr, = 5 [Rn + Ry - Rm] (120)
Cs, = 5 [Rm + Ry - Ry (12d)

while the 5th configuration provides a useful consistency check which can be used to
filter out background contributions:

RV = RI + RII - RIV (13)

In the next section we shall consider the effective scattering operator in more detail
deriving explicit expressions for O, in terms of spin operators (for the undoped case).
Specifically we shall draw attention to the A, scattering channel which, as is already
evident from Eqn. 11, involves the operator O 5, which is odd under time reversal (note
that eXef — eYe} field configuration that it is coupled to is odd under time reversal). In
general one expects that all scattering channels allowed by symmetry will contribute.

3. MAGNETIC RAMAN SCATTERING IN THE INSULATING STATE

Let us now specialize to the case where the Hubbard model has precisely N,
electrons, where N, is the number of sites. This ground state for this model, in the limit
of large U is an antiferromagnetic insulator with the low energy excitation described by
the Heisenberg Hamiltonian.® The eigenstates fall into two categories, one at or near zero
energy and another near U and these are the familiar lower and upper bands of Hubbard.
It is clear, that the low energy Raman scattering is dominated by the resonant term My in
Eq. (8) since the matrix elements of stress tensor in Eq. (7) vanish. The current operators
in Eq. (8) necessarily take us from the lower to the upper Hubbard band, and hence the
energy differences in the denominators of Eq. (8) are of O(U). The scattering caused by
Mgy can, to the lowest order in t/U, be expressed as a simple effective spin operator, but
to higher orders there are severe difficulties in doing so.
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In order to establish notation, let us review briefly the derivation of superexchange. 6
We denote by (In; @>), the manifold of states with *‘n’> doubly occupied sites. The
n = 0 manifold can be parametrized by the set of s*(r) eigenvalues specifying the spin
configuration o = ({o}), while the states with double occupancy require in addition the
specification of the coordinates of the “‘hole’” and the ‘‘double’” sites, ry, rgq so that for
n=1a= ({c}, ry, rqy)and

110> = ¢ (ra)cq(rn) [{o})> (14)
where
l{o)> =TT ¢ (r) l0>
1
To the zeroth order in tU~! these states are degenerate: Hy [n,a> = nU |n,a>. The
n = 0 manifold the degeneracy is lifted by the second order process, the superexchange
while for n # O case it is lifted in the 1st order by the formation of extended hole-double

states. To the 1st order in tU™! the lower Hubbard band acquires an admixture of n = 1
states:

lo> = 10,{c)> — % 3 11,a> <1,al Hy 10,{c})> . (15)

The calculation of the ground state energy to the 2nd order is non-trivial since the
Hamiltonian is not diagonal in the | 6> basis, with the matrix elements

¥ <0,{c’})Hr |1,a> <1,al Hr |0,{c}> (16)

o

R 1
<o |H|lo> = —
Hlo> = 5

2
- L 3 3 3 <00 el el0.(5)>
{6y * K

<0,{8)(ctrpc)(ct cryp0, (0} >

_ Al
U

I

T 3 <0,{c"} Pryp, 10,{81> <0,{8}] Pryp,rlO{a)>
(3} T

where (cti.cy) =chiug © and we defined the singlet projection operator
r+pCr r+u,0 Cro g p
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1 2 .2 ) + . . .
— = 8;-§; = (cfrpcr)(ef Cryp ), the last equality holding on the manifold

of singly occupied states. Upon trivial summation over intermediate state Eqn. 16 leads

to the superexchange effective Hamiltonian
—) - 1
Hex =3 % IS¢ Seep = 71 17
i

2
with Heisenberg exchange constantJ = -%—

Note that H., is only valid to the (t2U"%) and the next order correction would
require diagonalization of the |1,0> manifold with respect to Ht so that the
intermediate state energy entering the denominator in Eqn. 15 can be determined to
(tU™1). The latter is non-trivial and would lead to higher order (and longer range)
exchange term in H,, as will be discussed in some more detail later.

Let us now return to the light scattering and observe that in the case of the insulator it
is entirely due to the second order (resonant) process described by Eqn. 8. To the leading

order in t/U only n = 1 intermediate states contribute and Eqn. 8 becomes (under the
assumption k; = k¢ = 0),

giler! <fIMpli> = § <0,{co}| T j.I1,0> <Lal ¥ jy@)0,{c;}>
o r d

¥

i =f i=f
y [ € € . e; Gy a18)
Ejo— ®; Ejo + ©f
with the current operator
jv() = itleg (1+v)eg(r) = c5(Deg(r+v)] 19)

To the ‘‘zeroth’’ order in t/U, E; o = U and hence can be pulled outside the
intermediate state summation allowing Eqn. 18 to be rewritten in terms of the spin
operators in the same fashion as Eqn. 16, thus leading to the identification of the My
matrix elements with those of an effective scattering Hamiltonian

-

1 - A¥ AL LA n 1 1
His =Y [-Z -S,‘Sr+u:| (eg - pXei - ) [

U - o U + o

] 20

This scattering Hamiltonian is that of Elliot, Fleury and Loudon.”)
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The difficulty arises when one attempts to evaluate Eqn. 18 to higher order and is

again related to the lifting of the degeneracy of [1,0> states by the hopping part of the
Hamiltonian, <1,a’ IHT 1,a> # 0. The sum over intermediate states has the form

1

Yy ———IlLa><lal=3 T ¥ ¥ Gu-o thri.{0"); 14,14,{0))
« U-oi+Hr taty () thry (0)
2D
lrllhr(,ia{c,}> <rh1rdv{6}l
where we defined the upper Hubbard band propagator:
GE(I'},‘,I'&,{G’}; I'h,l‘d,{()'}) = (22)
= <0’|(c§, ¢, )(Hr = E)y~}(cf, c,h)|c>
We observe that the expansion
Hr-E)'=-E' 3 (B 'Hp" @3)

m=0

which was implicit in passing from Eqn. 18 to Eqn. 20 is no longer an expansion in
t/U << 1 as it was in the derivation of superexchange but is rather an expansion in
t/(U — w;) which under the resonance conditions w; = U is quite dangerous indeed!
We expect that for |E| < const ~O(t) ,GEg has a cut corresponding to the continuous
spectrum of hole-double states.

Thus while for |E| = [U = mil >> t the correction to Hyg can be computed
perturbatively, the opposite limit is quite intricate and involves the study of propagation
of holes (or doubles) in the arbitrary spin background.®-°]

Let us formally express Gg using Eqn. 23

€r; +48r,
Gp=-E! rl;rz % <o’ | T, {x (rd) Lglx(r)] x(ra) X(rp)
{_rg (—i(f))}i(r,;)} lo> 4
Tel,
1 -

where %) =c ¢y = 3 866 — S - Toe' is the spin density matrix

Koo = €& €s = 1 — Xoor) and [y(3) denote walks connecting rgep) and rqmy (€1
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being the length of the walk). Equation 24 clearly contains an off diagonal contribution
in bothry, 4 and {0} spaces.

Since j, implies Irp = gl = 1 we need Gg(r’,r" + W/, {6’} r,r + p,{c})
which perturbatively has the form

Gg = + E7! 8r.r Bpp d(o)(o) @3)

2pn-3
+ t°E Y Srrrv Oy -vin
v,V

<(O )T XOFE + V) x(r+p+ V) xr + wil{o}>

This combined with Eqn. 18 and 21 leads, after somewhat tedious spin algebra, to a
corrected scattering matrix element in the form

<fIMgli> = gsg; <oyl {OAI (elek + eleh) (26)

. . g "
+ OBl(c;e,f( - e‘ye§) + Og, (ex€y + eyey

+1 04, (ciel - elen)ilo;>

with operators:
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| =

1
Sy Srex — 2 Sy S1'+y

2
t 1
+ W [[E +28; - Sriox + 28, -S4y (279)

+ 2§, - Sr+x+y + 28, Sr+y +4(S; - Sr+x)(sr+y ) Sr+x+y)

+4(S, - Sr+y)(sr+x : Sr+x+y) - A4S, Sr+x+y)(sr+x ' Sr+y)

2
t 1
OBl =77 > {E[Sx : Sr+y - S: Skl -
T

2

t
oo 25 Seene =280 Suay 48,1 445,50y } @7b)

4
OB; = 3 > IS, r+x+y = Srex Sr+y] (270)
(U 10) R
On = 2 % eur S Brrp xSrus) @7d)
A, T (U- (1))3 - r+p r+p’

where p = + x, * yand g,, = — €yp = — €_yy. The operator in curly brackets on

the RHS of Eqn. 26 can be interpreted as a new effective light scattering Hamiltonian.

Several comments are in order. Let us first discuss the physical implication of the
new terms appearing in the t/|U-o| << 1 expansion and then deal with it’s validity
and possible generalization.

The terms involving O 4, and O3, appear already in Fleury-Loudon-Elliott (FLE)

effective Hamiltonian,’! however one observes that in general [O 4, ,He] # 0 which
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has a consequence that A; scattering does not vanish as it would if O 5, were truncated
at the lowest order. Furthermore in the resonant regime ® ~ U the “‘correction’ terms
are no longer small (note, that the magnitude of the next nearest neighbor exchange terms
in Hyg is governed by t/ |U-ol and is nor related to the strength of corresponding
exchange terms in the effective Heisenberg model governing the lowest Hubbard band).
Hence the scattering in A; configuration need not be small compared to B;. The terms
O3, and O,, are new and contribute in various scattering geometries as shown in
Table 1. Their exact contribution to the 2-magnon peaks can be obtained by standard
techniques.

One may note that operator O 4, is odd under time reversal and contributes to the

scattering only in as much as e; # e¢. It is precisely the chiral spin operator that plays a

11,12]

central role in a number of recent theories of high-T, systems.

Finally, we emphasize that Eqn. 27a-d are based on the moment expansion of Gy_¢
and is strictly valid only for t/|U—w| << 1. It is therefore insufficient for predicting the
dependence of Raman cross-sections on ®; in the resonant regime. It is however
plausible that the different terms of Eqn. 26 may peak at different frequencies lying
within upper Hubbard band, |U—u)i| ~ O(t). A more complete treatment of the
problem requires a detailed analysis of Eqn. 24 which can be carried out within the
Brinkman-Rice (and spin-wave) approximation.®! This problem will be addressed in the
forthcoming publication. As evident from Eqn. 26 in general the scattering will involve
matrix elements of products of spin operator which are both non-local in space and form
arbitrary long chains of sites. While it would still be possible in principle to write down
the corresponding scattering Hamiltonian it would hardly be useful without further
approximation.

4. RAMAN SCATTERING IN THE DOPED CASE

Once the number of electron deviates from half filling, the nonresonant terms (Eq. 7)
give nontrivial contributions since the kinetic energy, or stress tensor, has matrix
elements between states in the lower Hubbard band, i.e. with low energy transfers. The
simplest case corresponds to the geometry €; = €¢ = X for which the scattering
intensity can be written as
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La(q,0) = 3 ¢ P l<tl o 1i>12 8(ep-e;-Q) 28)
if

Note that this matrix element, for the free electron gas'>~1°]

would necessarily vanish as
q — 0, since in that case 13" reduces to the density fluctuation operator p4, and since

1imo [pgq,H] = 0, the scattering intensity 1,4 (q,®) must vanish as ¢ — 0. This is the
q—>

inescapable consequence of particle number conservation. However for the Mott-
Hubbard systems, the above argument does not apply since t3%,¢ does not commute with
the full Hamiltonian and can cause scattering between the exact eigenstates of H.

The effect of non-parabolicity of the quasiparticle bands (ie. 3" # pg) was
discussed by P. Wolff 17] who found that Ix(q,0) # 0for ® < qvf the latter constraint
being the consequence of limited phase-space available for scattering the quasiparticle.
Here we point out that for the Mott-Hubbard system the scattering is actually dominated
by the incoherent part of the carrier spectral function which defeats the phase-space
limitation and results in nonvanishing scattering intensity, I, (q,®), over a broad range
of ® = O(t). The lack of q dependence (for q—0) of the integrated intensity
= J do I,,(q,w) will be one of the key consequences of our argument.

To proceed, let us rewrite Eqn. 28 in terms of the stress-stress correlation

-be, <pley lvsl <vl (>

I (q,0) = xlm 3 (29)

i (ev — gy — @)—i0"
The evaluation of this function can be done within perturbation theory using the
expression

La(q,0) = Im x®(q,0)/[1 - exp(~fa)] (30)
in terms of the generalized susceptibility which we write as

L

(o) -
X (q,w) N

T AV Ly (qo) .

K,k

Here v{®) = 92, /0k? is the bare vertex, and we define two more bare vertices 74! = 1
and v§?) = 9ey/dkx. Thus defined, %V and %‘® are measures of density-correlations
and current correlations. The important function L is given by (k = (T(), ko))
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1
Ly y (@.0) = 8y x Ar(q,0) + N (1-8x k') By (4, o)

e dk,  dkg
J 2ri) (2xi)
I'(k,k’;q) G(k"+q/2)G(k"—q/2). Here G is the fully dressed one particle Green's
function, and T is the two particle scattering amplitude. (The vertex functions can be
defined as A (k,q)=Y* + ry T'(k,k’;q) G(k’+q/2) G(k’~q/2) ¥l . These obey
the usual particle hole singlet channel Bethe Salpeter equations for which I' is the
dko J’ ddk )
(2ni) ° (2m)¢’

+ o0 dk
with A (q,0) = [ ?rc_j G (k+q/2) G(k—q/2) and By v =

—oo ~—oo

resolvent kernel and try = f

As stressed above, density fluctnations are necessarily suppressed at finite frequencies
in the long wavelength limit and hence (!’ (0,) must vanish for all nonzero @. This is
ensured by a Ward Takahashi identity, (with q = (0, ®))

1 + o Tk,k’;0, ®) = G 1 (k+q/2) - G~ 1(k-q/2) .

This identity is usually used as a bench test for conserving approximations and requires
us to renormalize vertices appropriately with propagators. This implies that A and B as
defined are not independent. We can expand B in terms of the invariants of the square
lattice

By (0,0) = a(0,0) + Zsin kjsinkj B(0,0) + ¥ cosk;cosk{y(0,0) + -
] j

Thus the Ward identity yields o (0,0) = ~ FII— Y Ax(0,w) . The other two
k
susceptibilities are found as g — 0
2
x(0,0) = [i‘;—] T (cos’ky)Ak(0,®) + t? ¥(0,0) (31a)
k
and
) 4[2 .2 2
X7 (0,0) = N Y (sin“ky) Ag(0,0) + t*B(0,w) (31b)
k

Im % x®(0,0) is recognizable as the real part of the conductivity at frequency @,

(see Appendix) and Imy*’(0,w) is our result for the Raman intensity in the doped
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material. It is clear that the two terms get contribution from a common term A which are
related, but also contain independent contributions from B and y. The energy scales of
the function y and B must, however, be similar, We are unable to compute these
functions at this stage, but can provide a calculation of the common A term in order to
give a crude estimate of the Raman intensity. Let us evaluate the ‘‘bubble diagram’’ with
fully dressed Green’s functions

- do” ~ 9 NGl ,
Ay(q,®) = Im > G(2 + k,0") G(2 k, o + ®) (32)
where
. o’
G(k,w) =i [ de'® <T{c} (1) ¢, (0)}> = [ do’ 2c(@) (33)

o-o0 +i(0 - pnd
the propagator for the carriers is expressed in term of its spectral representation
ag(w) = zy d[w - gy ] + o (W) (34)
which we broke up here into a coherent, zy, and incoherent o (w), pieces.
Combining Egn. 29, 30 one finds quite generally:
n
Ax(q,Q) = Jn 4o ay- £ (0) 2y L (Q+0) (35)
The coherent contribution has the form
ARMQQ) = 2kr L 28 me L (1m0 3) B(Q + 8- = e d)

which for the free electron band £ = k%/2m becomes

1/

-172
12(q.Q) = 4m @[(vr@? - @2 0@+ vr@)O(vra- Q) G6)

implying that the integrated intensity J dQ IZM(q,Q) ~ kgq and hence vanishes as
q — 0. This is the consequence of the phase space constraint as mentioned above.
Including the incoherent part of the spectral function one finds for the ¢ — 0 limit
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AP (Q=0,Q) = T 1F 24 [0(1 — €) 0 (Q + & — L) O (Q + ;)
k
+ 0(ex — H)O(Q — g + p)ox(ex — Q)]

w
+ f do o (w) 6, (Q+w)
n-Q
While the precise form of I (q=0,0Q) depends on the details at the incoherent density
of states for Q << i one has:

Af©(0,Q) = Q[3(e, — p) zxkOu (1) + OE(W)] (37

At this point one observes that if the incoherent spectral density vanishes at the Fermi
energy, ie. o, (1) = 0, as it must for the Landau Fermi liquid in order for the
quasiparticle to have an infinite lifetime on the Fermi surface, Q™! Ai(0,Q) also
vanishes at = 0 at least for T = 0). In other words, the Landau liquid picture implies
at T = O that the bubble contribution to the scattering vanishes for zero energy transfers
as super linearly with Q!

We are able at present to give only a very crude estimate of the Raman intensity. It is
readily seen that the intensity integrated over frequencies reduces to

Qc
J() dQ I (0, Q) = <PgtxxPcTxxPc> — <PGtxxPG>2 >

where P projects out doubly occupied sites, and the cutoff frequency Q. is assumed to
be in the range t < Q < U, so that only LHB states can contribute (crudely
Q. ~ insulating optical gap), and should scale like t? times the hole density 8. This

intensity should be seen in the B, and A, geometries with -;—(tx‘x ¥ Ty.y) replacing

Txx in Eq. (19). The various moments can be calculated as higher commutators, and

expressed as correlation functions. '8}

So far we have only dealt with the nonresonant contribution to scattering. In the
doped case it is clear that the physics of the resonant term in Eq. (8) consist of two terms
corresponding to whether the intermediate states |v> belong to the lower or upper
Hubbard bands. (We will assume that €; and € are in the LHB, and that @; ~ ¢ ~ U.)
The reason of course is that the current operator now has matrix elements both within the
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LHB and across the two bands. These new matrix elements are mirrored in the optical
conductivity (see Appendix Eq. (A.2)) where the Re ¢ (¢ = 0,®), upon doping, would
display a reduction in magnitude for ® ~ U (by a factor A say) and an increase in weight
at lower frequencies w of O(t), also at ® = 0, so as to satisfy the optical f-sum rule.

We thus expect that MEP in the doped case is decomposable into two pieces
Mgt = ARP + Bgb

where A and B correspond to restricting the intermediate states in the lower and upper
Hubbard bands. The terms Bﬁﬁ can be treated in a similar fashion as in the undoped
case, at least for ®; such that U — w; << t, and the formal expressions are as in Egs.
(26), (27). We should, however, express a renormalization of the absolute values of the
prefactors by an amount of the order of A (referred to above) corresponding to a loss of
optical spectral weight in the UHB. (The overall effect on Raman intensity would then
be a reduction of O(A2)).

The terms AP are obtained by constraining |v> to the LHB, and we show in the
Appendix A, that these are of O((t/ wi)z) for diagonal elements AR*, and of O(t/w;) for
off diagonal elements, which measure inelastic time reversal breaking.

5. COMPARISON WITH EXPERIMENTS

Tuming now to experiments, we first discuss the insulating case. Recent
experimentsl'3'l9] show that the integrated intensity in the B, Bog and Ay,
geometries are all of the same order of magnitude, and in fact as the laser frequency wp,
is changed, the A, and B, intensities can be larger than B ;,. Within B, geometry, a
reasonable understanding of the scattering has been reached by Singh et al.,*®! who
calculated within the Heisenberg antiferromagnet, various frequency moments of the
appropriate scattering operators and find that these match the experiments, providing an
estimate of J. The fact that the scattering intensity in A, and B, geometries exceeds
the B, is not easy to reconcile with the fact that the second neighbor exchange J, is
smaller than J, by at least an order of magnitude. Within our framework, however, it is
clear that the scattering operator that contributes to A, is different from J,/J,, it in fact,
involves a different power of t/(U—wy ) when such an expansion is possible. In general,
when U ~ w, we have emphasized that the expansion fails, and in fact the scattering in
A,y or By, geometries is not limited by the B ,. The forms of the spin operator that can
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contribute to A1, in the case of U ~ o, involve arbitrarily long strings of spins — the
upper Hubbard band propagator is turned into the scattering operator. Experiments have
been done with laser frequencies of around 5000 A corresponding to ~ 2.48 eV — this
in fact corresponds fairly closely to the effective U in the 2-d cuprates.?} Hence the range
probed so far is also, interestingly enough, very close to the Coulomb energy, and hence
we believe that the experiments are probing the most interesting and difficulr region of
Raman scattering (where an expansion in t/U is most unlikely to converge).

We have demonstrated explicitly that the scattering receives contribution from 4
distinct correlation functions corresponding to different representation of the 2D square
lattice group. These correlation function can be determined by performing measurements
with different scattering geometries as explained in Section II. Of particular interest is
the A, channel which at finite frequency receives contribution from the fiuctuations of
the topological charge, g; . (_§ i X Sy), which play a crucial role in a number of recently
proposed theories of high-T . materials. 11121 Also, as shown in the Appendix the Q — 0
limit of the A scattering intensity is related to the off diagonal part of the dielectric
tensor and could remain finite only if the time reversal symmetry were violated by the
ground state. For the doped case our conclusions are drastically different from those of
the density-fluctuation picture of Raman scattering, which leads to well-known features
including a particle-hole continuum with a well-defined cutoff qv; and a sharp plasma
mode arising from collective density fluctuations. In Mott-Hubbard systems the
intermediate states probed need not necessarily have any sharp structure since the stress
tensor is not expected to create well-defined elementary excitations. Thus we expect a
broad continuum with a bandwidth of order t, with an “‘anomalously” large intensity
compared to free-electron metals, scaling like the hole density near half filling. This
description is qualitatively consistent with the experiments! ~3! where the largest energy
transfer is ~1 eV.

An interesting cross-check is provided by considering the optical conductivity
Reo (0, Q) = Imx™® (0, Q)/Q. In the approximation where only the bubble
contributions to ReG are retained, these are essentially identical since
(cos? ky)) =1~ (sinz(kx)). The optical experiments22 on YBa,; Cu3 04 do seem to
bear out, albeit crudely, this pseudoidentity,

L (0,82) ~ Q/[1 - exp(-BQ)IRec« (0, Q) ,
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for small enough €, although at higher frequencies there seem to be significant
departures.?® In the limit Q < kT, the above reduces to I xx ~ kT ReGy; together with a
temperature-independent I, (0,0), it implies a linear resistivity, which is ubiquitous

feature in the high-T ¢ materials.

For this pseudoidentity and also the Ward-Takahashi identity to hold, we would have
to argue that the vertex corrections are small in the non-s-wave channels of the function
By,x’. Recent work on the Hubbard model? shows that this scenario is realized in the
limit of high dimensions.

In conclusion we have presented a theory of Raman scattering in Mott Hubbard
systems, examining the consequences of the Peierls form of coupling. With this point of
view both the insulating and doped cases are described by effective scattering operator.
We have shown in this paper that this point of view leads to radically different
predictions for integrated scattering intensity for the doped cases that should be taken as
hallmark of Mott Hubbard systems distinguishing these sharply from the nearly free
electron gas.

We thank P. Fleury, K. Lyons and P. Sulewski, for helpful discussions.
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Appendix A: Quasielastic Limit of the Resonant Terms in Raman Scattering and
Relationship to the Dielectric Function.

The contribution of the resonant terms in the doped case arising from intermediate
states in the lower Hubbard bond has an interesting behavior depending sensitively on the
polarization. Consider Eq. (8) with all momenta set at zero,

<fljplv> <vljgli>  <fljglv> <vljgli>

(A.1)

<fl A%B[i> =
| A% z v — & ~ O € — &y — O

veLHB

For completeness and comparison we note that the real part of the optical conductivity
(q = 0) tensor is given by

2
Re 6™ () = [l‘;—} T P ey 5 (02 - ey - e)?) I<ul jilvl?

VEU
(A.2)
and
Xy L -Be ~Be, 1
ReoV(w)=—= ¥ (¢ "* —e )P 3 53
A (SV—EH) -~ h“o

x [<pli*lvs <vii¥ lu> — <pl 1 vs <vl*l u>1  A3)
In the insulating case the intermediate states in (A.1) e, (UHB) are at an energy of O(U)

above ¢; (LHB), and hence for @; ~ ®; ~ U, the second term is negligible.

In the doped case the contribution from these LHB intermediate states makes an intensity

distinction between MR and M¥'. The term ME* is crudely ~ ¥ (jx lv> <vljo) 'Lz'
v 1047
since &y — €; ~ O(t) << ®; ~ O(U). On the other hand the off diagonal term

<fl MR li> = u)L > (<fljy lv> <vljy li> = <flj, lv> <v|jy|i>)
iy

is larger. In fact at T = 0 in the quasielastic limit [f> — |i>, this reduces to

U
approximately ~ f Re [6Y () — 0™ (m)] do (see Eq. (A.3)).
0
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