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We introduce a wave function for a spin-1 Heisenberg linear chain using the strategy of Gutzwiller to
project out a spin-1 system out of two copies of the half-filled noninteracting Fermi gas. The projection
further involves Hund symmetrization of the spin-% particles to produce a spin-1 at each site. The
correlation functions in the wave function seem to have the same power-law decay as those of a Bethe-
ansatz soluble spin-1 chain. Some exact results for finite length systems are presented.

In this paper, we introduce a generalization of the
Gutzwiller idea of projection in the study of an S =1
Heisenberg linear chain. Our motivation is the remark-
able efficacy of the idea for § =3, where the Gutzwiller
projection of the free-Fermi gas at half-filling produces a
spin wave function that does exceedingly well as a varia-
tional wave function! for the S =1 nearest-neighbor
Bethe model. It has been shown to have asymptotic
power-law correlations with the same character, and ex-
ponents? as those of the Bethe chain. Moreover, the
wave function is the exact ground state of a long-ranged
spin Hamiltonian.>*

The generalization introduced here uses the notion of
symmetric projection, or Hund projection, as a means of
coupling two copies of S =1 systems to produce a spin-1
system. This is a familiar idea in spin systems, and can be
used to generate interesting and nontrivial spin-1 wave
functions starting from spin-1 functions. One interesting
application of this idea is the construction® of the valence
bond states for spin-1 starting from dimerized spin-i
states.® The question we pose, and partially answer in
this paper is, what is the nature of spin correlations in an
S =1 system obtained by Hund projecting a pair of S =1
Gutzwiller spin chains? This question certainly has more
tractability than the corresponding question with a pair
of Bethe spin-% chains, and it may be reasonable to as-
sume that the results have similar characteristics. Of
particular interest is the question of power-law falloff of
the correlations, as opposed to an exponential decay,
which is intimately related to that of a gap in the spec-
trum of an appropriate Hamiltonian.’

We introduce in this work the Gutzwiller-Hund wave
functions for spin 1 and carry out the projections explicit-
ly for the case of half-filling. The correlations have been
computed numerically by exact enumeration of states for
chains up to L =18. A study of the finite-sized effects
strongly suggests power-law decay with an exponent
which is similar to that of the gapless bilinear-biquadratic
spin-1 chain.® Partial analytical results are presented con-
cerning the possibility of finding a Hamiltonian for which
our wave function is the exact ground state.

We consider two closely related fermionic tight-
binding models in one-dimension (1D) on a chain of
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length L, with an orbital degeneracy. There are two
kinds of fermions at each site described by destruction
operators c,, and d,,, where 1<=n <L and o0==*1, and
these hop with kinetic energies

T,=—t3(c 1,600 tH.C.),

' §)
T,=—t3(d] , ,d,,+H.c.) .
n

The two models considered couple these chains through a
Hund’s rule coupling in the form

H =T, +T;—J,3S,(c)-S,(d) 2)

or a slightly modified coupling

H =T, +T;—J 1.3 [S,(c)+S,(d)]*, 3)

where the local spin operators are defined as usual
Sie)=14¢ly 7 o cno, and SHd)=1d), 2 , d,, , with
7’s as the usual Pauli matrices.

The model H] can be considered as a pair of coupled
Hubbard models. We will confine ourselves to the cases
Jyu =0 and Jy, 20, which correspond to a tendency to
form local spin moments. The model possesses an “orbit-
al reflection positivity” for this sign of the exchange,
which causes the suppression of the orbital “triplet”
state. It is possible to adapt the ideas of Ref. 9 to this
problem and rigorously show that the ground state is an
orbital singlet using this positivity. Also, we will confine
attention to the “half-filled” case, where the number of
“c” and “d” electrons N,=N,=L. It is clear that, in the
limit of large Jy, (or Jy,), we may ignore the kinetic en-
ergy, and we get a “local” energy level scheme where the
triplet is at lowest energy (—Jy, /4 and —2Jy,, respec-
tively) and with a degenerate doublet excited state (0 and
—3 Jyu respectively). The kinetic energy mixes up this
highly degenerate ‘““ground”-state manifold by exciting
virtually into the doublet manifold and results in the usu-
al Heisenberg spin-1 exchange antiferromagnet

Hex=JexESn'Sn+] ’ Isn[=1 ’ (4)
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where J,, =4t%/Jy, and J., =4t%/(5]},). Naive pertur-
bation theory in Jy, of H,; is, of course, full of low-
frequency divergences, but for large Jy,, we should ex-
pect an insulator with a charge gap of O (Jy,), described
by the spin-1 Heisenberg antiferromagnet, presumably
with a gap in the spin sector of O (J,, ).’

In keeping with the spirit of this work, we study the
generalized Gutzwiller-Hund wave function for H, or H}
in the limit of large Jy,. As discussed earlier, a natural
generalization of Gutzwiller’s idea is to study the wave
function

. 3S (¢)'S (d
1Wo) = Lim “>>" %5y | 5)

where |¢,) is the composite Fermi-gas wave function
ldo) =18 )® 147 ,

)= TI cicilvac) .
[kl <kg

The operator in Eq. (5) has the twofold effect of remov-
ing double occupation in each of the Fermi gases, fol-
lowed by a symmetrization. We write the operator as a
product of two kinds of projection operators:

. azS, (c)S
lime "

a—» ©

"D pPe(c)Pg(d) (7)

where the Gutzwiller projection operator

Po()=TI[1=npy(cInp(e)]

and a similar definition for Pg(c), and the Hund projec-
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where the squared Vandermonde determinant

Sxp ) =explin2x )T [[i —j11? 9

i<j

x(xq, ..

and the metric function [[r]]=sinr7/L, and |F, ) is the
fully saturated ferromagnetic reference state mc,; |vac).
A similar expression for P;(d)|¢,) holds. In order to
carry out the Hund projection, we note the following sim-
ple local rules with

|F)=|F,)®|F;)), Py|F)=|F) ,
PyS, (0)|F)=1[S (c)+S;(d)]|F) ,

and
Py[S; (c)S,()F) =[S (c)S; (d)]IF) .

Since the resulting state is purely symmetric in the ex-
change of “c” and “d,” we introduce spin-1 operators S,
with [S,-S,|=2 and SI=(StiS}), identify |F)
with the up projection state, thus the rules be-
come PyS; (c)—(1/V2)S;, PyS;(d)—(1/V2)S.,
PyS. (c)S; (d)—(S,)>. The Hund projection is now
easy to perform. We write down the configurations of
spin states as a string of S ~’s and S ~%s acting upon the
reference |F) state, and sum over all the contributing
amplitudes. The Gutzwiller-Hund wave function is writ-
ten in the form

L/2

tion operator Py =[], [2+S,(c)-S,,(d)]. As a prelude W)on= go‘l’v(’l”b RN T [T 0 S S
let us write Pg(c)|¢, ) in the form*
X{S, S S, J2|F) ,
Pslc)lg, )= > X(X 1%, -5 Xp p) (10)
ISx = =xp ) 1Sr<r,< -+ <rp_,,=L,
X[Ss (e)---8, (]IF.), 1<t,<t,< -+ <t,<L,
(8)  with
J
v L—2
Wory,rys e oourp oMty - - t,)=(expin3r; 2"(2—8, 1 0%t -t ) TT 1T [[t,~—rj]]2 XAryccrp ), (11
i=1 j=1
r
where ?:;;inct combinations for writing the arguments in Eq.
H v ) . .
— A few remarks are appropriate at this state. The phase
Ola,ay, ... a,)= —a,]], (12) pprop p
(o2 %) ,,I;[l vrl;I][[aV avll factor in Eq. (11) is the familiar “Marshall” sign factor,
) the exact ground state of the nearest-neighbor spin-1
Xlry o) =230 (’1”P2a e »"PL/Z_V) Hamiltonian Eq. (4) has the same phase structure. The
P wave function Wy is a many-body singlet; we know this
X 92(”’1_/27 PR rPL_Zv) , (13) from our construction, since we took a singlet, the Fermi

where P is a sum over the

L—2v—1
L/2—v—1

wave function, and carried out rotationally invariant pro-
jections. A direct verification of the singlet sum rule
St 1Wsy) =0 is, in fact, possible for L =4, 6, and 8, but
the combinatorial tricks that go into this annihilation be-
come extremely complex. A direct proof can be easily



46 GUTZWILLER-HUND WAVE FUNCTION FOR AN S=1 LINEAR CHAIN

given using the Weyl representation (see later). The wave
function has many features that distinguish it from the
considerably simpler wave function of the S=1
Gutzwiller problem. First, we have the sum over v in Eq.
(10), therefore the number of (S ™)? is not conserved.
Second, the sum involved in Eq. (13) eliminates any possi-
bility of interpreting the modulus squared of the wave
function as a classical partition function of a Coulomb
gas. Such an analogy, if it exists, simplifies the correla-
tion function calculation enormously. (A configuration
receives its contribution in the wave function from
several underlying spin-i configurations, and we must
sum and then square.)

We next present the results of a numerical evaluation
of the spin-correlation functions in the wave function Eq.
(13). These were carried out by exact enumeration of all
the states up to L =18, and by using the singlet nature of
the wave function to write c(r)=(SS?)=1(8y'S,).
For chain length L, the number of distinct correlations
that can be measured are L /2 in number. In Table I, we
present all the distinct correlations for all even chain
lengths up to L =18. Exact enumeration becomes prohi-
bitively time consuming for L > 18 (even on a CRAY),
and Monte Carlo methods need to be employed for these.
We would need data with L up to 50 or so in order to
reach really firm answers and so the conclusions drawn
here are tentative. On the basis of the data at hand, we
cannot strictly rule out an (infinite volume) correlation
length larger than, say, nine lattice constants. The data
does, however, strongly suggests power-law decay for the
range available.

We have analyzed the data by attempting a fit of the
correlations at a given fixed distance, to a power law in
the inverse square of the system size. Owing to periodic
bc’s, we expect no correction of O (1/L), and a gap in the
spectrum would lead to more rapid, in fact, exponential,
convergence. We find reasonable convergence, particu-
larly if the shortest chain length is discarded (e.g., r =3,
we fit L =8,...,18). The fits are displayed in Fig. 1.
The infinite-size extrapolation of correlations can be at-
tempted for distances up to 7 with these fits, and are
presented in the last row of the Table I. The estimates
are quoted to the third decimal place but should be re-
garded as progressively uncertain for larger distances. A
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FIG. 1. The correlation function at different separations as a
function of 1/L? and a linear fit to 1/L2. The fits were obtained
by discarding the shortest spin chain at a fixed separation.

simple log-log fit of these extrapolated correlations gives
c(r)=(—1)a/r", with a=0.435, n=0.744, and this fit
(on a linear scale) as well as the data are shown in Fig. 2.
The fit seems to be very good. We tentatively conclude
7=0.7410.04.

The extrapolated L — « limit value of the nearest-
neighbor correlation for C(1)=—0.451+0.002. It is in-
teresting to note that the exact ground-state energy of the
S =1 chain gives'® Cyapy(1)= —0.467. Thus, the wave
function, Eq. (10), viewed as a variational wave function
for Eq. (4) gives an energy that is ~4% of the exact
value. The bilinear-biquadratic Hamiltonian

H=2[sn'sn+l+a(sn.sn+2)2] (14)

has been studied extensively,'"®>!2 for various values of
a, and it is instructive to compare the nearest-neighbor
correlation for a few values of a«a available
C{a=—l](1)= _‘0.425, Cla=+1/3l(1)= —0.444. The two
cases a=—1 and | correspond to a ‘“gapless” and a
“gapped” system.®>!> The estimate from our wave func-
tion thus appears to have the closest variational energy to
the exact and yet the long-distance nature of the correla-
tions seems quite different.

We will use a different representation to study the wave
function, Eq. (10), that is very elegant and useful for un-
derstanding the structure in the wave function. We re-

TABLE L. (—1){S3S?) as a function of r for different chain lengths studied by us. The last row is an

estimate based on an extrapolation to infinite L.

C(n(—1)

1 2 3 4 5 6 7 8 9

4 0.4938 0.3209

6 0.4694 0.2739 0.2757

8 0.4613 0.2598 0.2360 0.2083
10 0.4576 0.2536 0.2208 0.1860 0.1893
12 0.4556 0.2504 0.2132 0.1755 0.1702 0.1595
14 0.4544 0.2485 0.2088 0.1696 0.1602 0.1464 0.1487
16 0.4536 0.2472 0.2060 0.1659 0.1542 0.1388 0.1371 0.1316
18 0.4531 0.2463 0.2042 0.1634 0.1503 0.1339 0.1300 0.1228 0.1244
00 0.451 0.243 0.196 0.153 0.134 0.115 0.103
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FIG. 2. The extrapolated infinite L correlations plotted
against 0.435/r%7*. The curve was obtained by a log-log fit.

mind the reader of the Weyl representation of angular
momentum. Consider a spin-S Hilbert space: we can
represent'* the manifold of 2 S +1 states as polynominals
in z of degree <(2S), and write the three spin operators
as

S~ =3/0z, SZ=s—zi, st=2sz -2 | (15)
dz dz

The ‘“wave functions” are thus proportional to
1,z,2%,...,2%5, with 1 representing the states |S,S ) and
z5~|S,—S). Indetail 1, x, are |1+ 1), |1 —1),and 1,

in2r;

v, = s e I =P, x,,

< gt
I1<r <ry< <rp <L i<j
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V2t,,t2 are |1,1), [1,0), [1,—1). We will denote by x&
and y,” the wave function for the “c-”” and “d-" like spin-
1 systems, and by 7, the states of the spin-1 system, i.e.,
Ste)—d/dx,, S}(d)—ad/3y,, S;—0/3t,. We first set
out the effect of the Hund symmetrization operator on a
system consisting of two copies of §=1. The pro-
jection operator maps states x,f‘y_ﬁ8 to states t) as
follows:  Pyl—1, Pyx,—(1/V2)V2t,=t,, Pyy,
—(1/V2)V2t,, Pyx,y,—t}. Thus, the two incon-
venient factors of \75 cancel out and, under Py, the role
of symmetrization is remarkably simple. We can thus
consider two arbitrary states of the two spin-1 chains and
at once write down the Weyl wave function for the sym-
metrized spin-1 chain as follows:

Py{G(xy X p)F (1, ..,y )}

_)G(tl""YIL/Z)F(tl""’tL/l)' (16)

Since G and F are at most of degree one in each variable,
the rhs is at most of degree 2 in ¢,, which is, of course,
consistent with its being a spin-1 wave function.

Let us first write the wave function, Eq. (8), Pg(c)|¥, )
in the above notation:

UV

The effect of the Hund operator can be trivially written down in view (16) as

You= 2

< e <
l_r‘< <rp s

exp [i‘rrer
j

L i<j

The above form of the wave function is very compact and
useful. It is also worth noting that the case of more than
two copies of the Fermi gas with a similar projection onto
the maximum local spin sector can be readily worked out
in the Weyl basis: the conclusion is that the general
spin-S wave function in this class is obtained by raising
Eq. (17) to a power 2S. In this basis, spin S enters as pa-
rameter and may be interpreted as the inverse tempera-
ture variable in an effective one-dimensional classical spin
system. Let us note>* that Eq. (8) is known to be the ex-
act ground state of the long-ranged Heisenberg model

H=3JS,S,,, , (18)

where J,=J,/sin’(r7/L). The spin-exchange operator
becomes a differential operator in the x’s under the above
substitutions. We have considered the possibility of
finding an operator for which Wgy is the exact ground
state. We confined attention to operators of the form

H=3JS,S,,,+32K,(S;S; ., ) (19)

TI(lri—r10, -t

2
17

L2

with arbitrary J, and K, and asked if Wy is an eigen-
function. The form above is by no means the most gen-
eral spin operator, but is inspired by the form of Eq. (18).
There is always, of course, a trivial set of {J,,K,}, name-
ly, VK,=0, VJ,=J,, which becomes the total spin
operator (apart from trivial constants). The method con-
sisted of operating on W5g with Eq. (19) for a fixed L, and
to require the orthogonal state vector to vanish. The
orthogonality condition gives an overdetermined set of
linear equations with {J,} and {K,} as L independent pa-
rameters. For L =4 and 6, we have found, respectively, 2
and 1 sets of constants which are presented below,
whereas for L =8, there is no set of constants other than
the trivial one, implying that no systematic Hamiltonian
exists for this wave function in the class of Eq. (19). We
give below the nonzero constants and the eigenvalue.

L =4:
A=—64,
J, =1, K,=—1, A=—-8.

Jl=7’ K1:—2,
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L=6:
J,=1989 ,
J,=—719,
K,=-360,
K,=-1688,
K;=1071,
A=-—30924 .

For L =8 no constants exist. We spare our readers the
details of the messy algebraic proof of this result.

The Gutzwiller-Hund wave function for the S =1
linear chain introduced in this paper is tantalizing in
several respects. We have seen that the correlation func-
tions appear to decay algebraically. The rate of decay ex-
ponent estimated by us essentially coincides with the
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value 0.75 known for the wave function of Refs. 8 and 13,
namely, the gapless spin-1 chain with a=—1. This ex-
ponent is the same as that of the k =2 Wess-Zumino
theory, as noted in Ref. 15. The variational energy for
the nearest-neighbor model is also fairly close, although
the s =1 case has a much closer coincidence. On the
analytical front, the absence of a Hamiltonian in the class
of Eq. (19) is somewhat disappointing, but it seems to be
worthwhile to continue the search for this elusive opera-
tor in a wider class of Hamiltonians. Further, it seems
possible to us that the wave function introduced here
stands in the same relation to the spin-1 chain of Ref. 8,
as does the spin-1 Gutzwiller state to the Bethe wave
function, in terms of the absence of logarithmic correc-
tions in the correlation functions.

I thank M. Gelfand T. Giamarchi, D. Huse, and R. R.
P. Singh for helpful discussions.
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