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We study Raman scattering from 1D antiferromagnets within the Fleury-Loudon scheme by ap
a finite temperature Lanczos method to a 1D spin-half Heisenberg model with nearest-neighbJ1)
and second-neighbor (J2) interactions. The low-temperature spectra are analyzed in terms of the kn
elementary excitations of the system forJ2 ­ 0 andJ2 ­ 1y2. We find that the low-T Raman spectra
are very broad forjJ2yJ1j # 0.3. This broad peak gradually diminishes and shifts with temperature
that atT . J1 the spectra are narrower and peaked at low frequencies. The experimental spec
CuGeO3 are discussed in light of our calculations. [S0031-9007(96)01579-7]
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Recently there has been much interest in antiferrom
netism and spin-Peierls transition in the quasi-1D mate
CuGeO3 [1]. These materials exhibit a spin-Peierls tra
sition at TSP ­ 14 K. Above this temperature they ar
believed to be well described by a quasi-1D Heisenb
model. The temperature dependence of the spin gap
low TSP and the spin-wave spectra have been meas
in neutron scattering [2,3]. Understanding these exp
ments have led various theoretical groups to consid
quasi-1D frustrated Heisenberg model with nearest-
second-neighbor antiferromagnetic interactions along
chains [4,5]. It is well known that in the absence
second-neighbor interactions, the ground state has no
range order and spin-spin correlations decay as a po
law. With sufficiently large second-neighbor interactio
the ground state spontaneously dimerizes and the s
excitation spectrum becomes gapped [6].

More recently Raman scattering has also been meas
in these systems, independently by different groups [7
Below the spin-Peierls transition, a complete understa
ing of Raman scattering necessarily requires considera
of phonons and electron-phonon couplings. Here we
concentrate on the experimental spectra aboveTSP . This
spectra appears predominantly with incoming and ou
ing light polarized along thec axis,the direction of larges
exchange couplings in these materials. It is found that
low-temperature spectra are very broad with much of
spectral weight between200 and400 cm21. As the tem-
perature is increased this peak diminishes and is neglig
above 80 K, while a much narrower peak appears at
frequencies which grows as the temperature is raised.

The aim of this study is a theoretical understanding
Raman scattering from 1D antiferromagnets. While
primary focus here is on the material CuGeO3, our results
should be relevant to understanding magnetic Ram
spectra in other quasi-1D antiferromagnets as well.
CuGeO3, one important aspect of Raman scattering is t
0031-9007y96y77(19)y4086(4)$10.00
g-
ial
-

rg
be-
red
ri-
r a
nd
he
f
ng
er
,
in-

red
8].
d-
ns
ill

o-

he
e

ble
w

of
ur

an
or
at

it presents an alternative probe and these spectra c
lead to establishing the proper model, being controver
so far mainly with respect to the importance of ne
neighbor spin interactions. The observedT variation also
presents a challenge, since the transformation of br
spectra into a narrow central-peak-like structure at h
T is against usual experience of spectra becoming m
incoherent and wider with increasingT .

We study the magnetic Raman scattering in these
terials within the Fleury-Loudon scheme [9], a form
derivation for which has recently been given by Shas
and Shraiman [10]. To explain the dominant light sc
tering with incident and outgoing light polarized along t
c axis as observed experimentally, one has to go bey
the usually discussed Heisenberg model with near
neighbor (J1) spin interaction. Hence we consider a 1
spin-half Heisenberg Hamiltonian

H ­ J1

X
i

Si ? Si11 1 J2

X
i

Si ? Si12 , (1)

including also the next-neighbor (J2) exchange. If we
had purely nearest-neighbor interactions, then there w
be no scattering within the Fleury-Loudon scheme as
scattering operator would be proportional to the origi
Hamiltonian. However “photon assisted superexchan
as in Ref. [10] would give a second-neighbor term in
light scattering Hamiltonian.

Within the space of nearest and next-nearest inte
tions, an effective Raman operator can be derived, inc
ing again both terms, however, with different weigh
Since one can always subtract the part commuting w
H , without loss of generality, we choose the opera
with purely second-neighbor interaction,

R ­ A
X

i

Si ? Si12 . (2)

Below the spin-Peierls transition additional stagge
terms arise in the Hamiltonian. Then, nearest- a
© 1996 The American Physical Society
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second-neighbor Raman operators can be distinguis
and their relative weights can be addressed.

The Raman spectral function is then given by

Isvd ­
1

pNZ
Re

Z `

0
dt eivt Trfe2bH RstdRs0dg , (3)

where Z is the partition function. We calculateIsvd
at finite T (as well asT ­ 0) by studying short chains
(with periodic boundary consitions) with up toN ­ 24
spins. Here we employ the finite-T method for dynamic
and static correlation functions, based on the Lanc
iteration combined with random sampling [11]. Th
method has already been used to study several dynam
response functions for thet-J model (as relevant for
the cuprates), including the Raman response [12].
the present calculations we useM0 ­ 100 150 Lanczos
steps and random sampling overN0 , 600 initial wave
functions. The results are checked on smaller systems
full diagonalization.

As discussed extensively in connection with previo
applications, the spectra for small systems reveal ma
scopic behavior at finiteT . Tp, whereTp is related to
the low-energy level spacing and is thus dependent on
system size. For the model (1) low-energy gaps are q
substantial (in contrast to the 2D results in Refs. [11,12
i.e., Tp , 0.4J1 for systems considered. AtT , Tp we
have to add an appreciable broadeningD to smooth out
finite-size dependent peaks inIsvd.

First let us discuss the variation of the calculated lowT
spectra with differentJ2, as presented in Fig. 1 for fixed
T ­ 0.2J1 ø 0 and 20.5 # J2yJ1 # 0.5. Analogous
information can be gained also from the behavior of t
frequency moments, which converge more rapidly
finite systems. In Fig. 2 we presentT ­ 0 results for the
total Raman scattering intensityI0, the average frequenc
kvl, and the spectral widths, all calculated with respec
to Isv . 0d for systems withN ­ 20, 24.

FIG. 1. Raman intensityIyA2 vs vyJ1 for the Heisenberg
model with variousJ2yJ1, as calculated for fixedT ­ 0.2J1
andN ­ 20. An additional smoothening withD ­ 0.3J1 (for
J2yJ1 ­ 0, 0.2) andD ­ 0.4J1 (otherJ2yJ1 ) is introduced.
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We find that the low-T spectra show a broad but pr
nounced peak for smalljJ2yJ1j & 0.3. In this parameter
range, the peak position shifts a little towards lower en
gies with increasingJ2. Also, the peak becomes mo
pronounced for largerJ2. For J2 . 0.3J1, the spectra
change quite dramatically. ForJ2 ­ J1y2, where the
ground state is rigorously known to be spontaneou
dimerized [6], the peak moves to much lower frequenc
occurring belowJ1.

One can get some understanding of these spectr
terms of the elementary excitations of the system, wh
are well known forJ2 ­ 0. In this case, the elementa
excitations are domain walls or spinons with dispersion

esqd ­
pJ
2

j sinqj . (4)

Light scattering leads to total spin-zero excitations w
total momentumk ­ 0. These can be two- or four-spino
excitations. However, there is vanishing spectral wei
for two spinons atk ­ 0. Thus the spectra consist o
four-spinon excitations withk ­ 0. These can also b
thought of as two magnons with opposite momenta, e
of which is a composite of two spinons. Thus the spec
reflect the two-magnon density of states, appropria
weighted by a squared matrix element of the scatte
Hamiltonian [13,14]. It is known [15,16] that to get
good description of the dynamic structure factorSsQ, vd
in terms of noninteracting spinons, the decomposition
magnons with momentumQ in terms of spinons with
momenta q and Q 2 q needs to include extra form
factorsasq, Q 2 qd. Specifically, atT ­ 0

Sz
Q , 2i

X
0,q,Q

asq, Q 2 qdby
q b

y
Q2q , (5)

FIG. 2. Total Raman intensityI0 (arbitrary units), the averag
frequency kvlyJ1, and the spectral widthsyJ1 vs J2yJ1 at
T ­ 0, as evaluated for systems withN ­ 24 (J2yJ1 ­ 0, 0.2)
andN ­ 20 (otherJ2yJ1), respectively.
4087
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on. We
re hard
whereSz
Q is a spin operator,by

q represent fermion creation operators for the spinons, and

a2sq, Q 2 qd ­ C
j sinsQy2 2 qdj

p
sinq

p
sinsQ 2 qd

. (6)

This decomposition is not a formal operator identity, but may be regarded as a leading term in a spinon expansi
can use this to compute the Raman spectral function in Eq. (3) provided we neglect “vertex corrections,” which a
to quantify at present. With this further approximation the Raman spectra can be estimated as

Isvd ­
Z p

0
dQ

Z Q

0
dq1

Z Q

0
dq2a2sq1, Q 2 q1da2sq2, Q 2 q2d

3 jMQ j2dsssv 2 esq1d 2 esQ 2 q1d 2 esq2d 2 esQ 2 q2dddd , (7)
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wherejMQj2 represents the matrix elements of the Ram
operator.

In Fig. 3, we show the spectraIsvd evaluated numer
ically for MQ equal to 1, cosQ, cos2Q, and cosQy2,
respectively. The peak in the density of states atv ­ p

reflects the deCloizeaux-Pearson modes. If the spin w
were well defined excitations, their density of states wo
diverge atpJy2, causing a divergence atpJ for two
magnons. In reality, these modes are only the bottom
a continuum; nevertheless, a divergent spectral weigh
this lower end of the continuum leads to a peak in
two-magnon density of states. This clearly arises fr
magnons atQ ­ py2 and is thus killed byMQ ­ cosQ.
The numerical results are consistent with such a peak
though the finite-size effects prevent us from locating
precisely.

On the other hand, the above spinon spectra withMQ ­
cos2Q, as expected for the second-neighbor Raman
erator, is inconsistent with the numerical results at l
frequencies. Numerical results clearly show that ther
very little scattering at low frequencies. Looking at t
finite-size effects, we find that the lower end of the spec
scales with sizeN as1yN but the spectral weight scales
1yN3. This suggests that in the thermodynamic limit, t
low frequency spectra scale asv3. This discrepancy with

FIG. 3. The density of states for four spinons evalua
with matrix elementsMQ ­ 1, cosQ, cos2Q, and cosQy2,
respectively [see Eq. (7)].
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the above spinon estimate is presumably due to the
tex corrections, which must somehow cancel the exces
low-frequency scattering. This result is phenomenolo
cally consistent withMQ ­ cosQy2, which eliminates the
low-frequency spectral weight, occurring atQ ­ p [7].

In contrast to the power-law Néel phase, in the spon
neously dimerized phase at largerJ2yJ1 the excitations can
be considered as local triplets. A simple estimate of ex
tation energies in terms of pairs of local triplets would le
to scattering up to2J1. A more careful treatment of the ex
citations by Shastry and Sutherland [17] suggests that
elementary excitations in this phase are defects, analo
to spinons in the power-law phase. However, there is a
in the defect excitation spectra; thus, for a defect pair th
is finite spectral weight atQ ­ 0. Thus the Raman spec
tra consist of both two-defect and four-defect compone
This leads to an onset in the spectra at about1y4J1 and
they extend up to about2.5J1. These features are clear
consistent with our numerical results. TheT ­ 0 gaps are
found to be0.345J1, 0.30J1, and0.28J1 for N ­ 16, 20,
and24, respectively.

Let us now discuss a comparison of calculated spe
with the experimental spectra in CuGeO3 at low T .

TSP . It is evident that the spectra are inconsistent w
J2 ­ 0 and J1 ­ 80 K and also withJ2yJ1 ­ 0.5 with
J1 ­ 150 K. The values ofJ1 ­ 150 K and J2yJ1 ø
0.2 0.3 are closest in the peak position and width to t
experimental spectra. The spectral shape is somew
affected by the presence of phonon modes. Howe
the reported data of both van Loosdrechtet al. and
Lemmenset al. seem to have multiple peaks. Our spin
calculation suggests that the main peak should be
twice the maximum energy for single magnons. Neutr
scattering [2] shows a maximum in the spin-wave ene
at 16.3 meV ­ 131 cm21. This translates into a peak i
Raman scattering at262 cm21. The data are consisten
with this result. We have also verified that adding
nearest-neighbor alternating term to our Hamiltonian
to the Raman operator causes a mixing of states w
k ­ 0 andk ­ p and leads to Raman scattering at mu
lower energies. This leads to results consistent with
30 cm21 peak seen belowTSP [8].

In Fig. 4 we present results for theT variation of
spectra at fixedJ2yJ1 ­ 0.2. We notice that the low-T



VOLUME 77, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 4 NOVEMBER 1996

e
e

a
y

e
it
n
e
n
e
e
u
t
o
u

e
-l
n

e
t
ft
e

e
a

t
w

re-
ith
ter-

to
ctra
t for

nd,
eti-
t

th
tilla

ts

tt.

ev.

.)

. B

tt.
C.

d-
FIG. 4. IyA2 vs vyJ for variousTyJ1, as calculated at fixed
J2 ­ 0.2J1 and N ­ 20. The smoothening isD ­ 0.4J1 for
TyJ1 # 0.3 andD # 0.2J1 for TyJ1 $ 0.5.

two-magnon-like peak with the maximum atvp , 2.5J1

gradually disappears with increasingT . At T $ J1 it is
substituted by a spectra peaked at much lowerv , J1.
It should be noted that this development is quite diff
ent from the 2D Heisenberg model where the relativ
narrow two-magnon peak atT , 0 mainly broadens with
increasingT $ J, with only a small reduction inkvl [12].
Another interesting feature in Fig. 4 is the persistence
the pseudogap at lowv , 0.5J1, even atT ¿ J1 (clearly
not present for the 2D Heisenberg model [12]). This g
is most pronounced forJ2 ­ 0, where it seems that at an
T we haveIsv ! 0d ­ 0, while it gradually fills up with
addingJ2 fi 0. It is possible that this phenomenon is r
lated to the integrability of the 1D Heisenberg model (w
J2 ­ 0), since similar effects have been recently fou
in certain response functions within integrable mod
[18]. Some features of this spectra, such as low-freque
peaks and sharpening of spectral features with temp
ture, are rather similar to experiments. However, the
periments show a quasielastic peak at high temperat
and this is not seen in our numerical data. The exten
which these discrepancies are related to closeness t
integrable model on the theoretical side and lack of tr
one dimensionality on the experimental side, needs to
further investigated.

Our main findings are that the low-temperature sp
tra are broad and occur at high energies in the power
Néel phase and become narrower and move to lower e
gies in the spontaneously dimerized phase. They dim
ish in intensity with increase in temperature. At high
temperatures we reproduce the experimental finding
with increasing temperature the spectral features shi
lower frequencies, leading to much narrower central-p
form. However, unlike the experiments, where the pe
becomes quasielastic and intensity continues to incr
with T (which could be an indication of some addition
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mechanism at very highT ), in our studies the spectra a
high-T remain of finite width and intensity, with a narro
pseudogap persisting at low frequencies. This could be
lated to the integrability of the 1D Heisenberg model w
purely nearest-neighbor interactions, introducing an in
esting theoretical issue but possibly not directly related
experiments. Comparison with the experimental spe
shows that the nearest-neighbor model does not accoun
the properties of CuGeO3. If we takeJ ­ 80 K then the
experimental spectra are peaked above4J. However, this
is inconsistent with our calculations. On the other ha
well into the spontaneously dimerized phase the theor
cal spectra are peaked belowJ1, which is also inconsisten
with experiments. On the other hand, withJ1 near 150 K,
the spectra are peaked near frequency2J1 and this is as cal-
culated forJ2 near0.2. These findings are consistent wi
previous theoretical studies of these systems by Cas
et al. [5].
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