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Abstract. We point out the curious phenomenon afler by projectionin a class of lattice
Fermi systems near half filling. Enhanced pairing correlations of extended s-wave Cooper
pairs result from the process of projecting out s-wave Cooper pairs, with negligible effect
on the ground-state energy. The Hubbard model is a particularly nice example of the above
phenomenon, which is revealed with the use of rigorous inequalities including the uncertainty
principle inequality. In addition, we present numerical evidence that at half filling a related but
simplified model shows off-diagonal long range order (ODLRO) of extended s-wave Cooper
pairs.

There is considerable current interest in the possibility of purely electronic interaction-
driven superconductivity as a mechanism to explain the igbdperconductors. While it

is well known for the uniform electron gas that purely Coulomb repulsion terms lead to
superconductivity in higher angular momentum channels [1], albeit with very low transition
temperatures, here the search, guided by experiments, is predominantly for single-band
models that display such behaviour in the proximity of half filling on a lattice. The
prototypical example is that of the Hubbard model [2, 3], although its tendency (or otherwise)
towards superconductivity remains an unsettled issue.

In this work, we study a class of many-body Fermi systems on a lattice, under the
influence of a projection of s-wave Cooper pairs. Recall that one has an inhibition of s-wave
ordering within weak-coupling Bardeen—Cooper—Schrieffer (BCS) theory for models for on-
site repulsion in addition to the usual phononic coupling. In contraspraject outs-wave
Cooper pairs in the present work. The study of most projected models, generally justified by
their status as ‘fixed-point’ Hamiltonians in some underlying scaling theory, has been a rich
source of new and interesting models in the field of correlated Fermi systems. A prototype
is the Gutzwiller wavefunction, wherein upon removing double occupancy, effects such as
enhanced effective masses follow near half filling, and these are crucial in our understanding
of almost localized Fermi liquids [4]. At half filling we find insulating wavefunctions with
enhanced spin—spin correlations [5] that are regarded as typical of quantum spin systems
in low dimensions withS = 1/2. At the level of the Hamiltonian, projection leads to
interesting new models, such as the various limits of the Hubbard model, for example,
large U giving the r—J model, U = oo giving the Nagaoka limit, and several examples
in single impurity models. It seems worth remarking that projection is a theoretical device
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that has genuinely strong coupling and is non-perturbative, making it difficult to treat with
conventional methods. In the present work the consequences of s-wave projection are found
by combining a set of known inequalities in a novel fashion, and they lead to surprising
insights which are detailed later.

We consider the model defined o@-aimensional hypercubic lattice with a Hamiltonian

H=T+UY njniy +UB'B 1)

whereT is the kinetic energy term} , e(k)c! (k)c, (k). The second term is the Hubbard
repulsion term (i.eU > 0). We will consider other forms of interaction, but the argument
is simplest for the Hubbard interaction. We take the number of site§ asd denote
the density of particles by = N/£. We also denoted = H — uN, wherep is the
chemical potential andV the number operator. The third term is new, with the operator
B =} explig;}b; andb; = c;cjy. If we takeU; to be O(1/L£) andnegative then this
term would, in a weak coupling BCS, encourage the formation of s-wave Cooper pairs,
and one expects a superconducting ground stateUFaf O(1/L) andpositive the extra
term is trivial as seen by a variational argument using the unperturbed ground state as a
trial function. The coupling constardf; is taken ofO (1) andpositivein the present work,
and corresponds tprojecting outthe appropriate Cooper pairs at general fillings. Precisely
at half filling, the influence of the new term is more subtle as noted later in this letter.
Although various choices of the phase anglegenerate different examples, two of the
interesting ones are (a); = 0 leads to a suppression of pure s-wave superconductivity,
and (b)¢; = r; - {m, m, ...} suppresses the so-called eta pairing [6]. We will also consider
a third possibility (c) obtained by setting = ), explig (k)}b(k) whereb(k) = c_xciy
and with an arbitrary functioh (k) which can be used to vary the relative phases between
different momenta. This last class of operators, however, forces us to the cése-df,
in order to obtain any results. Case (a) appears to be the most interesting physically, but
the others are included for completeness.

We first note that for lattices that are bipartite, and where the electronic hopping only
connects unlike sublattices, we can make a particle-hole transformatien (—1)%},
with 6; = 0,1 for the two sublattices, whereby the energy satisfig#/, U;, p] =
E[U,U;,1— p] — L(1 — p)(U + U,). At half filling (0 = 1) the chemical potentials
for adding and subtracting a particle add upas+ u_ = U + U,. At this filling, the
new termU, plays a crucial role in allowing doubly-occupied sites and holes to wander
away from each other, and in fact encourages charge fluctuations, whereby the usual Mott
insulating state of the Hubbard model at half filling is heavily discouraged.

We now use a simple but useful inequality [7]

(Yol M'[H, M]|o) >0 )

where|v) is the ground state off, andM is an arbitrary operator. Usiny = B we find
on using the important commutataB [BT] = £ — N, valid in all cases (a), (b) and (c), that

(BTAY > (U, (L — N +2) — 20+ UNB'B). (3)

In case (c), the above inequality holds only with= 0. Note that the left-hand side is
forced to be real and positive from the inequality. We denote ground-state averages by
angular brackets, and the operatbris given by A = [T, B]. For the two cases of the
phasep; in equation (1), (@A = —2) ", €(k)b(k), and (D)A = — ) {e(k) +€e(k+1II)}b(k)

with IT = {7, 7, .. .}. In the popular case of nearest-neighbour hopping on the hypercubic
lattice, (a) corresponds to the extended s-wave pairing operator, whereas (bAgiv€s

A non-zero result is obtained in the latter case only when the hopping connects sites on the
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same sublattice. In two dimensions, for example, with) = —2z(cogk,) + cogk,)) —
2t' cogk,) cogk,), we find A = 4¢' )" (cosk,) cogky))b(k).

We now use the Cauchy—Schwartz inequality to bound the left-hand side of inequality (3)
as

(ATA)(B'B) > (BTA)2. 4)
Combining (3) and (4) we find
(ATA) > (Us(L — N +2) — 2u + UY*(B'B). (5)

Again note that in case (c), (5) is valid only with = 0. We note that on the right-hand
side of (5) the prefactor is 0O (£?) provided we are at a thermodynamic filling < 1.
Exactly at half filling the inequality is less useful. At any filling< 1, we can deduce that
(B'B) is very small. In fact we will show that it is(£) rather thanO(£). If it were of
O(L), (as indeed it is in the ground state of the free Fermi gas), tdéA) has to exceed

a trivial upper bound oD (£?)1. If (B'B) is of O(1) then we have two consequences that
are mutually incompatible (at least whéh = 0). To see this, assume thag'B) is of

0 (1) and so we find from the Feynman—Hellman thearem

U
E[U, Uy, p] = E[U, 0, p]+/ dU;(B'B)y, ®)
0
= E[U, 0, p] + o(L). (7)

The other consequence of (5) is thatfA) ~ O(L£?), i.e. we have long ranged order
(ODLRO) in the operatorA [8]. This is possible only if the energy increases by terms
of O(L), at least in the case whdih = 0 as is seen from a diagonalization of a bilinear
Hamiltonian adding the kinetic enerdy and A with coefficients ofO(1)§. A consistent
possibility for U; of O(1) is||

(B'B) = 0(1/L) and (ATA) = O(L) (8)

along with equation (7). One immediate consequence of this result is that of the
thermodynamic degeneracy of the energy: the energy per site of the model in equation (1)
Lim,:_.E[U, Uy, p]/L is identical to that of the pure Hubbard model (i(&. = 0) atall
U or filling p # 1.

Another important consequence is that the chemical potential is unchandéduntil
we reach half filling ¢ = dE/dN) and therefore the compressibility is unchangedlhy
(since Yk = Np(@u/dN),). At precisely half filling, the chemical potential jumps and the
compressibility vanishes. The value pfat half filling for the case of bipartite symmetry
was given above ag/ + U,)/2.

We have seen the remarkable suppression of correlations of the Bype. When we
recall that([B, Bf]) = L(1 — p), it is seen that the fluctuations & + B in the ground
state diminish on approaching half filling, i.&.B + B)?/L£) = 1 — p. This immediately

t The bound is obtained by writingdTA) < 43", le(K)e(K) langlebl (KNb(K))| < 43" 1o le()e (k)] ~ O(L).

1 Here we use the concavity of energy with respectto calling 8(U;) = (BTB)UY, we note that second-order
perturbation theory implies thag (x)/dx < 0, i.e.8(x) is a monotonically decreasing function. Cleaflgc) > 0,
so that O< B(x) < B(0). In the absence of/; we assume the system to be a normal Fermi system, and hence
B(0) ~ O(L), for example as in the free Fermi gas. The intedé‘él dxB(x) is therefore ob(L). These estimates
are clarified if one considers a simple model fix) satisfying the bounds, namef(x) = £/(1+ x£*)# with

«a and B > 0, for which the integral i90(£?) with p = max1 — «, 1 — af).

§ In the case oU # 0, provided thatdA does not already have long-ranged order in the absence d@fthiaen
the same is expected to be true, but harder to prove rigorously.

| If (BfB) ~ 0(£¥?) with 1 > o > 0 then we find from (5) thatATA) has quasi-ODLRO, i.e. is almost
ordered, unlike in a normal Fermi liquid.
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suggests that ‘conjugate variables’ in the sense of the uncertainty principle should exhibit
enhancements by similar factors. The following form of the uncertainty principle is most
useful; for any two operators and b (such that(a®) = 0 = (b?) and [z, b] = 0) we have
[9]

(a'a + aa')(b'b + bb") > [{[a', b]) . 9)

We now use this with — A andb — B, and also the resultsA] B'] = 2T and
[A, ATl = x4 =4 e(0)2(L =Y, ¢l (k)c, (k) to find
; 2072 (xa)
= fom = (10)

Both terms of the right-hand side of this inequality are @{£), and the second term
remains bounded as we approach half filling, in fact vanishing for the case of a symmetric
band around zero energy. This implies that the first term dominates and hence we conclude
that the correlation functioAfA) grows without limit as half filling is approached. We
should remark that any operator of the typge [T, ...[T, B]...] in the place ofA would
end up having similar enhancements in its correlations, since it would be biline&aimd
have similar commutation wittB.

We next consider other kinds of interactions, different from the Hubbard rmodel
this case, we still use (2) and also (4) to find in place of (5)

(FTF) > {Uy(L — N +2) — 2u}*(B'B) (11)

where F = A+ C with C = —[B, V], so that F = [H, B]. The norm on the
left-hand side of inequality (11) can be bounded by the triangle inequalityFas) <
[V(ATA) + /(CTC)]? and hence we need, in addition to the previous estimates, one for
(ctc). This of course depends upon the nature of the two-particle interaction, and has to be
examined for each model separately. However, for ‘generic’ repulsive short-ranged models,
it seems clear that this object, likeitA), should be bounded from above by a number of
O(L£?). With this assumption, the remaining argument goes exactly as in the case of the
Hubbard model, and we again conclude thBiB) is at least as small ag£), and in fact
probably O(1/£), and that the ground-state energy is as in equation (7). The uncertainty
relation inequality (10) needs only the fairly weak first conditid@i B) ~ o(L), and hence

we conclude that the mechanism ofder by projectionworks for generic short-ranged
repulsive models near half filling.

We have thus found enhanced correlations as we approach half filling and, by continuity,
we may expect ODLRO in the operatdr. The inequalities given above do not constrain
correlations sufficiently, and we turn to other methods. Before doing this, we introduce a
simpler version of the previous models, namely

L L

H =Y (& -+ +U, Y oo, (12)
n=1 n,m=1

whereco? etc are the usual Pauli matrices, afdare an ascending set of energies. This

model is intimately related to th& = 0 version of our starting problem equation (1),

using the pseudospin representat'mjh+ 1=7> nsk) and o;’ = c;(kj)ci(—kj), in

the subspace where botl, 1) and (—k, |) are simultaneously present or absent. The

1 For other kinds of projected order, the inequalities are harder to interpret, for examBle; [i_j[v],-,jcwcﬂ
with an off-diagonal matrix f], then the analogue of (3) contains, as a coefficienUpfthe factor(£L — N +
2[v2i: + (x1¢lx), where|x) = Blyo) and ¢ = —Zivj[l)z][YjCja.qu, and hence there is the possibility of
cancellation of the term 00 (L).
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Hamiltonian (1) commutes with the operator= ), ny(k)n,(—k), and its operation is
identical to that ofH, provided we specialize to various sectors labelled by the eigenvalues
of v(0 < (v) < N/2), and further choose appropriate degeneracies for the energies. We
simplify this problem by choosing our energiesify above to be non-degenerate, and pick
them to bee, = {n — (L + 1)/2}/(L — 1) so that the band is symmetric about zero and
the bandwidth is unity. Each up-spin corresponds to two (Fermi) particles of the original
problem. The filling in this problem is clearly = N/L with N = Zj(az(j) +1). The
chemical potential at half filling i$/; /2 by particle—hole symmetry.

The model can also be viewed as a latticeVgR hard core particles sitting in a constant
electric field that tries to localize them in regions of low potential, and an infinite-ranged
hopping that tries to delocalize them. The results proved for the starting equation (1),
namely (5), (8) and (10), are equally true in this one-dimensional spin model, provided we
identify B = >, 0, andA = =23 ¢;0; . Away from half filling, i.e. whenog, # O,
we see that even in the limit of largé, there is a large number of states, in fact states
with S™ = L(1— p)/2 and S5, = —L(1 — p)/2, i.e. highest weight states of the rotation
group, which have a null eigenvalue of the hopping térnd_o,to, . The Zeeman energy
term has non-zero matrix elememgthin this manifold In the case of half fillingo = 1,
the Zeeman term necessarily connects singlet states with triplets and hence the energy is
unable to escape the influencel@df. At half filling and for largeUy, we can use degenerate
perturbation theory to find an effective Hamiltonian to lowest order itV;1 To do this
we consider the action off; in equation (12) on the space 6t 2/(L/2 + 1) singlets
spanned, for example, by the non-crossing Rumer diagrams [10]. A typical non-orthogonal
state is given byyp = [Py, Po]_...[P._1, P.]- whereP is one of the permutations of the
set{1,2,..., L} giving a non-crossing Rumer diagram, andj]+ = («:8; F fiej)/v/2 is a
singlet (triplet) withs? = 0. The action of the operator equation (12) can be projected into
this subspace, by using the relation 2,[3, 4], = (1 — 2M3)[1, 2]_[3, 4] + yoinet
with T1;; the permutation operator, and leads to the following quantum dimer problem:

-1 2
i Doen =€) p —

quWP = 2U.

s 2 (€n —ena)en —en)(2Mpn — Uy,
j S j+l<k

(13)

This model is quite non-trivial to work with, but does reveal that the diagonal terms favour
singlet bonds that connect the largest energy separations, and the mixing terms oblige us to
take non-trivial linear combinations in this space.

We study the interesting half filled limit by studying the seetgy,, = 0 of equation (12)
directly. We have diagonalized the problem numerically for chains of length up to 14, and
studied the ground-state energy as well as the correlation fun¢tioa). In figure 1 we
plot the parameter

1 4
I'={ATA)/{ATA)u.o

for three values ol (= 2, 4, 8). It is clear that a non-zero extrapolationlofto a number

of O(1) would imply ODLRO in theA field. The data seem to be consistent with this
hypothesis, and fit well t&" = I'y, + |a|/L % |b|/L?, with non-zerol',,. In the inset of
figure 1, the ground-state energy per site is plotted for the same three valUgsaghinst

1/L, showing that the energgioes depend on the coupling at half filling, implying that
the U; term cannot be viewed as a projection at this particular filling. The dependence is
consistent with finite-sized scaling with the forByL = e, + |a|/L — |b|/L? 4+ O(1/L%).
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Figure 1. Long-ranged order parametér = (1/L)(ATA>/<ATA)UA:0 against YL for Us =
2,4, 8 (bottom to top) chains of length @, ..., 14 atp = 1. The inset shows the ground-state
energy per site for the same valueslgf against YL (bottom to top).

A particularly simple special cageof the spin model equation (12) corresponds to
choosinge, = +¢p forn > L/2 orn < L/2. We can solve the model in the thermodynamic
limit by realizing thatS, = Y"7/3s; andS, = ¥, ,., s; are conserved quantities. We
can use semiclassical methods (basically the Holstein—Primakoff transformation) away from
half filling and find that the general results quoted here are confirmed.

At half filling, for a model with a variable range of hopping of the doubly-occupied
sites, we may expect a transition from insulating to metallic behaviour as the range is
increased, since the doubly-occupied sites are given independent kinetic freedom and are
no longer tightly bound to the empty sites as in a Mott—Hubbard insulator. The new model
equation (1) is almost certainly non-insulating, since the range of hopping is infinite. In view
of the enhancement inequality (10), it is likely to be superconducting in a complementary
pairing state. By continuity in fillingo in (10), we expect the pairing correlations to be
divergent for anyU;. Our numerical results for the reduced model, the spin model of
equation (12), are consistent with ODLRO at half filling. It is not, however, straightforward
to write down a mean-field theory that captures the correct ordering in the model, since the
Hamiltonian does not contain explicit terms that favany kind of ordering and these are
generated by the dynamics rather indirectly.

In summary, we have seen that the effect of projecting out s-wave Cooper pairs in a
class of Fermi systems leads to surprising results. The ground state of the projected model
may be viewed as being essentially degenerate with that of the original model and yet the
extended s-wave pairing correlations are hugely enhanced near half filling. This effect,
namelyorder by projection requires a lattice Fermi system near half filling to occur, and
has no natural counterpart in continuum Fermi systems. In this regard, as well as in the
form of the enhancementy @ — p), it resembles the results of the almost localized Fermi
systems [4].

1 The detailed solution will be presented separately. | thank Prafé&ddialperin for pointing out this special
case.
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