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A New Class of Exactly Solvable Interacting Fermion Models in One Dimension
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We investigate a model containing two species of one-dimensional fermions interacting via a gauge
field determined by the positions of all particles of the opposite species. The model can be solved
exactly via a simple unitary transformation. Nevertheless, correlation functions exhibit nontrivial
interaction-dependent exponents. A similar model defined on a lattice is introduced and solved.
Various generalizations, e.g., to the case of internal symmetries of the fermions, are discussed. The
present treatment also clarifies certain aspects of Luttinger’s original solution of the “Luttinger model.”
[S0031-9007(98)05437-4]

PACS numbers: 71.10.Pm, 71.27.+a

Exactly solvable models [1-4] have played an impor-that
tant role in the current understanding of one-dimensional is —is
interacting many-particle systems. These, together with ePpyie U =pyi — 0x,.S, ()
the idea of dominant low-energy bosonic excitations ofone can chosé& = S({x;},{x_;}) so as to eliminate the
Fermi systems [5], gave rise to the emergence of the “Lutinteraction in Eq. (1) by
tinger liquid” [6] as a unifying concept. Nevertheless, the
technicalities of these exact solutions (bosonization, Bethe SHxvifx—jh) = ZE(XH - xj), (3)
ansatz) are often rather complex. In the present paper we ij
wish to introduce a class of interacting models which canyhere £ is the indefinite integral of the interaction
be diagonalized by a simple (pseudo-)unitary transformapotential:
tion, yet exhibit nontrivial Luttinger-liquid behavior. The .
models can be defined both in the continuum and on a E(x) = f dx' V(x'). 4
lattice, and can have rather arbitrary single-particle band 0
structure. Only the interactions are constrained to be of &he transformed Hamiltonian then takes the form
particular “gauge form.” The long-distance asymptotics of B = oS He IS — LZ ) 5
correlation functions can then be determined exactly. Our el Ty Ll )

investigation was inspired by Luttinger’s original treatment ] ] _ ]
of the “Luttinger model,” and we will comment on this The eigenfunctions of{ clearly are Slater determinants

connection further below. of plane wave statefk- ;},{k+ ;}), characterized by the

We start by considering the simplest model in ourSets of wave number&;} and{k, ;} for the — and +
class, a one-dimensional fermion model with two speciearticles, respectively. Consequently, the eigenfunctions
of particles, designated by a pseudospin index= =,  and eigenvalues of the original Hamiltonian are obtained
having coordinates,,; and momenta,; = —id,, . The Straightforwardly:

Hamiltonian of our model then is is 1 S
| He Sk ih ke ) = = D kgie™ ki fho b
H=— H2' 1 oi
7 2. @ ©

where we have introduced a “covariant momentum”At first sight it thus appears that the spectrum of the
I[l,; = psi + dAs(xs), i.e., in this model,particles interacting Hamiltonian is independent of the interaction.
interact via a gauge potential, given for a particle at Conformal field theory, or equivalently Luttinger liquid

x by Ays(x) =3 V(x — x—o;). The potentialV is an  theory, then would imply that the asymptotic form of
even function. On a ring of lengthi, we will assume correlation functions (which is directly determined by
that V is periodic. Clearly, the Hamiltonian is not time- the eigenvalue spectrum) is also interaction-independent.
reversal invariant, but it is invariant under simultaneousThis conclusion is, however, incorrect: periodic boundary
time reversal and charde-) conjugation. conditions have to be treated carefully. In fact, keeping

The model can now be straightforwardly diagonalizedall other coordinates fixed, one easily find¢x_; =
by a (in general pseudo-)unitary transformation: notingl) — S(x—; = 0) = —N.§, whereL is the length over
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which periodic boundary conditions are appligd; is  wheren = 4n(/L is the patrticle density. Introducing new
the total number of+ particles, and the@hase shifts is  variables
given by - .

L b+ = P, e =1+ * %9;((1')1 (11)

6= [ dx V(x). @) 77

0 the Hamiltonian takes an apparently noninteracting form
An analogous result, withV.,. and & replaced byN- [Eq. (10) with 6 = 0]. However, the expression of
and —4, holds for the phase shift of the- particles.  gjngje fermion operators [6] is changed and therefore
Consequently, the quantization condition on the wavene”asymptotic decay law of the single particle Green’s
numbers is given by function is obtained as
where then afr];ti};t;g(]e\fr:qau;ti%n;;r’nbers analoé?))us to Grs(x) = <¢Ri(x)¢;i(0)> = T, (12)

o ith @« = 62/(27?%). Thus, for any nonvanishing the

those used in the noninteracting case. Clearly, particle . . -
9 Y, P ecay is faster tham/x, leading, among other things, to

of one given “spin” orientation give rise to an effective th -k | inqularitv of th "
Aharonov-Bohm flux acting on the other species, the € well-known power-iaw singuiarity ot the momentum

value of the flux depending on the number of particlesdiStribUtion function atkr. The correctness of Eq. (12)

present. It should now also be clear why we refer tocan be checked independently using the eigenfunctions

the transformation Eg. (2) apseudanitary: unlessé of Eg. (6).: One obt_ains a Tijplitz_ determinant of _the
is “accidentally” an integer multiple o2, the plane form previously considered by Luttinger [2], and which

wave states of the interacting and noninteracting problemégaS the same asymptotic power law as obtained by the

obey different boundary conditions and therefore defin osonization approqch. .
different Hilbert spaces. Similarly, correlations of two-particle operators decay

. -n i i i
The ground state enerdy, can be found in any sector as x 7, with interaction dependent exponent.

with N+ particles, as follows. In order to minimizg, Specifically: "

we must chooser.; = n%; *+ [[% N+ 1lint, Wheren?; Yretr= = m =2, (13)
are the quantum numbers in the absence of the interaction t#;ilh: Sm=1+07F8/un)7, (14)
[7]. The change in energy due to the interactié; = B 5

S NI, + N-[C52TR,,), s not extensive, but Ve = =2 20/0, (19
on the scale expected from a magnetic field applied to Yrethrz = s =1+ (1 £ §/7)°, (16)
the ring. The most slowly decaying correlations identify the domi-

An effective Luttinger liquid description in terms of a nant incipient instabilities. In the spin language, for posi-
bosonic field theory for the low-energy properties can bejyve § then spiral spin-density wave correlations and
obtained from the low-energy excited states [6]. To beppposite-spin Cooper pairing correlations with one fixed
precise, we start from a ground state wihy = 2no + 1 spin orientation f{ and |{ are not degenerate) are fa-
and assume tha¥-(é is an integer multiple o2. We  yored, whereas for negativ@ correlations with reversed
now addn.g (n+r) particles at the right (left) Fermi spin orientations dominate. Adding a density-density in-
points of thex particles. Introducing particle number and teraction between the two spin orientations, the degener-

current quantum numbem. = n.z + ns, andJ= =  acy between pairing and spin-density wave correlations is
nzg — n=L the second order variation of the ground statejited. The density correlations, Eq. (13), are not affected
energy I1s by the interactions because they are diagonal elements of
1 the density matrix which themselves are unchanged b
@_ 1 2 2y (A2 2 % g y
E e 2no + D[(7° + §°) (N + NZ) the unitary transformation, Eq. (2). We notice that the
2072 2 exponent for pairing correlations with equal pseudospin,
+ 7(Jy + J2) o . . .
Eq. (15), is just twice the exponent of the single-particle
+276(J4N- — J-N4)J. Green'’s function, i.e., there are no singular vertex correc-

(9) tions in this particular two-particle correlation function.
Up to quantum fluctuationsy- and J- are related to Finally, from Eq. (8) it is clear that the value df is
bosonic fields and their conjugate momentum densityelevant only modul@z. Consequently, the results (12)
viaN. = —(L/m)d,¢~ andJ. = LII.. The effective to (16) are valid only fotd| = . Outside this intervab
Hamiltonian including the low-energy quantum fluctua- has to be taken moduldz. We note thathe scaling re-

tions then takes the form lations between the different exponents in Egs. (12)—(16)
n 5 5 5 are different from those of standard fermionic Luttinger
H = Zf dx{[1 + (8/m)1[(0:¢p+)" + (9x-)7] liquids because of the presence of time-reversal breaking

22 5 terms in the Hamiltonian.
+ I+ T2 We can note here that the pseudounitary transformation
+ 28[I1-0,¢p+ — II10,¢_1}, (10) translates into a “Jastrow”-like phase factor, of which the
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“projection” counterpart, i.e., a Jastrow factor without thewhere periodic boundary conditions are implieg,+; =

“i”, is well known in the literature as leading to non-Fermi «,, and c¢;+1, = c1», and the number operator

liquid behavior if used as a variational (not exact) waven,, = c,Lcm.

function [8]. The interaction tern¥ can be either zero, or one of
We can now comment on Luttinger's original so- two nontrivial functions which retain the exact solvability.

lution of his model [2]. In first-quantized form his We will consider the XXZ model and the Hubbard

Hamiltonian contains only first derivatives: model, i.e.,
Hyww = Zo-na'i = ZP-H - Zp—j Vxxz = Vznja'nj+1,a' and
gi i J I (19)
+ 2> Vix—i — x44). 17
,Zj (x J x+l) ( ) VHub — UZ”]'Tnjl’
J

We first remark that this Hamiltonian is a conserved quan- ]
tity as far as the Hamiltonian (1) is conserved, and sharednd will show below that these are exactly solvable. The

all (nondegenerate) eigenfunctions. It is unbounded fror¥XZ model corresponds to two copies of the usual model,
below, though, unlike in Eq. (1). Hence the issue of wherein the two species of particles (spin up and down)
finding its ground stateis replete with difficulties famil- talk to each other only via the phase factors. The Hubbard
iar from relativistic field theories. The second-quantizedModel corresponds to the usual two body interaction.
version of the modeH; ... can be solved consistently and We now perform a unitary transformation induced
exactly by filling the Dirac sea and using bosonization [3].0Y U = expliS) where S = 3 i< ,=; Bimnnnm. Itis
This leads, among other things, to an asymptotic deca§@Sy to see thag;; = —p;;, i.e., an odd function is
exponent of the single particle Green's function= appf_opf'a;e, a”_ds we will assume it to be so. Thus
1/J1 = (8/7)% — 1. In a first-quantized framework, a We finde®c,ze™ = ¢,y exp(—io X Bumini—s). The
consistent but different solution can be obtained if ong'@nsformed Hamiltonian takes the form

is willing to consider quasi-ground states where single- , Ll ot

particle states below a certain very negative cutoff energy H = _Z Z exXplidm)CpmaCmtic

E.uofr are left empty (evidently, the model does not have o Lm=1 f

a conventional ground state). This “rapidity cutoff” in fact — [explidr)crocio + He] +V,  (20)

is frequently used in the Bethe ansatz solution of field Fheo\'/vith G =S Bmi — Bt + am_}n o anddy, =
retical models [9,10]. Such a state becomes natural if ong SABLs — Bis + ar-}ni—». We now use the free-

is interested in finding the ground state Bfin EqQ. (1), gom in defining8 to cancel the interior terms in the
and examines the eigenvalue Bf ., @ commuting 0p- yhase factor by choosing,.1; — Bmi = @m—;. The
erator, in this state. The transformations used for Eq. (1, op across thé « 1 bond has a total bhase

also can be used here, and the solution found as earlier

and lead to a shift in its eigenvalue due to interactions _ _ n

8Erut = AN+ 52 Them + N-[[5:2T]em}, @ number o U;[BU Bui + av-ilo. (21)
of the O(1). The correlation function can be found using
Luttinger’s original paper and lead to the same asymptoti
decay exponent of the Green’s function as in Eq. (12).
This result was in fact obtained in Luttinger’s paper [2],
i.e., Luttinger’s result in fact applies to the first-quantized

solution of the model described hgiel]. The same result

o conelaton exponentscan s be obtane by consid, 2472 e 362 1 e prble colapne (0 one
ering variations of the energy with particle number, similar 9 y )

to what we described above. We note that the Mattis—Lielgux ;é)aevl\l(teocdzr}[efronﬂi%\g ;hse rLoq[Igticl:JsS%? (f;grrr:gr;:tigﬂnfﬂr;-c-
and Luttinger results for, though different in general, ymp

agree to the lowest nontrivial order & The differences “ON”j-zL't_t??; r(])(ut]f]f}eétL l;p Otr?eth(;ebig}/rgl :ﬁgli;?nn;eztx=res_
at higher order clearly have to be attributed to the different” . P

cutoff procedures used in the two calculations. fr:(()ens]:r:é Io?v?elget?e Cg;etg?vlémngﬂhtggii’nC?Sea%‘;n:%’ d
We now turn to similar models defined on a O the same ex ressic?r):s for correlation ex on’en(tqs. [E s (12)
dimensional lattice. Specifically, we will consider the P P as-

It is in fact not necessary to solve explicitly f¢#, al-
?hough it is easy enough to do so for simple choices
of @. By adding theL — 1 difference equations we
getBry — By + ar = Py ay-; = 6. Thusy, =
N_,06. The number operatoN, — N, in any sec-

Lo i _ to (16)] apply.
Hamiltonian WILth¢m X1 @i o, In the presence of a nonzero extra interactign
H = — Z Z[exp(imﬁm) el emite +NC]+V, previous work [12] can be used where the Bethe Ansatz
T = " has been adapted to the case of a “spin twist,” which is

(18) precisely the case needed here. We write the solution
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immediately: for theXXZ model the energy is the usual supported in part by the National Science Foundation
sum over cosines and under Grant No. PHY94-07194.

LI =277 + 08N_y + D 0(kT — k3),  (22)

with the phase shift and the usual integégs For the  [1] H.A. Bethe, Z. Phys71, 205 (1931).
Hubbard model the analogous equations are available if2] J-M. Luttinger, J. Math. Physl, 1154 (1963).

) iy 13] D.C. Mattis and E. H. Lieb, J. Math. Phy8, 304 (1965).
B e e i ™ 6] € . L v Wi, Phys. R Loy 145 (136
h h d ind ’(’j h 9 . [5] S.T. Tomonaga, Prog. Theor. Phys.544 (1950).
changes the exponents, and indeed even the symmetri ] F.D. M. Haldane, J. Phys. @4, 2585 (1981); Phys. Rev.

of the model. The detailed behavior of the lattice models " * | g1t 45 1358 (1980).
and the resulting exponents will be reported elsewhere.  [7] we denoter = [[xTJine + [[x]]em for anyx where[[x JJin
There are a number of further possible generalizations s the closest integer to. Thus —1/2 < [[x]]em = 1/2
of the present model [13] or with its counterpart with for any x.
further internal symmetries [14]. A striking case is that [8] C.S. Hellberg and E.J. Mele, Phys. Rev. L6é&# 2080
of unequal masses of particlese., in Eq. (1) we could (1991).
allow am, dividing the IT2, which would be unaffected [9] H. Bergknoff and H.B. Thacker, Phys. Rev. I3, 3666
by the pseudounitary transformation. This can also b‘flO] §\I197-\§r)1)drei K. Furuya, and J.H. Lowenstein, Rev. Mod
generalized to lattice models. . Phys. 55, 331 (1983); A. Tsvelick and P.B. Wiegmann,
In conclusion, we have presented a class of lattice and
. . . Adv. Phys.32, 453 (1983).
continuum fermion models which are exactly solvable b)élll]

- ' . Ve Luttinger [2] introduced the extra conditiol = & =
a pseudounitary transformation, leading to nontrivial an 0. That this condition is unnecessary for a formal

non-Fermi-liquid behavior, with exponents depending on solution was already remarked by Mattis and Lieb [3].
the interaction. The models do not have an unbounded Their conclusion that relaxing this condition leads to
spectrum, eliminate the problem of the negative energy  an ill-defined thermodynamic limit for the field theoretic
Dirac sea and consequent Schwinger terms, and thus help problem is not very obvious.

us to focus on the physics of the interactions in ond12] B.S. Shastry and B. Sutherland, Phys. Rev. L@f.243
dimension in a bounded, and even a finite dimensional _ (1990). . o

Hilbert space (for the lattice models). Note that the[13] The unitary transformation (2) will in fact put
momenta ofeach of theV.. particles has to be readjusted y;g’*tfmiﬁenigqta"}::t% d"’}:;ggg’ fc?romwer;rc?\ji d;hde thceo-
by the add'?'on O.f even one paruclg of the opposite highest nonvanishing power is even, these models have a
species. This basic fact results in an infrared catastrophe

] U ! g well-defined ground state. One could thus study models
that underlies the non-Fermi-liquid nature of the resulting with complicated band structures, involving, e.g., more

solution, as captured in our model ateénimal level The than two Fermi points. Similarly, in the lattice model
method used embeds the original problem considered by certain forms of hopping terms beyond nearest neighbors
Luttinger in a family of commuting Hamiltonians which can be included.

contains both bounded as well as unbounded operator4] Another generalization is obtained by giving additional
By focusing on the problem of finding tiground stateof internal degrees of freedom to the= + and o = —

the bounded operators one comes up with eigenfunctions Particles. For example, assuming that they both occur in
which are of the type considered by Luttinger, enabling m different “flavors” one obtains a model vylth an internal
us to make a connection between the methods used by SUlm) X SUim) symmetry. By a calculation analogous
him (Toplitz determinants and the Szegd formula for to that leading to the exponents in Egs. (13) to (16)

. . . o one finds =2n,=2%28/m + mbé*/w* n; =
asymptotics) with more recent conformal/Luttinger liquid 24 2m52/7r12hand n:h: ) ;25/7/T7T+ mn;z/:; 773AS

methods. _ expected from symmetry, these exponents are independent
One of us (H.J.S.) wishes to acknowledge the warm  of the flavor indices appearing in the corresponding

hospitality of the Indian Institute of Science, Bangalore, operators. One can further solve the case where the

where some of this work was done. This research was number of flavors for the- and — particles is different.
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