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Abstract. A new approach to Heisenberg ferromagnet using the spin coherent state 
representation is developed. The differential operator representation of spin angu- 
lar momentum operators is used to derive the c-number analogs of the basic quantum 
mechanical equations, viz., the Schrt~dinger, Bloch and Liouville equations for the 
Heisenberg ferromagnet. As an important illustration of our formulation, which 
has no ad hoc assumptions and does not use any boson representation, the excitation 
spectrum for one, two and three spin waves is obtained. In these eases it is also 
shown that eigenvalue spectrum can be obtained by,completely ignoring the kinema- 
tical interactions, 
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1. Introduction 

The boson coherent states are known to play a very important role in the theory of 
lasers and related phenomena in quantum optics (Agarwal 1973; Hae.ke 1973). The 
study of properties of the laser threshold in coherent state representation led to a 
study of phase transitions in systems far from equilibrium (De Giorgio and Scully 
1970; Graham and Haken 1970; Scott et al 1975; Haken 1975). Many concepts of 
conventional phase transition theories such as order parameters, scaling parameters 
and critical exponents have been found to be very useful and important in connec- 
tion with lasers, parametric oscillators, etc. (Rogovin et al 1973; Langer 1968, 1969; 
Rama Rao and Rajagopal 1977; Biswas and Rama Rao 1971, 1973). Conversely one 
can also ask: can we learn something new or can we understand better the usual many 
body systems, by using concepts known from laser theories 9. A few applications of 
coherent states to the problems of He-4 and Josephson junctions have already appear- 
ed. In an earlier work Douglass (1971 a, b) has applied boson coherent states to 
simplify Dyson's (1956 a, b) monumental work on the low temperature expansion of 
the thermodynamic properties of the Heisenberg ferromagnet. The obvious advan- 
tages of working with spin-operators directly has led to alternative approaches such 
as the Green's function methods (see, for example, Balakrishnan 1975). However a 
more natural basis to study the magnetic problem is provided by the spin coherent 
states introduced by Radcliffe (1971) and widely studied by many authors (Kutzner 
1973; Arecchi et al 1972; Takahaski and Shibata 1971). These states obviate the 
necessity of introducing fictitious boson fields and yet offer all the advantages of the 
boson coherent states. For instance the mapping of operators onto functions of 
classical variables has been used by Lieb (1973) to obtain remarkable upper and lower 
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bounds to the free energy of the quantum Heisenberg hamiltonian in terms of the 
classical free energy. Spin coherent states also provide another interesting and yet 
unexplored alternative, on which we focus our attention in this work. We express 
spin-operators in terms of differential operators, in a manner analogous to the boson 
case where its utility is well known (Agarwal 1973; Haake 1973; Haken 1970). 

In this paper, we treat various aspects of the Heisenberg hamiltonian in terms of the 
spin coherent states. The outline of the paper is as follows: In section 2, we review 
some of the relevant and more important properties of the coherent states, and which 
are used extensively in later sections. In section 3, we derive the spin coherent 
state (SCS) representation of SchriSdinger equation, Liouville equation for the den- 
sity operator and the Bloch equation for the unnormalized thermal density matrix 
e-~H. In section 4, we present the interpretation of the SCS hamiltonian, in terms of 
magnon interactions. The excitation spectrum is treated explicitly in section 5 and 
in appendix. We hope to apply our formulation to a calculation of the thermodynamic 
averages and other problems in a future communication. The method of the present 
paper is quite general and can be used to discuss any spin system, for example the 
Heisenberg model with dipole interactions or an antiferromagnet. We hope to apply 
our formulation to a calculation of the thermodynamic averages and other problems 
in a future communication. 

2. Spin coherent states 

In this section, we present some well known properties of the spin coherent states for 
the convenience of the reader and self containment of the paper. We define the 
spin coherent state (SCS) as 

[ z  ) = exp (zs-) I 0 > (1) 

where Z is a complex variabIe, S- the usual lowering operator (S±=Sxq-iSr) and 
] 0 > is the zero spin deviation state or ground state. The n spin deviation by defini- 
tion is an eigenstate of S z 

s ' l - >  = ( s - . )  ln) .  (2) 

Equation (1) is analogous to the boson case since S- is similar to the destruction opera- 
tor in that case. The exponential can be expanded and we get 

I z >  = z...,,=o \ ,  ! z" l  ">" (3) 

Note that the summation in (3) is restricted to n<~2s due to the operator identity 
(S-)r=0; y>~2s+l. The scalar product is given by 

<z '  ] z )  = (1 + z ' * z ) , :  

Thus ] Z )  is neither normalized nor orthogonal. 
by Radcliffe (1971) are scaled very simply to ours: 

I Z>aadc,i~c ----- [1 + I zlq- '  I z> (5) 

(4) 

The normalized states introduced 
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Clearly the states I Z )  form an overcomplete basis of states. We can express unity 
in this basis as 

1 = f I~(Z)[ Z)  (Zld2Z; tz(Z) = 2 s + l ( 1  + [Z[*) -~'-~. 
, f f  

(6) 

As usual d2Z=d(ReZ) d~mZ) and the integration in eq. (6) is over the entire complex 
plane. 

For certain applications, it is useful to parameterize the complex variable Z as 
Z=tan  0/2 exp (i~). Thus we can label the points on the complex plane by ~'1 = 
(0, ~) which is of course, the usual mapping on to the Riemann sphere. We define 
(normalised) states as 

I ~ )  = cos', 0/2 l z )  (7) 

These are referred to as Bloch states by Arecchi et al (1972). In terms of these states 
we get the resolution of unity (eq. (6)) as 

~_Z~+l f anln) (hi. 
4rr 

(8) 

We can associate two functions corresponding to every operator A in the Hilbert 
space: 

QA(n) = ( a l a l n  > (9) 

and 

A ~ + l f  

Equation (10) is the analog of the diagonal representation in the theory of boson 
coherent states. Arecchi et aI (1972) have pointed out that Pa cannot be unique. 
This is a consequence of the result 

f Y~m(~)l ~> <KZ ld£2=0; l~>2s+1. (10 

Thus if we expand Pa in spherical harmonics Pa (n)  = ~lm p~m Ylm (~'~) only 
terms with I ~< 2s contribute to (10), and hence any two P's which have the same 
coeificients for terms with I ~< 2s (but differ otherwise) give equally valid 
representation of A. For completeness we note that the expansion coefficients of 
Qa(~) and Pa(~) in spherical harmonics are related through (Gilmore 1976; 
Shastry 1977). 

(2s + 1)! (2,)! (12) 
pIAm =Q~a  ( 2 s + l + l ) ! ( 2 s - - I ) !  
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In a similar way, we can express the operator A in terms of the Z basis: 

Q~ (Z) = ( ZI A I Z > 

and 

(13) 

A = f t~(z)P~(Z)lZ> (Zld2Z. (14) 

It is easy to see that 

cos -4s 0/2 Qa(12) QA(Z) 
Z -- tan 0/2 exp (i$) 

(is) 

In practice, the z basis is more convenient to work for certain applications, and using 
(15) one can reconstruct quantities in the ~ basis. Also, note that 

2sl-L- t" 
T, (AB) -- --__________2" I P,4 (~) QB (~) d~ -- - -  

4rr d 

Zs+l f 4~ QA (~) P~ (~) d ~  

(16) 

This equation is of  much importance in practice since one can calculate expectation 
values of operators by setting A or B as the density matrix of the system. Note that 
(16) can also be written as 

~ s  ~l  m lm ,m Tr (AB) = (2s + 1) = 0  = _ I P A  QB 

~2s ~l  m lm lm 
= ( 2 s + l )  t = 0  = - t Q A  PB " (17) 

Here only terms with l ~< 2s can contribute because the Q function only contains 
spherical harmonics with I ~< 2s. 

3. Differential representation: Quantum mechanics of the Heisenberg ferromagnet in 
the SCS basis 

As in the usual theory of quantum mechanics we can use the [Z ) basis to yield a 
representation for states and operators. States are of course represented by wave 
functions obtained by taking scalar product with ( Z  [. In order to represent opera- 
tors, consider 

_ 2sz' (1 ) ,s= 
( z l s + l z ' )  ( l + Z * Z ' ) ~  + z* z'  oz;a ( z l z ' ) .  (18) 

Thus symbolically we have (noting that Z', is arbitrary) 

( z l s  + _ a ( z  I (19) 
OZ* 
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Similarly, we calculate ( Z I S-  I Z'  ) and ( Z] S=[Z ') and find 

(ZlS" =( s-z*°l<zl (20) 
OZ*I 

( Z I S - = Z * ( 2 s - - Z  * 0 ) OZ ~ ( Z I (21) 

Equations (19)-(20 are the differential operator representations for spin operators, 
which are analogous to the SchriSdinger representation [p~  - i~ (8/8x)] in quantum 
mechanics. We should note that if I Z )  were normalized, the resulting representa- 
tion for operators is quite messy: this in fact motivates our use of unnormalized 
states. In this paper we will apply the spin coherent states to the study of the Heisen- 
berg model of magnetism which is described by the Hamiltonian 

Here Yu is the ' exchange integral' which we leave unspecified and v is an anisotropy 
parameter. The Hilbert space under consideration is the direct product space over 
the N spin spaces. We introduce SCS's corresponding to each spin i and introduce 
the notation 

N N 
/~ ( Z ) =  II IX (Z~), Z - ~  (Z 1, Z~ . . . . .  Z,) and d~Z ~- l] d~Zt. 

i - 1  i = 1  

The resolution of unity is then in the same form as in eq. (6). 

3.1. Schr3dinger equation in SCS representation 

The time independent equation H ] ~b) ----E I ~b) can be written in this representation 
by taking scalar product with ( Z  I. Thus we get 

,TL ~b (Z*) ----- E ~b (Z*) (23) 

~b (Z*) -=- (Z  I ~b) ( 24 )  

where ~b depends only on Z* and where 

,~ = Eo + 2s ~ Ju (Z,* -- ~, Zj*) ~ 
ij c~Z:* 

+ ij (~ (z,*~ + zj  *~) - z,* z~* (25) 
OZl* OZj* 

E 0 is the (ground state) energy--2: u Ju s~. We should note that that ~(Z*) suffices 
to determine [~ )  since from the completeness relation (6) we have 

I ~b> = [ ix (Z)d~Z ~b (Z)*) I Z ) .  (26) 
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It should be noted that we have presented a method for going over from the abstract 
Schr6dinger equation to the differential eq. (23). If, however, we wish to start from 
(23) and calculate the eigenvalues and eignfunctions of H, we must supplement the 
differential equation (23) with boundary conditions. In analogy with the similar 
problem in quantum mechanics, we demand that 14 ) should be normalized, i.e. that 

f ~ (z) l ~ (z*) I s d 'Z  = 1. (27) 

This immediately places the restriction that ~(Z*) should be polynomial bounded: 
the maximum power of Z* allowed in ~ is 2s. Such a restriction is recognizable as a 
kinematical one, preventing a flipping of a (physical) spin more than 2s times, and 
defines the domain of physical states. 

3.2. Liouville's equation in SCS representation 

The equation i~l (Op/Ot) = [H,p] for the time dependent density matrix can be written 
on taking diagonal SCS matrix elements as 

i~ 8_ Q, (Z, Z*) = [o~ Q, (Z, Z*) - C.C.] 
0t 

(28) 

Q, ¢z, z*) = <z l  pl z )  (29) 

where in contrast with ~b, Q, depends on both Z and Z*. The differential eq. (28) 
must be supplemented with boundary conditions analogous to those for the wave 
function. The condition we require is that Trp be time independent, leading to 

tm f t , ( z ) a ' z  ~ Q, ( z , z* )  = o. (30) 

Similar type of consistency conditions and their implications (referred usually to as 
' surface terms') have been recently analysed by Lugiato et al (1977). 

3.3. Bloch equation in SCS representation 

The (unnormalized) density matrix e-~H obeys the equation of motion ¢gphgfl-------Hp. 
Taking diagonal matrix element in SCS we get 

Q, (z,  z* )  = - ~ tQ,  ( z , z * ) ;  Q, = <z Ie l  z ) .  (31) 

A knowledge of the density matrix contains much of the relevant information 
regarding the system. The partition function for an equilibrium problem is 
reduced to a classical integral 

z = r r  e-an  = f d~Z~(z)Q,(Z, Z*) (32) 
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4. Interpretation of Heisenberg hamiltonian in SCS representation 

In this section we briefly discuss the physical interpretation of various terms in the 
hamiltonian (25) in terms of magnons. For this purpose it is convenient to intro- 
duce a new set of N (momentum space) variables 

2:--~-(2~N)1]~ [exp ( - - i k . r , ) ]Z , ' .  

The inverse relation reads 

X _ I [exp (i k .  r,)] Z k. 
Z~* ( 2s N)I[...-~ z k 

The summation in (34) runs over the N vectors in the Brillouin zone. 
expressing O[OZt* in 
hamiltonian (25) as 

:~ = E o +  

where 

and 

(33) 

(34) 

The rules for 
terms of O/OZk* follow trivially and we can write the 

E * O + 1 E  * O, k Z  k - - - ~  V K (kx, k~) Z~/2 + k, x 

* °3 (35) ZK/2 -- k2 * * 
o zK/2 + k, 0 ZK/2 _ k~ 

1 ~ e x p ( - - i k . ( r i - - r j ) ) J ~ j  (36) o k = 2s  [J (o)  - J (k)];  ] (k)  = ~ i: 

VK(kl,k~) - 3' {J~A]2 + kl) + JOK/2 -- kl))--J(kl--k~)--d(k x + k~). (37) 

In this form the different terms in the hamiltonian are recognized easily. The second 
term corresponds to free spinwaves and the last term to an interaction between spin- 
waves. The interaction is such that total momentum is conserved. We will see in 
next sections that the magnon excitation spectrum is determined by the eigenvalues 
of an integral equation whose kernel is essentially V. In appendix A, we discuss in 
detail the relation and difference between the present approach based on SCS and the 
approach based on the boson coherent states. 

5. Excitation spectrum of the Heisenberg hamiltonian 

The ground state wave function is found by inspection to be a constant. Thus 

(:~ - E0) const = 0. (38)  
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The first excited states can also be found easily. We have from (35) 

(Or - E0) Zk* = ok Zk*. (39) 

Thus Zk* is the eigenfunction of ~ with eigenvalue % which is the usual spin wave 
result. 

The two spin deviation problem is the first nontfivial problem that we encounter 
in the Heisenberg model. In analogy with the one spin wave function, we could try 
the product wave function. 

~g(k) = ZK/2+ k ZK]2-k" (40) 

This function, however, is not a proper basis to work in since it contains terms like 
Z~ .2 which are unphysical for s=½(since they correspond to two spin flips at the same 
site). Such terms also lead to a ~b' which is not normalizable. Some examples of 
states having this type of structure are treated in appendix B. The physical basis 
(see however appendix C) must be built up from the two spin deviation state (the 
pair wave function) 

~b,~ = ( Z I St- Sj- l0 > = const (1 -- ~ 2s ] Zl* Zj*. (41) 

Thus, taking fourier transform of ~b u, we have a physical basis 

1 ~ t~ K (C 0 (42) ~b K (k) = S K  (k)  - -  2sN q 

(Note that the terms i:=j are suppressed for s=½ in eq. (41) and hence in (42)). Since 
the hamiltonian (35) is an operator in terms if Zk's, we start by operating with 
on ~. Thus we get 

( '~  -- Eo) SK (k) = E K (k) ~L K (k) + 1 ~ V K (k, q) SK (q) 
~r k, q 

(43) 

where 

E K (k) ---~ O0K/2+ k + COK/2_ k. (44) 

E k is the sum of two spin wave energies and the second term in (43) corresponds to 
scattering of the spin waves. We can readily get the action of ,7£ on ~b as 

1 ~ VK(q, k) ~K (q) (~t - Co) ~K (k) = e K (k) 4'K (k) + N q 

where we have used the identities 

(45) 

1 
• (E  K (k) -- E K (q)} + V K (k, q) -- V K (q, k) (46) 



Heisenberg ferromagnet 93 

and 

~v ,..-~'~/k k--q = 0 ~t q. (47) 

Note that (45) differs from (43) only in that VK(k, q) is replaced by VK( q, k). A two 
spin wave eigenstate of ~ can be obtained as a linear combination of ¢'s as follows. 
Let 

~(K2)-:~k UK(k) ~K(k) (48) 

such that 

(2) ,i.(2) (~ - -  Eo) ~b(K ) =  OK WK; (49) 

Thus to(K 2) is the two spin wave eigenva lue labelled by K (which is conserved by ~ ) .  
From (48), (49) and (45) we have 

~ k  ~bK(k)[(oJ(K 2 ) -  EK(k))UK(k)- 1 ~ql/.K(k, q) UK(q)]--0. (50) 

Now $'s are arbitrary complex variables and hence (50) can be satisfied identically if 

(OJ(K2)--EK(k)) U K ( k ) = l ~ q  VK(k, q)UK(q). (51) 

This integral equation gives both the eigenvalues to ~s' and the coefficients U's (and 
hence the wave function) and is essentially the same as that of Fukuda and Wortis 
(1963) in the case of nearest neighbour interactions and that of Majumdar (1969) for 
the case of nearest plus next nearest neighbours. The resulting spectrum of scattering 
and bound states is well known in literature and will not be repeated here. 

6. Discussions and conclusions 

We have presented a new description of Heisenberg ferromagnet in spin coherent state 
representation. The approach has no ad-hoc assumptions and avoids the boson 
representation of spin operators. The advantages of SCS representation are char: 
for example one does not have to use any 'projection operators' in the calcvlation of 
expectation values (cf appendix A). We have shown how the eigenfunctions and 
eigenvalues can be obtained. The Bloch equation has been transformed into phase 
space and the conventional perturbation theory, such as that used by Langer(1968, 
1969), can be used to calculate the free-energy. The Liouville equation for density 
operator is also transformed into a differential equation, the solution of which can 
be used to calculate a variety of time dependent properties such as the Green's 
functions, by using the methods familiar from phase space methods for boson systems 
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(el. Agarwal 1969). Central to our formulation is the represemation of spin angular 
momentum operators in terms of differential operators (of Gilmore et al 1975; 
Vilenkin 1968) which assume a particularly simple form in terms of unuormalized 
coherent states. 

We have shown how the two spin wave and three spin wave spectra (see appendix 
(2) can be obtained using the present formalism. We have done the calculations using 
both the 'subtracted'  and 'unsubtracted'  basis for the two spin wave case. Of 
particular interest is our demonstration that the eigenvalue spectra for two and three 
spin waves can be obtained using the unsubtracted basis. The difference, however, 
is that the Kernels of the integral equations obtained using subtracted basis are the 
adjoints of those using the unsubtracted basis. This also implies that the eigen- 
functions obtained by using the unsubtracted basis are left eigenfunctions of the 
kernel whereas the right eigenfunctions of this kernel are obtained by using subtracted 
basis. From these results, it appears that the eigenvalue spectrum can be obtained 
by completely ignoring the kinematical problems. Some further calculations will 
most probably confirm this hypothesis. The irrelevance of the kinematical inter- 
action in the above context seems to be related to Dyson's result that these contribute 
vanishing (exp (--TdT)) contributions in the low temperature limit. 

It should also be pointed out that the SCS basis provides a natural basis in which the 
classical limit is transparent (Radcliffe 1971) Thus one should be able to study 
solitary waves (e.g. Tjon and Wright 1977; Pushkarov and Pushkarov 1977) and 
other 'classical' phenomena in quantum systems using SC states. We hope to 
return to the actual calculation a thermodynamics averages, and others in a future 
publication. 

Appendix A 

Distinction between the treatment based on the SCS and the boson coherent state 
repersentation. 

The problem of the Heisenberg ferromagnet has been treated previously in terms of 
the boson coherent state representation. For example Douglass (1971 a, b) expressed 
the spin operators in terms of boson operators via the Dyson-Maleev transformation. 

S+->a; S~-->s--a+a; S-~2sa÷(1---a+a]2s) 

and then used the boson coherent states to calculate the free energy in a series form 
analogous to the form developed by Langer (1968) for the case of interacting bosons. 
Using (A1) the Heisenberg Hamiltonian becomes 

(/-/'--E0)->2s ,V~j Y~a~+ (~,a~--a3 + ~ J~j a~+ a~ [a~+a~- ~, a;ad (A 2) 

where Dyson-Maleev transformation has been used for each spin i. At this stage, 
we might argue that the dynamical equations can be transformed into phase space 
equations by using the well known methods of boson coherent states. For example 
(where the state ( Z [  refers to unnormalised boson states). 
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a ~° °  <Zla:~n~_0 (nl)llzZ*n Z,n-1 <nt =/_..,n=0 na/" < n I [ (n-  1) t]l/~ 

= 0 <Zl (AS) 
¢3Z* 

Similarly 

(Z I a÷=Z * ( Z I ;  (A4) 

Hence if we start from the Schr6dinger equation 

we find using (A 3), (A 4) the eigenvalue equation 

~B~B(Z*) - - e  ~B(Z*); ~b B (Z*)--(ZI @> (A 6) 

where 

(3~B- Eo)=2s~ij Ju(Z,*--YZj*) O OZ~ , 

Ju ~ "/rZ "2+ Z *'~--Z *Z * ) ~ . + (A 7) 
~ i j  ~ ' '  J '  ' J~z,~-~z~* 

It is interesting to note that (A 7) has a form identical to that of eq. (25) obtained by 
using the spin coherent states; however the two are entirely different in practice for a 
variety of reasons. We have for example shown that the expectation values of the 
operators are obtained by using the integrals over the spin coherent space (eq. (16)) 
whereas if we use the boson representation, the expectation values are not so easily 
obtained. In order to calculate a trace over spin variable. We need a trace over 
boson space with an additional projection operator P such that Pin> = 0  if n >  2s and 
P I n> = I n> if n <2s. Thus 

Tl'Spin(PG ) --TrBoson( p - GP) (A 8) 

where ~ and G are the boson representatives of p and G. This leads to 

Trspin(pG) = f dzZ m (1 Z[ ) P,(Z) <ZIG P ! Z> (A 9) 

where P is analogous to P for the SCS case and m(IZl) is a suitable measure of 
integration. By inserting a complete set of boson coherent states we get 

Trspin(pG) =fd~Zd~Z ' m(lZI )  m(IZ ' ] )  fi, (Z) <ZIG [Z'> <Z']PIZ' > 
(A 10) 
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Thus the expectation values are more complicated in this approach, requiring off- 
diagonal coherent state matrix elements of operators and projection operators. 

Appendix B 

Physical and some unphysieal states of a model hamiltonian 

In this appendix we consider the eigenfunctions and eigenvalues of two spin particles 
interacting through 

/ t = % .  s~; Is, l=½. (B 1) 

In the SCS representation the Hamiltonian becomes 

0 0 

4 0Zl* ~Z2*" 
(B2) 

The physical energies are clearly } and -- ~. The wave functions in SCS representation 
are as follows 

~ ~ const; (¢=}) 

(t~ +~t)-~z~*+zl*; ( ,=t) 

~ ~ zl*z~*; (, =t) 

(t'~--~t')-~z~*-zl*; (,----~). (B 3) 

The eigenvalues are indicated in brackets. We can also consider polynomials of 
degree >~2. In fact it is quite simple to see that a close of eigenfunctions is provided 
by (ZI*--Zz*) m for m arbitrary. We have 

~t(Zl*--Z~*)'= [~ + 2 (m--3)] (Z~*--Z~*)m. (B4) 

Various cases follow for different values of m 
1. Completely physical states: Cases m = 0  and m--1 clearly reduce to (B 3) and 

there is no more to be said. 
2. Partly unphysical states: The case m = 2  gives energy m :----~ which is indeed 

one of the physical eigenvalues of/-L The wave function for this case is partly 
physical and partly unphysical. 

3. Completely unphysical: The case m>~3 corresponds to completely unphysical 
states. All the eigenvalues (except for m-  3) are unphysical. 

Thus we see that the operator 3 /admits  infinite number of eigenfunctions (for 
different m) of which only a few are physical. We observe that the state which have 
a mixture of physical and unphysical components (the case m =2) corresponds to an 
eigenvalue which is physical. 
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It is interesting to note that under operation of the 'Hamiltonian ,Y/', the 
physical and unphysical states separately form invariant subspaces. The ' mixed' 
states however, are transformed into other ' mixed ' states only i.e. 3/does not take 
mixed states into either completely physical or completely unphysical states. This 
property is clearly shared by a N spin generalization of this simple problem, which is 
of course the Heisenberg model. 

Appendix C 

Two and three magnon spectra in unsubtracted basis 

In this appendix we re-examine the two and three magnon problems working with 
partly unphysical states such as the function ~ii (eq. (40)). As explained in the text, 
these contain terms such as ZL *~ which are unphysical for s=½ and which must 
be removed (i.e. subtracted) at the very outset. However, these certainly form an 
interesting basis for the operator 3 / (but  not one for the Heisenberg model) and we 
investigate the eigenvalue problem in this basis below. We start from eq. (43) 

1 ("~-- Eo) ~K (k)=EK (k) ~K (k)+ ~ ~ q  V K (k, q)~K (q)" 

We can seek an eigenstate of 3£ of the form 

•(2) 
x-" 

K = ~,k ~K(k) ~K(k) (c 1) 

such that 

(c 2) 

Combining (43), (C 1) and (C 2) we get 

~ k  [ (~°(~)-EK(k)) ~'~K(k)-- 1 ~ q  VK(q, k ) ~.~K(q)] ~K(k)__0" (c 3) 

Since ,~k'S are arbitrary complex variables, we get the integral equation 

1 
(7~(K2)--EK (k)) ~K(k)= ~r~q VK(q' k) ~K(q) (c 4) 

Note that (C 4) is simply the adjoint of (51) i.e. VK(k, q) is replaced by Vii(q, k). 
This enables us to infer that 

-(2) (2) (C 5) co K =co K 

P.--7 
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(This result is easily obtained by viewing (51) and (C 4) as the eigenvalue equation of 
a non-hermitian operator and its adjoint). Thus we get the same eigenvalues as in 
the case of the physical eq. (51). 

In a similar way we can examine the three spin wave problem. We start with the 
operation of ,7/on a product state 

if(P1, P2, Psi =:Zp, Zp, Zp3. (C 6 / 

It is easy to see that 

(~--Eu) if(P1, Ps, P3)=E(px, Ps, Pa) ~b(pa, pz, P3) 

_}_ l ~ q I V p x + p  ~ (p12-p~ ' q) ff (Pl ~S.____._P~ _÷_q, Pl-t-Ps2 --'q' Pa)q-~] 

( c o  

Where E--tOpx-}-tOlh-~-tOp3 and ~ stands for the two terms obtained by cyclically 
permuting Pl, P2, P3 in the preceding term. We can look for eigenfunctions of 3 t  
in the form 

~t3)-~'pl, p~,pa a(Pl, P2, P3)~ (Pl, P2 Pa) (c 8) 

with eigenvalue co t3~. By following the same argument as for the two spin wave case, 
we get an integral equation for a (Pl, P2, Ps) 

1 [~t3I--E(Pl, P2, P3)] a(Pl, Ps, P3)~ ~ ~ q  [Vpl-.I-p, ( q , - ~ ? )  

a ( P ~  p---~2 -t- q' Plq-P22 q; P3) - ~  ] (C9) 

This equation is precisely the adjoint of the equation found by Majumdar et al (1973). 
The eigenvalues are then the same as theirs for the same reason as in the two spin 
wave case. We have in fact verified this by actually solving the Fadeev equations in 
a manner similar to Majumdar et al (1973). This leads to a single variable integral 
equation which is the adjoint of a similar one (eq. 3.6) of Majumdar et al (1973). 

For completeness, one should go back and look at the wave functions. This is 
quite easy to do in the two spin wave case. We have examined the tractable case of 
S =½ linear chain for which the wave function (eq. (C I)) can be easily computed. If 
we write in it the ' co-ordinate space ' as 

4(2) K ==~ij Cij Z,* Za* (C 10) 

we find that C.  ~0.  Hence in this particular case, the Hamiltonian 5t£ combines ¢'s 
in such a way as to get rid of the unphysica] terms ! Of course, there is no reason to 
expect this to happen in general. 



lleisenberg ferromagnet 99 

Acknowledgement 

The authors would like to thank Prof. C K Majumdar for interesting discussions and 
for reading the preliminary version of this paper. 

References 

Agarwal G S 1969 Phys. Rev. 177 400 
Agarwal G S 1973 Progress in Optics ed E Wolf (Amsterdam: North Holland) Vol. 11, p. 1. 
Akhiezer A I, Baryakhtar V V and Peletiminiskii S V 1969 Spin Waves translated by S Chomet 

(Amsterdam: North Holland) 
Arecchi F T, Courtens E, Gilmore R and Thomas H 1972 Phys. Rev. A6 2211 
Balakrishnan V 1975 Phys. Rev. Bl l  256 
Biswas A C and Rama Rao I 1971 Physica 53 493 
Biswas A C and Rama Rao I 1973 Physica 65 412 
De Ciorgio V and Scully M O 1970 Phys. Rev. A2 1170 
Douglass K H 1971 Ann. Phys. 62 383 
Douglass K H 1971 Ann. Phys. 64 396 
Dyson F J 1956a Phys. Rev. 102 1217 
Dyson F J 1956b Phys. Rev. 102 1230 
Fakuda N and Wortis M 1963 J. Phys. Chem. Solids 24 1675 
Gilmore R 1976 J. Phys. A9 L65 
Gilmore R, Bowden C M and Narducci L M 1975 Phys. Rev. A12 1019 
Graham R and Haken H 1970 Z. Phys. 237 31 
Haake F 1973 Springer Tracts in Modern Physics (New York: Springer-Verlag) Vol. 66, p. 98 
Haken H 1970 Laser Theory Handbuch der Phys. (New York: Springer-Verlag), Vol. 25/2c 
Haken H 1975 Rev. Mod. Phys. 47 67 
Kutzner J 1973 Z. Phys. 259 177 
Langer J S 1968 Phys. Rev. 167 183 
Langer J S 1969 Phys. Rev. 184 219 
Lugiato L A, Narducci L M and Gronchi M 1977 Phys. Rev. A15 1126 
Majumdar C K 1969 J. Math. Phys. 10 177 
Majumdar C K, Mukhopadhya G and Rajagopal A K 1973 Pramana 1 135 
Maleev S V 1958 Soy. Phys. JETP 6 776 
Pushkarov D I and Pushkarov K H I 1977 Phys. Stat. Solidi BS1 703 
Radcliffe J M 1971 J. Phys. A4 313 
Rogovin D, Scully M O and Lee P A 1973 Progress in Quantum Electronics 215 
Rama Rao I and Rajagopal A K 1977 Phys. Rev. B16 3148 
Scott J F, Sargent III M and Cantroll C D 1975 Opt. Commun. 15 13 
Shastry B S 1977 Unpublished 
Takahashi Y and Shibata Y 1976 J. Stat. Phys. 14 49 
Tjon J and Wright J 1977 Phys. Rev. B15 3470 
Vilenkin N J 1968 Special Functions and the Theory of  Group Representations (American Math. 

Society) Chap. III section 2 


