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Exact Solution of a Repulsive Fermi Model with Enhanced Superconducting Correlations
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We present the exact solution of a model of interacting fermions in any dimension with a pure repulsive
interaction projecting out a given Cooper channel. The solution rests upon the infinite ranged character
of the interaction in real space, leading to a functional integral that is dominated by a Gaussian term. The
solution produces strong superconducting enhancements and quasi-long-ranged order in a channel that is
not present in the Hamiltonian explicitly, but of the form given by arguments from order by projection.

PACS numbers: 71.10.Fd, 71.10.Li, 74.20.Mn
There is considerable recent interest [1] in the possi-
bility of models displaying a superconducting behavior
driven solely by repulsive interactions. The search is mo-
tivated by the high-Tc problem, where no obvious, known
attractive interaction can account for the phenomena; so
one believes that repulsive interactions, originating in the
Coulomb repulsion expressed within the Wannier basis of a
few tight-binding bands, are ultimately responsible. In one
dimension, the usual kind of repulsive interactions generi-
cally lead to enhanced spin-density-wave (SDW) order, via
powerlaw correlations with small decay exponents rather
than superconducting enhancements. However, recent
interesting work [2] shows that under certain conditions,
superconducting correlations of nontrivial symmetry are
enhanced. In the physically important case of two dimen-
sions the situation is not completely clear in relation to
popular models, such as the Hubbard or the t-J model.
While a treatment within the random phase approximation
near an antiferromagnetic instability leads to d-wave
superconductivity [3], one may worry whether the con-
clusions based on the (weak coupling) approximation are
valid for strong repulsions. Similar worries exist regarding
various versions of the Gauge theories [4] that are in vogue
currently. In this context, repulsive models which can be
solved exactly have an important role to play. A new set of
models was introduced recently [5–7] that demonstrates
the possibility of enhanced superconducting correlations
quite explicitly. These models are generalizations of the
Hubbard model, and include a term that is best interpreted
as a projection operator that excludes a certain Cooper
pairing channel from the problem. We present here an
exact solution of the basic model involving the kinetic en-
ergy and the projection operator. Our solution is obtained
by exploiting a certain feature of the interaction within
the framework of functional integrals: namely that the
projection operator is an infinite ranged repulsive operator,
and its Hubbard-Stratanovic (HS) linearizing field is a
single spatially uniform dynamical mode that admits only
Gaussian fluctuations in the thermodynamic limit. This is
in contrast to models with attractive interactions, where a
new saddle point value of the HS field gets stabilized at
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low temperatures, and its fluctuations can be ignored. The
repulsive case is much more subtle, and has some similari-
ties to the situation found in Fermionic models in infinite
dimensions [8] where the relevant HS field is a Grassman
variable that factorizes the kinetic energy, and has only
Gaussian fluctuations [9]. We find that as a consequence
the Fermi gas develops enhanced correlations in a “com-
promise” pairing channel which is not explicitly present
in the Hamiltonian. These are precisely of the sort that is
expected from arguments from order by projection [5,6].
The earlier treatments [5,6] have used a variety of non-
perturbative techniques, such as rigorous inequalities and
variational approaches. The exact solution presented here
is consistent with these, and give us in addition, a clear
understanding of the origin of these enhancements and
of the quasi LRO in terms of the singularities of the two
particle scattering amplitude. The model is defined by the
Hamiltonian

H � T 1 Us B
yB . (1)

Here B �
P

z �k�bk is a Cooper pair operator, bk �
c2k#ck" are the pair destruction operators, T �

P
eknks is

the kinetic energy corresponding to a band dispersion ek

[� 22
Pd

a�1 cos�ka� in the nearest neighbor problem].
z �k� may be chosen arbitrarily. The two cases of interest
in two dimensions are (i) z �k� � 1 giving rise to extended
s-wave order, and (ii) z �k� � cos�kx� 2 cos�ky� giving
rise to second-neighbor d-wave order. For simplicity of
presentation we initially focus on z � 1 and return to the
other case later.

With the above choice of the model, we note that B may
be rewritten as

P
r c#�r�c"�r�, and hence the interaction

term may be viewed as an infinite ranged hopping term
for doubly occupied sites.

Using the H-S linearization within the standard Grass-
man variable [10] formulation, we write the partition
function for this model as the functional integral Z �R
Dc�DcDf� Df exp 2bC. The free energy functional

C is given in terms of the Fermi fields c, c� and the
auxiliary bose fields f,f� as
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bC �
Z b

0
f��t�f�t�dt 2

X
k,s

Z b

0
c�
k,s�t� �≠t 2 jk�ck,s�t� dt 2 i

p
Us

Z b

0
�f��t�B�t� 1 B��t�f�t��dt , (2)
where jk � ek 2 m. We use a Fourier series ex-
pansion ck,s�t� �

P
n exp�ivnt�ĉk,s�n�, and f�t� �P

n exp�iVnt�f̂n, where the fermionic frequencies
vn � �2n 1 1�pb21 and the bosonic frequencies Vn �
2npb21. We denote the Fourier components b̂k�n� �P

m ĉ2k,#�m�ĉk,"�n 2 m� and so define B̂n �
P

k b̂k 3

�n 2 1�. In terms of these we can rewrite

C �
X

f̂�
nf̂n 1

X
k,n

�jk 2 ivn�ĉ�
k,s�n�ĉk,s�n�

1 i
p
Us

X
n

�f̂�
nB̂n 1 f̂nB̂

�
n� .

We now trace out the Fermi degrees of freedom
and find the reduced free energy functional Cf �
C0 1

P
f̂�

nf̂n 2 kbT
P

k Tr log�1 2 C�k��. Here C0 is
the noninteracting free energy, C is an infinite dimensional
matrix defined by its (frequency space) matrix elements
Cn,m�k� � Us
P

l G0�k, n�G0�k,m�f̂�
m1l11f̂n1l11 in

terms of the free Green’s function G0�k, n� � 1�
�ivn 2 jk�, and the trace is in the frequency space.

We now analyze Cf in detail. We can expand

Cf � C0 1
X
n

�1 1 UsL P0�iVn��f̂�
nf̂n

1
U2

s

2
L

X
G�m1,m2,n1,n2�f̂

�
m1

f̂�
m2

f̂n1f̂n2

1 O�U3
s � .

Here P0�iVn� � 1
L

P
k pk,n where pk,n are the polariza-

tions

pk,n � �2f�k� 2 1���iVn 2 2jk� , (3)

and f�k� is the usual noninteracting Fermi function. The
fourth order term is given explicitly as
G�m1,m2,n1,n2� �
1
L

X
k

�2f�k� 2 1� �Dm1,k 1 Dm2,k�dm11m2,n11n2

Dm1,kDm2,kDn1,kDn2,k
,

where Dm,k � �iVm 2 2jk�.
We note that both P0 and G in the above equations are

of O�1� since these are normalized sums over momenta.
Indeed every term in the expansion has a similar structure
and is of the same order, namely O�L �. Hence one has
the remarkable exact result that the Gaussian term domi-
nates the rest of the terms in the thermodynamic limit [11].
Roughly speaking, the Gaussian piece gives us the typical
size f̂n 	 1

p
L

, and so the quadratic (in Us) piece is of
the order 1�L , and likewise the mth term is of the order
1�L �m21�. Thus in the thermodynamic limit, it suffices to
keep the Gaussian term and to drop the remaining terms.
This leads to the following remarkably simple result [12]


f̂�
nf̂n� �

b21

1 1 UsL P0�iVn�
. (4)

From the same arguments, the correlation function of the
Cooper pair operators is given by


b�
k�n�bk0�n�� � dk,k0pk,n 2

1
L

pk,nVeff�iVn�pk0,n ,

(5)

where the effective interaction [12]

Veff�n� �
V

1 1 VP0�iVn�
(6)

in terms of the (very large) coupling constant V � UsL .
We next present an alternate derivation of the above

results starting from the equations of motion, which gives
some more insight into them.
Define (as in Ref. [6]) the set of operators Il �P
�ek�lbk , and Tl �

P
�ek�l�n2k# 1 nk" 2 1� . Clearly

I0 � B and T1 � T . It is easy to ascertain that

�Il ,T � � 2Il11, �Il , N̂� � 2Il ,

�Il , Iym� � 2Tl1m , (7)

whence,

�Il ,H 2 mN̂� � 22mIl 1 2Il11 2 UsTlI0 . (8)

Now, we invoke the law of large numbers and argue that
in the present problem the operator product TlI0 can be re-
placed by L mlI0 where L ml � 
Tl� , the thermodynamic
average of Tl , which is clearly of order L [13]. Then the
equations of motion for the usual time ordered Green func-
tions 

Il ; Iym�� reduce to the closed set

�iVn 1 2m� 

Il ; Iym�� � 2L ml1m 1 2

Il11; Iym��

2 LUsml

I0; Iym�� , (9)

which can be solved exactly. The solution is given by



Il ; Iym�� � 2L Pl1m 1 L Pl
Us

1 1 UsL P0
L Pm ,

(10)

where

Pl�iVn� �
X̀
l0�0

2l
0

ml1l0

�iVn 1 2m�l011

� �1�L �
X
k

�ek�l�2
nk� 2 1�
�iVn 2 2jk�

.
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This may be verified using the easily derived recursion
relation Pl11 � ��iVn 1 2m�Pl 2 ml��2. Furthermore,
one of the key features of the models being discussed
is that the one particle propagators are unrenormal-
ized [14], so that 
nk� � f�k�, whence Pl�iVn� �
�1�L �

P
k�ek�lpk,n. Then it is easily seen that the results

in Eq. (10) are basically the same as in Eq. (5). Starting
from the latter, multiplying by �ek�l�ek0�m, and summing
over k and k0, we get the former.

An analysis of the detailed properties of the function
Veff is of crucial importance for the rest of our discussion.
For a simple model band structure, with a constant density
of states g�e� � 1�2 for 21 , e , 1, we can compute it
exactly as

Veff�iV� ! Veff�v 1 ih� �
V

1 1 VP0�v�
, (11)

with

P0�v� �
1
4

log

µ
4j�v�2 1 m�2 2 1j

v2

∂

1 i
p

4
u�2 2 j2m 1 vj� sgn�v� .

The band extends from 22 1 2d to 2 1 2d, where the
hole filling d � 1 2 r � 2m. The schematic behavior
of Veff is as follows. At very high frequencies, Veff � V .
It has two poles at certain large frequencies that essentially
dominate its physics. In between these poles lies the in-
termediate frequency range where Veff is of order unity,
which contains the branch cut corresponding to the one
electron band of states. The location of the poles can be
found by using a large frequency expansion for the func-
tion P0�iVn�, which for jVnj ¿ W (W is the band width)
behaves as

P0�iVn� � 2
d

�iVn�
2

2�jm1j 2 md�
�iVn�2 1 O

µ
1

jVnj3

∂
.

(12)

The higher order terms can be verified to be negligible.
The poles of the Veff can then be found by solving
for the zeros of the denominator, a quadratic in z �
1�iVn, given as 0 � V21 2 dz 2 2�jm1j 2 md�z2.
The roots are always real corresponding to real frequency
poles of Veff. Hence, (a) at half filling, d � 0, the
poles are at 6v0 � 6

p
2V jm1j, and near the poles

Veff � 6
v0V

2�v7v0� . The pole frequencies are infinite in
the thermodynamic limit, but leave behind consequences
in the ground state as we see later. (b) Away from but
close to half filling, d ø 1, one pole is at v2 � Vd with
residue V 2d, and the other at a large negative frequency
2v1 � 2�2jm1j�d 2 2m� with residue 2v

2
1�d. As

d ! 0, the latter poles smoothly go over into those of the
first case. The contribution from the branch cut does not
have any particularly simple form, but is not important in
the most interesting region of the problem, namely d 	 0.
4920
Using the above properties of Veff we can compute
exactly the instantaneous (expectation) values of the
extended s wave and the s-wave correlation functions:
a � 1

4L 
AyA� with A � �T ,B� � 22
P

k ekbk , and

ß � 1
L 
ByB�. Using the main result Eq. (5), we find

a � kBT
X
n

�P2�iVn� 2 Veff�iVn�P2
1�iVn��e�iVn01�,

ß �
kBT
V 2

X
n

�V 2 Veff�iVn��e�iVn01�.

(13)

The main contributions to the resulting frequency sums
are quite easily seen to be tied to the pole contributions of
Veff, the branch cut part giving an uninteresting subleading
contribution. We find at half filling

apole �

p
UsL jm1j3

2
p

2
ßpole �

p
jm1j

p
2UsL

. (14)

Near half filling we find

apole �
m

2
1

d
ßpole �

4m
2
1

d3U2
sL

2 . (15)

At half filling Eq. (14) gives us the quasi-long-ranged or-
der as well as the correction to ground state energy along
with their appropriate coefficients, the latter by an integra-
tion over the coupling constant Us. These answers are in
good numerical agreement with exact numerics on a finite
sized system [7]. Away from half filling we find that the
uncertainty principle lower bounds are off by a factor of 2,
i.e., from Eq. (15) apole � 2aLowerBound.

The results given above enable us to compute several
other response functions exactly. For example, we find
that the charge stiffness is nonzero, and in fact unchanged
from the noninteracting value at half filling. We also find
at half filling that the appropriate order parameter density
D�r� has correlations that are novel: 
Dy�r�D�0�� 	 c

p
L

.
Thus although we do not have LRO of the usual sort, one
has a divergent “structure function”

R
d �r 
Dy�r�D�0��.

We next discuss the important case of z �k� �
cos�kx� 2 cos�ky� in two dimensions. This corresponds
to suppressing d-wave order at the length scale of nearest
neighbors. From the uncertainty principle argument
of Refs. [5,6], it follows that this would lead to en-
hancement again in the d-wave channel, but at a longer
length scale, i.e., the resulting Â � 22

P
ekz �k�bk

should have enhanced correlations. The functional
integral solution sketched here bears this out exactly.
We recover the results in Eqs. (14) and (15) with the
replacements: d ! d̂ � L 21

P
k z 2�k� �1 2 2f�k�� and

m ! m̂1 � L 21
P

k ekz 2�k� �1 2 2f�k��. The enhanced
correlation function of Â then diverges at the point where
d̂ vanishes. So long as the one-electron dispersion has the
bipartite symmetry, one can see that d̂ vanishes exactly at
half filling. However, if the dispersion does not have this
symmetry, e.g., by having a second neighboring hopping
t0, then d̂ vanishes at some other density determined by t0,
as illustrated in Fig. 1. The case of t0 	 20.4 is popular



VOLUME 84, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S 22 MAY 2000
–0.3 –0.2 –0.1 0 0.1 0.2 0.3

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

δ

δ
^

.4
.2

0. -.2 t’= -.4

FIG. 1. The effective filling d̂ for d-wave superconductivity
against the true filling d for different values of the second neigh-
bor hopping t0.

in literature, since it leads to a Fermi surface that is con-
sistent with that seen in the photoemission experiments in
High Tc systems [15], and it is an amusing coincidence
that the filling d 	 0.18 is close to the optimum doping.

Finally, we can show that many of the above features
of the infinite range model retain their relevance for
more realistic models with finite range repulsion. To
see this, consider (in the s-wave case) a more general
model [16] of the form H � T 1

1
L

P
U�p�By�p�B�p�,

where B�p� �
P

k c2k,#ck1p," is a Cooper pair operator
with total momentum p, with U�p� � Us�lc�d for a
small set of L ��lc�d points surrounding the center of
the Brillouin zone. This would correspond to repulsive
interactions with a long but finite range lc. Then it
is not hard to see that the results we have discussed
above would retain much of their validity (but for some
differences in details) to leading order in �1�lc�, with
the replacement UsL ! Us�lc�d , leading to enhanced
pairing correlations over a finite range in momentum
space. The quasi-long-ranged order would be replaced by
an enhancement of the O�1�, like that in the single mode
model away from half filling. In this case, we see that
all Cooper pairs with a finite (but small) center of mass
momentum are also influenced by the interaction, and
thus the model is more realistic by way of helping current
carrying states.

In summary, we have found an exact solution for an
interesting model of Fermions with purely repulsive in-
teractions with infinite range, which may be regarded as
a mean-field repulsive model. The resulting solution has
quasi-long-ranged order at half filling, as well as large un-
bounded enhancements as one approaches half filling, in
the equal time pairing correlations. We have also argued
that the above methods and results retain their relevance
even for generalized models where the repulsive interac-
tions have a large but finite range, and are therefore more
realistic. Finally, it is remarkable that the enhanced pairing
correlations in these models arise from very high energy
poles in the scattering amplitude, not unlike the physics
of Mott Hubbard systems, where the upper Hubbard band
influences the properties of carriers in the lower band.
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