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High-resolution angle-resolved photoemission study of the Fermi surface
and the normal-state electronic structure of BizSrzCaCuzOs
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High-resolution angle-resolved photoelectron spectroscopic measurements were made of the Fer-
mi edge of a single crystal of Bi&Sr&CaCuz08 at 90 K along several directions in the Brillouin zone.
The resultant Fermi-level crossings are consistent with local-density band calculations, including a
point calculated to be of Bi-0 character. Additional measurements were made where bands crossed
the Fermi level between 100 and 250 K, along with measurements on an adjacent Pt foil. The Fermi
edges of both materials agree to within the noise. Below the Fermi level the spectra show correla-
tion effects in the form of an increased effective mass, but the essence of the single-particle band
structure is retained. The shape of the spectra can be explained by a lifetime-broadened photohole
and secondary electrons. The effective inverse photohole lifetime is linear in energy.

I. INTRODUCTION

Since the discovery of high-T, superconductors, their
electronic structure has been of great interest. Whether
or not the normal states of these materials are Fermi
liquids has been a key question. Is one-electron band
theory adequate as a starting point for describing the
normal-state electronic structure (with added modifica-
tions from correlation effects) or must an alternative
description be devised?' Answers to these questions are
important for the ultimate understanding of the mecha-
nism of superconductivity in these materials.
In an attempt to address some of these questions, we

carried out a detailed angle-resolved photoemission study
on normal-state BizSrzCaCuzOs. The experiment was
performed with high energy and angular resolution, a
prerequisite for studying the details of the states near the
Fermi level. To minimize thermal broadening, measure-
ments were made at temperatures just above T, .
An angle-resolved photoemission study on high-T, su-

perconductors is simplified by the fact that most of the
structures are highly two dimensional. In the photoemis-
sion process momentum parallel to the surface is con-
served. Momentum perpendicular to the surface is not
conserved since the photoelectron transfers a certain per-
pendicular momentum to the crystal when escaping
through the surface barrier. For a two-dimensional sys-
tem, however, the momentum parallel to the surface is
sufBcient to determine the initial state.
Previous measurements on BizSrzCaCuz08 (Ref. 3)

showed that bands are negligibly dispersive in the direc-
tion normal to the a-b plane, consistent with the two-
dimensionality. By measuring photoelectron energy dis-

tribution curves (EDC's) at 90 K (above T, ) as a function
of angle, we were able to isolate a single band dispersing
through the Fermi level, and determine the point in the
Brillouin zone where the band crosses the Fermi level.
The measurement is accurate to 2'. (For 22 eV photon
energy, this corresponds to bk~~ =0.075 A '.) Such mea-
surements were made along major symmetry lines. The
basic features of the Fermi surface were obtained. The
results will be presented and discussed in three sections:
band dispersion and the Fermi surface, a more detailed
analysis of the spectral line shapes, and a comparison of
the filled states at the Fermi level to a conventional Fermi
liquid.

II. EXPERIMENTAL
A single crystal of Bj.zSrzCaCuz08 was cleaved at 20 K

in a vacuum better than 5X10 "Torr. The surface was
a (001) plane. Previous work with the 1:2:3 com-
pounds ' showed that the surface layers sampled by pho-
toelectron spectroscopy degraded rapidly at 50 K, but the
Bi compounds proved to be much more stable. Samples
cleaved in ultrahigh vacuum at 20 K could be cycled to
90 K and back without detectable changes in the photo-
electron spectrum. The samples were stable unless held
at room temperature for many hours. The sample used
had a value of T, of 82 K determined from dc SQUID
magnetization measurements. Photons were provided by
the Ames/Montana ERG/Seya beam line on Aladdin,
using the Seya in the 15—25 eV region. The instrument
function of the monochromator was measured. The
FWHM is 24 meV for 22 eV photons. The photoelec-
trons were energy analyzed by a 50 mm radius hemi-
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spherical analyzer. The analyzer has a Gaussian instru-
ment function with a FTHM of 20 meV at the pass ener-
gy of 2 eV, and 50 meV at a pass energy of 5 eV. The
combined instrument function (FWHM 32 meV and 55
meV, respectively) was verified by measurement of a me-
tallic Fermi level at 20 K. Note that this resolution is
equal to, or better than, the width of the Fermi-Dirac
function (4.4 kT) over the temperatures of the scans we
report here. The analyzer input lens had an angular ac-
ceptance of about 2'. In the spectra to be reported the
energy scale is that of the initial state ("binding energy").

III. RESULTS AND DISCUSSION

A. Band dispersion and Fermi surface

The spectra shown in Fig. 1 are taken at 90 K along a
line parallel to I -F (their positions in the Brillouin zone
are shown as solid dots in Fig. 2), with 22 eV photon en-
ergy. It can be seen that a band disperses toward the Fer-
mi level from at least 350 meV below EF. At 12', the
Lorentzian peak is cut off by the Fermi-Dirac function,
and the leading edge coincides with the Pt edge. This is a
clear indication that the band has just crossed the Fermi
level at this point. As indicated in Fig. 2, the 12' point
almost falls on the Fermi surface predicted by band calcu-
lations. ' At 14', the band has completely passed the
Fermi level. The details of the spectral shapes will be dis-
cussed in the next section.

FIG. 2. Section of the calculated Fermi surface of
Bi&Sr&CaCu20& (from Ref. 8j showing points at which bands
crossing the Fermi level were observed.

The dispersion of this band is shown as the insert of
Fig. 1. The band is less steep and the minimum at I is
closer to EF than predicted by a one-electron band calcu-
lation. It agrees better with the band structure of a
"heavy fermion" state calculated within the formalism of
the Anderson lattice model with a large Coulomb interac-
tion U taken into account. ' The effective mass of this
band is estimated to be 2 from our experimental data. A
similar increase in mass above the calculated mass was
observed by Manzke et ai. "
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FIG. 1. Angle-resolved energy distribution curves for several
angles along the I - F direction in the Brillouin zone using pho-
tons of energy 22 eV. The inset shows the measured band
dispersion (dots) and the calculated bands from Ref. 8.

FIG. 3. Angle-resolved energy distribution curves for several
angles along the I -M direction in the Brillouin zone using pho-
tons of energy 19 eV. The inset shows the measured band
dispersion (dots) and the calculated energy bands of Ref. 8.
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Fermi-Liquid Line Shapes Measured by Angle-Resolved Photoemission Spectroscopy on 1-T-TiTe2
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We have performed high-resolution angle-resolved photoemission spectroscopy (ARPES) on the lay-

ered compound 1-T-TiTe2, whose low-energy properties are those of a normal metal, and analyzed the
experimental line shapes in terms of the Fermi-liquid self-energy. We find excellent agreement between
the measured and theoretical spectral weight distribution, while line profiles expected for other theoreti-
cal models such as the marginal Fermi liquid clearly fail to reproduce the experimental spectra. This
demonstrates that ARPES line shapes are able to reflect the nature of an interacting electron system.

PACS numbers: 71.45.—d, 79.60.—i
Angle-resolved photoemission spectroscopy (ARPES)

has provided deep insight into the electronic structure of
high-temperature superconductors (HTS) by providing
the first evidence of dispersing single-particle excitations
and a Fermi surface in accordance with the Luttinger
counting theorem. Furthermore, the unusual behavior of
the ARPES linewidths and line shapes has been interpret-
ed as an indication for a non-Fermi-liquid-like ground
state [1] such as the marginal Fermi liquid or the Lut-
tinger liquid. However, a detailed analysis of HTS line
shapes [2] showed that conclusions of non-Fermi-liquid
behavior hinge on arguments for a negligible inelastic
background, and pointed out that the spectra have an
unexplained steplike emission at the Fermi energy FF.
Also, a priori it is not at all clear to what extent ARPES
line shapes are really dominated by the single-particle ex-
citation spectrum and how much they may be affected by
transition matrix elements or extrinsic effects like photo-
electron scattering or diffraction. To date, the work by
Kevan [3] on the anomalous broadening of a surface state
in copper is the only systematic study on ARPES line
shapes in the literature. Thus there is a clear need to
calibrate angle-resolved photoemission spectroscopy on a
system with a known many-body ground state. In this
Letter we present high-resolution ARPES data on the
layered compound 1-T-TiTe2 and an analysis of the spec-
tra in terms of Fermi-liquid line profiles, thereby demon-
strating for the first time that ARPES line shapes can
indeed refIect the character of an interacting many-body
system.
It is important to assess the relation between the

ARPES spectrum and the quantity of interest, the sin-
gle-particle excitation spectrum A (k, to). Within the usu-
al three-step model of photoemission and using the sud-
den approximation, the ARPES signal is proportional to

~Mf~2A(k, to), where Mf is the transition matrix ele-
ment. Thus, apart from the modulations by the matrix
elements, ARPES measures essentially the spectral func-
tion. However, when going beyond this simple photo-
emission theory there are additional complications. For
example, in the more comprehensive one-step theory it is
shown that the lifetime of the photoelectron adds to the
total ARPES linewidth. Since the final-state energy
width is mixed in with a weight factor of v&t/v, &, where
vt, & and v, ~ are the band velocities, perpendicular to the
surface, of the photohole and the photoelectron, respec-
tively, the effect of the final electron state broadening can
be suppressed if vt, &((v,& [4]. This is why detailed pho-
tohole line-shape studies can only be done on surface
states or layered systems like the HTS. Other mecha-
nisms that may be capable of distorting the spectral
weight information include scattering and diffraction of
the outgoing photoelectron. Only if all these effects are
negligible, or if their energy dependence is small on the
scale of the intrinsic linewidths, can the ARPES signal be
taken to be representative of the electron removal spec-
trum.
The spectral function A(k, to) itself is simply propor-

tional to the imaginary part of the Green's function
G(k, to) =[co—ek —Z(k, co)] ' of the interacting electron
system, where |.g is the free-particle energy and Z the
se1f-energy containing all many-body aspects of the sys-
tem. In the case where the low-lying excitations can be
well described by quasiparticles, i.e., in a Fermi liquid
(FL), the self-energy near the Fermi energy is well
known [5]:

Z(k, to) =ato+iPto
where we have assumed a three-dimensional isotropic
e1ectron system. Note that this is an approximation that
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(1) Weak Correlations

(2) Intermediate Correlations

(3) Strong Correlations
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 Systematic theory for the t J model using Schwinger Dyson approach.

 Expansion in density via a parameter  “λ”.

 Lowest non trivial  order O(λ2) equations: 

Simplified ECFL solution (analytical expressions)

Numerical solution (preliminary results, preprint soon 

with Daniel Hansen)

Large U Hubbard problem with Edward Perepelitsky 

and Ehsan Khatami, Marcos Rigol. 

 Comparison with normal state cuprate ARPES line shapes (Laser and   

Synchrotron) at  optimal doping using simplified ECFL solution. 

Gey-Hong Gweon + Genda Gu + Shastry.

 Predictions for asymmetry in line shapes near Fermi energy.  

 In the work presented here:



 Why is the t J model such a difficult theoretical Problem?

Non canonical field theory- Cannot consult existing text books!

Absence of Wicks theorem and Feynman series

Absence of  any obvious small parameter. 

 Gutzwiller projection is a ̀ `singular perturbationʼ̓ , hence a major stumbling block for the 
dynamics. 

Use an adaptation of    Schwingerʼs method.    

Bypass Wicks theorem. 

 Uses extra time dependent potentials and magnetic fields to generate 
exact equations of motion (EOM).

Freedom  intrinsic to the  Schwinger Dyson method + insights from spectral sum rules 
helps us to make progress.    

Describe a new framework for calculation with twin self energies and vertices.

Initial results are promising.
Extremely Correlated Fermi Liquids

B. Sriram Shastry
Physics Department, University of California, Santa Cruz, California 95064, USA

(Received 14 February 2011; published 29 July 2011)

We present the theory of an extremely correlated Fermi liquid with U ! 1. This liquid has an

underlying auxiliary Fermi liquid Green’s function that is further caparisoned by extreme correlations.

The theory leads to two parallel hierarchies of equations that permit iterative approximations in a certain

parameter. Preliminary results for the spectral functions display a broad background and a distinct T
dependent left skew. An important energy scale !ð ~k; xÞ emerges as the average inelasticity of the FL

Green’s function, and influences the photoemission spectra profoundly. A duality is identified wherein a

loss of coherence of the ECFL results from an excessively sharp FL.
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Introduction.—Correlated electron systems attract two
distinct approaches. An intermediate to strong coupling
approach is used when the interaction U is comparable to
the band width 2W, and has seen some success in recent
times [1]. On the other hand, Anderson [2] has argued that
myriad experiments on high Tc superconductors require a
better understanding of the t-J model physics. This model
sets U ! 1 right away, i.e., leads to extreme correlations
and involves Gutzwiller projected Fermi operators that are
non canonical. Thus Wick’s theorem is immediately lost,
and perturbative schemes encoding the Feynman Dyson
approach become useless. Since this approach is at the root
of most current many body physics text books, the task of
understanding the t-J model is not lightly undertaken.

The Schwinger approach to interacting field theories is a
powerful and attractive alternative. It is fundamentally non
perturbative, where Wick’s theorem is bypassed by dealing
with suitable inverse Greens functions. Conventional many
body theory for canonical Fermions can also be cast into
this approach, and leads to the standard results. In Ref. [3]
(henceforth referred to as paper I), the author has recently
applied the Schwinger method to the t-J model, and found
a class of solutions that are termed as extremely correlated
quantum liquids. That state is presumably realized under
suitable conditions. However it gives a Fermi surface (FS)
volume that is always distinct from that of the Fermi gas.
This is contrast to the case of Fermi liquids (FL), where the
important theorem of Luttinger and Ward (LW) [4,5] man-
dates the invariance of the FS volume under interactions.

In this Letter we propose a state of matter termed as an
extremely correlated Fermi liquid (ECFL). The ECFL
found here, represents an alternate class of solutions for
the t-J model, where the Fermi surface satisfies the Fermi
gas (i.e., LW) volume. In this work we present the essen-
tials of the formalism, and display preliminary results on
spectral functions that are suggestive of the relevance of
the ECFL state to cuprate materials. An inherent flexibility
of the Schwinger approach permits the construction of an
alternate class of solutions from the one found in paper I.

The excitations of the ECFL state may be thought of as
bare electrons undergoing a double layer of renormaliza-
tion: the FL dressing into quasiparticles that are further
caparisoned (i.e., decorated) by extreme correlations.
Formalism.—The physical projected electronic Green’s

function G satisfies an equation of motion (EOM) (I-29)
written compactly in matrix form as

ð@!i #!ÞGði; fÞ ¼ #"ði; fÞf1# #ðiÞg#V i % Gði; fÞ
# Xði; "jÞ % Gð"j; fÞ # Yði; "jÞ % Gð"j; fÞ;

(1)

where ! is the chemical potential and an implicit integra-
tion over space-time variables such as "j, written with bold
overlined letters, is implied,

Xði; jÞ ¼ #tði; jÞ½DðiÞ þDðjÞ(
þ 1

2Jði; "kÞ½DðiÞ þDð "kÞ("ði; jÞ
Yði; jÞ ¼ #tði; jÞ½1# #ðiÞ # #ðjÞ(

þ 1
2Jði; "kÞ½1# #ðiÞ # #ð "kÞ("ði; jÞ:

(2)

In the above expression [6], we used #ðiÞ ¼ Gkði; iÞ with
the k conjugation defined by ðMkÞ$1$2

¼ M "$2 "$1
$1$2, and

D$1$2
ðiÞ ¼ $1$2

"
"V "$1 "$2

i

. The added (bosonic) source term

V $1$2
i ð!iÞ is central to this approach; it is a space-time

dependent field that couples to the charge and
spin densities through a term in the action:P

i$

R%
0 d!V

$1$2
i ð!ÞX$1$2

i ð!Þ, where X$1$2
i is the spin and

density operator at site i that acts as j$1ih$2j.
An important technical problem highlighted in I is to

deal with the time dependence of the #ðiÞ term in Eq. (1)
which makes the theory noncanonical. Here we use the
decomposition into two factors [7]:

G ða; bÞ ¼ gða; "bÞ %&ð "b; bÞ; (3)

and express #ðiÞ ¼ ½gði; "jÞ %&ð"j; iÞ(k. The object g is an
auxiliary FL Green’s function and &ð "b; bÞ is an appurte-
nant (or supplementary) factor that is determined below.
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a class of solutions that are termed as extremely correlated
quantum liquids. That state is presumably realized under
suitable conditions. However it gives a Fermi surface (FS)
volume that is always distinct from that of the Fermi gas.
This is contrast to the case of Fermi liquids (FL), where the
important theorem of Luttinger and Ward (LW) [4,5] man-
dates the invariance of the FS volume under interactions.

In this Letter we propose a state of matter termed as an
extremely correlated Fermi liquid (ECFL). The ECFL
found here, represents an alternate class of solutions for
the t-J model, where the Fermi surface satisfies the Fermi
gas (i.e., LW) volume. In this work we present the essen-
tials of the formalism, and display preliminary results on
spectral functions that are suggestive of the relevance of
the ECFL state to cuprate materials. An inherent flexibility
of the Schwinger approach permits the construction of an
alternate class of solutions from the one found in paper I.

The excitations of the ECFL state may be thought of as
bare electrons undergoing a double layer of renormaliza-
tion: the FL dressing into quasiparticles that are further
caparisoned (i.e., decorated) by extreme correlations.
Formalism.—The physical projected electronic Green’s

function G satisfies an equation of motion (EOM) (I-29)
written compactly in matrix form as

ð@!i #!ÞGði; fÞ ¼ #"ði; fÞf1# #ðiÞg#V i % Gði; fÞ
# Xði; "jÞ % Gð"j; fÞ # Yði; "jÞ % Gð"j; fÞ;

(1)

where ! is the chemical potential and an implicit integra-
tion over space-time variables such as "j, written with bold
overlined letters, is implied,

Xði; jÞ ¼ #tði; jÞ½DðiÞ þDðjÞ(
þ 1

2Jði; "kÞ½DðiÞ þDð "kÞ("ði; jÞ
Yði; jÞ ¼ #tði; jÞ½1# #ðiÞ # #ðjÞ(

þ 1
2Jði; "kÞ½1# #ðiÞ # #ð "kÞ("ði; jÞ:

(2)

In the above expression [6], we used #ðiÞ ¼ Gkði; iÞ with
the k conjugation defined by ðMkÞ$1$2

¼ M "$2 "$1
$1$2, and

D$1$2
ðiÞ ¼ $1$2

"
"V "$1 "$2

i

. The added (bosonic) source term

V $1$2
i ð!iÞ is central to this approach; it is a space-time

dependent field that couples to the charge and
spin densities through a term in the action:P

i$

R%
0 d!V

$1$2
i ð!ÞX$1$2

i ð!Þ, where X$1$2
i is the spin and

density operator at site i that acts as j$1ih$2j.
An important technical problem highlighted in I is to

deal with the time dependence of the #ðiÞ term in Eq. (1)
which makes the theory noncanonical. Here we use the
decomposition into two factors [7]:

G ða; bÞ ¼ gða; "bÞ %&ð "b; bÞ; (3)

and express #ðiÞ ¼ ½gði; "jÞ %&ð"j; iÞ(k. The object g is an
auxiliary FL Green’s function and &ð "b; bÞ is an appurte-
nant (or supplementary) factor that is determined below.
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Symbolic Symmetrized EOM Notes All
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Greens function

Gσiσf [i, f ] = −��X0σi
i X

σf0
f ��. (1)

Let us denote:

γ(i) = G(k)[i−, i], G(k)
σ1σ2

= σ1σ2 Gσ̄2σ̄1 (2)

Start with exact EOM in the presence of the time dependent potential V

(∂τi − µ)G[i, f ] = −δ[i, f ](1− γ[i])− Vi · G[i, f ]−X[i, j] · G[j, f ]− Y [i, j] · G[j, f ], (3)

where denoting D = ξ∗ δ
δV∗ (* represents spin indices), X and Y are defined as

X[i, j] = −t[i, j] (D[i+] +D[j+]) +
1

2
J [i, k] (D[i+] +D[k+])δ[i, j]

Y [i, j] = −t[i, j] (1− γ[i]− γ[j]) +
1

2
J [i, k] (1− γ[i]− γ[k])δ[i, j]. (4)

Symbolically

X = [−t+
1

2
J ] D

Y1 = −[−t+
1

2
J ] γ (5)

Denoting Fermi gas (non interacting) Greens function

Ĝ−1
0 (µ) ≡ (µ− ∂τ − V)1− [−t+

1

2
J ] (6)

we write EOM as

(Ĝ−1
0 (µ)− λ Y1). G = (1− λ γ) + λ X. G (7)

The exact EOM has λ = 1, we introduced convenient λ and at the end set λ → 1. Hence inverting:

G = (Ĝ−1
0 (µ)− λ Y1 − λ X)−1. (1− λ γ). (8)

If we set (1− λ γ) → 1, canonical Fermi theory would have same form. Complications arise from time dependent γ.
Now factors and vertex read:

G = g.µ (9)

We require the action of the functional derivative D on G. For this define a vertex function pair:

Λ ≡ δ

δV . (−g−1), U ≡ δ

δV . µ (10)

Thus Dg = g.Λ.g etc. Using the chain rule D(g.µ) = (g.Λ).g.µ+ g.D(µ), and defining

L ≡ [t− 1

2
J ] ξ∗. g

δ

δV∗ , (11)

we obtain the decomposition

X.G = Φ.G + Ψ

(12)

Symbolic notation makes things  simpler
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Y → (−t+
J

2
) + Y1⦗
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G = (Ĝ−1
0 − UG− U

δ

δv
)−1 . 1

Similarly the symbolic EOM for Hubbard model (Canonical theory)

Added time dependent potentials, finally set to 
zero.  

Ĉσ = Pd=0 Cσ Pd=0
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Schwinger Dyson exact EOM for Greens function
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Symbolic EOM for t J model

Parameter λ introduced here
Set λ=1 at the end.

At λ=0 it reduces  a Fermi gas.
Provides continuity between Fermi gas and tJ model.
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Local Greens function

 Turning off  sources,  γ becomes  n/2(density=n)  

Calculation in brief



Parameter λ in the atomic limit

 Atomic limit gives explicit meaning of this parameter.
Tuning λ from 0 to 1 eliminates states, and can be mapped exactly to varying the double 

occupancy.
 An expansion in powers of λ give virial (i.e. low density) expansion-

8

A. Entropic intepretation of λ

We write the total chemical potential µ = µa+λµb as a function of the particle density n = N/Ns and temperature
T as

µ = kBT log(
n

2− (1 + λ)n
). (65)

Thermodynamics tells us that the entropy S can be expressed as

S(n) = −Ns

� n

0
dn� ∂µ(n�)

∂T
(66)

and since we know µ from Eq. (65) we obtain with y = (1 + λ)n

S(n,λ)

kBNs
=

1

1 + λ
{log 4− y log n− (2− y) log (2− y)} . (67)

we see that its λ derivative: 1
kBNs

∂S
∂λ = 2

(1+λ)2

�y
2 + log (1− y

2 )
�
is negative definite. Thus we see that the entropy

at a fixed density interpolates monotonically, between the free Fermi limit and the infinite U limits as λ ranges
over its domain 0 ≤ λ ≤ 1. The maximum allowed density is reduced from 2 to 2

1+λ and thus at λ = 1 we have
a maximum of one electron per site- as expected physically. Thus increasing λ from zero effectively removes the
available states contributing to entropy, its role may be viewed as that of (continuous) removal of states. Thus for
the equations of motion it is somewhat analogous to the role of Gutzwiller’s parameter g in his projection operator�

i [1− (1− g)ni↑nj↓] at the wave function level.
In the atomic limit we can also calculate the entropy at a fixed density of doubly occupied sites d = 1

Ns

�
i ni↑ni↓

as

S(n, d)

kBNs
= −d log d− (n− 2d) log(

n

2
− d)− (1 + d− n) log(1 + d− n). (68)

An uncorrelated system corresponds to d = n2

4 , where the entropy Eq. (68) is a maximum, while d = 0 for the fully
projected t-J model. Comparing the two expressions for entropy Eq. (67) and Eq. (68), we can express λ in terms
of d at any density. This is illustrated in Fig. (1).
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FIG. 1: The parameter λ is determined in terms of the double occupancy d at various densities in the atomic limit as described
in the text. The arrow indicates increasing density n. Note that the parameter d is scaled into the unit interval.

B. λ expansion of atomic limit

Since g is independent of λ in this limit, we need to only expand µ. This gives from Eq. (60)

µ[iωn] = 1− λ
�n
2
+ µ(0)

b g[iωn]
�
− λ2

�
µ(1)

b g(iωn)− µ(0)
b

n

2
g[iωn]− (µ(0)

b g[iωn])
2
�
+ . . . (69)

We can solve the G exactly and hence compute the chemical potential

From this expression conclude that an expansion in λ is effectively an expansion in density “n” as well.

µ = µ0 + kBT
∞�

m=0

�
n

2− n

�m+1 λm

m+ 1

Comparing to standard expression for  entropy as  a function of d and n,
we map λ to the normalized double occupancy density

n= .25, .5, .75, 1.
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Parameter λ versus density of double occupancy 
at various densities “n”. 

d ∼ d0(1− λ)

d0 =
n2

4 Uncorrelated density of doubles

Use Maxwell’s relation to compute entropy as a function of λ and n (Ns = # sites)

8

A. Entropic intepretation of λ

We write the total chemical potential µ = µa+λµb as a function of the particle density n = N/Ns and temperature
T as

µ = kBT log(
n

2− (1 + λ)n
). (65)

Thermodynamics tells us that the entropy S can be expressed as

S(n) = −Ns

� n

0
dn� ∂µ(n�)

∂T
(66)

and since we know µ from Eq. (65) we obtain with y = (1 + λ)n

S(n,λ)

kBNs
=

1

1 + λ
{log 4− y log n− (2− y) log (2− y)} . (67)

we see that its λ derivative: 1
kBNs

∂S
∂λ = 2

(1+λ)2

�y
2 + log (1− y

2 )
�
is negative definite. Thus we see that the entropy

at a fixed density interpolates monotonically, between the free Fermi limit and the infinite U limits as λ ranges
over its domain 0 ≤ λ ≤ 1. The maximum allowed density is reduced from 2 to 2

1+λ and thus at λ = 1 we have
a maximum of one electron per site- as expected physically. Thus increasing λ from zero effectively removes the
available states contributing to entropy, its role may be viewed as that of (continuous) removal of states. Thus for
the equations of motion it is somewhat analogous to the role of Gutzwiller’s parameter g in his projection operator�

i [1− (1− g)ni↑nj↓] at the wave function level.
In the atomic limit we can also calculate the entropy at a fixed density of doubly occupied sites d = 1

Ns

�
i ni↑ni↓

as

S(n, d)

kBNs
= −d log d− (n− 2d) log(

n

2
− d)− (1 + d− n) log(1 + d− n). (68)

An uncorrelated system corresponds to d = n2

4 , where the entropy Eq. (68) is a maximum, while d = 0 for the fully
projected t-J model. Comparing the two expressions for entropy Eq. (67) and Eq. (68), we can express λ in terms
of d at any density. This is illustrated in Fig. (1).

n= .25, .5, .75, 1.
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FIG. 1: The parameter λ is determined in terms of the double occupancy d at various densities in the atomic limit as described
in the text. The arrow indicates increasing density n. Note that the parameter d is scaled into the unit interval.

B. λ expansion of atomic limit

Since g is independent of λ in this limit, we need to only expand µ. This gives from Eq. (60)

µ[iωn] = 1− λ
�n
2
+ µ(0)

b g[iωn]
�
− λ2

�
µ(1)

b g(iωn)− µ(0)
b

n

2
g[iωn]− (µ(0)

b g[iωn])
2
�
+ . . . (69)

y = (1 + λ)n



Symbolic Symmetrized EOM Notes All
(Dated: Feb 19, 2012)

Greens function

Gσiσf [i, f ] = −��X0σi
i X

σf0
f ��. (1)

Let us denote:

γ(i) = G(k)[i−, i], G(k)
σ1σ2

= σ1σ2 Gσ̄2σ̄1 (2)

Start with exact EOM in the presence of the time dependent potential V

(∂τi − µ)G[i, f ] = −δ[i, f ](1− γ[i])− Vi · G[i, f ]−X[i, j] · G[j, f ]− Y [i, j] · G[j, f ], (3)

where denoting D = ξ∗ δ
δV∗ (* represents spin indices), X and Y are defined as

X[i, j] = −t[i, j] (D[i+] +D[j+]) +
1

2
J [i, k] (D[i+] +D[k+])δ[i, j]

Y [i, j] = −t[i, j] (1− γ[i]− γ[j]) +
1

2
J [i, k] (1− γ[i]− γ[k])δ[i, j]. (4)

Symbolically

X = [−t+
1

2
J ] D

Y1 = −[−t+
1

2
J ] γ (5)

Denoting Fermi gas (non interacting) Greens function

Ĝ−1
0 (µ) ≡ (µ− ∂τ − V)1− [−t+

1

2
J ] (6)

we write EOM as

(Ĝ−1
0 (µ)− λ Y1). G = (1− λ γ) + λ X. G (7)

The exact EOM has λ = 1, we introduced convenient λ and at the end set λ → 1. Hence inverting:

G = (Ĝ−1
0 (µ)− λ Y1 − λ X)−1. (1− λ γ). (8)

If we set (1− λ γ) → 1, canonical Fermi theory would have same form. Complications arise from time dependent γ.
Now factors and vertex read:

G = g.µ (9)

We require the action of the functional derivative D on G. For this define a vertex function pair:

Λ ≡ δ

δV . (−g−1), U ≡ δ

δV . µ (10)

Thus Dg = g.Λ.g etc. Using the chain rule D(g.µ) = (g.Λ).g.µ+ g.D(µ), and defining

L ≡ [t− 1

2
J ] ξ∗. g

δ

δV∗ , (11)

we obtain the decomposition

X.G = Φ.G + Ψ

(12)

Recall definition of X
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Greens function

Gσiσf [i, f ] = −��X0σi
i X

σf0
f ��. (1)

Let us denote:

γ(i) = G(k)[i−, i], G(k)
σ1σ2

= σ1σ2 Gσ̄2σ̄1 (2)

Start with exact EOM in the presence of the time dependent potential V

(∂τi − µ)G[i, f ] = −δ[i, f ](1− γ[i])− Vi · G[i, f ]−X[i, j] · G[j, f ]− Y [i, j] · G[j, f ], (3)

where denoting D = ξ∗ δ
δV∗ (* represents spin indices), X and Y are defined as

X[i, j] = −t[i, j] (D[i+] +D[j+]) +
1

2
J [i, k] (D[i+] +D[k+])δ[i, j]

Y [i, j] = −t[i, j] (1− γ[i]− γ[j]) +
1

2
J [i, k] (1− γ[i]− γ[k])δ[i, j]. (4)

Symbolically

X = [−t+
1

2
J ] D

Y1 = −[−t+
1

2
J ] γ (5)

Denoting Fermi gas (non interacting) Greens function

Ĝ−1
0 (µ) ≡ (µ− ∂τ − V)1− [−t+

1

2
J ] (6)

we write EOM as

(Ĝ−1
0 (µ)− λ Y1). G = (1− λ γ) + λ X. G (7)

The exact EOM has λ = 1, we introduced convenient λ and at the end set λ → 1. Hence inverting:

G = (Ĝ−1
0 (µ)− λ Y1 − λ X)−1. (1− λ γ). (8)

If we set (1− λ γ) → 1, canonical Fermi theory would have same form. Complications arise from time dependent γ.
Now factors and vertex read:

G = g.µ (9)

We require the action of the functional derivative D on G. For this define a vertex function pair:

Λ ≡ δ

δV . (−g−1), U ≡ δ

δV . µ (10)

Thus Dg = g.Λ.g etc. Using the chain rule D(g.µ) = (g.Λ).g.µ+ g.D(µ), and defining

L ≡ [t− 1

2
J ] ξ∗. g

δ

δV∗ , (11)

we obtain the decomposition

X.G = Φ.G + Ψ

(12)

Important decomposition into ``auxiliary Fermi liquid”  g 
and “caparison factor”  (adaptive spectral weight)     μ
(not to be confused with chemical potential in bold μ ).
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Greens function

Gσiσf [i, f ] = −��X0σi
i X

σf0
f ��. (1)

Let us denote:

γ(i) = G(k)[i−, i], G(k)
σ1σ2

= σ1σ2 Gσ̄2σ̄1 (2)

Start with exact EOM in the presence of the time dependent potential V

(∂τi − µ)G[i, f ] = −δ[i, f ](1− γ[i])− Vi · G[i, f ]−X[i, j] · G[j, f ]− Y [i, j] · G[j, f ], (3)

where denoting D = ξ∗ δ
δV∗ (* represents spin indices), X and Y are defined as

X[i, j] = −t[i, j] (D[i+] +D[j+]) +
1

2
J [i, k] (D[i+] +D[k+])δ[i, j]

Y [i, j] = −t[i, j] (1− γ[i]− γ[j]) +
1

2
J [i, k] (1− γ[i]− γ[k])δ[i, j]. (4)

Symbolically

X = [−t+
1

2
J ] D

Y1 = −[−t+
1

2
J ] γ (5)

Denoting Fermi gas (non interacting) Greens function

Ĝ−1
0 (µ) ≡ (µ− ∂τ − V)1− [−t+

1

2
J ] (6)

we write EOM as

(Ĝ−1
0 (µ)− λ Y1). G = (1− λ γ) + λ X. G (7)

The exact EOM has λ = 1, we introduced convenient λ and at the end set λ → 1. Hence inverting:

G = (Ĝ−1
0 (µ)− λ Y1 − λ X)−1. (1− λ γ). (8)

If we set (1− λ γ) → 1, canonical Fermi theory would have same form. Complications arise from time dependent γ.
Now factors and vertex read:

G = g.µ (9)

We require the action of the functional derivative D on G. For this define a vertex function pair:

Λ ≡ δ

δV . (−g−1), U ≡ δ

δV . µ (10)

Thus Dg = g.Λ.g etc. Using the chain rule D(g.µ) = (g.Λ).g.µ+ g.D(µ), and defining

L ≡ [t− 1

2
J ] ξ∗. g

δ

δV∗ , (11)

we obtain the decomposition

X.G = Φ.G + Ψ

(12)

Start from exact EOM

We can set up Schwinger Dyson equations by taking 

successive functional derivatives.

Generates the analog of the skeleton graph 

expansion  in powers of λ. 

We will take terms up to O(λ2 ) and study this 

“second order theory”.

λ ∼ U

U + z|t|

Comment:  With some  caveats,  it might 
be useful to think of a mapping

 EOM transformed exactly into

Symbolic Symmetrized EOM Notes All
(Dated: January 29, 2012)

Gσiσf [i, f ] = −��X0σi
i X

σf0
f ��. (1)

∆[i] = 1− G(k)
[i−, i] = 1− γ(i); ∵ γ(i) = G(k)

[i−, i], (2)

(∂τi − µ)G[i, f ] = −δ[i, f ](1− γ[i])− Vi · G[i, f ]−X[i, j] · G[j, f ]− Y [i, j] · G[j, f ], (3)

where we used the definitions

X[i, j] = −t[i, j] (D[i+] +D[j+]) +
1

2
J [i, k] (D[i+] +D[k+])δ[i, j]

Y [i, j] = −t[i, j] (1− γ[i]− γ[j]) +
1

2
J [i, k] (1− γ[i]− γ[k])δ[i, j]. (4)

Symbolically with D = ξ∗ δ
δV∗

X = [−t+
1

2
J ] D = [−t+

1

2
J ] ξ∗

δ

δV∗

Y1 = −[−t+
1

2
J ] γ

Ĝ−1
0 (µ) = (µ− ∂τ + V)1− [−t+

1

2
J ]

(Ĝ−1
0 (µ)− λ Y1). G = (1− λ γ) + λ X. G (5)

At the end set λ → 1.

Hence

G = (Ĝ−1
0 (µ)− λ Y1 − λ X)

−1. (1− λ γ). (6)

Now factors and vertex read:

G = g.µ

Λ =
δ

δV . (−g−1
)

U =
δ

δV . µ (7)

X.G = [−t+
1

2
J ] ξ∗

δ

δV∗ g.µ

= Φ.G + Ψ

Φ = L.g−1
= [−t+

1

2
J ] ξ∗. g. Λ∗

Ψ = −L.µ = [−t+
1

2
J ] ξ∗. g. U∗

L = [t− 1

2
J ] ξ∗. g

δ

δV∗ . (8)

Hence

(Ĝ−1
0 (µ)− λ Y1 − λ Φ). g. µ = (1− λ γ) + λ Ψ (9)

Hence low order theory in λ
is expected to be a VERY GOOD start.
(since unlike U, the range of λ is [0,1].)
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Greens function

Gσiσf [i, f ] = −��X0σi
i X

σf0
f ��. (1)

Let us denote:

γ(i) = G(k)[i−, i], G(k)
σ1σ2

= σ1σ2 Gσ̄2σ̄1 (2)

Start with exact EOM in the presence of the time dependent potential V

(∂τi − µ)G[i, f ] = −δ[i, f ](1− γ[i])− Vi · G[i, f ]−X[i, j] · G[j, f ]− Y [i, j] · G[j, f ], (3)

where denoting D = ξ∗ δ
δV∗ (* represents spin indices), X and Y are defined as

X[i, j] = −t[i, j] (D[i+] +D[j+]) +
1

2
J [i, k] (D[i+] +D[k+])δ[i, j]

Y [i, j] = −t[i, j] (1− γ[i]− γ[j]) +
1

2
J [i, k] (1− γ[i]− γ[k])δ[i, j]. (4)

Symbolically

X = [−t+
1

2
J ] D

Y1 = −[−t+
1

2
J ] γ (5)

Denoting Fermi gas (non interacting) Greens function

Ĝ−1
0 (µ) ≡ (µ− ∂τ − V)1− [−t+

1

2
J ] (6)

we write EOM as

(Ĝ−1
0 (µ)− λ Y1). G = (1− λ γ) + λ X. G (7)

The exact EOM has λ = 1, we introduced convenient λ and at the end set λ → 1. Hence inverting:

G = (Ĝ−1
0 (µ)− λ Y1 − λ X)−1. (1− λ γ). (8)

If we set (1− λ γ) → 1, canonical Fermi theory would have same form. Complications arise from time dependent γ.
Now factors and vertex read:

G = g.µ (9)

We require the action of the functional derivative D on G. For this define a vertex function pair:

Λ ≡ δ

δV . (−g−1), U ≡ δ

δV . µ (10)

Thus Dg = g.Λ.g etc. Using the chain rule D(g.µ) = (g.Λ).g.µ+ g.D(µ), and defining

L ≡ [t− 1

2
J ] ξ∗. g

δ

δV∗ , (11)

we obtain the decomposition

X.G = Φ.G + Ψ

(12)

2

∵ Φ = L.g−1, Ψ = −L.µ (13)

Hence EOM is rewritten exactly as:

(Ĝ−1
0 (µ)− λ Y1 − λ Φ). g. µ = (1− λ γ) + λ Ψ (14)

Split up µ = µa + λ µb (necessary in general but not needed for k-independent self energies). Thus

(Ĝ−1
0 (µa)− λ Y1 − λ Φ). g. µ+ λµb g. µ = (1− λ γ) + λ Ψ (15)

Extract out the underlying Fermi liquid, i.e. a canonical g by

(Ĝ−1
0 (µa)− λ Y1 − λ Φ). g. = 1 (16)

Hence remainder reads

(1+ λ µb g).µ = (1− λ γ) + λ Ψ (17)

Thus Eq. (16) and Eq. (17) add up to the exact EOM.
In order to handle the chemical potential splitting, we will use the hat representation.
We can rearrange Eq. (17) as

µ = µ̂− λ µb (1+ λ L)−1. G
(18)

where

µ̂ = (1+ λ L)−1. (1− λ γ) (19)

Thus we rewrite

G = g.µ = g. µ̂− λ µb g. (1+ λ L)−1. G (20)

Solving for G we write

(1+ λ µb g. (1+ λ L)−1 ). G = g. µ̂. (21)

By inversion, this is expressed compactly in the hat representation as

G = ĝ. µ̂ (22)

where

ĝ−1 = g−1 + λ µb − λ2 µb L. (1+ λ L)−1. (23)

Two particle response and optical conductivity Symmetry requirement:

W (p, r) ≡ U(p, p−; r) = δ

δVr
G(p, p−) = W (r, p)

Writing

Ĝ−1
0 (µ)− λ Y1 = (1− λ γ). G−1 + λ (X.G) .G−1

Taking derivatives

−δp,r = (1− λγ)
δ

δVr
. G−1 + λ

δ

δVr
(Y1 + (X.G))− (λ

δ

δVr
.γ) .G−1

Using δ
δVr

. G = −G . ( δ
δVr

. G−1) .G, and mult by - GG to get

(G. (1− λ γ). G−1)
δ

δVr
. G = G.G − λ G. ( δ

δVr
.γ)− λ G. δ

δVr
(Y1 + (X.G)) .G

Setting sources to zero get

δ

δVr
. G /V→0 =

1

1− λn
2

�
G.G − λ G. ( δ

δVr
.γ)− λ G. δ

δVr
(Y1 + (X.G)) .G

�

V→0

Thus arrive at two  “self energies” 
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Greens function

Gσiσf [i, f ] = −��X0σi
i X

σf0
f ��. (1)

Let us denote:

γ(i) = G(k)[i−, i], G(k)
σ1σ2

= σ1σ2 Gσ̄2σ̄1 (2)

Start with exact EOM in the presence of the time dependent potential V

(∂τi − µ)G[i, f ] = −δ[i, f ](1− γ[i])− Vi · G[i, f ]−X[i, j] · G[j, f ]− Y [i, j] · G[j, f ], (3)

where denoting D = ξ∗ δ
δV∗ (* represents spin indices), X and Y are defined as

X[i, j] = −t[i, j] (D[i+] +D[j+]) +
1

2
J [i, k] (D[i+] +D[k+])δ[i, j]

Y [i, j] = −t[i, j] (1− γ[i]− γ[j]) +
1

2
J [i, k] (1− γ[i]− γ[k])δ[i, j]. (4)

Symbolically

X = [−t+
1

2
J ] D

Y1 = −[−t+
1

2
J ] γ (5)

Denoting Fermi gas (non interacting) Greens function

Ĝ−1
0 (µ) ≡ (µ− ∂τ − V)1− [−t+

1

2
J ] (6)

we write EOM as

(Ĝ−1
0 (µ)− λ Y1). G = (1− λ γ) + λ X. G (7)

The exact EOM has λ = 1, we introduced convenient λ and at the end set λ → 1. Hence inverting:

G = (Ĝ−1
0 (µ)− λ Y1 − λ X)−1. (1− λ γ). (8)

If we set (1− λ γ) → 1, canonical Fermi theory would have same form. Complications arise from time dependent γ.
Now factors and vertex read:

G = g.µ (9)

We require the action of the functional derivative D on G. For this define a vertex function pair:

Λ ≡ δ

δV . (−g−1), U ≡ δ

δV . µ (10)

Thus Dg = g.Λ.g etc. Using the chain rule D(g.µ) = (g.Λ).g.µ+ g.D(µ), and defining

L ≡ [t− 1

2
J ] ξ∗. g

δ

δV∗ , (11)

we obtain the decomposition

X.G = Φ.G + Ψ

(12)
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Greens function

Gσiσf [i, f ] = −��X0σi
i X

σf0
f ��. (1)

Let us denote:

γ(i) = G(k)[i−, i], G(k)
σ1σ2

= σ1σ2 Gσ̄2σ̄1 (2)

Start with exact EOM in the presence of the time dependent potential V

(∂τi − µ)G[i, f ] = −δ[i, f ](1− γ[i])− Vi · G[i, f ]−X[i, j] · G[j, f ]− Y [i, j] · G[j, f ], (3)

where denoting D = ξ∗ δ
δV∗ (* represents spin indices), X and Y are defined as

X[i, j] = −t[i, j] (D[i+] +D[j+]) +
1

2
J [i, k] (D[i+] +D[k+])δ[i, j]

Y [i, j] = −t[i, j] (1− γ[i]− γ[j]) +
1

2
J [i, k] (1− γ[i]− γ[k])δ[i, j]. (4)

Symbolically

X = [−t+
1

2
J ] D

Y1 = −[−t+
1

2
J ] γ (5)

Denoting Fermi gas (non interacting) Greens function

Ĝ−1
0 (µ) ≡ (µ− ∂τ − V)1− [−t+

1

2
J ] (6)

we write EOM as

(Ĝ−1
0 (µ)− λ Y1). G = (1− λ γ) + λ X. G (7)

The exact EOM has λ = 1, we introduced convenient λ and at the end set λ → 1. Hence inverting:

G = (Ĝ−1
0 (µ)− λ Y1 − λ X)−1. (1− λ γ). (8)

If we set (1− λ γ) → 1, canonical Fermi theory would have same form. Complications arise from time dependent γ.
Now factors and vertex read:

G = g.µ (9)

We require the action of the functional derivative D on G. For this define a vertex function pair:

Λ ≡ δ

δV . (−g−1), U ≡ δ

δV . µ (10)

Thus Dg = g.Λ.g etc. Using the chain rule D(g.µ) = (g.Λ).g.µ+ g.D(µ), and defining

L ≡ [t− 1

2
J ] ξ∗. g

δ

δV∗ , (11)

we obtain the decomposition

X.G = Φ.G + Ψ

(12)

D.(g.µ) = (g.Λ) .g. µ+ g. U Chain Rule for Derivative

Vertex functions defined

Linear operator L defined

 EOM bifurcates exactly defining the auxiliary FL and the rest

Auxiliary Fermi liquid

Adaptive spectral wt(1+ L) . µ = (1− λ γ)

(Ĝ−1
0 − λ Y1 − λ Φ). g = 1

The ECFL Theory  in brief



Theory to O(λ2 ): Relevant equations and constraintsp ≡ (�p, iωp)

E(k, p) =

�
εk + εp +

1

2

�
Ĵ [0] + Ĵ [k − p]

� �Basic Defs

Φ[k] = −2λ
�

p

E(k, p)(E[p, k] + E[p+ q − k, p]) g[p] g[q] g[q + p− k]

Auxiliary FL Self energy 

NNbr case dispersion vanishes at n~n* ~.6 to .8. Exact value uncertain 

µ̂(p) = 1− n

2
+ λΨ(p)

Adaptive spectral wt 

Ψ(p) = −2λ
�

p

E(k, p)g[p] g[q] g[q + p− k]
Second “Self energy” 

�

p

G[p] = n

2
Constraint
for chemical potential.

Comments
The effective band 

dispersion can  vanish. One 
crude estimate  places it at 
n~.8 (or x~.22). Expect almost 
non degenerate Fermi 
behavior near that filling- 
although higher order terms 
must prevail.

 Similarity between 
expressions for the  two self 
energies.

  Two schemes reported next:
 Numerical solution of these eqns  

(somewhat high T).  Also a few 
variant schemes, converging to 
unique scheme only recently. 

 Simplified analytical (engineering)
solution at all T,  where momentum 
dependence of Φ(p) and Ψ(p) is 
ignored. 

Auxiliary FL Greens fn

g−1(�k, iωn) = iωn + µ− εeffk − λ Φ(�k, iωn)

G(p) = g(p) µ(p)

8

An example of the charge α → s and spin susceptibilities α → t is given by setting p2 → p and p1 → p + Q and
summing over p. We write the expressions for ±Q since these must be equal.

Υ(α)(Q) ≡
�

p

Υ(α)(p+Q, p) =
�

p

�
g(p) Λ(α)(p+Q, p) g(p+Q) µ(p) + g(p+Q) U (α)(p+Q, p)

�
,

Υ(α)(−Q) ≡
�

p

Υ(α)(p, p+Q) =
�

p

�
g(p) Λ(α)(p, p+Q) g(p+Q) µ(p+Q) + g(p) U (α)(p, p+Q)

�

Υ(α)(Q) = Υ(α)(−Q) (Important constraint to be checked order by order) (67)

Thus
n

2
=

�

k

µ[k]g[k]

n

2
=

�

k

g[k] + λ
�

k

(Ψ[k]− n

2
) g[k]− λ µb

�

k

µ[k] g2[k] (68)

We need to take the Fourier transform of

Φ[i,m] = E[i,a;b] ξ∗ · g[b, c] · (Λ∗[c,m; i+] + Λ∗[c,m;a+]) (69)

Φ[i,m] = −t[i, j] ξ∗ · g[j, c] ·
�
Λ∗[c,m; i+] + Λ∗[c,m; j+]

�
+

1

2
J [i,k] ξ∗ · g[i, c] ·

�
Λ∗[c,m; i+] + Λ∗[c,m;k+]

�
(70)

Firstly in the ECFL phase we can use spin symmetry and dropping the matrix structure by utilizing

ξ∗ · g · Λ∗ =
�

σaσb

σσa gσaσb Λσbσ
σ̄σ̄a

=
�

σb

(gσσb Λσbσ
σ̄σ̄ − gσ̄σb Λσbσ

σ̄σ )

= (gσσ Λσσ
σ̄σ̄ − gσ̄σ̄ Λσ̄σ

σ̄σ)

= g (Λ(2) − Λ(3)) ≡ g Λ(a) (71)

we get the scalar equation

Φ[i,m] = −t[i, j] g[j− c]
�
Λ(a)[c− i+, i+ −m] + Λ(a)[c− j+, j+ −m]

�

+
1

2
J [i,k] ξ∗g[i− c]

�
Λ(a)[c− i+, i+ −m] + Λ(a)[c− k+,k+ −m]

�

= E[i− b,b− a] g[b− c]
�
Λ(a)[c− i+, i+ −m] + Λ(a)[c− k+,k+ −m]

�
(72)

Taking transforms and using Eq. (29)

Φ(k) =
�

p

E(k, p) g[p] Λ(a)(p, k) eiωp0
+

E(k, p) = Ê(1)(p, 0) + Ê(1)(k, k − p)

=

�
εk + εp +

1

2

�
Ĵ [0] + Ĵ [k − p]

� �

E(p1, p2) = E(p2, p1) =

�
εp1 + εp2 +

1

2

�
Ĵ [0] + Ĵ [p1 − p2]

� �
(73)

Proceeding similarly we find an equation for Ψ and write these together as:

Φ[k] =
�

p

E(k, p) g[p] Λ(a)(p, k) eiωp0
+

Ψ[k] =
�

p

E(k, p) g[p] U (a)(p, k) eiωp0
+

(74)

and Λ(a) = Λ(2) −Λ(3) = 1
2Λ

(s) − 3
2Λ

(t) and U (a) = U (2) − U (3) = 1
2U

(s) − 3
2U

(t). The convergence factor eiωp0
+
arises

from the time ordering in Eq. (36) and Eq. (37).

Exact Schwinger Dyson equations for the two self energies in 
terms of the two vertex functions.

Effective band dispersion 

εeff
k = c(n, λ)× εk −

1
2
λ

�

q

Jq−k g(q)

Technical Slide



Simplified ECFL  solution (analytical expressions)

G(p) =
1− n

2 +Ψ(p)

iωn − ξp − Φ(p)

G(�p, iωn) =
n2

4∆0
+

1− n
2 + n2

4∆0
(ξp − iωn)

iωn − ξp − Φ(p)

in 2 and 3 dimensions that will be published separately. However it also provides a very

interesting insight about the theory in high dimensions that is pursued analytically next.

Solution in high dimensions: In sufficiently high dimensions, we show next that the

dimensionless term η vanishes identically leading to a great simplification. For sufficiently

high dimensions we can ignore the momentum dependence of Y in Eq. (19) and assume

ρΦ(�k, x) ∼ CΦ σ(x), and ρΨ̄(�k, x) ∼ CΨ σ(x), as functions of frequency only. Here σ(x)

extends over energy range ωc ∼ O(2W ), and CΦ has dimensions of inverse energy and is

positive due to ρΦ̄. Its Hilbert transform is called h(x) ≡ P
�

dy
σ(y)
x−y . We use an analytically

tractable Fermi liquid model[10] with τ = πkBT , where we set:

σ(x) = {x2
+ τ 2}e−CΦ{x2+τ2}/ωc . (24)

The peak value of CΦ σ(x) is of O(1) and independent of CΦ [11]. The other constant CΨ is

dimensionless and negative. To complete the model, we note that the real parts are given

in terms of h(x) as �e Φ̄(x+
) = CΦ h(x) and �eΨ(x+

) = CΨ h(x). With this choice the

auxiliary spectral weight η(k, x) vanishes identically in Eq. (23). With Γ(x) ≡ πCΦ σ(x)

and �(ξ, x) ≡ (x− ξ − CΦ h(x)) we may write ρg(ξ, x) =
1
π

Γ(x)
Γ2(x)+�2(ξ,x) and �e g(ξ, x) =

�(ξ,x)
Γ2(x)+�2(ξ,x) . Denoting �Q(ξ)�ξ =

�
dξ NB(ξ)Q(ξ), where NB(ξ) is the band density of states

per spin, the chemical potential is fixed using
n
2 =

�∞
−∞ dx f(x)�ρg(ξ, x)�ξ.

The energy parameter ∆(�k, x) in Eq. (22) is a constant. We scale out a factor to define

∆o =
n2

4
∆(�k, x) = −n2

4

CΦ

CΨ
. (25)

The physically observable electronic spectral function reads

ρG(ξ, x) =
Γ(x)

π

��
1− n

2

�
+

�
n2

4

��
ξ−x
∆0

��

+

Γ2(x) + �2(ξ, x)
. (26)

Here the condition (f)+ ≡ max(0, f), is inserted in the ECFL factor to guarantee the

positivity of the spectral function for x � ξ[12]. We can determine ∆0 directly from the

second level sum rule Eq. (16):

∆0 =

� ∞

−∞
dx f(x) �ρg(ξ, x){ξ − x}�ξ. (27)

Thus 2/n×∆0 is the average inelasticity ||(ξ−x)|| of the FL Greens function over the entire

occupied band. It vanishes if ρg were a pure delta function, as in a Fermi gas, but is non zero

8

Aux Fermi liquid  fully fixed by this appx. 

�

p

g(p) =
n

2
=

�

p

G(p)
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positivity of the spectral function for x � ξ[12]. We can determine ∆0 directly from the

second level sum rule Eq. (16):
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occupied band. It vanishes if ρg were a pure delta function, as in a Fermi gas, but is non zero
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Parameters determining Auxiliary FL: 
Extrinsic:  
1) η (Elastic  Impurity scattering-)
 Importantly distinguishes Laser and Synchrotron 
ARPES
Intrinsic:
2) Cϕ (strength of FL inelasticity)
3)ωc  (High frequency cut off of FL)

Φ(iωn) ∼
�

dy

π

Γ(x)

iωn − x

Γ(x, T ) = η + CΦ{x2 + π2T 2} e−CΦ(x2+π2T 2)/ωc
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positivity of the spectral function for x � ξ[12]. We can determine ∆0 directly from the

second level sum rule Eq. (16):
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Thus 2/n×∆0 is the average inelasticity ||(ξ−x)|| of the FL Greens function over the entire

occupied band. It vanishes if ρg were a pure delta function, as in a Fermi gas, but is non zero
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Simplest Fermi liquid approximation (Analytically 
convenient). 
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Mean inelasticity scale  Δ0 computed from sum rule

Φ(p) =
�

k,q

(ε)2 g(p− q) g(k) g(k + q)

Ψ(p) =
�

k,q

(ε) g(p− q)g(k)g(k + q)

Recap 

Ψ(iωn) ∼ − n2

4∆0
Φ(iωn)

Approximation on ignoring k 
dependence

ξp ∼ (1− n

2
) εk − µ

g(p) =
1

iωn − ξp − Φ(p) Auxiliary FL 

Energy variable 
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FIG. 3. Conventional ARPES data (Bi2212) fit with the
ECFL line shape. The data are from Ref. 18 (Tc = 90 K). (a)
The data (symbols) and the fit (red lines) are shifted verti-
cally by the same amount for ease of view. (b) An example of
the raw data and the fit data is shown for k2. The bg (back-
ground) spectrum representing the extrinsic background in-
tensity was determined as the raw data at k10, scaled by 1/2
(“bg scaling factor”). This bg spectrum was subtracted from
each raw data, and the resulting data, shown in (a), are then
fit. (c) The fixed ξ!k parameters used for the fit. Thus, in this
figure, η is the only fit parameter (cf. Fig. 2 caption). (d) Raw
data at k = kF fit with a somewhat greater η value. (e) The
current fit compared with a fit using the CADS line shape.

conventional ARPES data, all parameters other than η
are the same. We allow one small exception in Fig. 4(d),
where a slight change in ω0 produces a much better fit
over a larger energy range for LSCO.

Fig. 3 shows our fit of the data in Ref. 18 with a single
free parameter η. The amount of the “extrinsic back-
ground” (bg) in ARPES is an issue of importance [20–
22], especially when analyzing the conventional ARPES
data. Here we fit the background subtracted data, as
well as the raw data (panel d). For subtracting the back-
ground, we use an often-used procedure [22, 23] of equat-
ing the background to a fraction (“bg scaling factor”) of
the data far beyond the Fermi surface crossing (k = k10
for this data set). The bg scaling factor is determined
to be the maximum value for which the resulting inten-
sity is not negative. As shown in the panel d, the ECFL
fit remains good by adjusting η, whether or not the ex-
trinsic background is subtracted. In contrast, we find
that the CADS theory, notwithstanding its notable suc-
cesses [14, 15], cannot cope with even the background
subtracted data (Fig. 3e), giving too steep a fall off to-
wards the left. Likewise, the MFL fits [8, 24] have been
shown to compare well with the data only after substan-
tial background subtraction [23, 25].

Our own data on Bi2212 data, taken at Tc and well
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FIG. 4. Conventional ARPES data, including our own (a,b),
fit with the ECFL line shape. The procedure used to fit these
data are identical with those of the previous figure, i.e. a
fit with a single free parameter η, with (d) being a single
exception. (a, b) Optimally doped Bi2212 (Tc = 91 K). (c)
Optimally doped LSCO data [26, 27]. (d) A test fit up to
0.6 eV for the LSCO data with a small change to ω0 for the
same data as in (c) but over a wider energy range. On change
of the single fit parameter ω0 from 0.50 eV to 0.42 eV, an
excellent fit up to 0.6 eV can be found. The LSCO data, as
far as we are aware, is fit only by the ECFL theory, since an
energy dependence rising linearly for occupied states occurs
naturally and uniquely in the ECFL spectral function.

above Tc, can be fit equally well with the same back-
ground subtraction procedure, i.e. with the “bg scaling
factor” (1/2). The data and the fit are shown in Fig. 4.
We also find that the data for a lower-Tc cuprate LSCO

can be fit very well with the same intrinsic parameters.
Here, we shall discuss only the k = kF data for brevity.
In this case, we determine that the “bg scaling factor”
be 1 [28]. The subtracted “bg” data [26, 27] is shown as
the gray curve in Fig. 4(c). Given their weak supercon-
ductivity features [26, 27], these LSCO data are taken to
represent the normal state property even if the tempera-
ture is slightly lower than Tc. As for the Bi2212 case, the
data can be fit well even without the background subtrac-

Energy dispersion and the 10 chosen values
 of k to compare theory and experiment.
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cally by the same amount for ease of view. (b) An example of
the raw data and the fit data is shown for k2. The bg (back-
ground) spectrum representing the extrinsic background in-
tensity was determined as the raw data at k10, scaled by 1/2
(“bg scaling factor”). This bg spectrum was subtracted from
each raw data, and the resulting data, shown in (a), are then
fit. (c) The fixed ξ!k parameters used for the fit. Thus, in this
figure, η is the only fit parameter (cf. Fig. 2 caption). (d) Raw
data at k = kF fit with a somewhat greater η value. (e) The
current fit compared with a fit using the CADS line shape.

conventional ARPES data, all parameters other than η
are the same. We allow one small exception in Fig. 4(d),
where a slight change in ω0 produces a much better fit
over a larger energy range for LSCO.

Fig. 3 shows our fit of the data in Ref. 18 with a single
free parameter η. The amount of the “extrinsic back-
ground” (bg) in ARPES is an issue of importance [20–
22], especially when analyzing the conventional ARPES
data. Here we fit the background subtracted data, as
well as the raw data (panel d). For subtracting the back-
ground, we use an often-used procedure [22, 23] of equat-
ing the background to a fraction (“bg scaling factor”) of
the data far beyond the Fermi surface crossing (k = k10
for this data set). The bg scaling factor is determined
to be the maximum value for which the resulting inten-
sity is not negative. As shown in the panel d, the ECFL
fit remains good by adjusting η, whether or not the ex-
trinsic background is subtracted. In contrast, we find
that the CADS theory, notwithstanding its notable suc-
cesses [14, 15], cannot cope with even the background
subtracted data (Fig. 3e), giving too steep a fall off to-
wards the left. Likewise, the MFL fits [8, 24] have been
shown to compare well with the data only after substan-
tial background subtraction [23, 25].

Our own data on Bi2212 data, taken at Tc and well
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FIG. 4. Conventional ARPES data, including our own (a,b),
fit with the ECFL line shape. The procedure used to fit these
data are identical with those of the previous figure, i.e. a
fit with a single free parameter η, with (d) being a single
exception. (a, b) Optimally doped Bi2212 (Tc = 91 K). (c)
Optimally doped LSCO data [26, 27]. (d) A test fit up to
0.6 eV for the LSCO data with a small change to ω0 for the
same data as in (c) but over a wider energy range. On change
of the single fit parameter ω0 from 0.50 eV to 0.42 eV, an
excellent fit up to 0.6 eV can be found. The LSCO data, as
far as we are aware, is fit only by the ECFL theory, since an
energy dependence rising linearly for occupied states occurs
naturally and uniquely in the ECFL spectral function.

above Tc, can be fit equally well with the same back-
ground subtraction procedure, i.e. with the “bg scaling
factor” (1/2). The data and the fit are shown in Fig. 4.
We also find that the data for a lower-Tc cuprate LSCO

can be fit very well with the same intrinsic parameters.
Here, we shall discuss only the k = kF data for brevity.
In this case, we determine that the “bg scaling factor”
be 1 [28]. The subtracted “bg” data [26, 27] is shown as
the gray curve in Fig. 4(c). Given their weak supercon-
ductivity features [26, 27], these LSCO data are taken to
represent the normal state property even if the tempera-
ture is slightly lower than Tc. As for the Bi2212 case, the
data can be fit well even without the background subtrac-

Synchrotron ARPES data from
J Campuzzanoʼs group compared to our theory.
BISSCO at optimal doping T= 115K along <11> direction.
Note that η =.12 eV (rather large)
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The normal-state single particle spectral function of the high temperature superconducting cuprates,

measured by the angle-resolved photoelectron spectroscopy (ARPES), has been considered both anoma-

lous and crucial to understand. Here, we report an unprecedented success of the new extremely correlated

Fermi liquid theory by one of us [B. S. Shastry, Phys. Rev. Lett. 107, 056403 (2011)] to describe both laser
and conventional synchrotron ARPES data (nodal cut at optimal doping) on Bi2Sr2CaCu2O8þ! and

synchrotron data on La1:85Sr0:15CuO4. It fits all data sets with the same physical parameter values, satisfies

the particle sum rule and successfully addresses two widely discussed kink anomalies in the dispersion.
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Angle resolved photoelectron spectroscopy (ARPES)
was the first probe to provide a detailed view of the
anomalous nature of high temperature cuprate supercon-
ductors, discovering unexpectedly broad spectra with in-
tense and asymmetric tails that have remained an enduring
mystery for the last two decades. Conventional data taken
with high energy (* 15 eV) photons from synchrotron
light sources have recently been supplemented with laser
ARPES data [1,2] from lower energy (6 or 7 eV) sources.
The latter show considerably sharper features near the
Fermi energy. A drastic possibility to account for this
distinction is that the sudden approximation could
break down for the smaller photon energies used in laser
ARPES [3].

An important unanswered question is whether the results
of the two spectroscopies could be reconciled in a single
theoretical framework that does not abandon the sudden
approximation. More broadly, can we understand the wide
variety of observed lines shapes in a theoretical framework
with a sound microscopic basis and a single set of
parameters?

In this Letter, we confront a recent theory of extremely
correlated Fermi liquids (ECFL) proposed by Shastry [4]
with the above challenge. The new formalism is complex
and requires considerable further effort to yield numerical
results in low dimensions. In the limit of high enough
dimensions, however, a remarkably simple expression for
the Green’s function emerges; it is significantly different
from the standard Fermi-liquid Dyson form, while satisfy-
ing the usual sum rules. We use this simple version of
ECFL Green’s function in this Letter, motivated by the
attractive spectral shapes produced with very few parame-
ters [4]. In this Letter we show that already the simplest
version of the ECFL theory, with very few parameters, is
very successful in detailed fitting of a wide variety of
normal-state cuprate ARPES line shapes. Interesting
predictions are made for the higher temperature spectral
line skew.

Our focus in this Letter is on the data of optimally doped
Bi2Sr2CaCu2O8þ! (Bi2212) and La1:85Sr0:15CuO4 (LSCO)

superconductors in the normal state, taken with ~k along the
nodal direction connecting (0, 0) to ("=a, "=a). Most of
the data is taken from the published literature, while
some original data are also presented (Bi2212 data in
Figs. 4 and 5). Our sample is an optimally doped Bi2212
(Tc ¼ 91 K), grown by the floating zone method at the
Brookhaven National Laboratory (BNL), and was mea-
sured at the Stanford Synchrotron Radiation Lightsource
(SSRL) beam line 5" 4 using 25 eV photons. The reso-
lutions are 15 meV (energy) and 0.3$ (angle).
Line shape model.—The ECFL spectral function is given

as a product of an auxiliary Fermi-liquid (AFL) spectral

function AFLð ~k; !Þ and a second frequency dependent
‘‘caparison’’ factor [4,5]:

Að ~k; !Þ ¼ AFLð ~k; !Þ
!
1" n

2
þ n2

4
' # ~k "!

!0

"

þ
; (1)

where n is the number of electrons per CuO2 unit cell,

ðXÞþ ( maxðX; 0Þ, # ~k ¼ ð1" n
2Þ"ð ~kÞ, where "ð ~kÞ is the

bare one-electron band dispersion (see later). Here,

AFLð ~k; !Þ ¼ 1
" Im

1
!"# ~k""ð!Þ with

Im"ð!Þ ¼ !2 þ $2

#0
exp

!
"!2 þ $2

!2
0

"
þ %; (2)

where $ ¼ "kBT, T is the temperature, and ! is to be
understood as !" i0þ. Here, !0 is the AFL energy scale
(i.e., high ! cutoff), and #0 governs the lifetime, and, by
causality, the quasiparticle weight (i.e., the wave function
renormalization) of the AFL, ZFL ¼ ð1þ !0ffiffiffi

"
p

#0
Þ"1, as iden-

tified from Re" [6].
The ECFL energy scale !0 measures the ‘‘average

intrinsic inelasticity’’ of the AFL. It is given [4] as
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FIG. 3. Conventional ARPES data (Bi2212) fit with the
ECFL line shape. The data are from Ref. 18 (Tc = 90 K). (a)
The data (symbols) and the fit (red lines) are shifted verti-
cally by the same amount for ease of view. (b) An example of
the raw data and the fit data is shown for k2. The bg (back-
ground) spectrum representing the extrinsic background in-
tensity was determined as the raw data at k10, scaled by 1/2
(“bg scaling factor”). This bg spectrum was subtracted from
each raw data, and the resulting data, shown in (a), are then
fit. (c) The fixed ξ!k parameters used for the fit. Thus, in this
figure, η is the only fit parameter (cf. Fig. 2 caption). (d) Raw
data at k = kF fit with a somewhat greater η value. (e) The
current fit compared with a fit using the CADS line shape.

conventional ARPES data, all parameters other than η
are the same. We allow one small exception in Fig. 4(d),
where a slight change in ω0 produces a much better fit
over a larger energy range for LSCO.

Fig. 3 shows our fit of the data in Ref. 18 with a single
free parameter η. The amount of the “extrinsic back-
ground” (bg) in ARPES is an issue of importance [20–
22], especially when analyzing the conventional ARPES
data. Here we fit the background subtracted data, as
well as the raw data (panel d). For subtracting the back-
ground, we use an often-used procedure [22, 23] of equat-
ing the background to a fraction (“bg scaling factor”) of
the data far beyond the Fermi surface crossing (k = k10
for this data set). The bg scaling factor is determined
to be the maximum value for which the resulting inten-
sity is not negative. As shown in the panel d, the ECFL
fit remains good by adjusting η, whether or not the ex-
trinsic background is subtracted. In contrast, we find
that the CADS theory, notwithstanding its notable suc-
cesses [14, 15], cannot cope with even the background
subtracted data (Fig. 3e), giving too steep a fall off to-
wards the left. Likewise, the MFL fits [8, 24] have been
shown to compare well with the data only after substan-
tial background subtraction [23, 25].

Our own data on Bi2212 data, taken at Tc and well
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FIG. 4. Conventional ARPES data, including our own (a,b),
fit with the ECFL line shape. The procedure used to fit these
data are identical with those of the previous figure, i.e. a
fit with a single free parameter η, with (d) being a single
exception. (a, b) Optimally doped Bi2212 (Tc = 91 K). (c)
Optimally doped LSCO data [26, 27]. (d) A test fit up to
0.6 eV for the LSCO data with a small change to ω0 for the
same data as in (c) but over a wider energy range. On change
of the single fit parameter ω0 from 0.50 eV to 0.42 eV, an
excellent fit up to 0.6 eV can be found. The LSCO data, as
far as we are aware, is fit only by the ECFL theory, since an
energy dependence rising linearly for occupied states occurs
naturally and uniquely in the ECFL spectral function.

above Tc, can be fit equally well with the same back-
ground subtraction procedure, i.e. with the “bg scaling
factor” (1/2). The data and the fit are shown in Fig. 4.
We also find that the data for a lower-Tc cuprate LSCO

can be fit very well with the same intrinsic parameters.
Here, we shall discuss only the k = kF data for brevity.
In this case, we determine that the “bg scaling factor”
be 1 [28]. The subtracted “bg” data [26, 27] is shown as
the gray curve in Fig. 4(c). Given their weak supercon-
ductivity features [26, 27], these LSCO data are taken to
represent the normal state property even if the tempera-
ture is slightly lower than Tc. As for the Bi2212 case, the
data can be fit well even without the background subtrac-

Gey-Hong Gweonʼs  recent data UCSC
Similarly Campuzzanoʼs data from 5 yrs ago.

Highly non Lorentzian therefore seem non Fermi liquid like. 
First surprising data from High Tc was ARPES Olson et al.
ARPES probes states that are within  .1 to .2 eV of Fermi energy with a resolution of say 20 meV
therefore the most precise low energy probe and started the stampede!!
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FIG. 3. Conventional ARPES data (Bi2212) fit with the
ECFL line shape. The data are from Ref. 18 (Tc = 90 K). (a)
The data (symbols) and the fit (red lines) are shifted verti-
cally by the same amount for ease of view. (b) An example of
the raw data and the fit data is shown for k2. The bg (back-
ground) spectrum representing the extrinsic background in-
tensity was determined as the raw data at k10, scaled by 1/2
(“bg scaling factor”). This bg spectrum was subtracted from
each raw data, and the resulting data, shown in (a), are then
fit. (c) The fixed ξ!k parameters used for the fit. Thus, in this
figure, η is the only fit parameter (cf. Fig. 2 caption). (d) Raw
data at k = kF fit with a somewhat greater η value. (e) The
current fit compared with a fit using the CADS line shape.

conventional ARPES data, all parameters other than η
are the same. We allow one small exception in Fig. 4(d),
where a slight change in ω0 produces a much better fit
over a larger energy range for LSCO.

Fig. 3 shows our fit of the data in Ref. 18 with a single
free parameter η. The amount of the “extrinsic back-
ground” (bg) in ARPES is an issue of importance [20–
22], especially when analyzing the conventional ARPES
data. Here we fit the background subtracted data, as
well as the raw data (panel d). For subtracting the back-
ground, we use an often-used procedure [22, 23] of equat-
ing the background to a fraction (“bg scaling factor”) of
the data far beyond the Fermi surface crossing (k = k10
for this data set). The bg scaling factor is determined
to be the maximum value for which the resulting inten-
sity is not negative. As shown in the panel d, the ECFL
fit remains good by adjusting η, whether or not the ex-
trinsic background is subtracted. In contrast, we find
that the CADS theory, notwithstanding its notable suc-
cesses [14, 15], cannot cope with even the background
subtracted data (Fig. 3e), giving too steep a fall off to-
wards the left. Likewise, the MFL fits [8, 24] have been
shown to compare well with the data only after substan-
tial background subtraction [23, 25].

Our own data on Bi2212 data, taken at Tc and well

!"#$

%&'&()&*

%&'&+,&* %&'&,-.&*

"&/012 "&/012

34
50
46
758
&/9
:;
<&=
47
52

"&/012

/92 /;2

/>2

!&'&.<,?&01 !&'&.<,?&01

@A
@A

"&/012

/B2

34
50
46
758
&/9
:;
<&=
47
52

!&'&.<,C&01

!"#$

".&'&.<).&01
".&'&.<C(&01

;D

FIG. 4. Conventional ARPES data, including our own (a,b),
fit with the ECFL line shape. The procedure used to fit these
data are identical with those of the previous figure, i.e. a
fit with a single free parameter η, with (d) being a single
exception. (a, b) Optimally doped Bi2212 (Tc = 91 K). (c)
Optimally doped LSCO data [26, 27]. (d) A test fit up to
0.6 eV for the LSCO data with a small change to ω0 for the
same data as in (c) but over a wider energy range. On change
of the single fit parameter ω0 from 0.50 eV to 0.42 eV, an
excellent fit up to 0.6 eV can be found. The LSCO data, as
far as we are aware, is fit only by the ECFL theory, since an
energy dependence rising linearly for occupied states occurs
naturally and uniquely in the ECFL spectral function.

above Tc, can be fit equally well with the same back-
ground subtraction procedure, i.e. with the “bg scaling
factor” (1/2). The data and the fit are shown in Fig. 4.
We also find that the data for a lower-Tc cuprate LSCO

can be fit very well with the same intrinsic parameters.
Here, we shall discuss only the k = kF data for brevity.
In this case, we determine that the “bg scaling factor”
be 1 [28]. The subtracted “bg” data [26, 27] is shown as
the gray curve in Fig. 4(c). Given their weak supercon-
ductivity features [26, 27], these LSCO data are taken to
represent the normal state property even if the tempera-
ture is slightly lower than Tc. As for the Bi2212 case, the
data can be fit well even without the background subtrac-

Expected symmetric peaks but   spectra encountered in High Tc seemed “bizarre”
 A prime mystery in this field.
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FIG. 1. (a) ∆0 as a function of ω0 for various ZFL. Other
primary ECFL parameter values are n = 0.85, T = 100 K,
and ξ!k as described in the text. A small η value, 0.010 eV, was
used for this plot, which is used as a “lookup table” during the
fit. (b,c) Examples of the spectral function calculated with
different values of the effective sample quality parameter η.
See the caption of the next figure for parameter values used.
The instrumental energy broadening of 10 meV (FWHM) is
included.

The important energy scale ∆0 measures the “average
intrinsic in-elasticity” of the aux-FL. It is given [4] as:

∆0 =

∫ ∞

−∞

dωf(ω)〈AFL("k,ω)(ξ!k − ω)〉BZ (5)

where 〈·〉BZ denotes averaging over the first Brillouin
zone.
The parameters that enter this description are now

listed. The “primary parameters” defining the ECFL fit
consist of the dispersion ξ!k taken from band theory, the
density n, temperature T , and the aux-FL parameters
∆0, ω0, ZFL, Ω0. Of the last four parameters, only two
are free parameters. For instance, ω0 and ZFL can be
taken as free parameters, and Ω0 and ∆0 can be calcu-
lated using Eqs. 4 and 5, respectively.
The parameter η in Eq. (3) is an additional “secondary

parameter” [7] with respect to the ECFL theory [4]. Its
origin is in impurity scattering as argued in [8], and ad-
ditionally, in scattering with surface imperfections. Our
fits determine η ≈ 0.03 eV for laser ARPES and η ≈ 0.15
eV for conventional ARPES. Greater sample penetration
of photons in laser ARPES suggests that it should be less
sensitive to surface imperfections as compared to conven-
tional ARPES, thereby yielding a smaller η. We there-
fore propose that this parameter summarizes the effective
sample quality in different experiments. The difference in
line shapes arising from these values of η is demonstrated
in Figs. 1(b,c).
Our strategy is to fix a common set of intrinsic param-

eters for all the materials, and allow η to be determined
separately for each class of data. The most time consum-
ing part is the calculation of ∆0, the results of which are
summarized in Fig. 1(a).
In our line shape analysis (1) we first set n = 0.85, cor-

responding to the optimal doping. (2) Here ξ!k is taken
to be the un-renormalized band dispersion, taken from
the literature [9], and then scaled to fit the observed oc-
cupied band width, 1.5 eV, of the Bi2212 ARPES result
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FIG. 2. Laser ARPES data (symbols, Bi2212) from Ref. 14 fit
with the ECFL line shape (red lines). The free parameters of
the fit were ω0 (0.5 eV), η (0.032 eV), and ξ!k (shown). Fixed
parameters were n (0.85), ZFL (1/3). Derived parameters
were ∆0 (0.12 eV), Ω0 (0.14 eV). Other than η and ξ!k, the
same parameters are used elsewhere in the Letter. In (a), the
gray line corresponds to the theoretical curve with ξ!k = 0.15
eV.

[10][11]. (3) We choose ZFL = 1/3, to account for the
dispersion renormalization due to the high energy kink
[10, 12], which in this theory is caused by the energy
scale ω0 (cf. Fig. 5). (4) Finally, in all simulations, we
include the finite energy resolution effect and the finite
angle resolution effect as a combined Gaussian broad-
ening (10 meV FWHM for laser ARPES and 25 meV
FWHM for conventional ARPES) in energy [13].
Line shape fit for laser ARPES: Fig. 2 shows the

fit of the laser ARPES data with the ECFL line shape.
These fits were made using a procedure that is somewhat
more restrictive than that in the recent work of Casey
and Anderson [14, 15] invoking the X-ray edge singu-
larity ideas of Doniach and Sunjic [16] (CADS): we are
using global, rather than per-spectrum, fit parameters.
However, our fit is somewhat less restricted than other
fits shown in this Letter: here we allow a small variation
of ξ!k as in Ref. 14. We find an excellent fit quality, at
least comparable to CADS [14], without having to sub-
tract any extrinsic background intensity. The gray line
in panel (a) shows our calculation for k > kF . Our ex-
pectation is that, were the data for k > kF available, we
would find a reasonable fit in this k region as well [17],
as for other data sets below.
Line shape fit for conventional ARPES: Turning

to the conventional ARPES data, we find that the mag-
nitude of the parameter ω0 (0.5 eV) determined from the
fit of the sharp laser data works very well also for the
conventional ARPES data [19]. Thus, for the fit of the

Laser ARPES  BISCO 
2212
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FIG. 3. Conventional ARPES data (Bi2212) fit with the
ECFL line shape. The data are from Ref. 18 (Tc = 90 K). (a)
The data (symbols) and the fit (red lines) are shifted verti-
cally by the same amount for ease of view. (b) An example of
the raw data and the fit data is shown for k2. The bg (back-
ground) spectrum representing the extrinsic background in-
tensity was determined as the raw data at k10, scaled by 1/2
(“bg scaling factor”). This bg spectrum was subtracted from
each raw data, and the resulting data, shown in (a), are then
fit. (c) The fixed ξ!k parameters used for the fit. Thus, in this
figure, η is the only fit parameter (cf. Fig. 2 caption). (d) Raw
data at k = kF fit with a somewhat greater η value. (e) The
current fit compared with a fit using the CADS line shape.

conventional ARPES data, all parameters other than η
are the same. We allow one small exception in Fig. 4(d),
where a slight change in ω0 produces a much better fit
over a larger energy range for LSCO.

Fig. 3 shows our fit of the data in Ref. 18 with a single
free parameter η. The amount of the “extrinsic back-
ground” (bg) in ARPES is an issue of importance [20–
22], especially when analyzing the conventional ARPES
data. Here we fit the background subtracted data, as
well as the raw data (panel d). For subtracting the back-
ground, we use an often-used procedure [22, 23] of equat-
ing the background to a fraction (“bg scaling factor”) of
the data far beyond the Fermi surface crossing (k = k10
for this data set). The bg scaling factor is determined
to be the maximum value for which the resulting inten-
sity is not negative. As shown in the panel d, the ECFL
fit remains good by adjusting η, whether or not the ex-
trinsic background is subtracted. In contrast, we find
that the CADS theory, notwithstanding its notable suc-
cesses [14, 15], cannot cope with even the background
subtracted data (Fig. 3e), giving too steep a fall off to-
wards the left. Likewise, the MFL fits [8, 24] have been
shown to compare well with the data only after substan-
tial background subtraction [23, 25].

Our own data on Bi2212 data, taken at Tc and well

!"#$

%&'&()&*

%&'&+,&* %&'&,-.&*

"&/012 "&/012

34
50
46
758
&/9
:;
<&=
47
52

"&/012

/92 /;2

/>2

!&'&.<,?&01 !&'&.<,?&01

@A
@A

"&/012

/B2

34
50
46
758
&/9
:;
<&=
47
52

!&'&.<,C&01

!"#$

".&'&.<).&01
".&'&.<C(&01

;D

FIG. 4. Conventional ARPES data, including our own (a,b),
fit with the ECFL line shape. The procedure used to fit these
data are identical with those of the previous figure, i.e. a
fit with a single free parameter η, with (d) being a single
exception. (a, b) Optimally doped Bi2212 (Tc = 91 K). (c)
Optimally doped LSCO data [26, 27]. (d) A test fit up to
0.6 eV for the LSCO data with a small change to ω0 for the
same data as in (c) but over a wider energy range. On change
of the single fit parameter ω0 from 0.50 eV to 0.42 eV, an
excellent fit up to 0.6 eV can be found. The LSCO data, as
far as we are aware, is fit only by the ECFL theory, since an
energy dependence rising linearly for occupied states occurs
naturally and uniquely in the ECFL spectral function.

above Tc, can be fit equally well with the same back-
ground subtraction procedure, i.e. with the “bg scaling
factor” (1/2). The data and the fit are shown in Fig. 4.
We also find that the data for a lower-Tc cuprate LSCO

can be fit very well with the same intrinsic parameters.
Here, we shall discuss only the k = kF data for brevity.
In this case, we determine that the “bg scaling factor”
be 1 [28]. The subtracted “bg” data [26, 27] is shown as
the gray curve in Fig. 4(c). Given their weak supercon-
ductivity features [26, 27], these LSCO data are taken to
represent the normal state property even if the tempera-
ture is slightly lower than Tc. As for the Bi2212 case, the
data can be fit well even without the background subtrac-
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FIG. 3. Conventional ARPES data (Bi2212) fit with the
ECFL line shape. The data are from Ref. 18 (Tc = 90 K). (a)
The data (symbols) and the fit (red lines) are shifted verti-
cally by the same amount for ease of view. (b) An example of
the raw data and the fit data is shown for k2. The bg (back-
ground) spectrum representing the extrinsic background in-
tensity was determined as the raw data at k10, scaled by 1/2
(“bg scaling factor”). This bg spectrum was subtracted from
each raw data, and the resulting data, shown in (a), are then
fit. (c) The fixed ξ!k parameters used for the fit. Thus, in this
figure, η is the only fit parameter (cf. Fig. 2 caption). (d) Raw
data at k = kF fit with a somewhat greater η value. (e) The
current fit compared with a fit using the CADS line shape.

conventional ARPES data, all parameters other than η
are the same. We allow one small exception in Fig. 4(d),
where a slight change in ω0 produces a much better fit
over a larger energy range for LSCO.

Fig. 3 shows our fit of the data in Ref. 18 with a single
free parameter η. The amount of the “extrinsic back-
ground” (bg) in ARPES is an issue of importance [20–
22], especially when analyzing the conventional ARPES
data. Here we fit the background subtracted data, as
well as the raw data (panel d). For subtracting the back-
ground, we use an often-used procedure [22, 23] of equat-
ing the background to a fraction (“bg scaling factor”) of
the data far beyond the Fermi surface crossing (k = k10
for this data set). The bg scaling factor is determined
to be the maximum value for which the resulting inten-
sity is not negative. As shown in the panel d, the ECFL
fit remains good by adjusting η, whether or not the ex-
trinsic background is subtracted. In contrast, we find
that the CADS theory, notwithstanding its notable suc-
cesses [14, 15], cannot cope with even the background
subtracted data (Fig. 3e), giving too steep a fall off to-
wards the left. Likewise, the MFL fits [8, 24] have been
shown to compare well with the data only after substan-
tial background subtraction [23, 25].
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exception. (a, b) Optimally doped Bi2212 (Tc = 91 K). (c)
Optimally doped LSCO data [26, 27]. (d) A test fit up to
0.6 eV for the LSCO data with a small change to ω0 for the
same data as in (c) but over a wider energy range. On change
of the single fit parameter ω0 from 0.50 eV to 0.42 eV, an
excellent fit up to 0.6 eV can be found. The LSCO data, as
far as we are aware, is fit only by the ECFL theory, since an
energy dependence rising linearly for occupied states occurs
naturally and uniquely in the ECFL spectral function.
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ground subtraction procedure, i.e. with the “bg scaling
factor” (1/2). The data and the fit are shown in Fig. 4.
We also find that the data for a lower-Tc cuprate LSCO

can be fit very well with the same intrinsic parameters.
Here, we shall discuss only the k = kF data for brevity.
In this case, we determine that the “bg scaling factor”
be 1 [28]. The subtracted “bg” data [26, 27] is shown as
the gray curve in Fig. 4(c). Given their weak supercon-
ductivity features [26, 27], these LSCO data are taken to
represent the normal state property even if the tempera-
ture is slightly lower than Tc. As for the Bi2212 case, the
data can be fit well even without the background subtrac-
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Extremely Correlated Fermi Liquid Description of Normal State ARPES in Cuprates

G.-H. Gweon,1, ∗ B. S. Shastry,1, † and G. D. Gu2

1Physics Department, University of California, Santa Cruz, CA, 95064, USA
2Condensed Matter Physics and Materials Science Department,
Brookhaven National Laboratory, Upton, New York 11973, USA

(Dated: May 13, 2011)

The normal state single particle spectral function of the high temperature superconducting
cuprates, measured by the angle resolved photoelectron spectroscopy (ARPES), has been consid-
ered both anomalous and crucial to understand. Here we show that an unprecedentedly detailed
description of the data is provided by a spectral function arising from the Extremely Correlated
Fermi Liquid state of the t-J model proposed recently by Shastry. The description encompasses
both laser and conventional synchrotron ARPES data on optimally doped Bi2Sr2CaCu2O8+δ, and
also conventional synchrotron ARPES data on the La1.85Sr0.15CuO4 materials. It fits all data sets
with the same physical parameter values, satisfies the particle sum rule and successfully addresses
two widely discussed “kink” anomalies in the dispersion.

PACS numbers: 71.10.Ay,74.25.Jb,74.72.Gh,79.60.-i

Angle resolved photo-electron spectroscopy (ARPES)
was the first probe to provide a detailed view of the
anomalous nature of high temperature cuprate supercon-
ductors, discovering unexpectedly broad spectra with in-
tense and asymmetric tails that have remained an endur-
ing mystery for the last two decades. Conventional data
taken with high energy (! 15 eV) photons from syn-
chrotron light sources have recently been supplemented
with laser ARPES data [1, 2] from lower energy (6 or 7
eV) sources. The latter show considerably sharper fea-
tures near the Fermi energy. A drastic possibility to ac-
count for this distinction is that the sudden approxima-
tion could break down for the smaller photon energies
used in laser ARPES [3]

An important un-answered question is whether the re-
sults of the two spectroscopies could be reconciled in a
single theoretical framework that does not abandon the
sudden approximation. More broadly, can we understand
the wide variety of observed lines shapes in a theoretical
framework with a sound microscopic basis and a single
set of parameters?

In this Letter, we confront a recent theory of Extremely
Correlated Fermi Liquids (ECFL) proposed by Shastry
[4] with the above challenge. The new formalism is com-
plex and requires considerable further effort to yield nu-
merical results in low dimensions. In the limit of high
enough dimensions, however, a remarkably simple ex-
pression for the Green’s function emerges; it is signifi-
cantly different from the standard Fermi Liquid Dyson
form, while satisfying the usual sum rules. We use the
above simple version of ECFL Green’s function in this
Letter, motivated by the attractive spectral shapes that
it produces with very few parameters [4]. In this Letter
we show that already the simplest version of the ECFL
theory, with very few parameters, is successful to an un-
precedented extent in detailed fitting of a wide variety
of normal state cuprate ARPES line shapes. Interesting

predictions are made for the higher temperature spectral
line skew.
Our focus in this Letter is on the data of optimally

doped Bi2Sr2CaCu2O8+δ (Bi2212) and La1.85Sr0.15CuO4

(LSCO) superconductors in the normal state, taken
with !k along the nodal direction connecting (0, 0) to
(π/a,π/a). Most of the data is taken from the published
literature, while some original data are also presented
(Bi2212 data in Figs. 4,5). Our sample is an optimally
doped Bi2212 (Tc = 91 K), grown by the floating zone
method at the Brookhaven National Laboratory (BNL),
and was measured at the Stanford Synchrotron Radiation
Lightsource (SSRL) beam line 5-4 using 25 eV photons.
The energy resolution is 15 meV and the angular resolu-
tion is 0.3 degrees.
Line shape model: The ECFL spectral function is

given as a product of an auxiliary Fermi Liquid (aux-
FL) spectral function AFL(!k,ω) and a second frequency
dependent “caparison” factor [4, 5]:

A(!k,ω) = AFL(!k,ω)

(

1−
n

2
+

n2

4
·
ξ"k − ω

∆0

)

+

(1)

where n is the number of electrons per CuO2 unit cell,
(X)+ ≡ max(X, 0), ξ"k =

(

1− n
2

)

ε(!k), where ε(!k) is
the bare one-electron band dispersion (see later). AFL is
taken as

AFL(!k,ω) =
1

π
· #m

1

ω − ξ"k − Φ(ω)
(2)

#m Φ(ω) =
ω2 + τ2

Ω0
exp

(

−
ω2 + τ2

ω2
0

)

+ η, (3)

where τ = πkBT , T is the temperature. From $eΦ [6],
the quasi-particle weight of the aux-FL is given by

ZFL =

(

1 +
ω0√
πΩ0

)−1

(4)

Smoking gun
Linear rise of intensity
for occupied states.
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FIG. 7. (Color online) EDC line shapes at different values of energy ξ displayed in each curve. Here, the parameters are from set II in
Eq. (54), with n = 0.85, T = 180 K, and η = 0.12. Panel (a) corresponds to ξ close to the chemical potential. Note that the curves are skewed
to the left, i.e., a mirror image of the rightward skew seen in the constant-x MDC scans above Fig. 6, in a comparable range of energies and
wave vectors. Panel (b) corresponds to the higher energy range, and we see that only one broad maximum is found at a given ξ . The inset in
(b) shows the aux-FL constant-ξ scans for the same range; here, each ξ results in a pair of maxima, originating from the functional form of the
self-energy in Eq. (37).

so that ρPeak
G (ξk,ε̄) = ρ∗

G(k)γ (Qk,ε̄), with a characteristic line-
shape function γ given by

γ (Qk,ε̄) =
[

Qk(1 − ε̄)
Qk(1 − ε̄) + ε̄2

]
, (60)

with

Qk = 2
e−uk

cosh (uk)
. (61)

The parameter Qk goes to zero near the Fermi surface at low
T since uk → ∞, but at higher binding energies increases:
Qk → 2.

As we get deeper into the occupied states ξ % 0, we find
a remarkable change in shape of the spectral functions. This
is illustrated in Fig. 10 where we plot γ of Eq. (60) after
normalizing to unit area. In order to have a well-defined
quasiparticle-type peak in ρG for ε ∼ O(1), Qk must be small
enough. This translates to the requirement of ξk being close
to the Fermi surface. By setting Q ∼ 1 as the condition for
losing a peak in the spectrum, we obtain the condition

ε0 + (1 − Zk)ξk = 1√
3
Zk'k, (62)

beyond which it is meaningless to talk of quasiparticles. This
gives ε0 as a rough characteristic scale for the disappearance
of the quasiparticle peaks.

Figure 11 illustrates the change in shape somewhat dif-
ferently by normalizing all curves to unity at the peak as in
Eq. (60). The peak at ε̄ = 0 is sharp and quite symmetric for
Q % 1, and becomes broader and more left skewed as Qk

increases toward its maximum value of two. Attaining the
maximum value is possible, in principle, requirement being
uk = 0 or from Eq. (44):

(0 = n2

4 − 2n
(e )

(
EFL

k

)
. (63)

Unless (0 is very small, this condition is hard to satisfy. If this
possibility is achieved, then there are several interesting conse-
quences. Firstly, we note that from Eq. (49), the magnitude of
the spectral function at uk = 0 becomes insensitive to disorder
and temperature, etc. Its magnitude, n2Zk/(8π(0), should be

useful for finding (0. If this is approximately satisfied, then the
peak structure loses meaning and the spectrum is essentially
flat. Taking ε̄ = −1, the fall off from the peak value of unity
is 80%, and the spectrum becomes essentially featureless.

G. Skewness parameter of the spectrum

We now estimate the skewness of the spectrum. The
function (60) drops to half its peak value at two values of
ε̄L,R to the left and right of the peak given by

ε̄L,R = − 1
2Qk ∓

√
Qk + 1

4Q2
k. (64)

For small Q % 1, the (dimensionless) width of the peak is
small, it increases with Q as discussed further below. We
define a dimensionless skew parameter in terms of the energies
ε∗,εR,L [rather than the ε̄’s that are related via Eq. (59)]:

κ(ξk) = 2ε∗ − εR − εL

ε∗ − εL

= tanh(uk) − 1 +
√

[2 − tanh(uk)]2 − 1, (65)

with the property that near the Fermi level when uk → +∞
the variable κ → 0, and we get a symmetric curve about
the maximum. On the other hand, for deeper occupation,
uk decreases in magnitude toward zero, driving κ → 0.732
and gives a curve that is increasingly biased to the left. The
asymmetry κ grows as O(T 2) at low temperatures, and it is
rather large at room temperature. As a rough estimate, the
quasiparticle peak is lost when Qk ∼ 0.5 where uk ∼ 0.98
and κ(ξk) ∼ 0.5. This loss of quasiparticle peak structure, skew
factor, and its experimental signature is studied in greater detail
in Ref. 3. See Fig. 2 for typical plot of skew parameter κ and
Q versus the hole binding energy Ek .

VI. SELF-ENERGY OF THE SELF-ENERGY AND A
MORI-TYPE PROCEDURE.

Since the construction given above generates ,(z) from
G(z) given only the representation (1), we can as well repeat
the trick. Since ,(z) satisfies Eq. (18) with a density ρ,(x)
that is assumed known, and is analytic in the complex z plane

165112-10

On a larger energy scale
there are often broad peaks beyond which 

the intensity falls. 

ρG(�k,ω) ↔ A(�k,ω)
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This work proposes a test for dynamical particle hole asymmetry using angle resolved photo

emission. This test is motivated by expressions for the single electron spectral function emerging

from recent theories. These exhibit a non trivial asymmetry ratio R that is unexpected from Fermi

liquid type models. The test requires the decomposition of the spectral weight into even and odd

parts under a dynamical particle hole transformation on (�k,ω). This requires a high precision

determination of the Fermi momentum that seems to be at the edge of what is currently achievable.

Also tunneling experiments in the overdoped cuprates with pronounced quasiparticle peaks are

predicted to show a counter intuitive rising (or flat) region near the chemical potential.

1. Introduction: An experimental test is proposed
to identify an unusual feature corresponding to a sub-
tle asymmetry between particles and hole excitations
in the dynamical single particle spectral function, using
the Angle Resolved Photoemission (ARPES) technique.
Such a feature, represented by a non trivial (�k,ω) de-
pendent asymmetry ratio R (Eq. (4) below), is predicted
in the microscopic extremely correlated fermi liquid the-
ory (ECFL) recently proposed by the author Ref. (1), as
a manifestation of a very large U . A similar feature is
also implied in the independent phenomenological work
of Casey and Anderson [2] (CA), but is missing in the
standard Fermi liquid and in other contemporary theo-
ries that I am aware of. This test requires a momentum
resolution that seems to be slightly beyond the currently
available one, and thus may also provide impetus for fur-
ther refinement of the experimental technique.

In the recent work on the ECFL, one finds that the
spectral function of the correlated electron ρG(�k,ω), is
the product of a Fermi liquid spectral function ρg(�k,ω)

and a caparison factor
��

1− n
2

�
+ ξk−ω

∆(�k,ω)
+ η(�k,ω)

�
.

This factor redistributes the dynamical spectral weight
within the lower Hubbard band, in such a way as to pre-
serve the Luttinger Ward volume of the Fermi surface.
In a very useful (high dimensional) approximation of the
formalism leading to explicit analytical results, η(�k,ω)
is negligible and the coefficient ∆ is a constant deter-
mined by the number sum rule. In Ref. (3), the above
approximate version of the theory was tested against the
laser as well as synchrotron data on the High Tc cuprate
Bi2Sr2CaCu2O8+δ at optimum filling along the nodal
direction. The test spans a substantial range of occupied
energies ∼ 1 eV, with quantitative fits in the 0.25 eV
energy range. The remarkably close agreement between
data and theory over the broad range of data sets ap-
pears to vindicate the form of the spectral function. The
test proposed in this work is somewhat complementary,
it is over a smaller energy range ∼ 2kBT , probing the

asymptotic low energy region centered around the Fermi

energy.

Our first goal is to formulate a procedure for isolating

terms in the spectral function near the Fermi energy that
are linear in wave vector and frequency, i.e. ∝ ξk − ω,
which distinguish dramatically between adding particles
and holes. We note that the experimental ARPES inten-
sity is given in terms of the spectral function within the
sudden approximation by the expression:

I(�k,ω) = |M(�k)| f(ω) ρG(�k,ω), (1)

where |M(�k)| is the dipole matrix element that is ex-
pected to be a smooth function of �k and independent of
ω. It also contains the Fermi function for occupied states
f(ω) = {1+exp (βω)}−1, a non symmetric function of ω.
Therefore we first formulate a Fermi symmetrized object:

SG(�k,ω) ≡ f(ω)f(−ω)ρG(�k,ω) =
1

|M(�k)|
f(−ω)I(�k,ω).

(2)
A dynamical particle hole transformation is constructed
as follows. At each Fermi momentum �kF , we consider
wave vectors �k along the normal, i.e. possessing a relative

momentum (�̂k ≡ �k − �kF ) parallel to the Fermi velocity
�v�kF

. We then define the transformation:

(�̂k,ω) → −(�̂k,ω). (3)

It thus flips the band energy relative to the Fermi en-
ergy and simultaneously inverts the frequency. We
may now decompose SG(�k,ω) under the tranformation

Eq. (3) into its antisymmetric Sa−s
G (�kF |�̂k,ω) and sym-

metric Ss
G(
�kF |�̂k,ω) combinations respectively

1

2

�
SG(�kF + �̂

k,ω)∓ SG(�kF − �̂
k,−ω)

�
.

We will also define the asymmetry ratio:

RG(�kF |�̂k,ω) = Sa−s
G (�kF |�̂k,ω)/Ss

G(�kF |
�̂
k,ω), (4)

where normalization factors cancel out, giving a dimen-
sionless function of order unity that can be compared
across different systems. We will quote RG and Ss

G below
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emission. This test is motivated by expressions for the single electron spectral function emerging

from recent theories. These exhibit a non trivial asymmetry ratio R that is unexpected from Fermi

liquid type models. The test requires the decomposition of the spectral weight into even and odd

parts under a dynamical particle hole transformation on (�k,ω). This requires a high precision

determination of the Fermi momentum that seems to be at the edge of what is currently achievable.

Also tunneling experiments in the overdoped cuprates with pronounced quasiparticle peaks are

predicted to show a counter intuitive rising (or flat) region near the chemical potential.

1. Introduction: An experimental test is proposed
to identify an unusual feature corresponding to a sub-
tle asymmetry between particles and hole excitations
in the dynamical single particle spectral function, using
the Angle Resolved Photoemission (ARPES) technique.
Such a feature, represented by a non trivial (�k,ω) de-
pendent asymmetry ratio R (Eq. (4) below), is predicted
in the microscopic extremely correlated fermi liquid the-
ory (ECFL) recently proposed by the author Ref. (1), as
a manifestation of a very large U . A similar feature is
also implied in the independent phenomenological work
of Casey and Anderson [2] (CA), but is missing in the
standard Fermi liquid and in other contemporary theo-
ries that I am aware of. This test requires a momentum
resolution that seems to be slightly beyond the currently
available one, and thus may also provide impetus for fur-
ther refinement of the experimental technique.

In the recent work on the ECFL, one finds that the
spectral function of the correlated electron ρG(�k,ω), is
the product of a Fermi liquid spectral function ρg(�k,ω)

and a caparison factor
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1− n
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+ η(�k,ω)
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This factor redistributes the dynamical spectral weight
within the lower Hubbard band, in such a way as to pre-
serve the Luttinger Ward volume of the Fermi surface.
In a very useful (high dimensional) approximation of the
formalism leading to explicit analytical results, η(�k,ω)
is negligible and the coefficient ∆ is a constant deter-
mined by the number sum rule. In Ref. (3), the above
approximate version of the theory was tested against the
laser as well as synchrotron data on the High Tc cuprate
Bi2Sr2CaCu2O8+δ at optimum filling along the nodal
direction. The test spans a substantial range of occupied
energies ∼ 1 eV, with quantitative fits in the 0.25 eV
energy range. The remarkably close agreement between
data and theory over the broad range of data sets ap-
pears to vindicate the form of the spectral function. The
test proposed in this work is somewhat complementary,
it is over a smaller energy range ∼ 2kBT , probing the

asymptotic low energy region centered around the Fermi

energy.

Our first goal is to formulate a procedure for isolating

terms in the spectral function near the Fermi energy that
are linear in wave vector and frequency, i.e. ∝ ξk − ω,
which distinguish dramatically between adding particles
and holes. We note that the experimental ARPES inten-
sity is given in terms of the spectral function within the
sudden approximation by the expression:

I(�k,ω) = |M(�k)| f(ω) ρG(�k,ω), (1)

where |M(�k)| is the dipole matrix element that is ex-
pected to be a smooth function of �k and independent of
ω. It also contains the Fermi function for occupied states
f(ω) = {1+exp (βω)}−1, a non symmetric function of ω.
Therefore we first formulate a Fermi symmetrized object:

SG(�k,ω) ≡ f(ω)f(−ω)ρG(�k,ω) =
1

|M(�k)|
f(−ω)I(�k,ω).

(2)
A dynamical particle hole transformation is constructed
as follows. At each Fermi momentum �kF , we consider
wave vectors �k along the normal, i.e. possessing a relative

momentum (�̂k ≡ �k − �kF ) parallel to the Fermi velocity
�v�kF

. We then define the transformation:

(�̂k,ω) → −(�̂k,ω). (3)

It thus flips the band energy relative to the Fermi en-
ergy and simultaneously inverts the frequency. We
may now decompose SG(�k,ω) under the tranformation

Eq. (3) into its antisymmetric Sa−s
G (�kF |�̂k,ω) and sym-

metric Ss
G(
�kF |�̂k,ω) combinations respectively
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emission. This test is motivated by expressions for the single electron spectral function emerging

from recent theories. These exhibit a non trivial asymmetry ratio R that is unexpected from Fermi

liquid type models. The test requires the decomposition of the spectral weight into even and odd

parts under a dynamical particle hole transformation on (�k,ω). This requires a high precision

determination of the Fermi momentum that seems to be at the edge of what is currently achievable.

Also tunneling experiments in the overdoped cuprates with pronounced quasiparticle peaks are

predicted to show a counter intuitive rising (or flat) region near the chemical potential.

1. Introduction: An experimental test is proposed
to identify an unusual feature corresponding to a sub-
tle asymmetry between particles and hole excitations
in the dynamical single particle spectral function, using
the Angle Resolved Photoemission (ARPES) technique.
Such a feature, represented by a non trivial (�k,ω) de-
pendent asymmetry ratio R (Eq. (4) below), is predicted
in the microscopic extremely correlated fermi liquid the-
ory (ECFL) recently proposed by the author Ref. (1), as
a manifestation of a very large U . A similar feature is
also implied in the independent phenomenological work
of Casey and Anderson [2] (CA), but is missing in the
standard Fermi liquid and in other contemporary theo-
ries that I am aware of. This test requires a momentum
resolution that seems to be slightly beyond the currently
available one, and thus may also provide impetus for fur-
ther refinement of the experimental technique.

In the recent work on the ECFL, one finds that the
spectral function of the correlated electron ρG(�k,ω), is
the product of a Fermi liquid spectral function ρg(�k,ω)

and a caparison factor
��

1− n
2

�
+ ξk−ω

∆(�k,ω)
+ η(�k,ω)

�
.

This factor redistributes the dynamical spectral weight
within the lower Hubbard band, in such a way as to pre-
serve the Luttinger Ward volume of the Fermi surface.
In a very useful (high dimensional) approximation of the
formalism leading to explicit analytical results, η(�k,ω)
is negligible and the coefficient ∆ is a constant deter-
mined by the number sum rule. In Ref. (3), the above
approximate version of the theory was tested against the
laser as well as synchrotron data on the High Tc cuprate
Bi2Sr2CaCu2O8+δ at optimum filling along the nodal
direction. The test spans a substantial range of occupied
energies ∼ 1 eV, with quantitative fits in the 0.25 eV
energy range. The remarkably close agreement between
data and theory over the broad range of data sets ap-
pears to vindicate the form of the spectral function. The
test proposed in this work is somewhat complementary,
it is over a smaller energy range ∼ 2kBT , probing the

asymptotic low energy region centered around the Fermi

energy.

Our first goal is to formulate a procedure for isolating

terms in the spectral function near the Fermi energy that
are linear in wave vector and frequency, i.e. ∝ ξk − ω,
which distinguish dramatically between adding particles
and holes. We note that the experimental ARPES inten-
sity is given in terms of the spectral function within the
sudden approximation by the expression:

I(�k,ω) = |M(�k)| f(ω) ρG(�k,ω), (1)

where |M(�k)| is the dipole matrix element that is ex-
pected to be a smooth function of �k and independent of
ω. It also contains the Fermi function for occupied states
f(ω) = {1+exp (βω)}−1, a non symmetric function of ω.
Therefore we first formulate a Fermi symmetrized object:

SG(�k,ω) ≡ f(ω)f(−ω)ρG(�k,ω) =
1

|M(�k)|
f(−ω)I(�k,ω).

(2)
A dynamical particle hole transformation is constructed
as follows. At each Fermi momentum �kF , we consider
wave vectors �k along the normal, i.e. possessing a relative

momentum (�̂k ≡ �k − �kF ) parallel to the Fermi velocity
�v�kF

. We then define the transformation:

(�̂k,ω) → −(�̂k,ω). (3)

It thus flips the band energy relative to the Fermi en-
ergy and simultaneously inverts the frequency. We
may now decompose SG(�k,ω) under the tranformation

Eq. (3) into its antisymmetric Sa−s
G (�kF |�̂k,ω) and sym-

metric Ss
G(
�kF |�̂k,ω) combinations respectively

1

2

�
SG(�kF + �̂

k,ω)∓ SG(�kF − �̂
k,−ω)

�
.

We will also define the asymmetry ratio:

RG(�kF |�̂k,ω) = Sa−s
G (�kF |�̂k,ω)/Ss

G(�kF |
�̂
k,ω), (4)

where normalization factors cancel out, giving a dimen-
sionless function of order unity that can be compared
across different systems. We will quote RG and Ss

G below
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to identify an unusual feature corresponding to a sub-
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in the dynamical single particle spectral function, using
the Angle Resolved Photoemission (ARPES) technique.
Such a feature, represented by a non trivial (�k,ω) de-
pendent asymmetry ratio R (Eq. (4) below), is predicted
in the microscopic extremely correlated fermi liquid the-
ory (ECFL) recently proposed by the author Ref. (1), as
a manifestation of a very large U . A similar feature is
also implied in the independent phenomenological work
of Casey and Anderson [2] (CA), but is missing in the
standard Fermi liquid and in other contemporary theo-
ries that I am aware of. This test requires a momentum
resolution that seems to be slightly beyond the currently
available one, and thus may also provide impetus for fur-
ther refinement of the experimental technique.

In the recent work on the ECFL, one finds that the
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the product of a Fermi liquid spectral function ρg(�k,ω)

and a caparison factor
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This factor redistributes the dynamical spectral weight
within the lower Hubbard band, in such a way as to pre-
serve the Luttinger Ward volume of the Fermi surface.
In a very useful (high dimensional) approximation of the
formalism leading to explicit analytical results, η(�k,ω)
is negligible and the coefficient ∆ is a constant deter-
mined by the number sum rule. In Ref. (3), the above
approximate version of the theory was tested against the
laser as well as synchrotron data on the High Tc cuprate
Bi2Sr2CaCu2O8+δ at optimum filling along the nodal
direction. The test spans a substantial range of occupied
energies ∼ 1 eV, with quantitative fits in the 0.25 eV
energy range. The remarkably close agreement between
data and theory over the broad range of data sets ap-
pears to vindicate the form of the spectral function. The
test proposed in this work is somewhat complementary,
it is over a smaller energy range ∼ 2kBT , probing the

asymptotic low energy region centered around the Fermi

energy.

Our first goal is to formulate a procedure for isolating

terms in the spectral function near the Fermi energy that
are linear in wave vector and frequency, i.e. ∝ ξk − ω,
which distinguish dramatically between adding particles
and holes. We note that the experimental ARPES inten-
sity is given in terms of the spectral function within the
sudden approximation by the expression:
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where |M(�k)| is the dipole matrix element that is ex-
pected to be a smooth function of �k and independent of
ω. It also contains the Fermi function for occupied states
f(ω) = {1+exp (βω)}−1, a non symmetric function of ω.
Therefore we first formulate a Fermi symmetrized object:

SG(�k,ω) ≡ f(ω)f(−ω)ρG(�k,ω) =
1

|M(�k)|
f(−ω)I(�k,ω).

(2)
A dynamical particle hole transformation is constructed
as follows. At each Fermi momentum �kF , we consider
wave vectors �k along the normal, i.e. possessing a relative

momentum (�̂k ≡ �k − �kF ) parallel to the Fermi velocity
�v�kF

. We then define the transformation:
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Such a feature, represented by a non trivial (�k,ω) de-
pendent asymmetry ratio R (Eq. (4) below), is predicted
in the microscopic extremely correlated fermi liquid the-
ory (ECFL) recently proposed by the author Ref. (1), as
a manifestation of a very large U . A similar feature is
also implied in the independent phenomenological work
of Casey and Anderson [2] (CA), but is missing in the
standard Fermi liquid and in other contemporary theo-
ries that I am aware of. This test requires a momentum
resolution that seems to be slightly beyond the currently
available one, and thus may also provide impetus for fur-
ther refinement of the experimental technique.
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within the lower Hubbard band, in such a way as to pre-
serve the Luttinger Ward volume of the Fermi surface.
In a very useful (high dimensional) approximation of the
formalism leading to explicit analytical results, η(�k,ω)
is negligible and the coefficient ∆ is a constant deter-
mined by the number sum rule. In Ref. (3), the above
approximate version of the theory was tested against the
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energies ∼ 1 eV, with quantitative fits in the 0.25 eV
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pears to vindicate the form of the spectral function. The
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it is over a smaller energy range ∼ 2kBT , probing the
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terms in the spectral function near the Fermi energy that
are linear in wave vector and frequency, i.e. ∝ ξk − ω,
which distinguish dramatically between adding particles
and holes. We note that the experimental ARPES inten-
sity is given in terms of the spectral function within the
sudden approximation by the expression:

I(�k,ω) = |M(�k)| f(ω) ρG(�k,ω), (1)

where |M(�k)| is the dipole matrix element that is ex-
pected to be a smooth function of �k and independent of
ω. It also contains the Fermi function for occupied states
f(ω) = {1+exp (βω)}−1, a non symmetric function of ω.
Therefore we first formulate a Fermi symmetrized object:

SG(�k,ω) ≡ f(ω)f(−ω)ρG(�k,ω) =
1
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f(−ω)I(�k,ω).
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as follows. At each Fermi momentum �kF , we consider
wave vectors �k along the normal, i.e. possessing a relative

momentum (�̂k ≡ �k − �kF ) parallel to the Fermi velocity
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ergy and simultaneously inverts the frequency. We
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FIG. 1: Sa−s
GHD

(k̂,ω) from Eq. (11). versus ξ (top) ω (bottom)
in eV at various ω (top) ξ (bottom). Arrows indicate the
direction of increasing energies. The complementary depen-
dence on ξ and ω of the formula Eq. (11) is evident here. We
used η = .05 eV, ∆0 = .0796 eV here.

Γk = η + πCΦ[(πkBT )2 + (EFL
k )

2
], where η is the elastic

broadening introduced in Ref. (3) (it should be distin-

guished from η(�k,ω) in the exact ECFL formula quoted

above. For the model Eq. (10), we can set Γk → ΓkF
and

thus obtain the leading behavior near the Fermi energy

as

{Ss
GHD

,RGHD
} ∼ [(1− n

2
)Q(

�̂k,ω),
{�̂k.�v�kF

− ω}
ε0

],(11)

where Q(
�̂k,ω) is obtained from Eq. (6) by replacing

m/m∗ → ZF and γk → ΓkZk. We emphasize that

Eq. (11) is valid for the high dimensional model, whereas

Eq. (9) is more generally true within the ECFL approach.

The signature of the ECFL type correlation is clearly seen

in the antisymmetric function Sa−s
(
�̂k,ω). We display

this object in the figures Fig. (1) for a model calculation

based in the high dimensional ECFL model with a flat

density of states Ref. (9) Sec.(IV.F). The values of the

basic parameters in all plots are as follows: T = 180K,

ωc = .25 eV, CΦ = 1(eV)
−1

, n = .85. Notice the distinc-
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FIG. 2: The local density of states from Eq. (10). Three val-
ues of η = .075, .15, .3 with blue, green and red colors and with
∆0 = .089, .116, .253 respectively, demonstrating the range of
possibilities. The remarkable rising piece near zero bias re-
verses the overall trend, its origin within ECFL is explained
in the text.

tive increasing linear behavior with
�̂k and a decreasing

linear one with ω, as in Eq. (9) and Eq. (11).

3. Single particle tunneling into the extremely
correlated state: In the simplest model of tunneling in

the t-J model, the conductance is given in terms of the

local density of states ρ(local)G (ω) [10, 11]. Its convolution
with f(ω) and (1− f(ω)) gives half the occupied

n
2 , and

the unoccupied ( 1 − n) densities, thus providing useful

sum-rules for tunneling[12]. The sum rule leads to the

expectation of asymmetry between adding particles and

holes and thus a downward sloping conductance[13, 14].

More detailed information on the frequency depen-

dence is clearly of experimental interest. We next show

that a rather counter intuitive possibility arises from the

ECFL theory, wherein the conductance increases with
voltage in the proximity of zero bias. Fig. (2) shows an

overall decrease of the local density of states for the high

dimensional ECFL model with energy, so that the inte-

grals over the occupied states (ω ≤ 0) exceed that over

the unoccupied region (ω > 0) by the ratio
n
2 : (1 − n).

However, the central region near the Fermi surface shows

a linear increase. To understand this unusual result,

we consider the expression for the spectral function in

Eq. (10) together with ρ(local)G (ω) =
�
dξ n(ξ)ρG(ξ,ω)

with a band density of states n(ξ). The contribution

of the quasi particle peak region to this integral can be

estimated by replacing the Fermi liquid Lorentzian by

Zk δ(ω−EFL
k ). This is written as δ(�̂k.�v�kF

− m∗

m ω). Note

that in high dimensions we can simplify m/m∗ → ZF .

This immediately gives the quasi particle peak contribu-

tion:

lim
ω≤ε0

ρ(local)G,P (ω) ∼ (const)

�
ε0 + (

m∗

m
− 1)× ω

�
. (12)

Scale of ω is eV.  Enormous asymmetry is expected
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tive increasing linear behavior with
�̂k and a decreasing

linear one with ω, as in Eq. (9) and Eq. (11).

3. Single particle tunneling into the extremely
correlated state: In the simplest model of tunneling in

the t-J model, the conductance is given in terms of the

local density of states ρ(local)G (ω) [10, 11]. Its convolution
with f(ω) and (1− f(ω)) gives half the occupied

n
2 , and

the unoccupied ( 1 − n) densities, thus providing useful

sum-rules for tunneling[12]. The sum rule leads to the

expectation of asymmetry between adding particles and

holes and thus a downward sloping conductance[13, 14].

More detailed information on the frequency depen-

dence is clearly of experimental interest. We next show

that a rather counter intuitive possibility arises from the

ECFL theory, wherein the conductance increases with
voltage in the proximity of zero bias. Fig. (2) shows an

overall decrease of the local density of states for the high

dimensional ECFL model with energy, so that the inte-

grals over the occupied states (ω ≤ 0) exceed that over

the unoccupied region (ω > 0) by the ratio
n
2 : (1 − n).

However, the central region near the Fermi surface shows

a linear increase. To understand this unusual result,

we consider the expression for the spectral function in

Eq. (10) together with ρ(local)G (ω) =
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dξ n(ξ)ρG(ξ,ω)

with a band density of states n(ξ). The contribution

of the quasi particle peak region to this integral can be

estimated by replacing the Fermi liquid Lorentzian by

Zk δ(ω−EFL
k ). This is written as δ(�̂k.�v�kF

− m∗

m ω). Note
that in high dimensions we can simplify m/m∗ → ZF .

This immediately gives the quasi particle peak contribu-

tion:

lim
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to identify an unusual feature corresponding to a sub-
tle asymmetry between particles and hole excitations
in the dynamical single particle spectral function, using
the Angle Resolved Photoemission (ARPES) technique.
Such a feature, represented by a non trivial (�k,ω) de-
pendent asymmetry ratio R (Eq. (4) below), is predicted
in the microscopic extremely correlated fermi liquid the-
ory (ECFL) recently proposed by the author Ref. (1), as
a manifestation of a very large U . A similar feature is
also implied in the independent phenomenological work
of Casey and Anderson [2] (CA), but is missing in the
standard Fermi liquid and in other contemporary theo-
ries that I am aware of. This test requires a momentum
resolution that seems to be slightly beyond the currently
available one, and thus may also provide impetus for fur-
ther refinement of the experimental technique.

In the recent work on the ECFL, one finds that the
spectral function of the correlated electron ρG(�k,ω), is
the product of a Fermi liquid spectral function ρg(�k,ω)

and a caparison factor
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.

This factor redistributes the dynamical spectral weight
within the lower Hubbard band, in such a way as to pre-
serve the Luttinger Ward volume of the Fermi surface.
In a very useful (high dimensional) approximation of the
formalism leading to explicit analytical results, η(�k,ω)
is negligible and the coefficient ∆ is a constant deter-
mined by the number sum rule. In Ref. (3), the above
approximate version of the theory was tested against the
laser as well as synchrotron data on the High Tc cuprate
Bi2Sr2CaCu2O8+δ at optimum filling along the nodal
direction. The test spans a substantial range of occupied
energies ∼ 1 eV, with quantitative fits in the 0.25 eV
energy range. The remarkably close agreement between
data and theory over the broad range of data sets ap-
pears to vindicate the form of the spectral function. The
test proposed in this work is somewhat complementary,
it is over a smaller energy range ∼ 2kBT , probing the

asymptotic low energy region centered around the Fermi

energy.

Our first goal is to formulate a procedure for isolating

terms in the spectral function near the Fermi energy that
are linear in wave vector and frequency, i.e. ∝ ξk − ω,
which distinguish dramatically between adding particles
and holes. We note that the experimental ARPES inten-
sity is given in terms of the spectral function within the
sudden approximation by the expression:

I(�k,ω) = |M(�k)| f(ω) ρG(�k,ω), (1)

where |M(�k)| is the dipole matrix element that is ex-
pected to be a smooth function of �k and independent of
ω. It also contains the Fermi function for occupied states
f(ω) = {1+exp (βω)}−1, a non symmetric function of ω.
Therefore we first formulate a Fermi symmetrized object:

SG(�k,ω) ≡ f(ω)f(−ω)ρG(�k,ω) =
1

|M(�k)|
f(−ω)I(�k,ω).

(2)
A dynamical particle hole transformation is constructed
as follows. At each Fermi momentum �kF , we consider
wave vectors �k along the normal, i.e. possessing a relative

momentum (�̂k ≡ �k − �kF ) parallel to the Fermi velocity
�v�kF

. We then define the transformation:

(�̂k,ω) → −(�̂k,ω). (3)

It thus flips the band energy relative to the Fermi en-
ergy and simultaneously inverts the frequency. We
may now decompose SG(�k,ω) under the tranformation

Eq. (3) into its antisymmetric Sa−s
G (�kF |�̂k,ω) and sym-

metric Ss
G(
�kF |�̂k,ω) combinations respectively

1

2

�
SG(�kF + �̂

k,ω)∓ SG(�kF − �̂
k,−ω)

�
.

We will also define the asymmetry ratio:

RG(�kF |�̂k,ω) = Sa−s
G (�kF |�̂k,ω)/Ss

G(�kF |
�̂
k,ω), (4)

where normalization factors cancel out, giving a dimen-
sionless function of order unity that can be compared
across different systems. We will quote RG and Ss

G below
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This is the Fermi symmetrized spectral function that focuses attention near 
chemical potential. Here I(k,w) is ARPES intensity and M is dipole matrix element

P-H symmetry is an “Emergent symmetry” at low enough energies:
Fixed point symmetry in the asymptotic regime: “Schmalian- Batista”
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FIG. 3: Density plots for the high dimensional ECFL model in Eq. (10) with energies in eV. Density plots of (A) the spec-
tral function ρG(ξ,ω), (B) the “ideal” experimental intensity ρG(ξ,ω)f(ω), (C) the Fermi symmetrized object SGHD

(ξ,ω) =

ρG(ξ,ω)f(ω)f(−ω), (D) the fully symmetrized object Ss
GHD

(k̂,ω) with a peak exactly at the origin, (E) the antisymmetrized

object Sa−s
GHD

(k̂,ω) showing a peak and a trough, and (F) the ratio RGHD
(ξ,ω) of the anti symmetric to symmetric parts of S

as a contour plot. Here η = .05 and ∆0 = .0796.
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ρG(k,ω)
ρG(k,ω)f(ω) ρG(k,ω)f(ω)f(−ω)

Ssymmetric(k,ω) Santi−symm(k,ω) R(k,ω)

= (ξk − ω)/A

Requires momentum resolution Δk = .001 Angstrom (perhaps just beyond current reach.)



 Experimentally feasible if momentum resolution is attained (not too far from current 

resolution-). 

Fermi liquids do not have such large asymmetries on a similarly small energy scale. P-H 

symmetry is emergent at most accessible energy scales in intermediate coupling Fermi liquids.

 DMFT: Professor Antoine Georges mentions that remarkably similar asymmetries emerge 

from the theory by pushing large U.  We expect that DMFT and ECFL will be  ultimately  

connected since  these are alternate descriptions of the same very strong correlations. 

Asymmetry is a measure of corrections to scaling at the FL fixed point, large asymmetry 

implies large corrections- has serious implications for Hall constant and Seebeck coefficients- 

being pursued. Numerical estimates give R~10% (25 meV scale) compared to <1% for weak/

intermediate coupling Fermi liquids” (Hodges, Smith, Wilkins 1972)  

ECFL and Anderson Casey have similar features.  A-C line shapes share the feature of  non 

trivial asymmetry of O(1) on fairly small energy scale (~25 meV). However they have too strong a 

statement about criticality at all densities.

 Asymmetry can be used to discriminate between classes of  theories.

RSECFL =
k̂.�vF − ω

ε0
RCA =

k̂.�vF − ω

a kBT

Asymmetry related comments:

Requires momentum resolution Δk = .001 Angstrom (perhaps just beyond current reach.)



 Presented a Schwinger based systematic low density or λ expansion of t-J model. 

Numerics: (work in progress)  

 Tentatively: expansion  indicates an Extremely Correlated Fermi liquid 

phase colliding with a Quantum Critical Point  at  T=0  at density n*.  

Shrinking energy scale follows from bare bandwidth as density 

increases.

Realistic bands (with non zero  t’) needs to be done.

 Simplified analytical solution:

Novel and relevant non Lorentzian analytical expressions for line 

shapes. Satisfy important sum-rules  and give a  global perspective of the 

spectral functions.

Excellent agreement with line shape data at optimal doping.

Testable predictions  for line shape asymmetries

 Superconductivity itself?

In Summary:


