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Three aspects of the thermopower
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Expecting an additive decomposition is too simplistic in interacting systems
but the three piece analogy gives some intuition.
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Historically there have been many ideas relating

thermopower to thermodynamical variables- starting with

Lord Kelvin himself in 1854!

Experimentalists view it as entropy per particle!

°K. E. Grew, Phys. Rev. 41, 3561 (1932).
‘A. W. Foster, Phil. Mag. 18, 470 (1934)

Thermoelectric Anomaly Near a Critical Point

G. A. Thomas, K. Levin, and R. D. Parks

PHYSICAL REVIEW LETTERS
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Our interest started with Sodium Cobaltate (NayCoO3) where we (Shastry
Shraiman and Singh PRL 1993) had an old standing prediction on the T

dependence of the Hall constant from 1993.

Ong et al were studying the large thermopower found, it was quite mysterious

for many reasons.

Pushed by me Ong et.al. studied the T dependence of the Hall constant.

Pushed by Ong et. al,, | studied the thermopower!!

¢Thermoelectric response through linear response
obscure at that point.

“Analogies to electrical response remained unknown
¢Drude weight, and sum rules were not known.

In view of Hall constant studies:

¢High frequency viewpoint from dynamical susceptibility
is natural and required exploration

¢Luttinger’s gravitational potential analogy for thermal
response is best way.

Shastry B S 2006 Phys. Rev. B 73 085117

Rep. Prog. Phys. 72 (2009) 016501
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Figure 2. Experimental temperature dependence [34] of the Hall
coefficient of sodium cobaltate Naj ¢sC0oO, over a broad range of
temperatures. The sample is in the so-called Curie—Weiss metallic
phase. The inset stresses the crucial role of the triangular closed
loops 1n giving rise to the surprising behaviour.



Lessons from Hall constant studies

Linear Response Stress tensor
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Luttinger’s thermal response formalism at finite frequencies:
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High freq thermopower

High freq Lorentz number

High freq figure of merit
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Context: Consider an effective model system obtained by
focusing on one (or a few) bands after eliminating higher

energy states.

Best for t] type models, (but not ideal for large U

Hubbard systems).

High frequency transport
calculation is therefore
reduced to computing the
equal time average of
these three many body
operators- much easier
than doing time
dependence- and yet
already very challenging.




Hubbard model thermopower can be found from

self energy alone!! (no need for vertex)
Shastry Aspen (2008), DMFT with Arsenault, Tremblay et al (2008)
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Exact diagonalization t] model Particle Hole symmetry

|0-27 site clusters @Comparing Hall constant and Seebeck coefficients
Peterson Haerter and Shastry &Mott Hubbard holes at half filling are evident

® R*H(T=O), L=12, Icosahedron

¢ R (T=0), L=12, Torus
v RH(T=O, ®=0), L=12, Torus

o o o
\® I SN @
M 1T T T T T T
I|I|I|I

—
(\9)

R, [10” m’/C]
=
~ -

L L

S
o)

1 T | I | I
A S (T=100K)
% S’ (T=200 K)
< S (T=1000 K)

A R N B | | |
450 |

300
150

S[LV/K]
O

-150
-300
-450

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
n

Electrothermal transport coefficients at

finite frequencies

Rep. Prog. Phys. 72 (2009) 016501 (23pp)
B Sriram Shastry



C, [J/(mol K)]

v [1 O'Semu/mol]

Where is the insight and can it help the material design enterprise!?

Pauli

Curie-Weiss

Strong Correlations Produce the Curie-Weiss Phase of Na,CoO,
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PRL 97, 226402 (2006)
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Exact calculation of Kubo formula

|l states triangular lattice clusters

summing a

=0.2]¢|

x=0.67, t>0, J

(S(®)-S ) (UV/K)

i///////l llll

&//

il

i/l

=
NS

/,////

7

7

7
7

7

7 7

207

=%

7z

7

77

=

77,

7
/

777

777

&7/

=
=
7

<
7

s

S

Here S* is ~ 100 microVolts, hence maximum error is about 3%!!!
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Sign of hopping in triangular,

and FCC, HCP Iattices is

Where did this insight come from and can it be used!? explicitly involved.
" kg 2—n ) Prediction: Hole doping
ST = Z {log[Z(l —n)/n]—pt 9l + 0B )} should yield greater

thermopower than electron

doping.Also true for FCC,
HCP lattices



Michael R. Peterson

B. Sriram Shastry

Kelvin formula for thermopower

PHYSICAL REVIEW B 82, 195105 (2010)

Slow limit i.e. W—0 first. Wrong but interesting

Exact
Captures thermodynamic contribution
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Low particle density better for S
Frustration is captured in S* but not Kelvin

T—0

With correct coefficient
unlike Heikes Mott as shown in
Professor Antoine Georges’s previous lecture



A possibly useful insight:

Tallon Obertelli Homma Hor
universal crossing of
Thermopower may be
understood as a peak in
entropy as a function of doping

at optimal doping- and hence
hints towards a QCP!
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FIG. 3. Room-temperature thermoelectric power plotted as a
function of hole concentration for various HTSC’s as reported in
Ref. 8 and for oxygen-deficient (6=~0.98) Y,;_,Ca,Ba,Cu;0;_;
for which p=x/2. The underdoped side has a logarithmic scale and
the overdoped side a linear scale.



Thermopower and quantum criticality in a strongly

: : _ New Journal of Physics 13 (2011) 083032 (9pp)
interacting system: parallels with the cuprates ) S

Arti Garg'?, B Sriram Shastry!, Kiaran B Dave’
and Philip Phillips?

We may interpret this experiment assuming Kelvin’s formula:
The approximate validity of Kelvin’s formula here would imply
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Summarizing:
Useful to have simple approximate formulas-
lead to simple and powerful insights that exact formulas cannot ever give us!!



