
Work supported by
 DOE, BES DE-FG02-06ER46319 

Sriram Shastry
University of California

 Santa Cruz, CA

College de France
June 13,  2012

Simple Insights into Thermopower of  correlated matter 



Three aspects of the thermopower 

Thermodynamical

Dynamical

Relaxational
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Let us begin by listing the three basic operators for the
simplest Drude–Sommerfeld type model of a free electron
gas, with particle scattering off some impurities or phonons
characterized by a relaxation time τ . Let the particle
energy dispersion be denoted by εk and their group velocity
vx

p = ∂εk/∂kx . A small calculation of equation (49) shows

τ xx = q2
e

∑

p,σ

∂

∂px

{vx
p}c†

p,σ cp,σ ,

%xx =
∑

p,σ

∂

∂px

{vx
p(εp − µ)2}c†

p,σ cp,σ ,

&xx = qe

∑

p,σ

∂

∂px

{vx
p(εp − µ)}c†

p,σ cp,σ . (73)

We next form the thermal averages,

〈τ xx〉 = 2q2
e

∑

p

np

d
dpx

[vx
p],

〈%xx〉 = 2
∑

p

np

d
dpx

[vx
p(εp − µ)2],

〈&xx〉 = 2qe

∑

p

np

d
dpx

[vx
p(εp − µ)]. (74)

Here np is the Fermi function. We now focus on the low T
behaviour of these formulae. At low temperatures T , we use
the Sommerfeld expansion [9] after integrating by parts and
obtain the leading behaviour:

〈τ xx〉 = '2 q2
e ρ0(µ)〈(vx

p)2〉µ,

〈%xx〉 = 'T 2 2π2k2
B

3
ρ0(µ)〈(vx

p)2〉µ,

〈&xx〉 = 'T 2 2qeπ
2k2

B

3

×
[
ρ ′

0(µ)〈(vx
p)2〉µ + ρ0(µ)

d
dµ

〈(vx
p)2〉µ

]
, (75)

where ρ0(µ) is the density of states per spin per site at the Fermi
level µ and the primes denote derivatives w.r.t. µ, the average is
over the Fermi surface as usual. We may form high frequency
ratios as in equation (69) and get the leading formulae14

S∗ = T
π2k2

B

3qe

d
dµ

ln[ρ0(µ)〈(vx
p)2〉µ], (76)

L∗ = π2k2
B

3q2
e

. (77)

These formulae are indeed very close to what we expect from
the Bloch–Boltzmann theory. The high frequency result gives
the same Lorentz number as we get from the Bloch–Boltzmann
theory. In the Bloch–Boltzmann theory, the thermopower
can be calculated assuming an energy momentum dependent
relaxation time τ (p, ω), as

SMott = T
π2k2

B

3qe

d
dµ

ln[ρ0(µ)〈(vx
p)2τ (p, µ)〉µ], (78)

14 The reader is requested to ignore the irksome issue of the dimensionality
of the argument of the logarithm. The logarithm is just a notational device to
collect the coefficients in this formula and in equations (78) and (88).

and is referred to as the Mott formula [9, 26]. A comparison
between the two formulae (equations (76) and (78)) for the
thermopower reveals the nature of the high frequency limit: it
ignores the energy dependence of the relaxation time, but
captures the density of states. Thus this formalism is expected
to be accurate whenever the scattering is less important than
say the density of states and correlations.

If the free electron gas in the above discussion is replaced
by electrons that interact with each other, in addition to
scattering off impurities or phonons or amongst themselves, the
details of the interactions become crucial in writing down the
operators analogous to equation (73). The thermal operators
%xx can be computed for any given model by a prescription
set out in [37], and detailed expressions are available there
for many standard electronic models: the Hubbard model,
the t–J model and the Anderson model. Also corresponding
expressions are available for heat conduction in insulators
such as the Heisenberg antiferromagnet and for non-linear
lattice models such as the Fermi–Pasta–Ulam chain [45].
The thermoelectric operators &xx are also given explicitly for
the conducting models for the same set of models in the same
reference. Given their length it seems hardly worthwhile to
reproduce them here. We merely mention that the operators
involve the interaction parameters, just as the energy currents
do, and have to be worked out for each model individually.
The one exception is the τ xx operator, which usually has the
same form as in equation (73), due to the fact that interactions
are velocity independent. We will see the explicit form of the
&xx operator for the U = ∞ Hubbard model in equation (92).

Let us also note the general formula for the thermopower
from equations (68) and (58). On dropping the second term
in equation (59), we get the standard formulae appropriate
for dissipative systems, where we can write the ‘exact’ Kubo
formula [41]:

SKubo =
[∫ ∞

0 dt
∫ β

0 dτ 〈Ĵ E
x (t − iτ )Ĵx(0)〉

∫ ∞
0 dt

∫ β

0 dτ 〈Ĵx(t − iτ )Ĵx(0)〉
− µ(0)

qe

]

+
µ(0) − µ(T )

qe
. (79)

We have used equation (33) and further added and subtracted
the (µ(0)/qe) term for convenience to arrive at equation (79).
The Mott result (equation (78)) follows from this general
formula in the limit of weak scattering, as textbooks
indicate [10]. For narrow band systems, Heikes introduced
another approximation popularized by Mott [46, 47], namely,
the Heikes–Mott formula

SHM = µ(0) − µ(T )

qe
. (80)

This formula emphasizes the thermodynamic interpretation of
the thermopower; this term can be loosely regarded as the
entropy per particle15. This motivates us [37] to decompose
the thermopower as

SKubo = STr + SHM, (81)

15 Strictly speaking µ is a derivative of the entropy w.r.t. the number of
particles, i.e. µ(T ) = −T (∂S(N, T )/∂N)E,T .
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Example:

Expecting an additive decomposition is  too simplistic in interacting systems
but the three piece analogy gives some intuition.
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Name Formula Context

Kubo-Onsager Exact and mostly 
unusable.

Mott
Free electron metals with 
weak scattering (elastic or 

otherwise)

Heikes Mott Semi conductors
High T 

S*
Correlated matter (after 

removal of U scale)
Neglects relaxational part.

Large ω >> ωc

Kelvin
Correlated matter 

Low ω but thermodynamic 
part only



Historically there have been many ideas relating
thermopower to thermodynamical variables- starting with 
Lord Kelvin himself in 1854!

Experimentalists view it as entropy per particle!

Nickel



Our interest started with Sodium Cobaltate (NaxCoO2)  where we (Shastry 
Shraiman and Singh PRL 1993)  had an old standing prediction on the T 
dependence of  the Hall constant from 1993. 

Ong et al were studying the large thermopower found, it was quite mysterious 
for many reasons.  

Pushed by me Ong et. al.  studied the T dependence of the Hall constant. 

Pushed by Ong et. al., I studied the thermopower!!  
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Figure 2. Experimental temperature dependence [34] of the Hall
coefficient of sodium cobaltate Na0.68CoO2 over a broad range of
temperatures. The sample is in the so-called Curie–Weiss metallic
phase. The inset stresses the crucial role of the triangular closed
loops in giving rise to the surprising behaviour.

doped semiconductors. The other remarkable feature is that
the Hall resistivity increases linearly with T , a result first found
in [25, 30]4 . The final answer is therefore highly non-universal
and depends upon material parameters such as the magnitude
and sign of the hopping and also the nature of the doping (holes
versus electron). We reiterate that this asymptotic behaviour
is obtained provided kBT ! |t | and as such is experimentally
observable only for narrow band systems. In general, from
equation (7) one expects a T independent Hall constant for
T sufficiently below a (usually large) characteristic Fermi
temperature, as in most metallic systems.

Interestingly enough, the case of NaxCoO2 with x ∼ 0.68,
i.e. the so-called Curie–Weiss metallic phase, seems to fulfill
these conditions of narrow bandwidth. As figure 2 shows,
the experiments show a large and clear-cut region of linear T
dependence [34], thereby fulfilling the basic theoretical
prediction of equation (12). Recent work [35] attempts to
reconcile many experimental results in this phase, including the
Hall constant coefficient of T , with the theoretical predictions.
Many experiments such as the photoemission quasiparticle
velocities, the magnetic susceptibility and specific heat are
understandable with |t |/kB ∼ 100 K (i.e. a bare band width
9|t | ∼ 10−2 eV ). At x = 0.68, the Hall slope requires a
smaller value |t |/kB ∼ 25 K, but nearby compositions seem
to have a smaller slope translating to a larger value of |t |/kB

that is more in line with the other data. All these numbers are,
in turn, much smaller than LDA estimates of the bandwidth of
0.2 eV [36] by an order of magnitude and pose an interesting
4 Using a semiclassical theory of transport, Holstein estimated the Hall
conductivity and Hall angle σxy/σxx , rather than the Hall resistivity as
in equation (12). The neat prediction [25, 30] of a T linear behaviour
(equation (12)) emerges only for the Hall resistivity, where many factors
cancel out.

problem to the community. In this review, our interest in the
Hall constant of the cobaltates is mostly motivational and hence
tangential; we will leave this topic for further work. In the case
of the cuprates, the work in [25, 29] shows that R∗

H provides a
useful first principles estimate for the physical (dc) transport
Hall constant RH(0) for correlated systems. Our task in these
notes is to carry this message to the computation of the thermal
response functions, and so we terminate our discussion of the
interesting problem of the Hall constant.

3. Thermoelectric response

We next address the main topic of this paper, namely, the
thermal response functions. In light of the previous discussion
of the Hall constant, we searched for the analogue of R∗

H.
Therefore, we needed the finite (high) frequency limits of
thermal response functions. To the author’s surprise, these
limiting functions were unavailable in the literature, therefore
leading to the basic calculation in [37]. We begin with a
quick review of the standard transport theory given in many
texts [9, 10, 26, 38, 39]. We write down the set of linear
response equations following Onsager [38]:

1
"

〈Ĵx〉 = L11Ex + L12(−∇xT /T ), (13)

1
"

〈Ĵ Q
x 〉 = L21Ex + L22(−∇xT /T ), (14)

where (−∇xT /T ) is regarded as the external driving
thermal force [9, 38, 40]. The operator Ĵx is the total
charge current operator and has been defined earlier in
equation (4). Further Ĵ Q

x is the heat current operator defined
as Ĵ Q

x = limqx→0(1/qx)[K, K(qx)], where K(qx) is the
Fourier component of the grand canonical Hamiltonian density
(equation (18)) and limqx→0 K(qx) = K . These variables are
elaborated upon below in equations (34) and (35) and " = vNs

is the total volume of the system. The parameter L11 is related
to the dc conductivity σ (0) = L11

5, the parameter L12 is
related6 to the Seebeck coefficient

S = L12

T L11
, (15)

also L21 is related to the Peltier coefficient

# = L21/L11 = T S, (16)

the final equality in equation (16) relating the Peltier and
Thomson effects is the celebrated reciprocity due to Thomson
(Kelvin) [40] and Onsager [38]. It is most compactly
written as L12 = L21. The Onsager constant L22 is related
to the (nominal) thermal conductivity κ = (1/T )L22 for
problems with immobile degrees of freedom (spins, ions,
etc). For metallic systems, however, the observed thermal
conductivity κzc requires a small correction (see equation (17)).
The usually observed thermal conductivity [10, 26, 28] uses

5 Our definition includes the volume factor and this makes L11 identical to
the (intensive) conductivity.
6 Sometimes in the literature [9, 10, 26], S is denoted by Q.
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Thermoelectric response through linear response 
obscure at that point.
Analogies to electrical response remained unknown
Drude weight, and sum rules were not known.

In view of Hall constant studies:

High frequency viewpoint from dynamical susceptibility 
is natural and required exploration
Luttinger’s gravitational potential analogy for thermal 

response is best way. 
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Abstract
We review a recently developed formalism for computing thermoelectric coefficients in
correlated matter. The usual difficulties of such a calculation are circumvented by a careful
generalization of the transport formalism to finite frequencies, from which one can extract the
high frequency objects. The technical parallel between the Hall constant and the Seebeck
coefficient is explored and used to advantage. For small clusters, exact diagonalization gives
the full spectrum for the Hubbard and especially the t–J model, a prototypical model for
strong correlations, and this spectrum can be used to compute the exact finite frequency
transport coefficients and hence to benchmark various approximations.

An application of this formalism to the physically important case of sodium cobaltate
NaxCoO2 is made, and interesting predictions for new materials are highlighted.

(Some figures in this article are in colour only in the electronic version)
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Nomenclature

t ("η) Hopping matrix element for a distance "η
〈i, j〉 Nearest neighbour sites Ri, Rj

cj,σ Electron destruction operator at site Ri

for spin σ

Ns, N, n Number of sites, electrons and density
v, $ Volume per cell and total volume

qe, c Carrier charge and the velocity of light
U, J Interaction coupling constants in

the Hubbard and t–J models
PG Gutzwiller projection operator

removing doubly occupied sites
µ, ρ0(µ) Chemical potential and density

of states per spin at that energy
K = H − µN̂ Grand canonical Hamiltonian
C(T ), T Specific heat and temperature T
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Lessons from Hall constant studies
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its merits:

1. It is exact in the limit of simple dynamics, as in the Bloch–
Boltzmann equation approach.

2. It can be computed in various ways, e.g. using exact
diagonalization [29] and high T expansions [25, 30].

3. We have successfully removed the dissipational aspect of
the Hall constant here and retained the (lower Hubbard
sub-band physics) correlations aspect. This is done
by going to high frequencies and using the Gutzwiller
projected Fermi operators in defining the currents.

4. It is valid for the entire range of hopping processes, from
hopping type incoherent transport at high T to coherent
Fermi liquid type transport at low T in a band system.

We emphasize that this provides a very good description of
the t–J model, where this asymptotic formula requires ω to
be larger than J , but should not be expected to be particularly
useful for the Hubbard model. In the Hubbard model [31], the
transport limit and the high frequency limit are on opposite
sides of a crucial energy scale U . More explicitly, a large
ω ! U is implicit in this limit and therefore deals with weakly
renormalized particles. We expect it to differ from the transport
limit ω → 0 significantly in qualitative terms, such as the signs
of carriers and the Hall number.

It is worthwhile recording a dispersion relation for the Hall
constant at this point. Since RH(ω) is analytic in the upper half
of the complex ω plane, and has a finite limit at infinite ω, we
may write

RH(ω) = R∗
H −

∫ ∞

−∞

dν

π

&mRH(ν)

ω − ν + i0+
, (10)

therefore in the dc limit we get

'eRH(0) = R∗
H +

2
π

∫ ∞

0

&mRH(ν)

ν
dν. (11)

This equation quantifies the difference between the experi-
mentally measured dc-Hall coefficient and the theoretically
more accessible infinite frequency limit. The second term is an
independently measurable object, and initial measurements of
this are now available in [32]. It would be very useful to make
a systematic study of this promising dispersion relation, both
theoretically and experimentally. For the case of the square
lattice systems, the theoretical estimates of the difference are
indicated in figure 1 for a couple of densities. We plan to return
to this rich topic in future studies.

As an illustration of the above formalism, we note that a
recent work on the triangular lattice system NaxCoO2 provides
a good example. Theoretically, the ‘exotic’ prediction, namely,
that the Hall constant grows linearly with temperature T on
a triangular lattice, was first recognized in 1993 [25]. This
behaviour arises for T ! TFermi. On the other hand, for
low temperatures, it is expected to be less sensitive to T ,
as in a Fermi liquid. This prediction arises in a simple
way from equation (7) treated within the high temperature
expansion [25, 30]. The numerator is dominated by the shortest
closed loops of electron hopping that encircle a flux, and these
are, of course, triangles for the triangular lattice. This leads at
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Figure 1. Frequency dependence of the Hall coefficient on the
triangular lattice from computation on small clusters of the t–J
model [29, 35] for electron doping x. The values of doping x are
indicated in the figures. In the upper figure, the linear T dependence
is striking in all cases. The bottom figure displays the frequency
dependence for various values of x and T . It is seen from these
curves that frequency dependence is modest except for the case of
very low doping. Reprinted with permission from [35]b. Copyright
2006 by the American Physical Society.

high T (or small inverse temperature β) to the numerator ∝β

whereas the denominator is always ∝ β2 and hence a T linear
Hall constant with a well-defined coefficient

R∗
H = − v

4|qe|
kBT

t

1 + δ

δ(1 − δ)
+ c1 +

c2

T
+ · · · . (12)

This result (with suitable constants c1, c2) [30] is for the
experimentally relevant case of electron filling so that δ =
(N/Ns) − 1 and has a suitable counterpart for the case of hole
filling. It is remarkable in two distinct ways. Firstly, it shows
that the sign of the Hall constant is not universal, as one might
naively expect from the Sommerfeld Drude theory formula
RH = 1/nqec. Rather it depends upon the sign of the hopping
as well. This aspect was recognized in the important work
of Holstein [33], within the context of hopping conduction in
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2. Hall constant

The basic idea of this approach is well illustrated by the
example of the Hall constant for correlated matter RH defined
in equation (3). Here the initial paper of Shastry, Shraiman
and Singh [25] pointed out that the dynamical Hall constant is
better suited for computation in correlated systems. Consider
the simplest framework, the Drude theory of electrons [9, 26],
where we know that

σxx(ω) = σxx(0)

(1 + iωτ )
,

σxy(ω) = σxy(0)

(1 + iωτ )2
,

B RH ≡ ρxy(ω) = σxy(ω)

σxx(ω)σyy(ω)
= B

nqec
,

(3)

where qe = −|e| is the electron charge, n the density of
electrons, τ the relaxation time and B the uniform magnetic
field along the z axis. The relaxation time cancels out in
computing the Hall resistivity at arbitrary frequencies, and
this cancellation gives us a clue. We might as well compute
the two conductivities σαβ(ω) at high frequencies, since here
the notorious difficulties inherent in computing the dc values
of these objects vanish. The Drude theory therefore gives
us an important insight, namely, that the Hall resisitivity is
less ω dependent than the Hall conductivity. We explore and
build on this central idea further in this paper, using exact
diagonalization, dispersion relations and sum rules.

In order to perform the above suggested calculation, we
need to take the Kubo formulae for the conductivities3 and
take the appropriate ratios to get the dynamical resistivity.
Let us consider the electrical conductivity σαβ(ω) of a general
Fermionic system defined on a lattice. Let us define an energy
dispersion εk obtained by Fourier transforming the hopping
matrix element t (#η) as εk = −

∑
#η exp −i#k · #ηt (#η). The

electrical current operator is obtained using the continuity
equation as

#̂
J = i qe

∑

#x,#η
t (#η)#ηc†

#x+#η,σ c#x,σ . (4)

The current operator Ĵα is dressed by a suitable Peierls [28]
phase factor in the presence of the uniform magnetic field B
along the z axis. In the t–J model, the current is sandwiched by
the Gutzwiller projector in equation (1) as Ĵ → PGĴ PG, and
thereby allows transport only between singly occupied sites.
We can use perturbation theory to linear order in the external
electric field to find a general expression for the dynamical
conductivity [10, 25]:

σαβ(ωc) = i
h̄Nsvωc

[
〈ταβ〉 + h̄

∑

n,m

pn − pm

εn − εm + h̄ωc

×〈n|Ĵα|m〉〈m|Ĵβ |n〉
]
, (5)

3 It is frustrating that despite several ambitious claims in the literature,
especially from the Mori formulation experts, there is no practical and direct
way of computing the dynamical resistivity that bypasses the intermediate
stage of computing the dynamical conductivities [27].

where pn ∝ e−βεn is the probability of the state n, and the
‘stress tensor’ (sometimes called the ‘effective mass tensor’)
is defined by

ταβ = q2
e

∑

k,σ

d2ε(k)

dkαdkβ

c†
σ (k)cσ (k), (6)

where v is the atomic volume and ωc = ω + i0+. The Hall
conductivity, in fact, involves the antisymmetric part of this
tensor [25]. In the case of a t–J model the τ operators are
also sandwiched by Gutzwiller projection in equation (1). In
order to compute say the transport conductivity )e σxx(ω)
in the limit ω → 0, we need to sum over terms such as∑

n,m pn δ(εn − εm)〈n|Ĵα|m〉〈m|Ĵβ |n〉. Such a computation is
made very difficult by the presence of the Dirac delta functions.
These energy conserving delta functions lead to a finite limit
for σ xx(0) in say a disordered metal. The limit is reached only
in the thermodynamic limit by a subtle limiting process and
corresponds to a dissipative resistivity. These delta functions
are very hard to deal with, if we are given a set of energy
levels for a finite system. It is then necessary to broaden the
delta functions to a suitable function, say a Lorentzian with
an appropriate width determined by the system size and other
parameters. In practice, this task is quite formidable and only
rarely has it been undertaken, thereby motivating the search
for alternative routes.

Following the hint contained in the Drude formulae, we
can take the high frequency limits for the conductivity and
thereby obtain the Hall resistivity at high frequencies

R∗
H ≡ lim

ω→∞
RH(ω) = −iNsv

Bh̄

〈[Ĵx, Ĵy]〉
〈τ xx〉2

. (7)

In deriving this formula, one is working in the non-dissipative
(reactive) regime. That is because the Kubo formulae in
equation (5) are evaluated away from the ω → 0 limit, where
the Dirac delta functions come into play.

The main article of faith is the claim that ρxy(ω) at large
frequencies is related in a simple way to the transport variable
ρxy(0). Is this rationalizable? Further, what is the meaning of
high frequency or how ‘high’ is ‘high enough’?

With regard to the magnitude of the frequency, the key
point is to work with a projected Fermi system rather than
a bare one. For example, in the case of the Hubbard model
versus the t–J model, one sees that the energy scale inequality
requirement is

h̄ω , {|t |, U}max, (8)

h̄ω , {|t |, J }max. (9)

Thus in the case of the t–J model, one can be in the high
frequency limit, and yet have a modest value of ω, in contrast
to the Hubbard model since usually U is large, O(ev′s). In
the case of the cobaltates, the energy scale that determines the
high frequency limit is presumably the Hunds rule or crystal
field energy and hence much lower. Thus the ‘high frequency
limit’ is expected to be close to the transport values, for models
where the high energy scale is projected out to give an effective
low energy Hamiltonian with suitably projected operators.

Subsequent studies show that this simple formula
(equation (7)) is a particularly useful one; we list some of
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2. Hall constant

The basic idea of this approach is well illustrated by the
example of the Hall constant for correlated matter RH defined
in equation (3). Here the initial paper of Shastry, Shraiman
and Singh [25] pointed out that the dynamical Hall constant is
better suited for computation in correlated systems. Consider
the simplest framework, the Drude theory of electrons [9, 26],
where we know that

σxx(ω) = σxx(0)

(1 + iωτ )
,

σxy(ω) = σxy(0)

(1 + iωτ )2
,

B RH ≡ ρxy(ω) = σxy(ω)

σxx(ω)σyy(ω)
= B

nqec
,

(3)

where qe = −|e| is the electron charge, n the density of
electrons, τ the relaxation time and B the uniform magnetic
field along the z axis. The relaxation time cancels out in
computing the Hall resistivity at arbitrary frequencies, and
this cancellation gives us a clue. We might as well compute
the two conductivities σαβ(ω) at high frequencies, since here
the notorious difficulties inherent in computing the dc values
of these objects vanish. The Drude theory therefore gives
us an important insight, namely, that the Hall resisitivity is
less ω dependent than the Hall conductivity. We explore and
build on this central idea further in this paper, using exact
diagonalization, dispersion relations and sum rules.

In order to perform the above suggested calculation, we
need to take the Kubo formulae for the conductivities3 and
take the appropriate ratios to get the dynamical resistivity.
Let us consider the electrical conductivity σαβ(ω) of a general
Fermionic system defined on a lattice. Let us define an energy
dispersion εk obtained by Fourier transforming the hopping
matrix element t (#η) as εk = −

∑
#η exp −i#k · #ηt (#η). The

electrical current operator is obtained using the continuity
equation as

#̂
J = i qe

∑

#x,#η
t (#η)#ηc†

#x+#η,σ c#x,σ . (4)

The current operator Ĵα is dressed by a suitable Peierls [28]
phase factor in the presence of the uniform magnetic field B
along the z axis. In the t–J model, the current is sandwiched by
the Gutzwiller projector in equation (1) as Ĵ → PGĴ PG, and
thereby allows transport only between singly occupied sites.
We can use perturbation theory to linear order in the external
electric field to find a general expression for the dynamical
conductivity [10, 25]:

σαβ(ωc) = i
h̄Nsvωc

[
〈ταβ〉 + h̄

∑

n,m

pn − pm

εn − εm + h̄ωc

×〈n|Ĵα|m〉〈m|Ĵβ |n〉
]
, (5)

3 It is frustrating that despite several ambitious claims in the literature,
especially from the Mori formulation experts, there is no practical and direct
way of computing the dynamical resistivity that bypasses the intermediate
stage of computing the dynamical conductivities [27].

where pn ∝ e−βεn is the probability of the state n, and the
‘stress tensor’ (sometimes called the ‘effective mass tensor’)
is defined by

ταβ = q2
e

∑

k,σ

d2ε(k)

dkαdkβ

c†
σ (k)cσ (k), (6)

where v is the atomic volume and ωc = ω + i0+. The Hall
conductivity, in fact, involves the antisymmetric part of this
tensor [25]. In the case of a t–J model the τ operators are
also sandwiched by Gutzwiller projection in equation (1). In
order to compute say the transport conductivity )e σxx(ω)
in the limit ω → 0, we need to sum over terms such as∑

n,m pn δ(εn − εm)〈n|Ĵα|m〉〈m|Ĵβ |n〉. Such a computation is
made very difficult by the presence of the Dirac delta functions.
These energy conserving delta functions lead to a finite limit
for σ xx(0) in say a disordered metal. The limit is reached only
in the thermodynamic limit by a subtle limiting process and
corresponds to a dissipative resistivity. These delta functions
are very hard to deal with, if we are given a set of energy
levels for a finite system. It is then necessary to broaden the
delta functions to a suitable function, say a Lorentzian with
an appropriate width determined by the system size and other
parameters. In practice, this task is quite formidable and only
rarely has it been undertaken, thereby motivating the search
for alternative routes.

Following the hint contained in the Drude formulae, we
can take the high frequency limits for the conductivity and
thereby obtain the Hall resistivity at high frequencies

R∗
H ≡ lim

ω→∞
RH(ω) = −iNsv

Bh̄

〈[Ĵx, Ĵy]〉
〈τ xx〉2

. (7)

In deriving this formula, one is working in the non-dissipative
(reactive) regime. That is because the Kubo formulae in
equation (5) are evaluated away from the ω → 0 limit, where
the Dirac delta functions come into play.

The main article of faith is the claim that ρxy(ω) at large
frequencies is related in a simple way to the transport variable
ρxy(0). Is this rationalizable? Further, what is the meaning of
high frequency or how ‘high’ is ‘high enough’?

With regard to the magnitude of the frequency, the key
point is to work with a projected Fermi system rather than
a bare one. For example, in the case of the Hubbard model
versus the t–J model, one sees that the energy scale inequality
requirement is

h̄ω , {|t |, U}max, (8)

h̄ω , {|t |, J }max. (9)

Thus in the case of the t–J model, one can be in the high
frequency limit, and yet have a modest value of ω, in contrast
to the Hubbard model since usually U is large, O(ev′s). In
the case of the cobaltates, the energy scale that determines the
high frequency limit is presumably the Hunds rule or crystal
field energy and hence much lower. Thus the ‘high frequency
limit’ is expected to be close to the transport values, for models
where the high energy scale is projected out to give an effective
low energy Hamiltonian with suitably projected operators.

Subsequent studies show that this simple formula
(equation (7)) is a particularly useful one; we list some of
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2. Hall constant

The basic idea of this approach is well illustrated by the
example of the Hall constant for correlated matter RH defined
in equation (3). Here the initial paper of Shastry, Shraiman
and Singh [25] pointed out that the dynamical Hall constant is
better suited for computation in correlated systems. Consider
the simplest framework, the Drude theory of electrons [9, 26],
where we know that

σxx(ω) = σxx(0)

(1 + iωτ )
,

σxy(ω) = σxy(0)

(1 + iωτ )2
,

B RH ≡ ρxy(ω) = σxy(ω)

σxx(ω)σyy(ω)
= B

nqec
,

(3)

where qe = −|e| is the electron charge, n the density of
electrons, τ the relaxation time and B the uniform magnetic
field along the z axis. The relaxation time cancels out in
computing the Hall resistivity at arbitrary frequencies, and
this cancellation gives us a clue. We might as well compute
the two conductivities σαβ(ω) at high frequencies, since here
the notorious difficulties inherent in computing the dc values
of these objects vanish. The Drude theory therefore gives
us an important insight, namely, that the Hall resisitivity is
less ω dependent than the Hall conductivity. We explore and
build on this central idea further in this paper, using exact
diagonalization, dispersion relations and sum rules.

In order to perform the above suggested calculation, we
need to take the Kubo formulae for the conductivities3 and
take the appropriate ratios to get the dynamical resistivity.
Let us consider the electrical conductivity σαβ(ω) of a general
Fermionic system defined on a lattice. Let us define an energy
dispersion εk obtained by Fourier transforming the hopping
matrix element t (#η) as εk = −

∑
#η exp −i#k · #ηt (#η). The

electrical current operator is obtained using the continuity
equation as

#̂
J = i qe

∑

#x,#η
t (#η)#ηc†

#x+#η,σ c#x,σ . (4)

The current operator Ĵα is dressed by a suitable Peierls [28]
phase factor in the presence of the uniform magnetic field B
along the z axis. In the t–J model, the current is sandwiched by
the Gutzwiller projector in equation (1) as Ĵ → PGĴ PG, and
thereby allows transport only between singly occupied sites.
We can use perturbation theory to linear order in the external
electric field to find a general expression for the dynamical
conductivity [10, 25]:

σαβ(ωc) = i
h̄Nsvωc

[
〈ταβ〉 + h̄

∑

n,m

pn − pm

εn − εm + h̄ωc

×〈n|Ĵα|m〉〈m|Ĵβ |n〉
]
, (5)

3 It is frustrating that despite several ambitious claims in the literature,
especially from the Mori formulation experts, there is no practical and direct
way of computing the dynamical resistivity that bypasses the intermediate
stage of computing the dynamical conductivities [27].

where pn ∝ e−βεn is the probability of the state n, and the
‘stress tensor’ (sometimes called the ‘effective mass tensor’)
is defined by

ταβ = q2
e

∑

k,σ

d2ε(k)

dkαdkβ

c†
σ (k)cσ (k), (6)

where v is the atomic volume and ωc = ω + i0+. The Hall
conductivity, in fact, involves the antisymmetric part of this
tensor [25]. In the case of a t–J model the τ operators are
also sandwiched by Gutzwiller projection in equation (1). In
order to compute say the transport conductivity )e σxx(ω)
in the limit ω → 0, we need to sum over terms such as∑

n,m pn δ(εn − εm)〈n|Ĵα|m〉〈m|Ĵβ |n〉. Such a computation is
made very difficult by the presence of the Dirac delta functions.
These energy conserving delta functions lead to a finite limit
for σ xx(0) in say a disordered metal. The limit is reached only
in the thermodynamic limit by a subtle limiting process and
corresponds to a dissipative resistivity. These delta functions
are very hard to deal with, if we are given a set of energy
levels for a finite system. It is then necessary to broaden the
delta functions to a suitable function, say a Lorentzian with
an appropriate width determined by the system size and other
parameters. In practice, this task is quite formidable and only
rarely has it been undertaken, thereby motivating the search
for alternative routes.

Following the hint contained in the Drude formulae, we
can take the high frequency limits for the conductivity and
thereby obtain the Hall resistivity at high frequencies

R∗
H ≡ lim

ω→∞
RH(ω) = −iNsv

Bh̄

〈[Ĵx, Ĵy]〉
〈τ xx〉2

. (7)

In deriving this formula, one is working in the non-dissipative
(reactive) regime. That is because the Kubo formulae in
equation (5) are evaluated away from the ω → 0 limit, where
the Dirac delta functions come into play.

The main article of faith is the claim that ρxy(ω) at large
frequencies is related in a simple way to the transport variable
ρxy(0). Is this rationalizable? Further, what is the meaning of
high frequency or how ‘high’ is ‘high enough’?

With regard to the magnitude of the frequency, the key
point is to work with a projected Fermi system rather than
a bare one. For example, in the case of the Hubbard model
versus the t–J model, one sees that the energy scale inequality
requirement is

h̄ω , {|t |, U}max, (8)

h̄ω , {|t |, J }max. (9)

Thus in the case of the t–J model, one can be in the high
frequency limit, and yet have a modest value of ω, in contrast
to the Hubbard model since usually U is large, O(ev′s). In
the case of the cobaltates, the energy scale that determines the
high frequency limit is presumably the Hunds rule or crystal
field energy and hence much lower. Thus the ‘high frequency
limit’ is expected to be close to the transport values, for models
where the high energy scale is projected out to give an effective
low energy Hamiltonian with suitably projected operators.

Subsequent studies show that this simple formula
(equation (7)) is a particularly useful one; we list some of
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2. Hall constant

The basic idea of this approach is well illustrated by the
example of the Hall constant for correlated matter RH defined
in equation (3). Here the initial paper of Shastry, Shraiman
and Singh [25] pointed out that the dynamical Hall constant is
better suited for computation in correlated systems. Consider
the simplest framework, the Drude theory of electrons [9, 26],
where we know that

σxx(ω) = σxx(0)

(1 + iωτ )
,

σxy(ω) = σxy(0)

(1 + iωτ )2
,

B RH ≡ ρxy(ω) = σxy(ω)

σxx(ω)σyy(ω)
= B

nqec
,

(3)

where qe = −|e| is the electron charge, n the density of
electrons, τ the relaxation time and B the uniform magnetic
field along the z axis. The relaxation time cancels out in
computing the Hall resistivity at arbitrary frequencies, and
this cancellation gives us a clue. We might as well compute
the two conductivities σαβ(ω) at high frequencies, since here
the notorious difficulties inherent in computing the dc values
of these objects vanish. The Drude theory therefore gives
us an important insight, namely, that the Hall resisitivity is
less ω dependent than the Hall conductivity. We explore and
build on this central idea further in this paper, using exact
diagonalization, dispersion relations and sum rules.

In order to perform the above suggested calculation, we
need to take the Kubo formulae for the conductivities3 and
take the appropriate ratios to get the dynamical resistivity.
Let us consider the electrical conductivity σαβ(ω) of a general
Fermionic system defined on a lattice. Let us define an energy
dispersion εk obtained by Fourier transforming the hopping
matrix element t (#η) as εk = −

∑
#η exp −i#k · #ηt (#η). The

electrical current operator is obtained using the continuity
equation as

#̂
J = i qe

∑

#x,#η
t (#η)#ηc†

#x+#η,σ c#x,σ . (4)

The current operator Ĵα is dressed by a suitable Peierls [28]
phase factor in the presence of the uniform magnetic field B
along the z axis. In the t–J model, the current is sandwiched by
the Gutzwiller projector in equation (1) as Ĵ → PGĴ PG, and
thereby allows transport only between singly occupied sites.
We can use perturbation theory to linear order in the external
electric field to find a general expression for the dynamical
conductivity [10, 25]:

σαβ(ωc) = i
h̄Nsvωc

[
〈ταβ〉 + h̄

∑

n,m

pn − pm

εn − εm + h̄ωc

×〈n|Ĵα|m〉〈m|Ĵβ |n〉
]
, (5)

3 It is frustrating that despite several ambitious claims in the literature,
especially from the Mori formulation experts, there is no practical and direct
way of computing the dynamical resistivity that bypasses the intermediate
stage of computing the dynamical conductivities [27].

where pn ∝ e−βεn is the probability of the state n, and the
‘stress tensor’ (sometimes called the ‘effective mass tensor’)
is defined by

ταβ = q2
e

∑

k,σ

d2ε(k)

dkαdkβ

c†
σ (k)cσ (k), (6)

where v is the atomic volume and ωc = ω + i0+. The Hall
conductivity, in fact, involves the antisymmetric part of this
tensor [25]. In the case of a t–J model the τ operators are
also sandwiched by Gutzwiller projection in equation (1). In
order to compute say the transport conductivity )e σxx(ω)
in the limit ω → 0, we need to sum over terms such as∑

n,m pn δ(εn − εm)〈n|Ĵα|m〉〈m|Ĵβ |n〉. Such a computation is
made very difficult by the presence of the Dirac delta functions.
These energy conserving delta functions lead to a finite limit
for σ xx(0) in say a disordered metal. The limit is reached only
in the thermodynamic limit by a subtle limiting process and
corresponds to a dissipative resistivity. These delta functions
are very hard to deal with, if we are given a set of energy
levels for a finite system. It is then necessary to broaden the
delta functions to a suitable function, say a Lorentzian with
an appropriate width determined by the system size and other
parameters. In practice, this task is quite formidable and only
rarely has it been undertaken, thereby motivating the search
for alternative routes.

Following the hint contained in the Drude formulae, we
can take the high frequency limits for the conductivity and
thereby obtain the Hall resistivity at high frequencies

R∗
H ≡ lim

ω→∞
RH(ω) = −iNsv

Bh̄

〈[Ĵx, Ĵy]〉
〈τ xx〉2

. (7)

In deriving this formula, one is working in the non-dissipative
(reactive) regime. That is because the Kubo formulae in
equation (5) are evaluated away from the ω → 0 limit, where
the Dirac delta functions come into play.

The main article of faith is the claim that ρxy(ω) at large
frequencies is related in a simple way to the transport variable
ρxy(0). Is this rationalizable? Further, what is the meaning of
high frequency or how ‘high’ is ‘high enough’?

With regard to the magnitude of the frequency, the key
point is to work with a projected Fermi system rather than
a bare one. For example, in the case of the Hubbard model
versus the t–J model, one sees that the energy scale inequality
requirement is

h̄ω , {|t |, U}max, (8)

h̄ω , {|t |, J }max. (9)

Thus in the case of the t–J model, one can be in the high
frequency limit, and yet have a modest value of ω, in contrast
to the Hubbard model since usually U is large, O(ev′s). In
the case of the cobaltates, the energy scale that determines the
high frequency limit is presumably the Hunds rule or crystal
field energy and hence much lower. Thus the ‘high frequency
limit’ is expected to be close to the transport values, for models
where the high energy scale is projected out to give an effective
low energy Hamiltonian with suitably projected operators.

Subsequent studies show that this simple formula
(equation (7)) is a particularly useful one; we list some of
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its merits:

1. It is exact in the limit of simple dynamics, as in the Bloch–
Boltzmann equation approach.

2. It can be computed in various ways, e.g. using exact
diagonalization [29] and high T expansions [25, 30].

3. We have successfully removed the dissipational aspect of
the Hall constant here and retained the (lower Hubbard
sub-band physics) correlations aspect. This is done
by going to high frequencies and using the Gutzwiller
projected Fermi operators in defining the currents.

4. It is valid for the entire range of hopping processes, from
hopping type incoherent transport at high T to coherent
Fermi liquid type transport at low T in a band system.

We emphasize that this provides a very good description of
the t–J model, where this asymptotic formula requires ω to
be larger than J , but should not be expected to be particularly
useful for the Hubbard model. In the Hubbard model [31], the
transport limit and the high frequency limit are on opposite
sides of a crucial energy scale U . More explicitly, a large
ω ! U is implicit in this limit and therefore deals with weakly
renormalized particles. We expect it to differ from the transport
limit ω → 0 significantly in qualitative terms, such as the signs
of carriers and the Hall number.

It is worthwhile recording a dispersion relation for the Hall
constant at this point. Since RH(ω) is analytic in the upper half
of the complex ω plane, and has a finite limit at infinite ω, we
may write

RH(ω) = R∗
H −

∫ ∞

−∞

dν

π

&mRH(ν)

ω − ν + i0+
, (10)

therefore in the dc limit we get

'eRH(0) = R∗
H +

2
π

∫ ∞

0

&mRH(ν)

ν
dν. (11)

This equation quantifies the difference between the experi-
mentally measured dc-Hall coefficient and the theoretically
more accessible infinite frequency limit. The second term is an
independently measurable object, and initial measurements of
this are now available in [32]. It would be very useful to make
a systematic study of this promising dispersion relation, both
theoretically and experimentally. For the case of the square
lattice systems, the theoretical estimates of the difference are
indicated in figure 1 for a couple of densities. We plan to return
to this rich topic in future studies.

As an illustration of the above formalism, we note that a
recent work on the triangular lattice system NaxCoO2 provides
a good example. Theoretically, the ‘exotic’ prediction, namely,
that the Hall constant grows linearly with temperature T on
a triangular lattice, was first recognized in 1993 [25]. This
behaviour arises for T ! TFermi. On the other hand, for
low temperatures, it is expected to be less sensitive to T ,
as in a Fermi liquid. This prediction arises in a simple
way from equation (7) treated within the high temperature
expansion [25, 30]. The numerator is dominated by the shortest
closed loops of electron hopping that encircle a flux, and these
are, of course, triangles for the triangular lattice. This leads at
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Figure 1. Frequency dependence of the Hall coefficient on the
triangular lattice from computation on small clusters of the t–J
model [29, 35] for electron doping x. The values of doping x are
indicated in the figures. In the upper figure, the linear T dependence
is striking in all cases. The bottom figure displays the frequency
dependence for various values of x and T . It is seen from these
curves that frequency dependence is modest except for the case of
very low doping. Reprinted with permission from [35]b. Copyright
2006 by the American Physical Society.

high T (or small inverse temperature β) to the numerator ∝β

whereas the denominator is always ∝ β2 and hence a T linear
Hall constant with a well-defined coefficient

R∗
H = − v

4|qe|
kBT

t

1 + δ

δ(1 − δ)
+ c1 +

c2

T
+ · · · . (12)

This result (with suitable constants c1, c2) [30] is for the
experimentally relevant case of electron filling so that δ =
(N/Ns) − 1 and has a suitable counterpart for the case of hole
filling. It is remarkable in two distinct ways. Firstly, it shows
that the sign of the Hall constant is not universal, as one might
naively expect from the Sommerfeld Drude theory formula
RH = 1/nqec. Rather it depends upon the sign of the hopping
as well. This aspect was recognized in the important work
of Holstein [33], within the context of hopping conduction in

6

RH(ω) = lim
B→0

σxy(ω)

σ2
xx
(ω)
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the zero electrical current condition 〈Ĵx〉 = 0, thereby
inducing an electric field. The generated electric field is
related by equation (13) to the applied thermal force, and
using it in equation (14) we find the zero current thermal
conductivity [10, 26]

κzc = 1
T L11

(L22L11 − L12L21). (17)

These are equations in the static limit and correspond to the
most simple non-equilibrium states with a steady current flow.

3.1. Luttinger’s gravitational field analogy

In order to generalize the above transport theory to finite
frequencies, we need to borrow a beautiful idea from Luttinger
[39]. In order to derive the Kubo formulae [41], he introduces
the mechanical equivalent of the thermal gradient, and we shall
use it extensively. The fictitious mechanical field ψ($x, t) is
similar to a gravitational field, coupling to the effective ‘mass
density’ meff($x) = (1/c2)K($x) via

Ktot = K +
∑

x

K($x)ψ($x, t). (18)

Here K =
∑

x K($x) and K($x) = H($x) − µn($x) is
the Grand canonical Hamiltonian7, H($x), n($x), µ are the
local canonical ensemble Hamiltonian, number density and
chemical potential. Below, we will expand K($x) =
1
#

∑
exp −i$q · $x K($q), with a similar expansion for the charge

and other densities and currents. We can compute the standard
linear response to a space–time dependent ψ($x, t), and with the
help of the ideas initiated by Luttinger deduce the dynamical
thermal response functions required in equation (37).

Firstly, let us note that the local temperature δT ($x, t)

can be defined in the long wavelength almost static limit
through small departures from equilibrium. The local
energy fluctuation can be written as 〈K($x, t)〉 = 〈K〉0 +
C(T ) δT ($x, t), with C(T ) as the specific heat at the
equilibrium temperature T (at constant volume and µ),
provided δT ( $X, t) % T . Hence we can invert to define the
local temperature through

δT ($x, t) = δ〈K($x, t)〉
C(T )

. (19)

The connection of ψ($x, t) with local temperature δT ($x, t)

emerges from a study of the generalized phenomenological
equations proposed by Luttinger [39]. He focuses on long
wavelength $q → 0 and static ω → 0 limits where
equilibrium is rigorously definable; we will extend this notion
to arbitrary variations. The phenomenological relations
are generalizations of the Onsager formulation [38] as in
equations (13) and (14) and correspond to adding terms

7 The need for introducing the Grand canonical Hamiltonian K lies in the
construction of the heat current operator Ĵ

Q
x , where the particle current must

be subtracted from the energy current (equation (34)).

proportional to the gradient of the mechanical term ∝ψ in
equation (18). Luttinger writes
1
#

〈Ĵx〉 = L11Ex + L12(−∇xT /T ) + L̂12(−∇xψ($x, t)),

(20)

1
#

〈Ĵ Q
x 〉 = L21Ex + L22(−∇xT /T ) + L̂22(−∇xψ($x, t)),

(21)

where the two new response functions L̂12, L̂22 are functions
of space and time which can be readily computed from a linear
response theory treatment of the mechanical perturbation in
equation (18). We will treat ψ as a small perturbation and work
to linear order here. Addition of the ψ term in these equations
allows us to take a different perspective8. In equations (20) and
(21) we can view the driving term as ψ , with the temperature
fluctuation arising as a consequence of this driving, at least for
long wavelengths and slow variations9.

In these equations (20) and (21), the idea is to determine
the difficult unknowns L12, L22 in terms of the easier objects
L̂12, L̂22. Let us consider one particular example for simplicity,
the others follow similarly. Since the theory is linear in
the external perturbation, it suffices to consider a single
frequency and wave vector mode. Therefore, let us focus
on equation (20), and introduce a single Fourier component
ψ($x, t) = ψq exp{−i(qxx + ωt + i0+t)}, (adiabatic switching
implied) and the electric potential φ($x, t) = φq exp{−i(qxx +
ωt + i0+t)}. We thus write
1
#

δĴx = L11(qx, ω)(iqx)φq

+ (iqx)

[
L12(qx, ω)

δTq

T
+ L̂12(qx, ω)ψq

]
, (22)

where 〈Ĵx($x)〉 = (1/#)δJx exp −i(qxx + ωt), so that δJx

is the amplitude of the response, and we have written
the arguments of the Onsager–Luttinger functions Lij , L̂ij

explicitly.
To be explicit, we define two extreme limits of $q and ω

that arise here [39], one is the so-called rapid or transport limit,

8 Note that experiments usually employ open boundary conditions, and the
temperature gradient is externally applied. The usual argument made is that the
periodic boundary case and the open boundary case are equivalent, provided
we take the wave vector $q → 0 or the thermodynamic volume # → ∞
limits, respectively, while keeping the frequency ω finite and small. This
gives a prescription for the dc limit in both cases, namely, to take the dc limit
at the end of the volume (or wave vector) limits (equations (13) and (14)).
9 This is where Luttinger uses the tactical analogy with the Einstein
relation for the relationship between self-diffusion and conductivity. In the
phenomenological equation 〈Ĵx〉 = σEx + D(−∇x)〈ρ〉, the driving term is
Ex . In equation (20) (neglecting the L11 term for a moment), the ψ term is
analogous to the Ex in the diffusion problem, and the induced temperature
variation is similar to the induced charge fluctuation. For completeness, we
summarize Luttinger’s argument for this case. For small wave vectors and
slow variation of the electric field Ex = −∇φ(x) = E0 exp −i(qxx + ωt).
Upon using the continuity equation 〈ρq 〉 = −(qx/ω)〈Ĵx〉 we see that
〈Ĵx〉 = σE0(ω/(ω + iDq2

x )). Similarly the charge fluctuation 〈ρq 〉 =
σφq (−iq2

x /(ω + iDq2
x )), where φq = −iE0/qx . Luttinger’s argument is that

in the fast or transport limit ω → 0, qx → 0 so that the diffusion term can
be dropped. However, in the slow limit, the relations derived above show
that (σ/D) = −〈ρq 〉/〈φq 〉. The right-hand side of this is easily computed
from thermodynamics, whereby the Einstein relation σ/D = e2/(∂µ/∂n)T
follows.
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easily computed from the commutator of the energy density
operator with total energy as follows (setting h̄ = 1):

Ĵ Q
x = lim

qx→0

1
qx

[K, K(qx)]. (34)

This construction is similar to the more familiar one for
the charge current Ĵx = limqx→0(1/qx)[K, ρ(qx)]. By
inspection, a local heat current operator can also be written
down provided the interactions are local, so that we can take
Fourier components in a periodic box11 and write

Ĵ Q
x ("q) = v

∑

x

Ĵ Q
x ("x) exp(i"q · "x) and

Ĵx("q) = v
∑

x

Ĵx("x) exp(i"q · "x). (35)

Therefore, Ĵ Q
x = Ĵ Q

x ("0) and Ĵx = Ĵx("0). For different models,
the heat current is easy to compute using the above prescription,
and many standard models are treated in [37].

Let us impose fields that vary as ψ("x, t) =
ψq exp{−i(qxx +ωt +i0+t)}, and similarly for the electric field
with the electric potential φ("x, t) = φq exp{−i(qxx + ωt +
i0+t)}. Using the notation 〈Ĵx(qx)〉 = δJx and 〈Ĵ Q

x (qx)〉 =
δJQ

x , we find from equations (20), (21) that

1
&

δJx = L11(qx, ω)(iqxφq) + L12(qx, ω)(iqxψq), (36)

1
&

δJQ
x = L21(qx, ω)(iqxφq) + L22(qx, ω)(iqxψq). (37)

These responses are to be computed for a Hamiltonian
perturbed by a single Fourier component as

Ktot = K + [ρ(−qx)φq + K(−qx)ψq] exp (−iωt + 0+t),

(38)

where ρ("q) is the charge density fluctuation operator at wave
vector "q.

We can reduce the calculations of all Lij to essentially
a single one, with the help of some notation. Keeping qx

small but non-zero, we define currents, densities and forces
in a matrix notation as follows:

i = 1 i = 2

Charge Energy

Ii Ĵx(qx) Ĵ Q
x (qx)

Ui ρ(−qx) K(−qx)

Yi Ex
q = iqxφq iqxψq .

(39)

The perturbed Hamiltonian equation (38) can then be written as

Ktot = K +
∑

j

Qj e−iωct , where Qj = 1
iqx

UjYj .

(40)

11 We imagine doing this calculation on a lattice; therefore the Fourier
transforms are written as sums over sites, with a factor of the atomic volume v
inserted for keeping track of dimensions.

We denote ωc = ω + i0+ above and elsewhere. From standard
linear response theory [39] applied to equation (40), we readily
extract the induced current response

〈Ii〉 = −
∑

j

χIi ,Qj
(ωc), (41)

where the susceptibility for any two operators χA,B(ωc) can be
expressed as (with Anm ≡ 〈n|A|m〉)

χA,B(ωc) = i
∫ ∞

0
dteiωt−0+t 〈[A(t), B(0)]〉

=
∑

n,m

pm − pn

εn − εm + ωc
AnmBmn

= − 1
ωc

[
〈[A, B]〉 +

∑

n,m

pm − pn

εn − εm + ωc

× Anm([B, K])mn

]
. (42)

The last line of equation (42) follows from integration by parts
of the first line, and the average 〈 〉 is carried out over the
ensemble where the external fields are dropped.

From equation (41), using the notation in equations (39)
and (42), the generalized Onsager coefficients

Lij (qx, ω) = 1
&

lim
Yj →0

〈Ii〉/Yj . (43)

are written down immediately:

Lij (qx, ω) = 1
i&ωc

[
〈[Ii , Uj ]〉 1

qx

+
1
qx

∑

n,m

pm − pn

εn − εm + ωc
(Ii )nm([Uj , K])mn

]
. (44)

We now record the continuity equation for energy and charge.
These can be compactly written in Fourier space, for small
q and in the absence of external energy sources. Using
the definitions in equation (39), we find [Uj , K] = qxI†

j .
Therefore

Lij (qx, ω) = i
&ωc

[
− 〈[Ii , Uj ]〉 1

qx

−
∑

n,m

pm − pn

εn − εm + ωc
(Ii )nm(I†

j )mn

]
. (45)

We next proceed to take the limit of small qx . Here the
inconvenient-looking first term in equation (45) tends to a finite
limit in all cases, owing to a simple but important point. We
first note that for a large system, K(−qx) tends continuously
to the Hamiltonian K in the limit qx → 0. We further note
that for a generic operator P , the cyclicity of trace yields

〈[P, K]〉 = 1
Z

Trace[e−βK(PK − KP)] ≡ 0. (46)

This relation is noted as Identity-I in [37]. It follows that
〈[P, K(−qx)]〉 ∝ qx with a well-defined coefficient [37].
Consulting the list of variables in equation (39), we conclude
that limqx→0〈[Ii , Uj ]〉 = 0 in all cases of interest. Observe that
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the zero electrical current condition 〈Ĵx〉 = 0, thereby
inducing an electric field. The generated electric field is
related by equation (13) to the applied thermal force, and
using it in equation (14) we find the zero current thermal
conductivity [10, 26]

κzc = 1
T L11

(L22L11 − L12L21). (17)

These are equations in the static limit and correspond to the
most simple non-equilibrium states with a steady current flow.

3.1. Luttinger’s gravitational field analogy

In order to generalize the above transport theory to finite
frequencies, we need to borrow a beautiful idea from Luttinger
[39]. In order to derive the Kubo formulae [41], he introduces
the mechanical equivalent of the thermal gradient, and we shall
use it extensively. The fictitious mechanical field ψ($x, t) is
similar to a gravitational field, coupling to the effective ‘mass
density’ meff($x) = (1/c2)K($x) via

Ktot = K +
∑

x

K($x)ψ($x, t). (18)

Here K =
∑

x K($x) and K($x) = H($x) − µn($x) is
the Grand canonical Hamiltonian7, H($x), n($x), µ are the
local canonical ensemble Hamiltonian, number density and
chemical potential. Below, we will expand K($x) =
1
#

∑
exp −i$q · $x K($q), with a similar expansion for the charge

and other densities and currents. We can compute the standard
linear response to a space–time dependent ψ($x, t), and with the
help of the ideas initiated by Luttinger deduce the dynamical
thermal response functions required in equation (37).

Firstly, let us note that the local temperature δT ($x, t)

can be defined in the long wavelength almost static limit
through small departures from equilibrium. The local
energy fluctuation can be written as 〈K($x, t)〉 = 〈K〉0 +
C(T ) δT ($x, t), with C(T ) as the specific heat at the
equilibrium temperature T (at constant volume and µ),
provided δT ( $X, t) % T . Hence we can invert to define the
local temperature through

δT ($x, t) = δ〈K($x, t)〉
C(T )

. (19)

The connection of ψ($x, t) with local temperature δT ($x, t)

emerges from a study of the generalized phenomenological
equations proposed by Luttinger [39]. He focuses on long
wavelength $q → 0 and static ω → 0 limits where
equilibrium is rigorously definable; we will extend this notion
to arbitrary variations. The phenomenological relations
are generalizations of the Onsager formulation [38] as in
equations (13) and (14) and correspond to adding terms

7 The need for introducing the Grand canonical Hamiltonian K lies in the
construction of the heat current operator Ĵ

Q
x , where the particle current must

be subtracted from the energy current (equation (34)).

proportional to the gradient of the mechanical term ∝ψ in
equation (18). Luttinger writes
1
#

〈Ĵx〉 = L11Ex + L12(−∇xT /T ) + L̂12(−∇xψ($x, t)),

(20)

1
#

〈Ĵ Q
x 〉 = L21Ex + L22(−∇xT /T ) + L̂22(−∇xψ($x, t)),

(21)

where the two new response functions L̂12, L̂22 are functions
of space and time which can be readily computed from a linear
response theory treatment of the mechanical perturbation in
equation (18). We will treat ψ as a small perturbation and work
to linear order here. Addition of the ψ term in these equations
allows us to take a different perspective8. In equations (20) and
(21) we can view the driving term as ψ , with the temperature
fluctuation arising as a consequence of this driving, at least for
long wavelengths and slow variations9.

In these equations (20) and (21), the idea is to determine
the difficult unknowns L12, L22 in terms of the easier objects
L̂12, L̂22. Let us consider one particular example for simplicity,
the others follow similarly. Since the theory is linear in
the external perturbation, it suffices to consider a single
frequency and wave vector mode. Therefore, let us focus
on equation (20), and introduce a single Fourier component
ψ($x, t) = ψq exp{−i(qxx + ωt + i0+t)}, (adiabatic switching
implied) and the electric potential φ($x, t) = φq exp{−i(qxx +
ωt + i0+t)}. We thus write
1
#

δĴx = L11(qx, ω)(iqx)φq

+ (iqx)

[
L12(qx, ω)

δTq

T
+ L̂12(qx, ω)ψq

]
, (22)

where 〈Ĵx($x)〉 = (1/#)δJx exp −i(qxx + ωt), so that δJx

is the amplitude of the response, and we have written
the arguments of the Onsager–Luttinger functions Lij , L̂ij

explicitly.
To be explicit, we define two extreme limits of $q and ω

that arise here [39], one is the so-called rapid or transport limit,

8 Note that experiments usually employ open boundary conditions, and the
temperature gradient is externally applied. The usual argument made is that the
periodic boundary case and the open boundary case are equivalent, provided
we take the wave vector $q → 0 or the thermodynamic volume # → ∞
limits, respectively, while keeping the frequency ω finite and small. This
gives a prescription for the dc limit in both cases, namely, to take the dc limit
at the end of the volume (or wave vector) limits (equations (13) and (14)).
9 This is where Luttinger uses the tactical analogy with the Einstein
relation for the relationship between self-diffusion and conductivity. In the
phenomenological equation 〈Ĵx〉 = σEx + D(−∇x)〈ρ〉, the driving term is
Ex . In equation (20) (neglecting the L11 term for a moment), the ψ term is
analogous to the Ex in the diffusion problem, and the induced temperature
variation is similar to the induced charge fluctuation. For completeness, we
summarize Luttinger’s argument for this case. For small wave vectors and
slow variation of the electric field Ex = −∇φ(x) = E0 exp −i(qxx + ωt).
Upon using the continuity equation 〈ρq 〉 = −(qx/ω)〈Ĵx〉 we see that
〈Ĵx〉 = σE0(ω/(ω + iDq2

x )). Similarly the charge fluctuation 〈ρq 〉 =
σφq (−iq2

x /(ω + iDq2
x )), where φq = −iE0/qx . Luttinger’s argument is that

in the fast or transport limit ω → 0, qx → 0 so that the diffusion term can
be dropped. However, in the slow limit, the relations derived above show
that (σ/D) = −〈ρq 〉/〈φq 〉. The right-hand side of this is easily computed
from thermodynamics, whereby the Einstein relation σ/D = e2/(∂µ/∂n)T
follows.

8

Rep. Prog. Phys. 72 (2009) 016501 B S Shastry

the zero electrical current condition 〈Ĵx〉 = 0, thereby
inducing an electric field. The generated electric field is
related by equation (13) to the applied thermal force, and
using it in equation (14) we find the zero current thermal
conductivity [10, 26]

κzc = 1
T L11

(L22L11 − L12L21). (17)

These are equations in the static limit and correspond to the
most simple non-equilibrium states with a steady current flow.

3.1. Luttinger’s gravitational field analogy

In order to generalize the above transport theory to finite
frequencies, we need to borrow a beautiful idea from Luttinger
[39]. In order to derive the Kubo formulae [41], he introduces
the mechanical equivalent of the thermal gradient, and we shall
use it extensively. The fictitious mechanical field ψ($x, t) is
similar to a gravitational field, coupling to the effective ‘mass
density’ meff($x) = (1/c2)K($x) via

Ktot = K +
∑

x

K($x)ψ($x, t). (18)

Here K =
∑

x K($x) and K($x) = H($x) − µn($x) is
the Grand canonical Hamiltonian7, H($x), n($x), µ are the
local canonical ensemble Hamiltonian, number density and
chemical potential. Below, we will expand K($x) =
1
#

∑
exp −i$q · $x K($q), with a similar expansion for the charge

and other densities and currents. We can compute the standard
linear response to a space–time dependent ψ($x, t), and with the
help of the ideas initiated by Luttinger deduce the dynamical
thermal response functions required in equation (37).

Firstly, let us note that the local temperature δT ($x, t)

can be defined in the long wavelength almost static limit
through small departures from equilibrium. The local
energy fluctuation can be written as 〈K($x, t)〉 = 〈K〉0 +
C(T ) δT ($x, t), with C(T ) as the specific heat at the
equilibrium temperature T (at constant volume and µ),
provided δT ( $X, t) % T . Hence we can invert to define the
local temperature through

δT ($x, t) = δ〈K($x, t)〉
C(T )

. (19)

The connection of ψ($x, t) with local temperature δT ($x, t)

emerges from a study of the generalized phenomenological
equations proposed by Luttinger [39]. He focuses on long
wavelength $q → 0 and static ω → 0 limits where
equilibrium is rigorously definable; we will extend this notion
to arbitrary variations. The phenomenological relations
are generalizations of the Onsager formulation [38] as in
equations (13) and (14) and correspond to adding terms

7 The need for introducing the Grand canonical Hamiltonian K lies in the
construction of the heat current operator Ĵ

Q
x , where the particle current must

be subtracted from the energy current (equation (34)).

proportional to the gradient of the mechanical term ∝ψ in
equation (18). Luttinger writes
1
#

〈Ĵx〉 = L11Ex + L12(−∇xT /T ) + L̂12(−∇xψ($x, t)),

(20)

1
#

〈Ĵ Q
x 〉 = L21Ex + L22(−∇xT /T ) + L̂22(−∇xψ($x, t)),

(21)

where the two new response functions L̂12, L̂22 are functions
of space and time which can be readily computed from a linear
response theory treatment of the mechanical perturbation in
equation (18). We will treat ψ as a small perturbation and work
to linear order here. Addition of the ψ term in these equations
allows us to take a different perspective8. In equations (20) and
(21) we can view the driving term as ψ , with the temperature
fluctuation arising as a consequence of this driving, at least for
long wavelengths and slow variations9.

In these equations (20) and (21), the idea is to determine
the difficult unknowns L12, L22 in terms of the easier objects
L̂12, L̂22. Let us consider one particular example for simplicity,
the others follow similarly. Since the theory is linear in
the external perturbation, it suffices to consider a single
frequency and wave vector mode. Therefore, let us focus
on equation (20), and introduce a single Fourier component
ψ($x, t) = ψq exp{−i(qxx + ωt + i0+t)}, (adiabatic switching
implied) and the electric potential φ($x, t) = φq exp{−i(qxx +
ωt + i0+t)}. We thus write
1
#

δĴx = L11(qx, ω)(iqx)φq

+ (iqx)

[
L12(qx, ω)

δTq

T
+ L̂12(qx, ω)ψq

]
, (22)

where 〈Ĵx($x)〉 = (1/#)δJx exp −i(qxx + ωt), so that δJx

is the amplitude of the response, and we have written
the arguments of the Onsager–Luttinger functions Lij , L̂ij

explicitly.
To be explicit, we define two extreme limits of $q and ω

that arise here [39], one is the so-called rapid or transport limit,

8 Note that experiments usually employ open boundary conditions, and the
temperature gradient is externally applied. The usual argument made is that the
periodic boundary case and the open boundary case are equivalent, provided
we take the wave vector $q → 0 or the thermodynamic volume # → ∞
limits, respectively, while keeping the frequency ω finite and small. This
gives a prescription for the dc limit in both cases, namely, to take the dc limit
at the end of the volume (or wave vector) limits (equations (13) and (14)).
9 This is where Luttinger uses the tactical analogy with the Einstein
relation for the relationship between self-diffusion and conductivity. In the
phenomenological equation 〈Ĵx〉 = σEx + D(−∇x)〈ρ〉, the driving term is
Ex . In equation (20) (neglecting the L11 term for a moment), the ψ term is
analogous to the Ex in the diffusion problem, and the induced temperature
variation is similar to the induced charge fluctuation. For completeness, we
summarize Luttinger’s argument for this case. For small wave vectors and
slow variation of the electric field Ex = −∇φ(x) = E0 exp −i(qxx + ωt).
Upon using the continuity equation 〈ρq 〉 = −(qx/ω)〈Ĵx〉 we see that
〈Ĵx〉 = σE0(ω/(ω + iDq2

x )). Similarly the charge fluctuation 〈ρq 〉 =
σφq (−iq2

x /(ω + iDq2
x )), where φq = −iE0/qx . Luttinger’s argument is that

in the fast or transport limit ω → 0, qx → 0 so that the diffusion term can
be dropped. However, in the slow limit, the relations derived above show
that (σ/D) = −〈ρq 〉/〈φq 〉. The right-hand side of this is easily computed
from thermodynamics, whereby the Einstein relation σ/D = e2/(∂µ/∂n)T
follows.
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and the other is the slow or the thermodynamic limit. In the
rapid or transport limit, we first let qx → 0 and then let ω
vanish. In the slow limit, we set ω → 0 first and then take the
limit qx → 0.

In the transport limit, we have a spatially uniform field,
and hence we can show that δTq → 0. This is most easily
seen by inspecting the continuity equation for heat density
and current in the absence of an external heating source:
ω〈Kq〉 + qx〈Ĵ Q

x 〉 = 0. This can be written using equation (19)
as δTq = (−qx/C(T ) ω)〈Ĵ Q

x 〉. Thus dropping the δTq term,
we find
1
#

δĴx = L11(0, ω) lim
qx→0

(iqx)φq + L̂12(0, ω) lim
qx→0

(iqx)ψq .

(23)

The object limqx→0(iqx)φq → Ex and likewise for the
gravitational term, and hence this equation is essentially the
same as equation (20).

On the other hand, in taking the slow limit, with ω → 0,
the system is subject to a time independent but a spatially
varying gravitational potential as well as a temperature
gradient; this is now an equilibrium problem without a net
current. Thus 〈Ĵx(qx)〉 = 0, leading to

0 = L12(q, 0)
δTq

T
+ L̂12(q, 0)ψq . (24)

In this equilibrium situation, we can compute the connection
between δTq/T and ψq readily. Using lowest order
thermodynamic perturbation theory [10, 42] we compute the
change in energy induced by a small perturbation ψq

δ〈K(%q)〉
ψq

= −
∑ pn − pm

εm − εn

|〈n|K(%q)|m〉|2 + O(ψ), (25)

with pn = (1/Z) exp(−βεn) the probability of the state n.
In the limit %q → 0, K(%q) tends to the Hamiltonian, and
hence cannot mix states of different energy; hence we write
limεm→εn

(pn − pm)/(εm − εn) → βpn, whereby

lim
%q→0

δ〈K(%q)〉
ψq

→ −β
[
〈K2〉 − 〈K〉2] (26)

= −T C(T ). (27)

This calculation is parallel to that in the literature [43] for
the electron liquid, where the dielectric function is related to the
compressibility in the limit of %q → 0ω → 0. Comparing the
final equation (27) with the standard thermodynamic definition
of C(T ), we see that

lim
q→0

δ〈K(%q)〉
ψq

= −T
d

dT
〈K〉, (28)

whereby

lim
%q→0

ψq = − lim
%q→0

δTq

T
. (29)

Comparing equations (29) and (24), we see that

lim
q→0

[L12(q, 0) − L̂12(q, 0)] = 0. (30)

From this relation, Luttinger concludes that L12 in the dc limit
can be computed from L̂12. Thus the problem of computing

thermal response is reduced to computing the mechanical
response to the field ψ(%x, t) and essentially treating10 the
lim%q→0 ψq = lim%q→0(δTq/T ).

This is undoubtedly huge progress. However, as far as
I can make out, this fine proof of Luttinger makes another
implicit assumption, namely, that

lim
ω→0

[L12(0, ω) − L̂12(0, ω)] = 0 (31)

somehow follows from equation (30). This is assumed so
despite the fundamental difference in the two limits, namely,
the slow (thermodynamic) and fast (transport) limits. The
belief thus seems to be that the two functions Lij and L̂ij must
be identical in the fast limit, if they are so in the slow limit.

In this work we need to define finite q, ω thermal response
functions. Towards this end, we will in fact extend the above
to all q, ω, and simply assume that

Lij (q, ω) = L̂ij (q, ω). (32)

The RHS is computable within perturbation theory, and the
LHS, although defined rigorously only in the regime of small
q, ω by hydrodynamic type reasoning, is extended to all
q, ω by this relation. This idea of extending the thermal
functions seems reasonable, since the resulting functions agree
with hydro-thermodynamics for small q, ω and are guaranteed
to satisfy general properties such as causality and Onsager
reciprocity. With this, we can define all thermal response
functions at all q, ω, and in the following we will work within
this generalized Luttinger viewpoint.

3.2. Finite ω thermal response functions

With this preparation, we return to exploring the thermal
response (equation (37)) at finite frequencies. The timing
of our quest seems fortuitous, since there is growing
experimental interest in the transport of energy and heat pulses,
requiring knowledge of these variables and of the approach to
equilibrium.

We first need to define the heat current Ĵ Q
x . Towards

this end, we take the time derivative of the first law of
thermodynamics for fixed volume T (dQ/dt) = (dE/dt) −
µ(dn/dt). Imagining a small volume with the flow of energy
and heat as well as density, and applying this law locally, it
is reasonable to identify the heat current as the energy current
minus the particle current (times µ). Thus the heat current can
be decomposed as the difference in two terms:

Ĵ Q
x = Ĵ E

x − µ

qe
Ĵx, (33)

where Ĵ E
x is the energy current and Ĵx the charge current. In a

quantum mechanical system, the heat current operator is most

10 The alert reader would have noted that this assignment has an opposite
sign to equation (29). The explanation for this slight ‘booby trap’ is
that in equation (29), the gravitational field and the thermal gradient are
simultaneously present in order to cancel the current. Their relative sign
is therefore negative. In making the suggested replacement, the gravitational
field is used as a proxy for the temperature gradient, and hence the relative
sign is reversed from the earlier context.
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easily computed from the commutator of the energy density
operator with total energy as follows (setting h̄ = 1):

Ĵ Q
x = lim

qx→0

1
qx

[K, K(qx)]. (34)

This construction is similar to the more familiar one for
the charge current Ĵx = limqx→0(1/qx)[K, ρ(qx)]. By
inspection, a local heat current operator can also be written
down provided the interactions are local, so that we can take
Fourier components in a periodic box11 and write

Ĵ Q
x ("q) = v

∑

x

Ĵ Q
x ("x) exp(i"q · "x) and

Ĵx("q) = v
∑

x

Ĵx("x) exp(i"q · "x). (35)

Therefore, Ĵ Q
x = Ĵ Q

x ("0) and Ĵx = Ĵx("0). For different models,
the heat current is easy to compute using the above prescription,
and many standard models are treated in [37].

Let us impose fields that vary as ψ("x, t) =
ψq exp{−i(qxx +ωt +i0+t)}, and similarly for the electric field
with the electric potential φ("x, t) = φq exp{−i(qxx + ωt +
i0+t)}. Using the notation 〈Ĵx(qx)〉 = δJx and 〈Ĵ Q

x (qx)〉 =
δJQ

x , we find from equations (20), (21) that

1
&

δJx = L11(qx, ω)(iqxφq) + L12(qx, ω)(iqxψq), (36)

1
&

δJQ
x = L21(qx, ω)(iqxφq) + L22(qx, ω)(iqxψq). (37)

These responses are to be computed for a Hamiltonian
perturbed by a single Fourier component as

Ktot = K + [ρ(−qx)φq + K(−qx)ψq] exp (−iωt + 0+t),

(38)

where ρ("q) is the charge density fluctuation operator at wave
vector "q.

We can reduce the calculations of all Lij to essentially
a single one, with the help of some notation. Keeping qx

small but non-zero, we define currents, densities and forces
in a matrix notation as follows:

i = 1 i = 2

Charge Energy

Ii Ĵx(qx) Ĵ Q
x (qx)

Ui ρ(−qx) K(−qx)

Yi Ex
q = iqxφq iqxψq .

(39)

The perturbed Hamiltonian equation (38) can then be written as

Ktot = K +
∑

j

Qj e−iωct , where Qj = 1
iqx

UjYj .

(40)

11 We imagine doing this calculation on a lattice; therefore the Fourier
transforms are written as sums over sites, with a factor of the atomic volume v
inserted for keeping track of dimensions.

We denote ωc = ω + i0+ above and elsewhere. From standard
linear response theory [39] applied to equation (40), we readily
extract the induced current response

〈Ii〉 = −
∑

j

χIi ,Qj
(ωc), (41)

where the susceptibility for any two operators χA,B(ωc) can be
expressed as (with Anm ≡ 〈n|A|m〉)

χA,B(ωc) = i
∫ ∞

0
dteiωt−0+t 〈[A(t), B(0)]〉

=
∑

n,m

pm − pn

εn − εm + ωc
AnmBmn

= − 1
ωc

[
〈[A, B]〉 +

∑

n,m

pm − pn

εn − εm + ωc

× Anm([B, K])mn

]
. (42)

The last line of equation (42) follows from integration by parts
of the first line, and the average 〈 〉 is carried out over the
ensemble where the external fields are dropped.

From equation (41), using the notation in equations (39)
and (42), the generalized Onsager coefficients

Lij (qx, ω) = 1
&

lim
Yj →0

〈Ii〉/Yj . (43)

are written down immediately:

Lij (qx, ω) = 1
i&ωc

[
〈[Ii , Uj ]〉 1

qx

+
1
qx

∑

n,m

pm − pn

εn − εm + ωc
(Ii )nm([Uj , K])mn

]
. (44)

We now record the continuity equation for energy and charge.
These can be compactly written in Fourier space, for small
q and in the absence of external energy sources. Using
the definitions in equation (39), we find [Uj , K] = qxI†

j .
Therefore

Lij (qx, ω) = i
&ωc

[
− 〈[Ii , Uj ]〉 1

qx

−
∑

n,m

pm − pn

εn − εm + ωc
(Ii )nm(I†

j )mn

]
. (45)

We next proceed to take the limit of small qx . Here the
inconvenient-looking first term in equation (45) tends to a finite
limit in all cases, owing to a simple but important point. We
first note that for a large system, K(−qx) tends continuously
to the Hamiltonian K in the limit qx → 0. We further note
that for a generic operator P , the cyclicity of trace yields

〈[P, K]〉 = 1
Z

Trace[e−βK(PK − KP)] ≡ 0. (46)

This relation is noted as Identity-I in [37]. It follows that
〈[P, K(−qx)]〉 ∝ qx with a well-defined coefficient [37].
Consulting the list of variables in equation (39), we conclude
that limqx→0〈[Ii , Uj ]〉 = 0 in all cases of interest. Observe that
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easily computed from the commutator of the energy density
operator with total energy as follows (setting h̄ = 1):

Ĵ Q
x = lim

qx→0

1
qx

[K, K(qx)]. (34)

This construction is similar to the more familiar one for
the charge current Ĵx = limqx→0(1/qx)[K, ρ(qx)]. By
inspection, a local heat current operator can also be written
down provided the interactions are local, so that we can take
Fourier components in a periodic box11 and write

Ĵ Q
x ("q) = v

∑

x

Ĵ Q
x ("x) exp(i"q · "x) and

Ĵx("q) = v
∑

x

Ĵx("x) exp(i"q · "x). (35)

Therefore, Ĵ Q
x = Ĵ Q

x ("0) and Ĵx = Ĵx("0). For different models,
the heat current is easy to compute using the above prescription,
and many standard models are treated in [37].

Let us impose fields that vary as ψ("x, t) =
ψq exp{−i(qxx +ωt +i0+t)}, and similarly for the electric field
with the electric potential φ("x, t) = φq exp{−i(qxx + ωt +
i0+t)}. Using the notation 〈Ĵx(qx)〉 = δJx and 〈Ĵ Q

x (qx)〉 =
δJQ

x , we find from equations (20), (21) that

1
&

δJx = L11(qx, ω)(iqxφq) + L12(qx, ω)(iqxψq), (36)

1
&

δJQ
x = L21(qx, ω)(iqxφq) + L22(qx, ω)(iqxψq). (37)

These responses are to be computed for a Hamiltonian
perturbed by a single Fourier component as

Ktot = K + [ρ(−qx)φq + K(−qx)ψq] exp (−iωt + 0+t),

(38)

where ρ("q) is the charge density fluctuation operator at wave
vector "q.

We can reduce the calculations of all Lij to essentially
a single one, with the help of some notation. Keeping qx

small but non-zero, we define currents, densities and forces
in a matrix notation as follows:

i = 1 i = 2

Charge Energy

Ii Ĵx(qx) Ĵ Q
x (qx)

Ui ρ(−qx) K(−qx)

Yi Ex
q = iqxφq iqxψq .

(39)

The perturbed Hamiltonian equation (38) can then be written as

Ktot = K +
∑

j

Qj e−iωct , where Qj = 1
iqx

UjYj .

(40)

11 We imagine doing this calculation on a lattice; therefore the Fourier
transforms are written as sums over sites, with a factor of the atomic volume v
inserted for keeping track of dimensions.

We denote ωc = ω + i0+ above and elsewhere. From standard
linear response theory [39] applied to equation (40), we readily
extract the induced current response

〈Ii〉 = −
∑

j

χIi ,Qj
(ωc), (41)

where the susceptibility for any two operators χA,B(ωc) can be
expressed as (with Anm ≡ 〈n|A|m〉)

χA,B(ωc) = i
∫ ∞

0
dteiωt−0+t 〈[A(t), B(0)]〉

=
∑

n,m

pm − pn

εn − εm + ωc
AnmBmn

= − 1
ωc

[
〈[A, B]〉 +

∑

n,m

pm − pn

εn − εm + ωc

× Anm([B, K])mn

]
. (42)

The last line of equation (42) follows from integration by parts
of the first line, and the average 〈 〉 is carried out over the
ensemble where the external fields are dropped.

From equation (41), using the notation in equations (39)
and (42), the generalized Onsager coefficients

Lij (qx, ω) = 1
&

lim
Yj →0

〈Ii〉/Yj . (43)

are written down immediately:

Lij (qx, ω) = 1
i&ωc

[
〈[Ii , Uj ]〉 1

qx

+
1
qx

∑

n,m

pm − pn

εn − εm + ωc
(Ii )nm([Uj , K])mn

]
. (44)

We now record the continuity equation for energy and charge.
These can be compactly written in Fourier space, for small
q and in the absence of external energy sources. Using
the definitions in equation (39), we find [Uj , K] = qxI†

j .
Therefore

Lij (qx, ω) = i
&ωc

[
− 〈[Ii , Uj ]〉 1

qx

−
∑

n,m

pm − pn

εn − εm + ωc
(Ii )nm(I†

j )mn

]
. (45)

We next proceed to take the limit of small qx . Here the
inconvenient-looking first term in equation (45) tends to a finite
limit in all cases, owing to a simple but important point. We
first note that for a large system, K(−qx) tends continuously
to the Hamiltonian K in the limit qx → 0. We further note
that for a generic operator P , the cyclicity of trace yields

〈[P, K]〉 = 1
Z

Trace[e−βK(PK − KP)] ≡ 0. (46)

This relation is noted as Identity-I in [37]. It follows that
〈[P, K(−qx)]〉 ∝ qx with a well-defined coefficient [37].
Consulting the list of variables in equation (39), we conclude
that limqx→0〈[Ii , Uj ]〉 = 0 in all cases of interest. Observe that
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easily computed from the commutator of the energy density
operator with total energy as follows (setting h̄ = 1):

Ĵ Q
x = lim

qx→0

1
qx

[K, K(qx)]. (34)

This construction is similar to the more familiar one for
the charge current Ĵx = limqx→0(1/qx)[K, ρ(qx)]. By
inspection, a local heat current operator can also be written
down provided the interactions are local, so that we can take
Fourier components in a periodic box11 and write

Ĵ Q
x ("q) = v

∑

x

Ĵ Q
x ("x) exp(i"q · "x) and

Ĵx("q) = v
∑

x

Ĵx("x) exp(i"q · "x). (35)

Therefore, Ĵ Q
x = Ĵ Q

x ("0) and Ĵx = Ĵx("0). For different models,
the heat current is easy to compute using the above prescription,
and many standard models are treated in [37].

Let us impose fields that vary as ψ("x, t) =
ψq exp{−i(qxx +ωt +i0+t)}, and similarly for the electric field
with the electric potential φ("x, t) = φq exp{−i(qxx + ωt +
i0+t)}. Using the notation 〈Ĵx(qx)〉 = δJx and 〈Ĵ Q

x (qx)〉 =
δJQ

x , we find from equations (20), (21) that

1
&

δJx = L11(qx, ω)(iqxφq) + L12(qx, ω)(iqxψq), (36)

1
&

δJQ
x = L21(qx, ω)(iqxφq) + L22(qx, ω)(iqxψq). (37)

These responses are to be computed for a Hamiltonian
perturbed by a single Fourier component as

Ktot = K + [ρ(−qx)φq + K(−qx)ψq] exp (−iωt + 0+t),

(38)

where ρ("q) is the charge density fluctuation operator at wave
vector "q.

We can reduce the calculations of all Lij to essentially
a single one, with the help of some notation. Keeping qx

small but non-zero, we define currents, densities and forces
in a matrix notation as follows:

i = 1 i = 2

Charge Energy

Ii Ĵx(qx) Ĵ Q
x (qx)

Ui ρ(−qx) K(−qx)

Yi Ex
q = iqxφq iqxψq .

(39)

The perturbed Hamiltonian equation (38) can then be written as

Ktot = K +
∑

j

Qj e−iωct , where Qj = 1
iqx

UjYj .

(40)

11 We imagine doing this calculation on a lattice; therefore the Fourier
transforms are written as sums over sites, with a factor of the atomic volume v
inserted for keeping track of dimensions.

We denote ωc = ω + i0+ above and elsewhere. From standard
linear response theory [39] applied to equation (40), we readily
extract the induced current response

〈Ii〉 = −
∑

j

χIi ,Qj
(ωc), (41)

where the susceptibility for any two operators χA,B(ωc) can be
expressed as (with Anm ≡ 〈n|A|m〉)

χA,B(ωc) = i
∫ ∞

0
dteiωt−0+t 〈[A(t), B(0)]〉

=
∑

n,m

pm − pn

εn − εm + ωc
AnmBmn

= − 1
ωc

[
〈[A, B]〉 +

∑

n,m

pm − pn

εn − εm + ωc

× Anm([B, K])mn

]
. (42)

The last line of equation (42) follows from integration by parts
of the first line, and the average 〈 〉 is carried out over the
ensemble where the external fields are dropped.

From equation (41), using the notation in equations (39)
and (42), the generalized Onsager coefficients

Lij (qx, ω) = 1
&

lim
Yj →0

〈Ii〉/Yj . (43)

are written down immediately:

Lij (qx, ω) = 1
i&ωc

[
〈[Ii , Uj ]〉 1

qx

+
1
qx

∑

n,m

pm − pn

εn − εm + ωc
(Ii )nm([Uj , K])mn

]
. (44)

We now record the continuity equation for energy and charge.
These can be compactly written in Fourier space, for small
q and in the absence of external energy sources. Using
the definitions in equation (39), we find [Uj , K] = qxI†

j .
Therefore

Lij (qx, ω) = i
&ωc

[
− 〈[Ii , Uj ]〉 1

qx

−
∑

n,m

pm − pn

εn − εm + ωc
(Ii )nm(I†

j )mn

]
. (45)

We next proceed to take the limit of small qx . Here the
inconvenient-looking first term in equation (45) tends to a finite
limit in all cases, owing to a simple but important point. We
first note that for a large system, K(−qx) tends continuously
to the Hamiltonian K in the limit qx → 0. We further note
that for a generic operator P , the cyclicity of trace yields

〈[P, K]〉 = 1
Z

Trace[e−βK(PK − KP)] ≡ 0. (46)

This relation is noted as Identity-I in [37]. It follows that
〈[P, K(−qx)]〉 ∝ qx with a well-defined coefficient [37].
Consulting the list of variables in equation (39), we conclude
that limqx→0〈[Ii , Uj ]〉 = 0 in all cases of interest. Observe that
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easily computed from the commutator of the energy density
operator with total energy as follows (setting h̄ = 1):

Ĵ Q
x = lim

qx→0

1
qx

[K, K(qx)]. (34)

This construction is similar to the more familiar one for
the charge current Ĵx = limqx→0(1/qx)[K, ρ(qx)]. By
inspection, a local heat current operator can also be written
down provided the interactions are local, so that we can take
Fourier components in a periodic box11 and write

Ĵ Q
x ("q) = v

∑

x

Ĵ Q
x ("x) exp(i"q · "x) and

Ĵx("q) = v
∑

x

Ĵx("x) exp(i"q · "x). (35)

Therefore, Ĵ Q
x = Ĵ Q

x ("0) and Ĵx = Ĵx("0). For different models,
the heat current is easy to compute using the above prescription,
and many standard models are treated in [37].

Let us impose fields that vary as ψ("x, t) =
ψq exp{−i(qxx +ωt +i0+t)}, and similarly for the electric field
with the electric potential φ("x, t) = φq exp{−i(qxx + ωt +
i0+t)}. Using the notation 〈Ĵx(qx)〉 = δJx and 〈Ĵ Q

x (qx)〉 =
δJQ

x , we find from equations (20), (21) that

1
&

δJx = L11(qx, ω)(iqxφq) + L12(qx, ω)(iqxψq), (36)

1
&

δJQ
x = L21(qx, ω)(iqxφq) + L22(qx, ω)(iqxψq). (37)

These responses are to be computed for a Hamiltonian
perturbed by a single Fourier component as

Ktot = K + [ρ(−qx)φq + K(−qx)ψq] exp (−iωt + 0+t),

(38)

where ρ("q) is the charge density fluctuation operator at wave
vector "q.

We can reduce the calculations of all Lij to essentially
a single one, with the help of some notation. Keeping qx

small but non-zero, we define currents, densities and forces
in a matrix notation as follows:

i = 1 i = 2

Charge Energy

Ii Ĵx(qx) Ĵ Q
x (qx)

Ui ρ(−qx) K(−qx)

Yi Ex
q = iqxφq iqxψq .

(39)

The perturbed Hamiltonian equation (38) can then be written as

Ktot = K +
∑

j

Qj e−iωct , where Qj = 1
iqx

UjYj .

(40)

11 We imagine doing this calculation on a lattice; therefore the Fourier
transforms are written as sums over sites, with a factor of the atomic volume v
inserted for keeping track of dimensions.

We denote ωc = ω + i0+ above and elsewhere. From standard
linear response theory [39] applied to equation (40), we readily
extract the induced current response

〈Ii〉 = −
∑

j

χIi ,Qj
(ωc), (41)

where the susceptibility for any two operators χA,B(ωc) can be
expressed as (with Anm ≡ 〈n|A|m〉)

χA,B(ωc) = i
∫ ∞

0
dteiωt−0+t 〈[A(t), B(0)]〉

=
∑

n,m

pm − pn

εn − εm + ωc
AnmBmn

= − 1
ωc

[
〈[A, B]〉 +

∑

n,m

pm − pn

εn − εm + ωc

× Anm([B, K])mn

]
. (42)

The last line of equation (42) follows from integration by parts
of the first line, and the average 〈 〉 is carried out over the
ensemble where the external fields are dropped.

From equation (41), using the notation in equations (39)
and (42), the generalized Onsager coefficients

Lij (qx, ω) = 1
&

lim
Yj →0

〈Ii〉/Yj . (43)

are written down immediately:

Lij (qx, ω) = 1
i&ωc

[
〈[Ii , Uj ]〉 1

qx

+
1
qx

∑

n,m

pm − pn

εn − εm + ωc
(Ii )nm([Uj , K])mn

]
. (44)

We now record the continuity equation for energy and charge.
These can be compactly written in Fourier space, for small
q and in the absence of external energy sources. Using
the definitions in equation (39), we find [Uj , K] = qxI†

j .
Therefore

Lij (qx, ω) = i
&ωc

[
− 〈[Ii , Uj ]〉 1

qx

−
∑

n,m

pm − pn

εn − εm + ωc
(Ii )nm(I†

j )mn

]
. (45)

We next proceed to take the limit of small qx . Here the
inconvenient-looking first term in equation (45) tends to a finite
limit in all cases, owing to a simple but important point. We
first note that for a large system, K(−qx) tends continuously
to the Hamiltonian K in the limit qx → 0. We further note
that for a generic operator P , the cyclicity of trace yields

〈[P, K]〉 = 1
Z

Trace[e−βK(PK − KP)] ≡ 0. (46)

This relation is noted as Identity-I in [37]. It follows that
〈[P, K(−qx)]〉 ∝ qx with a well-defined coefficient [37].
Consulting the list of variables in equation (39), we conclude
that limqx→0〈[Ii , Uj ]〉 = 0 in all cases of interest. Observe that
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easily computed from the commutator of the energy density
operator with total energy as follows (setting h̄ = 1):

Ĵ Q
x = lim

qx→0

1
qx

[K, K(qx)]. (34)

This construction is similar to the more familiar one for
the charge current Ĵx = limqx→0(1/qx)[K, ρ(qx)]. By
inspection, a local heat current operator can also be written
down provided the interactions are local, so that we can take
Fourier components in a periodic box11 and write

Ĵ Q
x ("q) = v

∑

x

Ĵ Q
x ("x) exp(i"q · "x) and

Ĵx("q) = v
∑

x

Ĵx("x) exp(i"q · "x). (35)

Therefore, Ĵ Q
x = Ĵ Q

x ("0) and Ĵx = Ĵx("0). For different models,
the heat current is easy to compute using the above prescription,
and many standard models are treated in [37].

Let us impose fields that vary as ψ("x, t) =
ψq exp{−i(qxx +ωt +i0+t)}, and similarly for the electric field
with the electric potential φ("x, t) = φq exp{−i(qxx + ωt +
i0+t)}. Using the notation 〈Ĵx(qx)〉 = δJx and 〈Ĵ Q

x (qx)〉 =
δJQ

x , we find from equations (20), (21) that

1
&

δJx = L11(qx, ω)(iqxφq) + L12(qx, ω)(iqxψq), (36)

1
&

δJQ
x = L21(qx, ω)(iqxφq) + L22(qx, ω)(iqxψq). (37)

These responses are to be computed for a Hamiltonian
perturbed by a single Fourier component as

Ktot = K + [ρ(−qx)φq + K(−qx)ψq] exp (−iωt + 0+t),

(38)

where ρ("q) is the charge density fluctuation operator at wave
vector "q.

We can reduce the calculations of all Lij to essentially
a single one, with the help of some notation. Keeping qx

small but non-zero, we define currents, densities and forces
in a matrix notation as follows:

i = 1 i = 2

Charge Energy

Ii Ĵx(qx) Ĵ Q
x (qx)

Ui ρ(−qx) K(−qx)

Yi Ex
q = iqxφq iqxψq .

(39)

The perturbed Hamiltonian equation (38) can then be written as

Ktot = K +
∑

j

Qj e−iωct , where Qj = 1
iqx

UjYj .

(40)

11 We imagine doing this calculation on a lattice; therefore the Fourier
transforms are written as sums over sites, with a factor of the atomic volume v
inserted for keeping track of dimensions.

We denote ωc = ω + i0+ above and elsewhere. From standard
linear response theory [39] applied to equation (40), we readily
extract the induced current response

〈Ii〉 = −
∑

j

χIi ,Qj
(ωc), (41)

where the susceptibility for any two operators χA,B(ωc) can be
expressed as (with Anm ≡ 〈n|A|m〉)

χA,B(ωc) = i
∫ ∞

0
dteiωt−0+t 〈[A(t), B(0)]〉

=
∑

n,m

pm − pn

εn − εm + ωc
AnmBmn

= − 1
ωc

[
〈[A, B]〉 +

∑

n,m

pm − pn

εn − εm + ωc

× Anm([B, K])mn

]
. (42)

The last line of equation (42) follows from integration by parts
of the first line, and the average 〈 〉 is carried out over the
ensemble where the external fields are dropped.

From equation (41), using the notation in equations (39)
and (42), the generalized Onsager coefficients

Lij (qx, ω) = 1
&

lim
Yj →0

〈Ii〉/Yj . (43)

are written down immediately:

Lij (qx, ω) = 1
i&ωc

[
〈[Ii , Uj ]〉 1

qx

+
1
qx

∑

n,m

pm − pn

εn − εm + ωc
(Ii )nm([Uj , K])mn

]
. (44)

We now record the continuity equation for energy and charge.
These can be compactly written in Fourier space, for small
q and in the absence of external energy sources. Using
the definitions in equation (39), we find [Uj , K] = qxI†

j .
Therefore

Lij (qx, ω) = i
&ωc

[
− 〈[Ii , Uj ]〉 1

qx

−
∑

n,m

pm − pn

εn − εm + ωc
(Ii )nm(I†

j )mn

]
. (45)

We next proceed to take the limit of small qx . Here the
inconvenient-looking first term in equation (45) tends to a finite
limit in all cases, owing to a simple but important point. We
first note that for a large system, K(−qx) tends continuously
to the Hamiltonian K in the limit qx → 0. We further note
that for a generic operator P , the cyclicity of trace yields

〈[P, K]〉 = 1
Z

Trace[e−βK(PK − KP)] ≡ 0. (46)

This relation is noted as Identity-I in [37]. It follows that
〈[P, K(−qx)]〉 ∝ qx with a well-defined coefficient [37].
Consulting the list of variables in equation (39), we conclude
that limqx→0〈[Ii , Uj ]〉 = 0 in all cases of interest. Observe that
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easily computed from the commutator of the energy density
operator with total energy as follows (setting h̄ = 1):

Ĵ Q
x = lim

qx→0

1
qx

[K, K(qx)]. (34)

This construction is similar to the more familiar one for
the charge current Ĵx = limqx→0(1/qx)[K, ρ(qx)]. By
inspection, a local heat current operator can also be written
down provided the interactions are local, so that we can take
Fourier components in a periodic box11 and write

Ĵ Q
x ("q) = v

∑

x

Ĵ Q
x ("x) exp(i"q · "x) and

Ĵx("q) = v
∑

x

Ĵx("x) exp(i"q · "x). (35)

Therefore, Ĵ Q
x = Ĵ Q

x ("0) and Ĵx = Ĵx("0). For different models,
the heat current is easy to compute using the above prescription,
and many standard models are treated in [37].

Let us impose fields that vary as ψ("x, t) =
ψq exp{−i(qxx +ωt +i0+t)}, and similarly for the electric field
with the electric potential φ("x, t) = φq exp{−i(qxx + ωt +
i0+t)}. Using the notation 〈Ĵx(qx)〉 = δJx and 〈Ĵ Q

x (qx)〉 =
δJQ

x , we find from equations (20), (21) that

1
&

δJx = L11(qx, ω)(iqxφq) + L12(qx, ω)(iqxψq), (36)

1
&

δJQ
x = L21(qx, ω)(iqxφq) + L22(qx, ω)(iqxψq). (37)

These responses are to be computed for a Hamiltonian
perturbed by a single Fourier component as

Ktot = K + [ρ(−qx)φq + K(−qx)ψq] exp (−iωt + 0+t),

(38)

where ρ("q) is the charge density fluctuation operator at wave
vector "q.

We can reduce the calculations of all Lij to essentially
a single one, with the help of some notation. Keeping qx

small but non-zero, we define currents, densities and forces
in a matrix notation as follows:

i = 1 i = 2

Charge Energy

Ii Ĵx(qx) Ĵ Q
x (qx)

Ui ρ(−qx) K(−qx)

Yi Ex
q = iqxφq iqxψq .

(39)

The perturbed Hamiltonian equation (38) can then be written as

Ktot = K +
∑

j

Qj e−iωct , where Qj = 1
iqx

UjYj .

(40)

11 We imagine doing this calculation on a lattice; therefore the Fourier
transforms are written as sums over sites, with a factor of the atomic volume v
inserted for keeping track of dimensions.

We denote ωc = ω + i0+ above and elsewhere. From standard
linear response theory [39] applied to equation (40), we readily
extract the induced current response

〈Ii〉 = −
∑

j

χIi ,Qj
(ωc), (41)

where the susceptibility for any two operators χA,B(ωc) can be
expressed as (with Anm ≡ 〈n|A|m〉)

χA,B(ωc) = i
∫ ∞

0
dteiωt−0+t 〈[A(t), B(0)]〉

=
∑

n,m

pm − pn

εn − εm + ωc
AnmBmn

= − 1
ωc

[
〈[A, B]〉 +

∑

n,m

pm − pn

εn − εm + ωc

× Anm([B, K])mn

]
. (42)

The last line of equation (42) follows from integration by parts
of the first line, and the average 〈 〉 is carried out over the
ensemble where the external fields are dropped.

From equation (41), using the notation in equations (39)
and (42), the generalized Onsager coefficients

Lij (qx, ω) = 1
&

lim
Yj →0

〈Ii〉/Yj . (43)

are written down immediately:

Lij (qx, ω) = 1
i&ωc

[
〈[Ii , Uj ]〉 1

qx

+
1
qx

∑

n,m

pm − pn

εn − εm + ωc
(Ii )nm([Uj , K])mn

]
. (44)

We now record the continuity equation for energy and charge.
These can be compactly written in Fourier space, for small
q and in the absence of external energy sources. Using
the definitions in equation (39), we find [Uj , K] = qxI†

j .
Therefore

Lij (qx, ω) = i
&ωc

[
− 〈[Ii , Uj ]〉 1

qx

−
∑

n,m

pm − pn

εn − εm + ωc
(Ii )nm(I†

j )mn

]
. (45)

We next proceed to take the limit of small qx . Here the
inconvenient-looking first term in equation (45) tends to a finite
limit in all cases, owing to a simple but important point. We
first note that for a large system, K(−qx) tends continuously
to the Hamiltonian K in the limit qx → 0. We further note
that for a generic operator P , the cyclicity of trace yields

〈[P, K]〉 = 1
Z

Trace[e−βK(PK − KP)] ≡ 0. (46)

This relation is noted as Identity-I in [37]. It follows that
〈[P, K(−qx)]〉 ∝ qx with a well-defined coefficient [37].
Consulting the list of variables in equation (39), we conclude
that limqx→0〈[Ii , Uj ]〉 = 0 in all cases of interest. Observe that
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easily computed from the commutator of the energy density
operator with total energy as follows (setting h̄ = 1):

Ĵ Q
x = lim

qx→0

1
qx

[K, K(qx)]. (34)

This construction is similar to the more familiar one for
the charge current Ĵx = limqx→0(1/qx)[K, ρ(qx)]. By
inspection, a local heat current operator can also be written
down provided the interactions are local, so that we can take
Fourier components in a periodic box11 and write

Ĵ Q
x ("q) = v

∑

x

Ĵ Q
x ("x) exp(i"q · "x) and

Ĵx("q) = v
∑

x

Ĵx("x) exp(i"q · "x). (35)

Therefore, Ĵ Q
x = Ĵ Q

x ("0) and Ĵx = Ĵx("0). For different models,
the heat current is easy to compute using the above prescription,
and many standard models are treated in [37].

Let us impose fields that vary as ψ("x, t) =
ψq exp{−i(qxx +ωt +i0+t)}, and similarly for the electric field
with the electric potential φ("x, t) = φq exp{−i(qxx + ωt +
i0+t)}. Using the notation 〈Ĵx(qx)〉 = δJx and 〈Ĵ Q

x (qx)〉 =
δJQ

x , we find from equations (20), (21) that

1
&

δJx = L11(qx, ω)(iqxφq) + L12(qx, ω)(iqxψq), (36)

1
&

δJQ
x = L21(qx, ω)(iqxφq) + L22(qx, ω)(iqxψq). (37)

These responses are to be computed for a Hamiltonian
perturbed by a single Fourier component as

Ktot = K + [ρ(−qx)φq + K(−qx)ψq] exp (−iωt + 0+t),

(38)

where ρ("q) is the charge density fluctuation operator at wave
vector "q.

We can reduce the calculations of all Lij to essentially
a single one, with the help of some notation. Keeping qx

small but non-zero, we define currents, densities and forces
in a matrix notation as follows:

i = 1 i = 2

Charge Energy

Ii Ĵx(qx) Ĵ Q
x (qx)

Ui ρ(−qx) K(−qx)

Yi Ex
q = iqxφq iqxψq .

(39)

The perturbed Hamiltonian equation (38) can then be written as

Ktot = K +
∑

j

Qj e−iωct , where Qj = 1
iqx

UjYj .

(40)

11 We imagine doing this calculation on a lattice; therefore the Fourier
transforms are written as sums over sites, with a factor of the atomic volume v
inserted for keeping track of dimensions.

We denote ωc = ω + i0+ above and elsewhere. From standard
linear response theory [39] applied to equation (40), we readily
extract the induced current response

〈Ii〉 = −
∑

j

χIi ,Qj
(ωc), (41)

where the susceptibility for any two operators χA,B(ωc) can be
expressed as (with Anm ≡ 〈n|A|m〉)

χA,B(ωc) = i
∫ ∞

0
dteiωt−0+t 〈[A(t), B(0)]〉

=
∑

n,m

pm − pn

εn − εm + ωc
AnmBmn

= − 1
ωc

[
〈[A, B]〉 +

∑

n,m

pm − pn

εn − εm + ωc

× Anm([B, K])mn

]
. (42)

The last line of equation (42) follows from integration by parts
of the first line, and the average 〈 〉 is carried out over the
ensemble where the external fields are dropped.

From equation (41), using the notation in equations (39)
and (42), the generalized Onsager coefficients

Lij (qx, ω) = 1
&

lim
Yj →0

〈Ii〉/Yj . (43)

are written down immediately:

Lij (qx, ω) = 1
i&ωc

[
〈[Ii , Uj ]〉 1

qx

+
1
qx

∑

n,m

pm − pn

εn − εm + ωc
(Ii )nm([Uj , K])mn

]
. (44)

We now record the continuity equation for energy and charge.
These can be compactly written in Fourier space, for small
q and in the absence of external energy sources. Using
the definitions in equation (39), we find [Uj , K] = qxI†

j .
Therefore

Lij (qx, ω) = i
&ωc

[
− 〈[Ii , Uj ]〉 1

qx

−
∑

n,m

pm − pn

εn − εm + ωc
(Ii )nm(I†

j )mn

]
. (45)

We next proceed to take the limit of small qx . Here the
inconvenient-looking first term in equation (45) tends to a finite
limit in all cases, owing to a simple but important point. We
first note that for a large system, K(−qx) tends continuously
to the Hamiltonian K in the limit qx → 0. We further note
that for a generic operator P , the cyclicity of trace yields

〈[P, K]〉 = 1
Z

Trace[e−βK(PK − KP)] ≡ 0. (46)

This relation is noted as Identity-I in [37]. It follows that
〈[P, K(−qx)]〉 ∝ qx with a well-defined coefficient [37].
Consulting the list of variables in equation (39), we conclude
that limqx→0〈[Ii , Uj ]〉 = 0 in all cases of interest. Observe that
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this result does not require the vanishing of the commutator
[P, K]. In the case of thermal transport L22, this point is
important since the heat current does not commute with the
Hamiltonian. In contrast, for L11, i.e. electrical transport, the
charge current commutes with the total number operator and
hence the limit of the ratio is well defined more trivially, leading
to the familiar f-sum rule as shown below.

In the uniform limit qx → 0, and hence from equation (39)
we can set I†

j = Ij . Therefore for arbitrary frequencies, the
Onsager functions read as

Lij (ω) = i
"ωc

[

〈Tij 〉 −
∑

n,m

pm − pn

εn − εm + ωc
(Ii )nm(Ij )mn

]

,

(47)

〈Tij 〉 = − lim
qx→0

〈[Ii , Uj ]〉 1
qx

= − lim
qx→0

d
dqx

〈[Ii , Uj ]〉. (48)

The operators Tij are not unique, since one can add to
them a ‘gauge operator’ T gauge

ij = [P, K] with arbitrary
P , without affecting the thermal average, due to Identity-I
(equation (46)) discussed above. These fundamental
operators play a crucial role in the subsequent analysis,
since they determine the high frequency behaviour of
the response functions. These important operators are
written in a more familiar representation [37] as follows.

Stress Thermal Thermoelectric

tensor operator operator

T11 T22 T12 = T21

τ xx %xx &xx

− d
dqx

[Ĵx (qx), − d
dqx

[Ĵ Q
x (qx), − d

dqx
[Ĵx (qx),

ρ(−qx)]qx→0 K(−qx)]qx→0 K(−qx)]qx→0

(49)

The thermoelectric operator can also be written as

&xx = T21 = − d
dqx

[Ĵ Q
x (qx), ρ(−qx)]qx→0, (50)

and its equivalence to the form given in equation (49) amounts
to showing T12 = T21, modulo the addition of a ‘gauge
operator’ discussed above. This task is more non-trivial than
one might naively anticipate and requires the use of Jacobi’s
identity as discussed later.

Several aspects of equations (47) and (49) are worth
mentioning at this point.

3.3. Onsager reciprocity at finite frequencies

We first note that the celebrated reciprocity relations of
Onsager are extended to finite ω here. These require in the
present case (with no magnetic fields)

Lij (ω) = Lji(ω). (51)

One part of the above dealing with the second term of
equation (47) goes back to Onsager’s famous argument: in
the absence of a magnetic field we can choose a real phase

convention for the quantum wave functions such that the
product (Ii )nm(Ij )mn is real. Invariance under complex
conjugation then implies invariance under the exchange i ↔ j .

The full (frequency dependent) function shows reciprocity
only if we can show that Tij = Tji , since this is the first part
of equation (47). This identity requires the use of the Jacobi
identity 0 = [[a, b], c] + [[c, a], b] + [[b, c], a] for any three
operators a, b, c and can be proved as follows. Consider T12
which requires the first order term in q of the expectation of
[Ĵx(q), K(−q)]. Now we use Ĵx(q) = 1/q[K, ρ(q)] to lowest
order in q, so that

〈T12〉 = −
(

d
dq

1
q

[〈[K, ρ(q)], K(−q)]〉]
)

q→0
(52)

=
(

d
dq

1
q

〈[[ρ(q), K(−q)], K]

+ [K(−q), K], ρ(q)]]〉
)

q→0
(53)

=
(

d
dq

〈[[Ĵ Q
x (−q), ρ(q)]]〉

)

q→0
(54)

= 〈T21〉. (55)
We used Jacobi’s identity to go to equation (53) from
equation (52) and dropped the first term in equation (53) using
Identity-I 46. Equation (54) follows on using the definition
of the heat current (equation (34)). Thus we have reciprocity
for all ω. A generalization to include magnetic fields can be
readily made, but we skip it here.

3.4. General formulae for Lij (ω)

We start with equation (47). By using a simple algebraic
identity with partial fractions for arbitrary ( [37], we write

1
h̄ωc(h̄ωc + ()

= 1
(

(
1

h̄ωc
− 1

h̄ωc + (

)
;

we obtain

Lij (ωc) = i
ωc

Dij +
i
"

∑

n,m

pn − pm

εm − εn

(Ii )nm(Ij )mn

εn − εm + h̄ωc
. (56)

where

Dij = 1
"

[

〈Tij 〉 −
∑

nm

pn − pm

εm − εn

(Ii )nm(Ij )mn

]

. (57)

At this point it is useful to follow Kubo [41] and
introduce imaginary time operators Q(τ ) ≡ eτKQe−τK ,
where 0 ! τ ! β. A simple exercise in inverse Lehmann
representation12 of the above equations (56) and (57) gives
us the following compact Kubo type expressions [37, 41] for
the generalized conductivities:

Lij (ω) = i

ωc

Dij +
1
"

∫ ∞

0
dteiωct

∫ β

0
dτ 〈Ii (t − iτ )Ij (0)〉,

(58)

Dij = 1
"

[
〈Tij 〉 −

∫ β

0
dτ 〈Ii (−iτ )Ij (0)〉

]
. (59)

12 Pedagogically it might be easier to go in the opposite direction and to insert
a complete set of eigenfunctions of K in equations (58) and (59), followed by
a simple integration over the imaginary time.
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this result does not require the vanishing of the commutator
[P, K]. In the case of thermal transport L22, this point is
important since the heat current does not commute with the
Hamiltonian. In contrast, for L11, i.e. electrical transport, the
charge current commutes with the total number operator and
hence the limit of the ratio is well defined more trivially, leading
to the familiar f-sum rule as shown below.

In the uniform limit qx → 0, and hence from equation (39)
we can set I†

j = Ij . Therefore for arbitrary frequencies, the
Onsager functions read as

Lij (ω) = i
"ωc

[

〈Tij 〉 −
∑

n,m

pm − pn

εn − εm + ωc
(Ii )nm(Ij )mn

]

,

(47)

〈Tij 〉 = − lim
qx→0

〈[Ii , Uj ]〉 1
qx

= − lim
qx→0

d
dqx

〈[Ii , Uj ]〉. (48)

The operators Tij are not unique, since one can add to
them a ‘gauge operator’ T gauge

ij = [P, K] with arbitrary
P , without affecting the thermal average, due to Identity-I
(equation (46)) discussed above. These fundamental
operators play a crucial role in the subsequent analysis,
since they determine the high frequency behaviour of
the response functions. These important operators are
written in a more familiar representation [37] as follows.

Stress Thermal Thermoelectric

tensor operator operator

T11 T22 T12 = T21

τ xx %xx &xx

− d
dqx

[Ĵx (qx), − d
dqx

[Ĵ Q
x (qx), − d

dqx
[Ĵx (qx),

ρ(−qx)]qx→0 K(−qx)]qx→0 K(−qx)]qx→0

(49)

The thermoelectric operator can also be written as

&xx = T21 = − d
dqx

[Ĵ Q
x (qx), ρ(−qx)]qx→0, (50)

and its equivalence to the form given in equation (49) amounts
to showing T12 = T21, modulo the addition of a ‘gauge
operator’ discussed above. This task is more non-trivial than
one might naively anticipate and requires the use of Jacobi’s
identity as discussed later.

Several aspects of equations (47) and (49) are worth
mentioning at this point.

3.3. Onsager reciprocity at finite frequencies

We first note that the celebrated reciprocity relations of
Onsager are extended to finite ω here. These require in the
present case (with no magnetic fields)

Lij (ω) = Lji(ω). (51)

One part of the above dealing with the second term of
equation (47) goes back to Onsager’s famous argument: in
the absence of a magnetic field we can choose a real phase

convention for the quantum wave functions such that the
product (Ii )nm(Ij )mn is real. Invariance under complex
conjugation then implies invariance under the exchange i ↔ j .

The full (frequency dependent) function shows reciprocity
only if we can show that Tij = Tji , since this is the first part
of equation (47). This identity requires the use of the Jacobi
identity 0 = [[a, b], c] + [[c, a], b] + [[b, c], a] for any three
operators a, b, c and can be proved as follows. Consider T12
which requires the first order term in q of the expectation of
[Ĵx(q), K(−q)]. Now we use Ĵx(q) = 1/q[K, ρ(q)] to lowest
order in q, so that

〈T12〉 = −
(

d
dq

1
q

[〈[K, ρ(q)], K(−q)]〉]
)

q→0
(52)

=
(

d
dq

1
q

〈[[ρ(q), K(−q)], K]

+ [K(−q), K], ρ(q)]]〉
)

q→0
(53)

=
(

d
dq

〈[[Ĵ Q
x (−q), ρ(q)]]〉

)

q→0
(54)

= 〈T21〉. (55)
We used Jacobi’s identity to go to equation (53) from
equation (52) and dropped the first term in equation (53) using
Identity-I 46. Equation (54) follows on using the definition
of the heat current (equation (34)). Thus we have reciprocity
for all ω. A generalization to include magnetic fields can be
readily made, but we skip it here.

3.4. General formulae for Lij (ω)

We start with equation (47). By using a simple algebraic
identity with partial fractions for arbitrary ( [37], we write

1
h̄ωc(h̄ωc + ()

= 1
(

(
1

h̄ωc
− 1

h̄ωc + (

)
;

we obtain

Lij (ωc) = i
ωc

Dij +
i
"

∑

n,m

pn − pm

εm − εn

(Ii )nm(Ij )mn

εn − εm + h̄ωc
. (56)

where

Dij = 1
"

[

〈Tij 〉 −
∑

nm

pn − pm

εm − εn

(Ii )nm(Ij )mn

]

. (57)

At this point it is useful to follow Kubo [41] and
introduce imaginary time operators Q(τ ) ≡ eτKQe−τK ,
where 0 ! τ ! β. A simple exercise in inverse Lehmann
representation12 of the above equations (56) and (57) gives
us the following compact Kubo type expressions [37, 41] for
the generalized conductivities:

Lij (ω) = i

ωc

Dij +
1
"

∫ ∞

0
dteiωct

∫ β

0
dτ 〈Ii (t − iτ )Ij (0)〉,

(58)

Dij = 1
"

[
〈Tij 〉 −

∫ β

0
dτ 〈Ii (−iτ )Ij (0)〉

]
. (59)

12 Pedagogically it might be easier to go in the opposite direction and to insert
a complete set of eigenfunctions of K in equations (58) and (59), followed by
a simple integration over the imaginary time.
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this result does not require the vanishing of the commutator
[P, K]. In the case of thermal transport L22, this point is
important since the heat current does not commute with the
Hamiltonian. In contrast, for L11, i.e. electrical transport, the
charge current commutes with the total number operator and
hence the limit of the ratio is well defined more trivially, leading
to the familiar f-sum rule as shown below.

In the uniform limit qx → 0, and hence from equation (39)
we can set I†

j = Ij . Therefore for arbitrary frequencies, the
Onsager functions read as

Lij (ω) = i
"ωc

[

〈Tij 〉 −
∑

n,m

pm − pn

εn − εm + ωc
(Ii )nm(Ij )mn

]

,

(47)

〈Tij 〉 = − lim
qx→0

〈[Ii , Uj ]〉 1
qx

= − lim
qx→0

d
dqx

〈[Ii , Uj ]〉. (48)

The operators Tij are not unique, since one can add to
them a ‘gauge operator’ T gauge

ij = [P, K] with arbitrary
P , without affecting the thermal average, due to Identity-I
(equation (46)) discussed above. These fundamental
operators play a crucial role in the subsequent analysis,
since they determine the high frequency behaviour of
the response functions. These important operators are
written in a more familiar representation [37] as follows.

Stress Thermal Thermoelectric

tensor operator operator

T11 T22 T12 = T21

τ xx %xx &xx

− d
dqx

[Ĵx (qx), − d
dqx

[Ĵ Q
x (qx), − d

dqx
[Ĵx (qx),

ρ(−qx)]qx→0 K(−qx)]qx→0 K(−qx)]qx→0

(49)

The thermoelectric operator can also be written as

&xx = T21 = − d
dqx

[Ĵ Q
x (qx), ρ(−qx)]qx→0, (50)

and its equivalence to the form given in equation (49) amounts
to showing T12 = T21, modulo the addition of a ‘gauge
operator’ discussed above. This task is more non-trivial than
one might naively anticipate and requires the use of Jacobi’s
identity as discussed later.

Several aspects of equations (47) and (49) are worth
mentioning at this point.

3.3. Onsager reciprocity at finite frequencies

We first note that the celebrated reciprocity relations of
Onsager are extended to finite ω here. These require in the
present case (with no magnetic fields)

Lij (ω) = Lji(ω). (51)

One part of the above dealing with the second term of
equation (47) goes back to Onsager’s famous argument: in
the absence of a magnetic field we can choose a real phase

convention for the quantum wave functions such that the
product (Ii )nm(Ij )mn is real. Invariance under complex
conjugation then implies invariance under the exchange i ↔ j .

The full (frequency dependent) function shows reciprocity
only if we can show that Tij = Tji , since this is the first part
of equation (47). This identity requires the use of the Jacobi
identity 0 = [[a, b], c] + [[c, a], b] + [[b, c], a] for any three
operators a, b, c and can be proved as follows. Consider T12
which requires the first order term in q of the expectation of
[Ĵx(q), K(−q)]. Now we use Ĵx(q) = 1/q[K, ρ(q)] to lowest
order in q, so that

〈T12〉 = −
(

d
dq

1
q

[〈[K, ρ(q)], K(−q)]〉]
)

q→0
(52)

=
(

d
dq

1
q

〈[[ρ(q), K(−q)], K]

+ [K(−q), K], ρ(q)]]〉
)

q→0
(53)

=
(

d
dq

〈[[Ĵ Q
x (−q), ρ(q)]]〉

)

q→0
(54)

= 〈T21〉. (55)
We used Jacobi’s identity to go to equation (53) from
equation (52) and dropped the first term in equation (53) using
Identity-I 46. Equation (54) follows on using the definition
of the heat current (equation (34)). Thus we have reciprocity
for all ω. A generalization to include magnetic fields can be
readily made, but we skip it here.

3.4. General formulae for Lij (ω)

We start with equation (47). By using a simple algebraic
identity with partial fractions for arbitrary ( [37], we write

1
h̄ωc(h̄ωc + ()

= 1
(

(
1

h̄ωc
− 1

h̄ωc + (

)
;

we obtain

Lij (ωc) = i
ωc

Dij +
i
"

∑

n,m

pn − pm

εm − εn

(Ii )nm(Ij )mn

εn − εm + h̄ωc
. (56)

where

Dij = 1
"

[

〈Tij 〉 −
∑

nm

pn − pm

εm − εn

(Ii )nm(Ij )mn

]

. (57)

At this point it is useful to follow Kubo [41] and
introduce imaginary time operators Q(τ ) ≡ eτKQe−τK ,
where 0 ! τ ! β. A simple exercise in inverse Lehmann
representation12 of the above equations (56) and (57) gives
us the following compact Kubo type expressions [37, 41] for
the generalized conductivities:

Lij (ω) = i

ωc

Dij +
1
"

∫ ∞

0
dteiωct

∫ β

0
dτ 〈Ii (t − iτ )Ij (0)〉,

(58)

Dij = 1
"

[
〈Tij 〉 −

∫ β

0
dτ 〈Ii (−iτ )Ij (0)〉

]
. (59)

12 Pedagogically it might be easier to go in the opposite direction and to insert
a complete set of eigenfunctions of K in equations (58) and (59), followed by
a simple integration over the imaginary time.
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this result does not require the vanishing of the commutator
[P, K]. In the case of thermal transport L22, this point is
important since the heat current does not commute with the
Hamiltonian. In contrast, for L11, i.e. electrical transport, the
charge current commutes with the total number operator and
hence the limit of the ratio is well defined more trivially, leading
to the familiar f-sum rule as shown below.

In the uniform limit qx → 0, and hence from equation (39)
we can set I†

j = Ij . Therefore for arbitrary frequencies, the
Onsager functions read as

Lij (ω) = i
"ωc

[

〈Tij 〉 −
∑

n,m

pm − pn

εn − εm + ωc
(Ii )nm(Ij )mn

]

,

(47)

〈Tij 〉 = − lim
qx→0

〈[Ii , Uj ]〉 1
qx

= − lim
qx→0

d
dqx

〈[Ii , Uj ]〉. (48)

The operators Tij are not unique, since one can add to
them a ‘gauge operator’ T gauge

ij = [P, K] with arbitrary
P , without affecting the thermal average, due to Identity-I
(equation (46)) discussed above. These fundamental
operators play a crucial role in the subsequent analysis,
since they determine the high frequency behaviour of
the response functions. These important operators are
written in a more familiar representation [37] as follows.

Stress Thermal Thermoelectric

tensor operator operator

T11 T22 T12 = T21

τ xx %xx &xx

− d
dqx

[Ĵx (qx), − d
dqx

[Ĵ Q
x (qx), − d

dqx
[Ĵx (qx),

ρ(−qx)]qx→0 K(−qx)]qx→0 K(−qx)]qx→0

(49)

The thermoelectric operator can also be written as

&xx = T21 = − d
dqx

[Ĵ Q
x (qx), ρ(−qx)]qx→0, (50)

and its equivalence to the form given in equation (49) amounts
to showing T12 = T21, modulo the addition of a ‘gauge
operator’ discussed above. This task is more non-trivial than
one might naively anticipate and requires the use of Jacobi’s
identity as discussed later.

Several aspects of equations (47) and (49) are worth
mentioning at this point.

3.3. Onsager reciprocity at finite frequencies

We first note that the celebrated reciprocity relations of
Onsager are extended to finite ω here. These require in the
present case (with no magnetic fields)

Lij (ω) = Lji(ω). (51)

One part of the above dealing with the second term of
equation (47) goes back to Onsager’s famous argument: in
the absence of a magnetic field we can choose a real phase

convention for the quantum wave functions such that the
product (Ii )nm(Ij )mn is real. Invariance under complex
conjugation then implies invariance under the exchange i ↔ j .

The full (frequency dependent) function shows reciprocity
only if we can show that Tij = Tji , since this is the first part
of equation (47). This identity requires the use of the Jacobi
identity 0 = [[a, b], c] + [[c, a], b] + [[b, c], a] for any three
operators a, b, c and can be proved as follows. Consider T12
which requires the first order term in q of the expectation of
[Ĵx(q), K(−q)]. Now we use Ĵx(q) = 1/q[K, ρ(q)] to lowest
order in q, so that

〈T12〉 = −
(

d
dq

1
q

[〈[K, ρ(q)], K(−q)]〉]
)

q→0
(52)

=
(

d
dq

1
q

〈[[ρ(q), K(−q)], K]

+ [K(−q), K], ρ(q)]]〉
)

q→0
(53)

=
(

d
dq

〈[[Ĵ Q
x (−q), ρ(q)]]〉

)

q→0
(54)

= 〈T21〉. (55)
We used Jacobi’s identity to go to equation (53) from
equation (52) and dropped the first term in equation (53) using
Identity-I 46. Equation (54) follows on using the definition
of the heat current (equation (34)). Thus we have reciprocity
for all ω. A generalization to include magnetic fields can be
readily made, but we skip it here.

3.4. General formulae for Lij (ω)

We start with equation (47). By using a simple algebraic
identity with partial fractions for arbitrary ( [37], we write

1
h̄ωc(h̄ωc + ()

= 1
(

(
1

h̄ωc
− 1

h̄ωc + (

)
;

we obtain

Lij (ωc) = i
ωc

Dij +
i
"

∑

n,m

pn − pm

εm − εn

(Ii )nm(Ij )mn

εn − εm + h̄ωc
. (56)

where

Dij = 1
"

[

〈Tij 〉 −
∑

nm

pn − pm

εm − εn

(Ii )nm(Ij )mn

]

. (57)

At this point it is useful to follow Kubo [41] and
introduce imaginary time operators Q(τ ) ≡ eτKQe−τK ,
where 0 ! τ ! β. A simple exercise in inverse Lehmann
representation12 of the above equations (56) and (57) gives
us the following compact Kubo type expressions [37, 41] for
the generalized conductivities:

Lij (ω) = i

ωc

Dij +
1
"

∫ ∞

0
dteiωct

∫ β

0
dτ 〈Ii (t − iτ )Ij (0)〉,

(58)

Dij = 1
"

[
〈Tij 〉 −

∫ β

0
dτ 〈Ii (−iτ )Ij (0)〉

]
. (59)

12 Pedagogically it might be easier to go in the opposite direction and to insert
a complete set of eigenfunctions of K in equations (58) and (59), followed by
a simple integration over the imaginary time.
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The stiffnesses Dij are discussed in detail in [37] and are
in general non-zero for all non-dissipative systems such as
superfluids and superconductors. For a superconductor D11

is the Meissner stiffness, so that the superfluid density can
be defined in terms of it [37]. In a superfluid or a highly
pure crystal supporting second sound, the stiffness D22 is
non-zero and related to the second sound phenomenon. For
dissipative systems, these stiffnesses vanish, and on dropping
them from equation (58) we get back the familiar Kubo type
formulae [39, 41].

3.5. High frequency behaviour

The high frequency behaviour of these functions is easily found
from equation (47) as

lim
ω!0

Lij (ω) = i
ω"

〈Tij 〉 + O(1/ω2). (60)

Thus these fundamental operators determine the high
frequency response, and we will pursue the consequences later.

3.6. Sum rules for electrical and thermal conductivity

It is worth noting that these relations imply sum rules as well,
for the thermal response functions. To see this, note that the
causal nature of the Onsager coefficients and an asymptotic
fall-off as inverse frequency provides a dispersion relation, i.e.
a Kramers–Kronig relation, where P represents the principal
value of the integral,

$eLij (ω) = 1
π

P
∫ ∞

−∞

dν

ν − ω
'mLij (ν), (61)

'mLij (ω) = 1
π

P
∫ ∞

−∞

dν

ω − ν
$eLij (ν). (62)

We see at high frequencies from equations (60) and (62) and
assuming the reality of the averages 〈Tij 〉:

lim
ω!0

ω'mLij (ω) = 〈Tij 〉
"

=
∫ ∞

−∞

dν

π
$eLij (ν). (63)

This relation gives all the interesting sum rules in this problem.
More explicitly we find

∫ ∞

−∞

dν

2
$eσ (ν) = π〈τ xx〉

2"
, (64)

∫ ∞

−∞

dν

2
$eκ(ν) = π〈(xx〉

2T "
. (65)

These are known as follows. (a) Equation (64) is the
well-known lattice plasma or f-sum rule [44] with the
RHS equalling ω2

p/8 with ωp as the effective plasma
frequency. (b) Equation (65) is the thermal sumrule [37]
found recently. From our earlier discussion, we see that
the thermal conductivity has a correction for mobile carriers

(equation (17)), so that we can define a finite frequency object

κzc(ω) = 1
T

[
L22(ω) − L12(ω)2

L11(ω)

]
, (66)

which also satisfies causality and falls off at high frequencies
as inverse ω, and therefore satisfies dispersion relations of the
type equation (62). Thus by the same argument, and using the
high frequency limits of all the coefficients (equation (60)), we
infer a sum rule for this case as
∫ ∞

−∞

dν

π
$eκzc(ν) = 1

T "

[
〈(xx〉 − 〈)xx〉2

〈τ xx〉

]
. (67)

The second term in equation (67) is usually small for Fermi
systems at low temperatures and usually can be neglected. We
may write the RHS as πCN(T )v2

eff/(2d"), in terms of the more
conventional specific heat for a fixed number of particles and
veff which is defined by this expression. It is interesting to
note13 that the explicit dependence on the chemical potential
in the RHS of equation (65) arising from the definition of Ĵ Q

x in
equation (34), is exactly cancelled in the RHS of equation (67).
Thus the zero current sum rule can be computed without
knowing the chemical potential exactly. For immobile carriers
this problem is irrelevant; equation (65) can be used without
worrying about the distinction between the heat current and
energy current.

We should mention that the f-sumrule (equation (64))
and the thermal sum rule (equations (65) and (67)) are both
non-universal in a general system and depend upon various
material parameters and the temperature. The f-sumrule
equals ω2

p/8 for quadratic bands εk = h̄2k2/(2m), but
in a tight binding model is related to the kinetic energy
expectation. The thermal sumrule is manifestly non-universal
since the operators (xx explicitly depend on the details of the
Hamiltonian [37].

3.7. Dispersion relations for thermopower, Lorentz number
and figure of merit

Let us now turn to the main objects of study here, namely,

thermopower S(ω) = L12(ω)

T L11(ω)
,

Lorentz number L(ω) = κzc(ω)

T σ (ω)
,

figure of merit Z(ω)T = S2(ω)

L(ω)
. (68)

The first two objects are very well known in transport theories
[9, 10, 26], while the figure of merit ZT is a dimensionless
measure of the efficacy of a thermoelectric device, with large
values ZT ∼ 1 at low T being regarded as highly desirable
in many applications. Let us analyse these definitions and
extract their dispersion relations. It is readily seen that these
variables differ qualitatively from the conductivity or the
thermal conductivity in their high frequency behaviour. Each

13 I thank Dr S Mukerjee and Dr M Peterson for interesting discussions on this
point.
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The stiffnesses Dij are discussed in detail in [37] and are
in general non-zero for all non-dissipative systems such as
superfluids and superconductors. For a superconductor D11

is the Meissner stiffness, so that the superfluid density can
be defined in terms of it [37]. In a superfluid or a highly
pure crystal supporting second sound, the stiffness D22 is
non-zero and related to the second sound phenomenon. For
dissipative systems, these stiffnesses vanish, and on dropping
them from equation (58) we get back the familiar Kubo type
formulae [39, 41].

3.5. High frequency behaviour

The high frequency behaviour of these functions is easily found
from equation (47) as

lim
ω!0

Lij (ω) = i
ω"

〈Tij 〉 + O(1/ω2). (60)

Thus these fundamental operators determine the high
frequency response, and we will pursue the consequences later.

3.6. Sum rules for electrical and thermal conductivity

It is worth noting that these relations imply sum rules as well,
for the thermal response functions. To see this, note that the
causal nature of the Onsager coefficients and an asymptotic
fall-off as inverse frequency provides a dispersion relation, i.e.
a Kramers–Kronig relation, where P represents the principal
value of the integral,

$eLij (ω) = 1
π

P
∫ ∞

−∞

dν

ν − ω
'mLij (ν), (61)

'mLij (ω) = 1
π

P
∫ ∞

−∞

dν

ω − ν
$eLij (ν). (62)

We see at high frequencies from equations (60) and (62) and
assuming the reality of the averages 〈Tij 〉:

lim
ω!0

ω'mLij (ω) = 〈Tij 〉
"

=
∫ ∞

−∞

dν

π
$eLij (ν). (63)

This relation gives all the interesting sum rules in this problem.
More explicitly we find

∫ ∞

−∞

dν

2
$eσ (ν) = π〈τ xx〉

2"
, (64)

∫ ∞

−∞

dν

2
$eκ(ν) = π〈(xx〉

2T "
. (65)

These are known as follows. (a) Equation (64) is the
well-known lattice plasma or f-sum rule [44] with the
RHS equalling ω2

p/8 with ωp as the effective plasma
frequency. (b) Equation (65) is the thermal sumrule [37]
found recently. From our earlier discussion, we see that
the thermal conductivity has a correction for mobile carriers

(equation (17)), so that we can define a finite frequency object

κzc(ω) = 1
T

[
L22(ω) − L12(ω)2

L11(ω)

]
, (66)

which also satisfies causality and falls off at high frequencies
as inverse ω, and therefore satisfies dispersion relations of the
type equation (62). Thus by the same argument, and using the
high frequency limits of all the coefficients (equation (60)), we
infer a sum rule for this case as
∫ ∞

−∞

dν

π
$eκzc(ν) = 1

T "

[
〈(xx〉 − 〈)xx〉2

〈τ xx〉

]
. (67)

The second term in equation (67) is usually small for Fermi
systems at low temperatures and usually can be neglected. We
may write the RHS as πCN(T )v2

eff/(2d"), in terms of the more
conventional specific heat for a fixed number of particles and
veff which is defined by this expression. It is interesting to
note13 that the explicit dependence on the chemical potential
in the RHS of equation (65) arising from the definition of Ĵ Q

x in
equation (34), is exactly cancelled in the RHS of equation (67).
Thus the zero current sum rule can be computed without
knowing the chemical potential exactly. For immobile carriers
this problem is irrelevant; equation (65) can be used without
worrying about the distinction between the heat current and
energy current.

We should mention that the f-sumrule (equation (64))
and the thermal sum rule (equations (65) and (67)) are both
non-universal in a general system and depend upon various
material parameters and the temperature. The f-sumrule
equals ω2

p/8 for quadratic bands εk = h̄2k2/(2m), but
in a tight binding model is related to the kinetic energy
expectation. The thermal sumrule is manifestly non-universal
since the operators (xx explicitly depend on the details of the
Hamiltonian [37].

3.7. Dispersion relations for thermopower, Lorentz number
and figure of merit

Let us now turn to the main objects of study here, namely,

thermopower S(ω) = L12(ω)

T L11(ω)
,

Lorentz number L(ω) = κzc(ω)

T σ (ω)
,

figure of merit Z(ω)T = S2(ω)

L(ω)
. (68)

The first two objects are very well known in transport theories
[9, 10, 26], while the figure of merit ZT is a dimensionless
measure of the efficacy of a thermoelectric device, with large
values ZT ∼ 1 at low T being regarded as highly desirable
in many applications. Let us analyse these definitions and
extract their dispersion relations. It is readily seen that these
variables differ qualitatively from the conductivity or the
thermal conductivity in their high frequency behaviour. Each

13 I thank Dr S Mukerjee and Dr M Peterson for interesting discussions on this
point.
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The stiffnesses Dij are discussed in detail in [37] and are
in general non-zero for all non-dissipative systems such as
superfluids and superconductors. For a superconductor D11

is the Meissner stiffness, so that the superfluid density can
be defined in terms of it [37]. In a superfluid or a highly
pure crystal supporting second sound, the stiffness D22 is
non-zero and related to the second sound phenomenon. For
dissipative systems, these stiffnesses vanish, and on dropping
them from equation (58) we get back the familiar Kubo type
formulae [39, 41].

3.5. High frequency behaviour

The high frequency behaviour of these functions is easily found
from equation (47) as

lim
ω!0

Lij (ω) = i
ω"

〈Tij 〉 + O(1/ω2). (60)

Thus these fundamental operators determine the high
frequency response, and we will pursue the consequences later.

3.6. Sum rules for electrical and thermal conductivity

It is worth noting that these relations imply sum rules as well,
for the thermal response functions. To see this, note that the
causal nature of the Onsager coefficients and an asymptotic
fall-off as inverse frequency provides a dispersion relation, i.e.
a Kramers–Kronig relation, where P represents the principal
value of the integral,

$eLij (ω) = 1
π

P
∫ ∞

−∞

dν

ν − ω
'mLij (ν), (61)

'mLij (ω) = 1
π

P
∫ ∞

−∞

dν

ω − ν
$eLij (ν). (62)

We see at high frequencies from equations (60) and (62) and
assuming the reality of the averages 〈Tij 〉:

lim
ω!0

ω'mLij (ω) = 〈Tij 〉
"

=
∫ ∞

−∞

dν

π
$eLij (ν). (63)

This relation gives all the interesting sum rules in this problem.
More explicitly we find

∫ ∞

−∞

dν

2
$eσ (ν) = π〈τ xx〉

2"
, (64)

∫ ∞

−∞

dν

2
$eκ(ν) = π〈(xx〉

2T "
. (65)

These are known as follows. (a) Equation (64) is the
well-known lattice plasma or f-sum rule [44] with the
RHS equalling ω2

p/8 with ωp as the effective plasma
frequency. (b) Equation (65) is the thermal sumrule [37]
found recently. From our earlier discussion, we see that
the thermal conductivity has a correction for mobile carriers

(equation (17)), so that we can define a finite frequency object

κzc(ω) = 1
T

[
L22(ω) − L12(ω)2

L11(ω)

]
, (66)

which also satisfies causality and falls off at high frequencies
as inverse ω, and therefore satisfies dispersion relations of the
type equation (62). Thus by the same argument, and using the
high frequency limits of all the coefficients (equation (60)), we
infer a sum rule for this case as
∫ ∞

−∞

dν

π
$eκzc(ν) = 1

T "

[
〈(xx〉 − 〈)xx〉2

〈τ xx〉

]
. (67)

The second term in equation (67) is usually small for Fermi
systems at low temperatures and usually can be neglected. We
may write the RHS as πCN(T )v2

eff/(2d"), in terms of the more
conventional specific heat for a fixed number of particles and
veff which is defined by this expression. It is interesting to
note13 that the explicit dependence on the chemical potential
in the RHS of equation (65) arising from the definition of Ĵ Q

x in
equation (34), is exactly cancelled in the RHS of equation (67).
Thus the zero current sum rule can be computed without
knowing the chemical potential exactly. For immobile carriers
this problem is irrelevant; equation (65) can be used without
worrying about the distinction between the heat current and
energy current.

We should mention that the f-sumrule (equation (64))
and the thermal sum rule (equations (65) and (67)) are both
non-universal in a general system and depend upon various
material parameters and the temperature. The f-sumrule
equals ω2

p/8 for quadratic bands εk = h̄2k2/(2m), but
in a tight binding model is related to the kinetic energy
expectation. The thermal sumrule is manifestly non-universal
since the operators (xx explicitly depend on the details of the
Hamiltonian [37].

3.7. Dispersion relations for thermopower, Lorentz number
and figure of merit

Let us now turn to the main objects of study here, namely,

thermopower S(ω) = L12(ω)

T L11(ω)
,

Lorentz number L(ω) = κzc(ω)

T σ (ω)
,

figure of merit Z(ω)T = S2(ω)

L(ω)
. (68)

The first two objects are very well known in transport theories
[9, 10, 26], while the figure of merit ZT is a dimensionless
measure of the efficacy of a thermoelectric device, with large
values ZT ∼ 1 at low T being regarded as highly desirable
in many applications. Let us analyse these definitions and
extract their dispersion relations. It is readily seen that these
variables differ qualitatively from the conductivity or the
thermal conductivity in their high frequency behaviour. Each

13 I thank Dr S Mukerjee and Dr M Peterson for interesting discussions on this
point.
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Context: Consider an effective model system obtained by 
focusing on one (or a few) bands after eliminating higher 
energy states. 

Best for tJ type models, (but not ideal for large U 
Hubbard systems).
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Figure 3. In a Mott–Hubbard system both the Hall constant and the Seebeck coefficient have three zero crossings as the band is populated
from 0 ! n ! 2. The divergence at half filling is weaker in the Seebeck coefficient than in the Hall constant, as shown in this example from
the t–J model on the triangular lattice [29, 35]. The three zero crossings are in contrast to a single zero crossing of an uncorrelated band.
The distinction is understood as a consequence of the Mott insulating state at half filling [25, 37]. This insulating state determines the
physics of the carriers in its proximity, and these are argued here to be far from the Bloch–Boltzmann holes of standard transport theory. The
location of the zero crossings is determined by details such as the lattice structure. Reprinted with permission from [35]a. Copyright 2006
by the American Physical Society.

of these approaches a constant asymptotically, which can be
written down by inspection.

High freq thermopower S∗ = 〈!xx〉
T 〈τ xx〉

.

High freq Lorentz number L∗ = 〈#xx〉
T 2〈τ xx〉

− (S∗)2.

High freq figure of merit Z∗T = 〈!xx〉2

〈#xx〉〈τ xx〉 − 〈!xx〉2
.

(69)

As a result, we can write their dispersion relations readily;
they are

%eS(ω) = S∗ +
P
π

∫ ∞

−∞

dν

ν − ω
'mS(ν), (70)

%eL(ω) = L∗ +
P
π

∫ ∞

−∞

dν

ν − ω
'mL(ν), (71)

%eZ(ω) = Z∗ +
P
π

∫ ∞

−∞

dν

ν − ω
'mZ(ν). (72)

These transport quantities are generally real at only two values
of frequency, namely zero or infinity, and are very similar
in mathematical structure to the Hall resistivity discussed
in equation (11). The imaginary part is expected to go
linearly at small ω, falling off over some finite interval in ω

corresponding to the energy range of the contributing physical
processes. Thus the difference between the dc transport and
high frequency values can be expressed in all these cases as an

integral over the imaginary part of these three variables divided
by the frequency and may be amenable to direct measurements,
as in the case of the Hall effect.

4. Thermoelectric phenomena in correlated matter

4.1. Limiting case of free electrons, S∗ the Heikes–Mott and
Mott results

We propose the use of the high frequency variables
(equation (69)) in correlated matter, for reasons that are
essentially the same as those for proposing the high frequency
Hall constant, explained earlier. These variables are singled
out by the fact that they have a finite limit at high ω, as
compared with say κ(ω) or L12(ω), which vanish in that limit.
In particular, we expect that these high frequency limits of the
three variables listed in equation (69) are good indicators of
the dc transport measurements in correlated matter, where we
can use the projected t–J model, whereas for the Hubbard
model, these should be good only for intermediate to weak
coupling. The origin of this expectation is not repeated here
since it is identical to the argument given for the Hall constant
after equation (9) and the later paragraphs. In the following,
we will see the consequences of this proposal and estimate
its accuracy in some well-controlled examples. By way of
motivating this calculation, we show in figure 3 the computed
Hall and Seebeck coefficients for the triangular lattice, where
these objects have similar behaviour to a function of electron
filling in a Mott–Hubbard system.
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the t–J model on the triangular lattice [29, 35]. The three zero crossings are in contrast to a single zero crossing of an uncorrelated band.
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by the American Physical Society.
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can use the projected t–J model, whereas for the Hubbard
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coupling. The origin of this expectation is not repeated here
since it is identical to the argument given for the Hall constant
after equation (9) and the later paragraphs. In the following,
we will see the consequences of this proposal and estimate
its accuracy in some well-controlled examples. By way of
motivating this calculation, we show in figure 3 the computed
Hall and Seebeck coefficients for the triangular lattice, where
these objects have similar behaviour to a function of electron
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2. Hall constant

The basic idea of this approach is well illustrated by the
example of the Hall constant for correlated matter RH defined
in equation (3). Here the initial paper of Shastry, Shraiman
and Singh [25] pointed out that the dynamical Hall constant is
better suited for computation in correlated systems. Consider
the simplest framework, the Drude theory of electrons [9, 26],
where we know that

σxx(ω) = σxx(0)

(1 + iωτ )
,

σxy(ω) = σxy(0)

(1 + iωτ )2
,

B RH ≡ ρxy(ω) = σxy(ω)

σxx(ω)σyy(ω)
= B

nqec
,

(3)

where qe = −|e| is the electron charge, n the density of
electrons, τ the relaxation time and B the uniform magnetic
field along the z axis. The relaxation time cancels out in
computing the Hall resistivity at arbitrary frequencies, and
this cancellation gives us a clue. We might as well compute
the two conductivities σαβ(ω) at high frequencies, since here
the notorious difficulties inherent in computing the dc values
of these objects vanish. The Drude theory therefore gives
us an important insight, namely, that the Hall resisitivity is
less ω dependent than the Hall conductivity. We explore and
build on this central idea further in this paper, using exact
diagonalization, dispersion relations and sum rules.

In order to perform the above suggested calculation, we
need to take the Kubo formulae for the conductivities3 and
take the appropriate ratios to get the dynamical resistivity.
Let us consider the electrical conductivity σαβ(ω) of a general
Fermionic system defined on a lattice. Let us define an energy
dispersion εk obtained by Fourier transforming the hopping
matrix element t (#η) as εk = −

∑
#η exp −i#k · #ηt (#η). The

electrical current operator is obtained using the continuity
equation as

#̂
J = i qe

∑

#x,#η
t (#η)#ηc†

#x+#η,σ c#x,σ . (4)

The current operator Ĵα is dressed by a suitable Peierls [28]
phase factor in the presence of the uniform magnetic field B
along the z axis. In the t–J model, the current is sandwiched by
the Gutzwiller projector in equation (1) as Ĵ → PGĴ PG, and
thereby allows transport only between singly occupied sites.
We can use perturbation theory to linear order in the external
electric field to find a general expression for the dynamical
conductivity [10, 25]:

σαβ(ωc) = i
h̄Nsvωc

[
〈ταβ〉 + h̄

∑

n,m

pn − pm

εn − εm + h̄ωc

×〈n|Ĵα|m〉〈m|Ĵβ |n〉
]
, (5)

3 It is frustrating that despite several ambitious claims in the literature,
especially from the Mori formulation experts, there is no practical and direct
way of computing the dynamical resistivity that bypasses the intermediate
stage of computing the dynamical conductivities [27].

where pn ∝ e−βεn is the probability of the state n, and the
‘stress tensor’ (sometimes called the ‘effective mass tensor’)
is defined by

ταβ = q2
e

∑

k,σ

d2ε(k)

dkαdkβ

c†
σ (k)cσ (k), (6)

where v is the atomic volume and ωc = ω + i0+. The Hall
conductivity, in fact, involves the antisymmetric part of this
tensor [25]. In the case of a t–J model the τ operators are
also sandwiched by Gutzwiller projection in equation (1). In
order to compute say the transport conductivity )e σxx(ω)
in the limit ω → 0, we need to sum over terms such as∑

n,m pn δ(εn − εm)〈n|Ĵα|m〉〈m|Ĵβ |n〉. Such a computation is
made very difficult by the presence of the Dirac delta functions.
These energy conserving delta functions lead to a finite limit
for σ xx(0) in say a disordered metal. The limit is reached only
in the thermodynamic limit by a subtle limiting process and
corresponds to a dissipative resistivity. These delta functions
are very hard to deal with, if we are given a set of energy
levels for a finite system. It is then necessary to broaden the
delta functions to a suitable function, say a Lorentzian with
an appropriate width determined by the system size and other
parameters. In practice, this task is quite formidable and only
rarely has it been undertaken, thereby motivating the search
for alternative routes.

Following the hint contained in the Drude formulae, we
can take the high frequency limits for the conductivity and
thereby obtain the Hall resistivity at high frequencies

R∗
H ≡ lim

ω→∞
RH(ω) = −iNsv

Bh̄

〈[Ĵx, Ĵy]〉
〈τ xx〉2

. (7)

In deriving this formula, one is working in the non-dissipative
(reactive) regime. That is because the Kubo formulae in
equation (5) are evaluated away from the ω → 0 limit, where
the Dirac delta functions come into play.

The main article of faith is the claim that ρxy(ω) at large
frequencies is related in a simple way to the transport variable
ρxy(0). Is this rationalizable? Further, what is the meaning of
high frequency or how ‘high’ is ‘high enough’?

With regard to the magnitude of the frequency, the key
point is to work with a projected Fermi system rather than
a bare one. For example, in the case of the Hubbard model
versus the t–J model, one sees that the energy scale inequality
requirement is

h̄ω , {|t |, U}max, (8)

h̄ω , {|t |, J }max. (9)

Thus in the case of the t–J model, one can be in the high
frequency limit, and yet have a modest value of ω, in contrast
to the Hubbard model since usually U is large, O(ev′s). In
the case of the cobaltates, the energy scale that determines the
high frequency limit is presumably the Hunds rule or crystal
field energy and hence much lower. Thus the ‘high frequency
limit’ is expected to be close to the transport values, for models
where the high energy scale is projected out to give an effective
low energy Hamiltonian with suitably projected operators.

Subsequent studies show that this simple formula
(equation (7)) is a particularly useful one; we list some of

5

Hubbard

t J model

High frequency limit

High frequency transport 
calculation is therefore 
reduced to computing the
equal time average of 
these three many body 
operators- much easier 
than doing time 
dependence- and yet 
already very challenging.



Hubbard model  thermopower can be found from
self energy alone!! (no need for vertex)
Shastry Aspen (2008),  DMFT with Arsenault, Tremblay et al (2008)
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(somehow!!) and oscillated in space and time. Thus we
apply a space–time varying gravitational field ψ(!x, t) =
δψ0 (x/L) exp{−iωt} together with a similar electrostatic
potential φ(!x, t) and compute the induced oscillating dipole
moment P =

∑
x xρ(!x) using perturbation theory. The

gravitational field is again a proxy for temperature variation.
By forming the ratio of the gravitational field amplitude
δψ0 to the electrostatic amplitude δφ0 needed to produce a
given dipole moment, we can extract the thermopower. The
rigorously correct transport limit, as applied to this situation,
requires the thermodynamic limit to be taken before ω → 0.
If we compute the opposite limit instead, i.e. a finite system
and a dc field, then the result maps to equation (87). Such a
limiting process is tempting from the physical picture of the
so-called ‘absolute thermopower’. In this case, one studies a
single system with applied thermal gradients, which develops a
voltage across its ends. This type of a picture was presumably
behind the Kelvin derivation.

4.3. Applications to sodium cobaltates in the Curie–Weiss
metallic phase

At this point it is worthwhile to compare the results of
various approximations in the important and current problem
of sodium cobaltates NaxCoO2, with x ∼ 0.68. Recent
interest in this system started with the observation of high
thermopower (S ∼ 80 µV K−1) at room temperatures in this
system by Terasaki [18]. Wang, Rogado, Cava and Ong, in
another important paper [19], found that this thermopower
is strongly magnetic field dependent. They further found
that the metallic conduction is coexistent with a Curie–Weiss
susceptibility characteristic of insulators. This has given rise
to the nomenclature of a Curie–Weiss metallic phase. The
basic modelling of this system, as suggested by Wang et al is
in terms of a strongly correlated Fermi system, with no double
occupancy of holes. The holes move on a triangular lattice
provided by the Co atoms, and the system may be regarded, to
a first approximation, as a bunch of uncoupled 2D triangular
lattice planes with a t–J model description of correlated holes.
After performing a particle hole transformation we can write
the basic Hamiltonian as

H = −
∑

!x,!η
t (!η)c̃†

!x+!η,σ c̃!x,σ + J
∑

<ij>

!Si · !Sj . (89)

Here !η is the nearest neighbor vector on the triangular lattice.
This model corresponds to the limit of U → ∞. In this

limit the Fermionic commutation relations need to be modified
into the Gutzwiller–Hubbard projected operator [49] relations
(with σ̄ = −σ ):

c̃!x,σ = PGc!x,σPG,

{c̃!x,σ , c̃†
!x ′,σ ′} = δ!x, !x ′{δσ,σ ′(1 − n!x,σ̄ ) + (1 − δσ̄ ,σ ′)c̃†

!x,σ c̃!x,σ̄ }

≡ Yσ,σ ′δ!x, !x ′ . (90)

The presence of the Y factor is due to strong correlations and
makes the computation non-trivial. The number operator n!x,σ

is unaffected by the projection. Let us consider the kinetic
energy only, i.e. the t part, since this is expected to dominate

in transport properties, at least far enough from half filling and
for t ( J . The addition of the J part can be done without too
much difficulty; in fact, the numerics discussed below include
the full Hamiltonian.

Let us note down the expressions for the charge current and
the energy current at finite wave vectors by direct computation:

K̂(k) = −
∑

!x,!η,σ

(t (!η) + µδ!η,0)ei!k·(!x+ 1
2 !η)c̃†

!x+!η,σ c̃!x,σ , (91)

Ĵx(k) = iqe

∑

!x,!η,σ

ηxt (!η)ei!k·(!x+ 1
2 !η)c̃†

!x+!η,σ c̃!x,σ ,

Ĵ Q
x (k) = − i

2

∑

!x,!η,!η′,σ

(ηx + η′
x)t (!η)t (!η′)

×ei!k·(!x+ 1
2 (!η+!η′))Yσ ′,σ (!x + !η′)c̃†

!x+!η+ !η′,σ ′ c̃!x,σ − µ

qe
Ĵx(k).

We evaluate the thermoelectric operator as

(xx = −qe

2

∑

!η, !η′,σ,σ ′,!x

(ηx + η′
x)

2t (!η)t ( !η′)Yσ ′,σ

×(!x + !η)c̃†
!x+!η+ !η′,σ ′ c̃!x,σ − qeµ

∑

!η,σ,!x
η2

xt (!η)c̃†
!x+!η,σ c̃!x,σ .

(92)

This expression gives an idea of the complexity of the
operators that arise in the theory. Let us first present some
numerical results obtained by exact diagonalization [50, 51]
of small clusters of the triangular lattice. We can compute all
eigenstates and matrix elements for up to 14 or 15 site clusters
of the triangular lattice. We can therefore assemble the full
dynamical conductivities from equation (68). The involved
calculations are fully described in the papers [50, 51], and
we will content ourselves with displaying the main results.
Firstly, consider the absolute scale of the thermopower S∗ as a
function of temperature, shown in figure 4. The upper panel in
figure 4 shows that this comparison with experiment is quite
successful on a quantitative scale. One can next ask; how good
is the approximation of infinite frequency, purely in theoretical
terms. To answer this we compute the frequency dependence
of S(ω), as shown in figure 5. It is clear from this figure that
the approximation of high frequency is excellent, the maximum
error being less than 3%. Thus we are computing essentially
the dc transport object, at least for clusters of these sizes. This
benchmarking gives us confidence in the results of the high
frequency formulae for thermopower.

4.4. High temperature expansion for thermopower

We next show that rather simple considerations of our formulae
lead to an important prediction for enhancing the thermopower
for a triangular lattice system with a suitable choice of the
hopping parameter. We find a remarkable effect of the sign
of hopping on the transport part of the thermopower. This
is well illustrated in the lower panel of figure 4. This shows
the enhancement of the computed thermopower at low and
intermediate T s, achieved by flipping the sign of hopping from
the upper panel. We perform a simple computation at high
T that throws light on this phenomenon. We focus on the
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(somehow!!) and oscillated in space and time. Thus we
apply a space–time varying gravitational field ψ(!x, t) =
δψ0 (x/L) exp{−iωt} together with a similar electrostatic
potential φ(!x, t) and compute the induced oscillating dipole
moment P =
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x xρ(!x) using perturbation theory. The

gravitational field is again a proxy for temperature variation.
By forming the ratio of the gravitational field amplitude
δψ0 to the electrostatic amplitude δφ0 needed to produce a
given dipole moment, we can extract the thermopower. The
rigorously correct transport limit, as applied to this situation,
requires the thermodynamic limit to be taken before ω → 0.
If we compute the opposite limit instead, i.e. a finite system
and a dc field, then the result maps to equation (87). Such a
limiting process is tempting from the physical picture of the
so-called ‘absolute thermopower’. In this case, one studies a
single system with applied thermal gradients, which develops a
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various approximations in the important and current problem
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thermopower (S ∼ 80 µV K−1) at room temperatures in this
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another important paper [19], found that this thermopower
is strongly magnetic field dependent. They further found
that the metallic conduction is coexistent with a Curie–Weiss
susceptibility characteristic of insulators. This has given rise
to the nomenclature of a Curie–Weiss metallic phase. The
basic modelling of this system, as suggested by Wang et al is
in terms of a strongly correlated Fermi system, with no double
occupancy of holes. The holes move on a triangular lattice
provided by the Co atoms, and the system may be regarded, to
a first approximation, as a bunch of uncoupled 2D triangular
lattice planes with a t–J model description of correlated holes.
After performing a particle hole transformation we can write
the basic Hamiltonian as

H = −
∑

!x,!η
t (!η)c̃†

!x+!η,σ c̃!x,σ + J
∑
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Here !η is the nearest neighbor vector on the triangular lattice.
This model corresponds to the limit of U → ∞. In this

limit the Fermionic commutation relations need to be modified
into the Gutzwiller–Hubbard projected operator [49] relations
(with σ̄ = −σ ):

c̃!x,σ = PGc!x,σPG,
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The presence of the Y factor is due to strong correlations and
makes the computation non-trivial. The number operator n!x,σ

is unaffected by the projection. Let us consider the kinetic
energy only, i.e. the t part, since this is expected to dominate

in transport properties, at least far enough from half filling and
for t ( J . The addition of the J part can be done without too
much difficulty; in fact, the numerics discussed below include
the full Hamiltonian.

Let us note down the expressions for the charge current and
the energy current at finite wave vectors by direct computation:
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∑
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This expression gives an idea of the complexity of the
operators that arise in the theory. Let us first present some
numerical results obtained by exact diagonalization [50, 51]
of small clusters of the triangular lattice. We can compute all
eigenstates and matrix elements for up to 14 or 15 site clusters
of the triangular lattice. We can therefore assemble the full
dynamical conductivities from equation (68). The involved
calculations are fully described in the papers [50, 51], and
we will content ourselves with displaying the main results.
Firstly, consider the absolute scale of the thermopower S∗ as a
function of temperature, shown in figure 4. The upper panel in
figure 4 shows that this comparison with experiment is quite
successful on a quantitative scale. One can next ask; how good
is the approximation of infinite frequency, purely in theoretical
terms. To answer this we compute the frequency dependence
of S(ω), as shown in figure 5. It is clear from this figure that
the approximation of high frequency is excellent, the maximum
error being less than 3%. Thus we are computing essentially
the dc transport object, at least for clusters of these sizes. This
benchmarking gives us confidence in the results of the high
frequency formulae for thermopower.

4.4. High temperature expansion for thermopower

We next show that rather simple considerations of our formulae
lead to an important prediction for enhancing the thermopower
for a triangular lattice system with a suitable choice of the
hopping parameter. We find a remarkable effect of the sign
of hopping on the transport part of the thermopower. This
is well illustrated in the lower panel of figure 4. This shows
the enhancement of the computed thermopower at low and
intermediate T s, achieved by flipping the sign of hopping from
the upper panel. We perform a simple computation at high
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gravitational field is again a proxy for temperature variation.
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and a dc field, then the result maps to equation (87). Such a
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so-called ‘absolute thermopower’. In this case, one studies a
single system with applied thermal gradients, which develops a
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that the metallic conduction is coexistent with a Curie–Weiss
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to the nomenclature of a Curie–Weiss metallic phase. The
basic modelling of this system, as suggested by Wang et al is
in terms of a strongly correlated Fermi system, with no double
occupancy of holes. The holes move on a triangular lattice
provided by the Co atoms, and the system may be regarded, to
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for t ( J . The addition of the J part can be done without too
much difficulty; in fact, the numerics discussed below include
the full Hamiltonian.

Let us note down the expressions for the charge current and
the energy current at finite wave vectors by direct computation:

K̂(k) = −
∑

!x,!η,σ

(t (!η) + µδ!η,0)ei!k·(!x+ 1
2 !η)c̃†

!x+!η,σ c̃!x,σ , (91)

Ĵx(k) = iqe

∑

!x,!η,σ

ηxt (!η)ei!k·(!x+ 1
2 !η)c̃†

!x+!η,σ c̃!x,σ ,

Ĵ Q
x (k) = − i

2

∑

!x,!η,!η′,σ

(ηx + η′
x)t (!η)t (!η′)

×ei!k·(!x+ 1
2 (!η+!η′))Yσ ′,σ (!x + !η′)c̃†

!x+!η+ !η′,σ ′ c̃!x,σ − µ

qe
Ĵx(k).

We evaluate the thermoelectric operator as

(xx = −qe

2

∑

!η, !η′,σ,σ ′,!x

(ηx + η′
x)

2t (!η)t ( !η′)Yσ ′,σ

×(!x + !η)c̃†
!x+!η+ !η′,σ ′ c̃!x,σ − qeµ

∑

!η,σ,!x
η2

xt (!η)c̃†
!x+!η,σ c̃!x,σ .

(92)

This expression gives an idea of the complexity of the
operators that arise in the theory. Let us first present some
numerical results obtained by exact diagonalization [50, 51]
of small clusters of the triangular lattice. We can compute all
eigenstates and matrix elements for up to 14 or 15 site clusters
of the triangular lattice. We can therefore assemble the full
dynamical conductivities from equation (68). The involved
calculations are fully described in the papers [50, 51], and
we will content ourselves with displaying the main results.
Firstly, consider the absolute scale of the thermopower S∗ as a
function of temperature, shown in figure 4. The upper panel in
figure 4 shows that this comparison with experiment is quite
successful on a quantitative scale. One can next ask; how good
is the approximation of infinite frequency, purely in theoretical
terms. To answer this we compute the frequency dependence
of S(ω), as shown in figure 5. It is clear from this figure that
the approximation of high frequency is excellent, the maximum
error being less than 3%. Thus we are computing essentially
the dc transport object, at least for clusters of these sizes. This
benchmarking gives us confidence in the results of the high
frequency formulae for thermopower.

4.4. High temperature expansion for thermopower

We next show that rather simple considerations of our formulae
lead to an important prediction for enhancing the thermopower
for a triangular lattice system with a suitable choice of the
hopping parameter. We find a remarkable effect of the sign
of hopping on the transport part of the thermopower. This
is well illustrated in the lower panel of figure 4. This shows
the enhancement of the computed thermopower at low and
intermediate T s, achieved by flipping the sign of hopping from
the upper panel. We perform a simple computation at high
T that throws light on this phenomenon. We focus on the
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DMFT are formulated in Matsubara frequency, trans-
port properties require real-frequency information. For
example, a general formula for the thermopower may be
written down using linear response theory [8] as

S(qx,ω) =
χĴx(qx),K(−qx)

(ω)

T χĴx(qx),ρ(−qx)
(ω)

, (1)

where the susceptibility of any two operators A,B is gi-
ven by χA,B(ω) = i

∫∞
0 dt eiωt−0+t〈[A(t), B(0)]〉 and

where ρ, K = H − µN̂ and Ĵx are the charge density,
the (grand canonical) Hamiltonian and the current ope-
rator respectively at finite wave vectors. In the fast limit
where q → 0 first and then ω → 0, the infinite size sys-
tem has arbitrarily closely spaced energy levels and en-
ough time to adjust to the applied inhomogeneous field.
This is the relevant limit for transport. [18] To evaluate
the resulting equations, one needs analytically continued
Green’s functions and vertex corrections. In the DMFT
limit the latter vanish for one band models [19, 20] but
one still needs analytical continuation of single-particle
Green’s functions, which can be done to obtain meaning-
ful results in the simplest cases [17]. We also use two new
approximate methods that have been proposed to com-
pute the thermopower [8, 11], namely the superfast limit
S∗ and the Kelvin formula SKelvin. They have the ad-
vantage that they do not require analytical continuation.
In addition, they have different physical content that will
help us identify the origin of enhanced thermopower.
Consider first the superfast limit of Eq.(1), S∗ =

limω$ωc #q→0 S(q,ω), where ωc is the largest characte-
ristic frequency in the problem. In the case of the Hub-
bard model, we would identify ωc = max{W,U} with W
the bandwidth. In terms of the thermoelectric operator
Φxx and the stress tensor τxx that appears in the f-sum
rule[8], the quantity S∗ is equal 〈Φxx〉

T 〈τxx〉 . Since the See-
beck coefficient is a ratio of transport coefficients where
the scattering rate cancels in the relaxation time approxi-
mation, it is conceivable that the result may have a weak
dependance on frequency. It turns out that S∗ captures
much of the many body content of the exact SKubo when
the characteristic ωc is not too large. [8] For the Hub-
bard model, the commutators can be evaluated exactly
and the correlation functions evaluated solely in terms of
the single-particle Green’s function [21, 22]

〈Φxx〉 =
qe
β

∑

k,n,σ

eiωn0
+

Gσ(k, iωn)

{

Σσ(k, iωn)
∂2εk
∂k2x

+
∂

∂kx

(

∂εk
∂kx

(εk − µ)

)

}

,

with qe the (negative) charge of the electron. While one
can show that limT→0〈Φxx〉 = 0 when U = 0, for interac-
ting systems it was found in numerical calculations [9, 10]
and from Fermi liquid theory that limT→0〈Φxx〉 %= 0 and
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Figure 1: (Color online) S in µV/K for U = 0 as a function
of T/t for different values of density : n = 0.2 (black (◦)), 0.4
(blue (×)), 0.6 (red (!)), 0.8 (green (♦)), 1.2 (cyan (#)), 1.4
(magenta ($)), 1.6 (brown (%)) and 1.8 (khaki (!)).

hence, S∗ diverges as T vanishes. At large frequency there
are reactive parts to the energy transport that should not
be considered part of the thermal current. We thus elimi-
nate the constant term limT→0〈Φxx〉 ≡ 〈Φxx〉0 by fitting
the low temperature part of 〈Φxx〉 to 〈Φxx〉0 + bT 2, a
functional form derived from the Sommerfeld expansion
that empirically remains valid in the presence of strong
interactions. We then define the thermopower in the su-
per fast limit by

S∗∗ =
1

T

〈Φxx〉−〈Φxx〉0
〈τxx〉

. (2)

We also consider the slow limit of the general formula
for thermopower, Eq. (1)). As noted earlier [8, 11], this
leads to a finite and interesting answer that is termed the
Kelvin formula

SKelvin = lim
#q→0
ω→0

=
kB
qe

(

∂S

∂N

)

T,V

= −
kB
qe

(

∂µ

∂T

)

V,N

(3)

where S is the entropy and where the last form fol-
lows from a Maxwell relation. The formulas for S∗∗ and
SKelvin approach SKubo from two different limits.
Results : The results for the Seebeck coefficient in the
band limit (U = 0) are displayed in Fig. 1 along with the
non-interacting density of states as an inset. The bare
bandwidth is 16t. The horizontal triangles & in this plot
indicate the temperature denoted as T&, below which the
leading term of the Sommerfeld expansion for the U = 0
case is 90% of the full answer. Below T& the thermopower
is essentially linear, as can be seen from the numerical
results. The low temperature thermopower changes sign
near the van Hove singularity located around n = 0.8
in the density of states. The absolute value of the ther-
mopower is maximum in the large T limit, and for an
almost empty or almost filled band where the largest de-
viations from particle-hole symmetry occur. The sharp
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Figure 3. In a Mott–Hubbard system both the Hall constant and the Seebeck coefficient have three zero crossings as the band is populated
from 0 ! n ! 2. The divergence at half filling is weaker in the Seebeck coefficient than in the Hall constant, as shown in this example from
the t–J model on the triangular lattice [29, 35]. The three zero crossings are in contrast to a single zero crossing of an uncorrelated band.
The distinction is understood as a consequence of the Mott insulating state at half filling [25, 37]. This insulating state determines the
physics of the carriers in its proximity, and these are argued here to be far from the Bloch–Boltzmann holes of standard transport theory. The
location of the zero crossings is determined by details such as the lattice structure. Reprinted with permission from [35]a. Copyright 2006
by the American Physical Society.

of these approaches a constant asymptotically, which can be
written down by inspection.

High freq thermopower S∗ = 〈!xx〉
T 〈τ xx〉

.

High freq Lorentz number L∗ = 〈#xx〉
T 2〈τ xx〉

− (S∗)2.

High freq figure of merit Z∗T = 〈!xx〉2

〈#xx〉〈τ xx〉 − 〈!xx〉2
.

(69)

As a result, we can write their dispersion relations readily;
they are

%eS(ω) = S∗ +
P
π

∫ ∞

−∞

dν

ν − ω
'mS(ν), (70)

%eL(ω) = L∗ +
P
π

∫ ∞

−∞

dν

ν − ω
'mL(ν), (71)

%eZ(ω) = Z∗ +
P
π

∫ ∞

−∞

dν

ν − ω
'mZ(ν). (72)

These transport quantities are generally real at only two values
of frequency, namely zero or infinity, and are very similar
in mathematical structure to the Hall resistivity discussed
in equation (11). The imaginary part is expected to go
linearly at small ω, falling off over some finite interval in ω

corresponding to the energy range of the contributing physical
processes. Thus the difference between the dc transport and
high frequency values can be expressed in all these cases as an

integral over the imaginary part of these three variables divided
by the frequency and may be amenable to direct measurements,
as in the case of the Hall effect.

4. Thermoelectric phenomena in correlated matter

4.1. Limiting case of free electrons, S∗ the Heikes–Mott and
Mott results

We propose the use of the high frequency variables
(equation (69)) in correlated matter, for reasons that are
essentially the same as those for proposing the high frequency
Hall constant, explained earlier. These variables are singled
out by the fact that they have a finite limit at high ω, as
compared with say κ(ω) or L12(ω), which vanish in that limit.
In particular, we expect that these high frequency limits of the
three variables listed in equation (69) are good indicators of
the dc transport measurements in correlated matter, where we
can use the projected t–J model, whereas for the Hubbard
model, these should be good only for intermediate to weak
coupling. The origin of this expectation is not repeated here
since it is identical to the argument given for the Hall constant
after equation (9) and the later paragraphs. In the following,
we will see the consequences of this proposal and estimate
its accuracy in some well-controlled examples. By way of
motivating this calculation, we show in figure 3 the computed
Hall and Seebeck coefficients for the triangular lattice, where
these objects have similar behaviour to a function of electron
filling in a Mott–Hubbard system.
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Particle Hole symmetry
Comparing Hall constant and Seebeck coefficients
Mott Hubbard holes at half filling are evident

Exact diagonalization tJ model 
10-27 site clusters
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Within the t-J model we study several experimentally accessible properties of the 2D-triangular lattice
system NaxCoO2, using a numerically exact canonical ensemble study of 12 to 18 site triangular toroidal
clusters as well as the icosahedron. Focusing on the doping regime of x! 0:7, we study the temperature
dependent specific heat, magnetic susceptibility, and the dynamic Hall coefficient RH"T;!# as well as the
magnetic field dependent thermopower. We find a crossover between two phases near x! 0:75 in suscep-
tibility and field suppression of the thermopower arising from strong correlations. An interesting connec-
tion is found between the temperature dependence of the diamagnetic susceptibility and the Hall co-
efficient. We predict a large thermopower enhancement, arising from transport corrections to the Heikes-
Mott formula, in a model situation where the sign of hopping is reversed from that applicable to NaxCoO2.
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The physics of the two-dimensional triangular lattice
system sodium cobaltate NaxCoO2 (NCO) is fascinating
[1], combining strong electron correlations and thermo-
electric physics. A Curie-Weiss metallic phase for dopings
x! 0:7 has been reported [2] where the observed physical
variables display an unusual mix of behaviors that are
hybrid between those of good metals and of insulating
systems challenging theory severely. The thermopower of
NCO is nearly 10 times higher than expected from typical
metals, generating excitement in the engineering and ma-
terial science communities, particularly applied to thermo-
electric devices. Here we show that strong electron
correlations, along with the geometrically frustrated lattice
of NCO, hold the key to explaining this mysterious state of
matter. We examine several experimentally accessible
properties of NCO within the t-J model [3–5]. We find
that strong electron correlations capture the essential phys-
ics and our results compare well with experiment.

In NCO the low spin Cobalt ion valence fluctuates
between a Co4% (spin 1=2) and a Co3% (spin 0) configura-
tion; the number of Co3% states is precisely x. The Co ions
form a triangular lattice, and photoemission [6,7] is con-
sistent with a single, holelike, band with hopping t < 0 and
n & 1% x electrons satisfying the Luttinger volume count.

The t-J model describes strongly correlated electron
systems by forbidding double occupancy of lattice sites.
We apply this model to NCO after an electron-hole trans-
formation, requiring t ! $t and hole doping j1$ nj. A
nonzero J couples nearest neighbor electrons via their spin
degree of freedom. For such strongly correlated systems
perturbation theory is doomed to failure from the outset
and we make progress through numerical exact diagonal-
ization on systems containing 12, 14, and 18 sites on
toroidal clusters [periodic boundary conditions (BC)] and
on ladder clusters (open BC in one direction) [8]. Thermo-
dynamics is considered within the canonical ensemble.

The Hilbert spaces of these finite systems are very big
(up to !80 000 states) and grow exponentially with the
number of sites. Therefore, all available symmetries are

used to reduce the dimension of the matrices that arise to
large but manageable proportions. However, Peierls phase
factors [9] are needed to describe an applied magnetic
field, which breaks or reduces the translational invariance,
thereby limiting us somewhat. By using a judicious choice
of the BC and of phases on bonds [10], we achieve a fairly
small nonzero flux per plaquette of !=Nf, where Nf is the
total number of triangular faces on the lattice [8]. The
ladder systems, however, enable an infinitesimal flux to
be chosen.

For NCO, photoemission supports a value for the hop-
ping of t & $100 K and we adopt it in this work. This
value is suggested by the ARPES data [6] on the loss of
coherence of the quasiparticles as well as the dispersion in
the composition range x! 0:7. The T dependence of the
chemical potential ""T# $""0# is another route to esti-
mating t [11].

Figure 1(a) shows the electronic specific heat Cv"T#, and
is compared with that for noninteracting electrons with the
same hopping. We find that the effect of correlations is a
shift in the peak to a smaller temperature and suppression
of its overall weight. This is expected since the Gutzwiller
projection in the t-J model reduces the number of available
states and hence the entropy. Because of a finite system
size induced gap in the spectrum, we expect an exponential
behavior of Cv"T# for T ' 20 K, the typical gap value.
Taking this into account, we are able to extract the linear
electronic contribution #T. The value of # is enhanced by
!1:5 over the noninteracting value; this enhancement
depends only slightly on J (neglecting the exponential
increase at T < 20 K due to the finite-system-induced
gap) and varies with system size by 0.2. J & 40 K (i.e.,
0:4jtj), which is fixed by the experimental system through a
comparison of the Curie-Weiss temperature with compu-
tations [2,8].

In Fig. 1(b)–1(f) we present the spin susceptibility $"T#
for several dopings around x! 0:7. In the band limit x !
1, as in the upper two panels (as well as results not shown),
we find the expected weakly T dependent but J insensitive
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of NCO, hold the key to explaining this mysterious state of
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properties of NCO within the t-J model [3–5]. We find
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tion; the number of Co3% states is precisely x. The Co ions
form a triangular lattice, and photoemission [6,7] is con-
sistent with a single, holelike, band with hopping t < 0 and
n & 1% x electrons satisfying the Luttinger volume count.

The t-J model describes strongly correlated electron
systems by forbidding double occupancy of lattice sites.
We apply this model to NCO after an electron-hole trans-
formation, requiring t ! $t and hole doping j1$ nj. A
nonzero J couples nearest neighbor electrons via their spin
degree of freedom. For such strongly correlated systems
perturbation theory is doomed to failure from the outset
and we make progress through numerical exact diagonal-
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toroidal clusters [periodic boundary conditions (BC)] and
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dynamics is considered within the canonical ensemble.
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(up to !80 000 states) and grow exponentially with the
number of sites. Therefore, all available symmetries are

used to reduce the dimension of the matrices that arise to
large but manageable proportions. However, Peierls phase
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thereby limiting us somewhat. By using a judicious choice
of the BC and of phases on bonds [10], we achieve a fairly
small nonzero flux per plaquette of !=Nf, where Nf is the
total number of triangular faces on the lattice [8]. The
ladder systems, however, enable an infinitesimal flux to
be chosen.

For NCO, photoemission supports a value for the hop-
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value is suggested by the ARPES data [6] on the loss of
coherence of the quasiparticles as well as the dispersion in
the composition range x! 0:7. The T dependence of the
chemical potential ""T# $""0# is another route to esti-
mating t [11].
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shift in the peak to a smaller temperature and suppression
of its overall weight. This is expected since the Gutzwiller
projection in the t-J model reduces the number of available
states and hence the entropy. Because of a finite system
size induced gap in the spectrum, we expect an exponential
behavior of Cv"T# for T ' 20 K, the typical gap value.
Taking this into account, we are able to extract the linear
electronic contribution #T. The value of # is enhanced by
!1:5 over the noninteracting value; this enhancement
depends only slightly on J (neglecting the exponential
increase at T < 20 K due to the finite-system-induced
gap) and varies with system size by 0.2. J & 40 K (i.e.,
0:4jtj), which is fixed by the experimental system through a
comparison of the Curie-Weiss temperature with compu-
tations [2,8].

In Fig. 1(b)–1(f) we present the spin susceptibility $"T#
for several dopings around x! 0:7. In the band limit x !
1, as in the upper two panels (as well as results not shown),
we find the expected weakly T dependent but J insensitive
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Pauli paramagnetic behavior. When x is lowered below
x ! 0:75 (bottom three panels), !"T# shows strong Curie-
Weiss-like T and J dependence, and is significantly renor-
malized from the noninteracting value at low T. This
indicates a crossover to the strong-correlation induced
local moment behavior for x < 0:75 which closely paral-
lels experimental findings [2]. In this Curie-Weiss phase,
the behavior at high T is described by the Curie-Weiss

form !"T# ! 1
3

1
v

"2
Bp

2
eff

kB"T$## with a negative Weiss temperature
# and effective magnetic moment peff ; v ! V=N is the unit
cell volume. When continuing the analysis to x ! 0, anti-
ferromagnetic (AFM) correlations increase and we find
that #"x; J# ! $cJeff"x# where Jeff"x# ! J"1% c00xjtj# %
c0xjtj, with c ! 4:0, c0 ! 0:01425, and c00 ! $0:9175.
The c0 term originates in the kinetic antiferromagnetism
of the frustrated lattice [14], and signifies that even in the
absence of J, there is a tendency for AFM order, i.e., in a
direction opposite to the usual Nagaoka mechanism for the
square lattice [15].

Experimentally, the Hall coefficient of NCO is remark-
able in many respects. Most striking is the unbounded
linear increase with temperature of the Hall coefficient
RH. To understand this we perform the brute force exact
summations of Kubo’s formulas for various conductivities
[9] by introducing a level width, i.e., a broadening ! !
!% i$ with $ equal to the mean energy level spacing. In
addition, we evaluate the high frequency limit [3] of RH
(called R&

H) for all T. Recall that the high T estimates of R&
H

led to a prediction [3,9] of the linear T dependence of the
Hall constant for NCO, which was successfully verified
[16]. We are thus able to provide a purely theoretical
benchmarking of this idea as well, subject of course to
the limitations of the finite-size clusters.

Focusing on the region of doping around x' 0:7,
Fig. 2(a) shows the Hall coefficient as a function of tem-
perature and frequency. We find that the Hall coefficient is
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FIG. 2 (color online). Hall coefficient and thermopower.
(a) Comparison of several results for the Hall coefficient
RH"T# at x ! 0:75 with experiment in Ref. [16] at x ! 0:71 (red
squares): R&

H (blue dot-dashed line), RH"! ! 0# (blue dashed
line), RH (orange solid line) derived from !d (at x ! 0:83,
ladder); the dc limit required a broadening of the frequency !!
!% i$ with $ ( 3jtj to eliminate finite-size artifacts. All results
are for 12-site clusters and J=jtj ! 0. (b) Infinite frequency ther-
mopower S& versus T for a 12-site torus at x ! 0:75 and x !
0:67. The solid black and dashed blue lines correspond to
J=jtj ! 0, and 0.4 at x ! 0:75, respectively, while the solid
orange and dashed-dotted red lines correspond to J=jtj ! 0,
and 0.4 at x ! 0:67, respectively. S&"T# for t ! $100 K relevant
for NCO. The diamonds and stars represent measured thermo-
power for NCO at x ! 0:68 from Refs. [2,13]. (c) Our prediction
for S&"T# for the case when the sign of the hopping is reversed
(t ! 100 K).
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FIG. 1 (color online). Specific heat and susceptibility.
(a) Specific heat Cv"T# for x ! 0:72, computed on the 18-site
cluster, comparison of J ! 0 (bottom) with J=jtj ! 0:4 (middle)
and bare (Hubbard U ! 0) specific heat (top), dotted straight
lines show linear fits and % values for J ! 0 and U ! 0 in units
of mJ="molK2#. (b)–(f) Susceptibility !"T# for dopings around
x' 0:7. The dotted curves indicate the bare susceptibility, and
arrows indicate the evolution of J=jtj from 0 to 0.5 in steps of 0.1
(red to yellow). Note the change of scale in different panels.
These results combine two different clusters, a 12-site torus (x !
0:58, 0.67, 0.75) and a 14-site torus (x ! 0:71, 0.79). The
difference in x ! 0:71 and x ! 0:75 shows that !"T# transitions
from a Curie-Weiss to Pauli paramagnetic behavior in this range.
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Pauli paramagnetic behavior. When x is lowered below
x ! 0:75 (bottom three panels), !"T# shows strong Curie-
Weiss-like T and J dependence, and is significantly renor-
malized from the noninteracting value at low T. This
indicates a crossover to the strong-correlation induced
local moment behavior for x < 0:75 which closely paral-
lels experimental findings [2]. In this Curie-Weiss phase,
the behavior at high T is described by the Curie-Weiss

form !"T# ! 1
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# and effective magnetic moment peff ; v ! V=N is the unit
cell volume. When continuing the analysis to x ! 0, anti-
ferromagnetic (AFM) correlations increase and we find
that #"x; J# ! $cJeff"x# where Jeff"x# ! J"1% c00xjtj# %
c0xjtj, with c ! 4:0, c0 ! 0:01425, and c00 ! $0:9175.
The c0 term originates in the kinetic antiferromagnetism
of the frustrated lattice [14], and signifies that even in the
absence of J, there is a tendency for AFM order, i.e., in a
direction opposite to the usual Nagaoka mechanism for the
square lattice [15].

Experimentally, the Hall coefficient of NCO is remark-
able in many respects. Most striking is the unbounded
linear increase with temperature of the Hall coefficient
RH. To understand this we perform the brute force exact
summations of Kubo’s formulas for various conductivities
[9] by introducing a level width, i.e., a broadening ! !
!% i$ with $ equal to the mean energy level spacing. In
addition, we evaluate the high frequency limit [3] of RH
(called R&

H) for all T. Recall that the high T estimates of R&
H

led to a prediction [3,9] of the linear T dependence of the
Hall constant for NCO, which was successfully verified
[16]. We are thus able to provide a purely theoretical
benchmarking of this idea as well, subject of course to
the limitations of the finite-size clusters.

Focusing on the region of doping around x' 0:7,
Fig. 2(a) shows the Hall coefficient as a function of tem-
perature and frequency. We find that the Hall coefficient is
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(a) Comparison of several results for the Hall coefficient
RH"T# at x ! 0:75 with experiment in Ref. [16] at x ! 0:71 (red
squares): R&

H (blue dot-dashed line), RH"! ! 0# (blue dashed
line), RH (orange solid line) derived from !d (at x ! 0:83,
ladder); the dc limit required a broadening of the frequency !!
!% i$ with $ ( 3jtj to eliminate finite-size artifacts. All results
are for 12-site clusters and J=jtj ! 0. (b) Infinite frequency ther-
mopower S& versus T for a 12-site torus at x ! 0:75 and x !
0:67. The solid black and dashed blue lines correspond to
J=jtj ! 0, and 0.4 at x ! 0:75, respectively, while the solid
orange and dashed-dotted red lines correspond to J=jtj ! 0,
and 0.4 at x ! 0:67, respectively. S&"T# for t ! $100 K relevant
for NCO. The diamonds and stars represent measured thermo-
power for NCO at x ! 0:68 from Refs. [2,13]. (c) Our prediction
for S&"T# for the case when the sign of the hopping is reversed
(t ! 100 K).
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FIG. 1 (color online). Specific heat and susceptibility.
(a) Specific heat Cv"T# for x ! 0:72, computed on the 18-site
cluster, comparison of J ! 0 (bottom) with J=jtj ! 0:4 (middle)
and bare (Hubbard U ! 0) specific heat (top), dotted straight
lines show linear fits and % values for J ! 0 and U ! 0 in units
of mJ="molK2#. (b)–(f) Susceptibility !"T# for dopings around
x' 0:7. The dotted curves indicate the bare susceptibility, and
arrows indicate the evolution of J=jtj from 0 to 0.5 in steps of 0.1
(red to yellow). Note the change of scale in different panels.
These results combine two different clusters, a 12-site torus (x !
0:58, 0.67, 0.75) and a 14-site torus (x ! 0:71, 0.79). The
difference in x ! 0:71 and x ! 0:75 shows that !"T# transitions
from a Curie-Weiss to Pauli paramagnetic behavior in this range.
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Figure 4. Upper panel: thermopower computed for the triangular
lattice t–J model in [35], compared with the experimental data
of [18] (stars) and [19] (diamonds). The absolute scale is set by a
single parameter t = −100 K. The different curves correspond to
various values of doping x and J/|t |. Lower panel: this shows the
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prediction of this theory for a fiduciary hole doped sodium cobaltate
type system. The peak value of 250 µV K−1 can be further
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-1
-0.5

0
 0.5

1
 1.5

2
 2.5

(S(ω)-S*) (µV/K)

x=0.67, t>0,  J=0.2|t|

3
6

9
12

15
18

0
2

4
6

8
10

T/|t|ω/|t|

(S(ω)-S*) (µV/K)
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using a p–h mapping. Recalling that the scale of S ∼ 100 µV K−1,
we conclude that the frequency dependence is indeed very small
(∼3% at most). Reprinted with permission from [51]. Copyright
2007 by the American Physical Society.

kinetic energy which is expected to dominate the transport
contributions. Let us compute the thermopower S∗ from
equations (69) and (92)

S∗ = − µ

qeT
+

qe!

T 〈τ xx〉
, (93)

where

! = −1
2

∑

&η, &η′,&x

(ηx + η′
x)

2t (&η)t ( &η′)〈Yσ ′,σ (&x + &η)c̃†
&x+&η+ &η′,σ ′ c̃&x,σ 〉.

(94)

The computation of the different parts proceeds as follows: we
show readily that (for the hole doped case) using translation
invariance and with n as the number of particles per site at
high T ,

〈τ xx〉 = 6%q2
e t〈c̃†

1 c̃0〉 ∼ 3%q2
e βt2n(1 − n). (95)

The structure of the term equation (94) is most instructive.
At high temperatures, for a square lattice we need to go to
second order in βt to get a contribution with ηx +η′

x (= 0 to the
expectation of the hopping 〈c̃†

&x+&η+ &η′,σ ′ c̃&x,σ 〉. For the triangular
lattice, on the other hand, we already have a contribution at
first order. For the triangular lattice, corresponding to each
nearest neighbor, there are precisely two neighbors where the
third hop is a nearest neighbor hop. A short calculation gives

! ∼ −3%t2
∑

σ,σ ′

〈Yσ ′,σ (&η)c̃†
&η+ &η′,σ ′ c̃&0,σ 〉. (96)

The spins must be the same to the leading order in βt where
we generate a hopping term c̃†

&0,σ
c̃&η+ &η′,σ from an expansion of

exp(−βK), and hence a simple estimation yields

! = − 3
2%t3βn(1 − n)(2 − n) + O(β3). (97)

This together with µ/kBT = log(n/2(1−n))+O(β2t2) gives
us the result for 0 ! n ! 1

S∗ = kB

qe

{
log[2(1 − n)/n] − βt

2 − n

2
+ O(β2t2)

}
, (98)

and

S∗ = −kB

qe

{
log[2(n − 1)/(2 − n)] + βt

n

2
+ O(β2t2)

}
(99)

for 1 ! n ! 2 using particle hole symmetry [37].
We observe that the first term in equation (93) from

µ(T ) arising from thermodynamics, termed the Heikes–Mott
contribution, dominates at very high T . The approach to
this value is governed by the second term of equation (93),
called the transport term. This transport term is O(βt)
for the triangular lattice, whereas it is only O(βt)2 for the
square lattice due to the existence of closed loops of length
three in the former. The high T expansion clearly identifies
the role of the lattice topology here. The other important
consequence is the dependence upon the sign of the hopping
in the transport term. To be specific, for electron doping the
thermopower in equation (99) shows that S approaches its high
T limit from below as long as t < 0, as we find for sodium
cobaltates [18, 19]. On the other hand, if we could flip the
sign of the hopping, as in a fiduciary hole doped cobalt oxide
layer, the high T value would be reached from above. Since
the S must vanish at low T , this observation implies that we
must find a maximum in S(T ) at some intermediate T . This
then motivates the calculation for a fiduciary system with the
flipped sign of hopping. As seen in figures 4, and 6, numerical

17

Here S* is ~ 100 microVolts, hence maximum error is about   3%!!!

Exact calculation of Kubo formula
summing all states triangular lattice clusters



Pauli paramagnetic behavior. When x is lowered below
x ! 0:75 (bottom three panels), !"T# shows strong Curie-
Weiss-like T and J dependence, and is significantly renor-
malized from the noninteracting value at low T. This
indicates a crossover to the strong-correlation induced
local moment behavior for x < 0:75 which closely paral-
lels experimental findings [2]. In this Curie-Weiss phase,
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ferromagnetic (AFM) correlations increase and we find
that #"x; J# ! $cJeff"x# where Jeff"x# ! J"1% c00xjtj# %
c0xjtj, with c ! 4:0, c0 ! 0:01425, and c00 ! $0:9175.
The c0 term originates in the kinetic antiferromagnetism
of the frustrated lattice [14], and signifies that even in the
absence of J, there is a tendency for AFM order, i.e., in a
direction opposite to the usual Nagaoka mechanism for the
square lattice [15].

Experimentally, the Hall coefficient of NCO is remark-
able in many respects. Most striking is the unbounded
linear increase with temperature of the Hall coefficient
RH. To understand this we perform the brute force exact
summations of Kubo’s formulas for various conductivities
[9] by introducing a level width, i.e., a broadening ! !
!% i$ with $ equal to the mean energy level spacing. In
addition, we evaluate the high frequency limit [3] of RH
(called R&

H) for all T. Recall that the high T estimates of R&
H

led to a prediction [3,9] of the linear T dependence of the
Hall constant for NCO, which was successfully verified
[16]. We are thus able to provide a purely theoretical
benchmarking of this idea as well, subject of course to
the limitations of the finite-size clusters.

Focusing on the region of doping around x' 0:7,
Fig. 2(a) shows the Hall coefficient as a function of tem-
perature and frequency. We find that the Hall coefficient is
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(a) Comparison of several results for the Hall coefficient
RH"T# at x ! 0:75 with experiment in Ref. [16] at x ! 0:71 (red
squares): R&

H (blue dot-dashed line), RH"! ! 0# (blue dashed
line), RH (orange solid line) derived from !d (at x ! 0:83,
ladder); the dc limit required a broadening of the frequency !!
!% i$ with $ ( 3jtj to eliminate finite-size artifacts. All results
are for 12-site clusters and J=jtj ! 0. (b) Infinite frequency ther-
mopower S& versus T for a 12-site torus at x ! 0:75 and x !
0:67. The solid black and dashed blue lines correspond to
J=jtj ! 0, and 0.4 at x ! 0:75, respectively, while the solid
orange and dashed-dotted red lines correspond to J=jtj ! 0,
and 0.4 at x ! 0:67, respectively. S&"T# for t ! $100 K relevant
for NCO. The diamonds and stars represent measured thermo-
power for NCO at x ! 0:68 from Refs. [2,13]. (c) Our prediction
for S&"T# for the case when the sign of the hopping is reversed
(t ! 100 K).
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FIG. 1 (color online). Specific heat and susceptibility.
(a) Specific heat Cv"T# for x ! 0:72, computed on the 18-site
cluster, comparison of J ! 0 (bottom) with J=jtj ! 0:4 (middle)
and bare (Hubbard U ! 0) specific heat (top), dotted straight
lines show linear fits and % values for J ! 0 and U ! 0 in units
of mJ="molK2#. (b)–(f) Susceptibility !"T# for dopings around
x' 0:7. The dotted curves indicate the bare susceptibility, and
arrows indicate the evolution of J=jtj from 0 to 0.5 in steps of 0.1
(red to yellow). Note the change of scale in different panels.
These results combine two different clusters, a 12-site torus (x !
0:58, 0.67, 0.75) and a 14-site torus (x ! 0:71, 0.79). The
difference in x ! 0:71 and x ! 0:75 shows that !"T# transitions
from a Curie-Weiss to Pauli paramagnetic behavior in this range.
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Data versus calculation for
NCO

Where did this insight come from and can it be used?
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Figure 4. Upper panel: thermopower computed for the triangular
lattice t–J model in [35], compared with the experimental data
of [18] (stars) and [19] (diamonds). The absolute scale is set by a
single parameter t = −100 K. The different curves correspond to
various values of doping x and J/|t |. Lower panel: this shows the
effect of reversing the sign of hopping in this system. This is a
prediction of this theory for a fiduciary hole doped sodium cobaltate
type system. The peak value of 250 µV K−1 can be further
manipulated upwards by changing material parameters J, x.

-1
-0.5

0
 0.5

1
 1.5

2
 2.5

(S(ω)-S*) (µV/K)

x=0.67, t>0,  J=0.2|t|

3
6

9
12

15
18

0
2

4
6

8
10

T/|t|ω/|t|

(S(ω)-S*) (µV/K)

Figure 5. The frequency dependence of the thermopower computed
for the triangular lattice t–J model from [51]. The sign of hopping
is flipped relative to that in figure (4) in this and all other figures by
using a p–h mapping. Recalling that the scale of S ∼ 100 µV K−1,
we conclude that the frequency dependence is indeed very small
(∼3% at most). Reprinted with permission from [51]. Copyright
2007 by the American Physical Society.

kinetic energy which is expected to dominate the transport
contributions. Let us compute the thermopower S∗ from
equations (69) and (92)

S∗ = − µ

qeT
+

qe!

T 〈τ xx〉
, (93)

where

! = −1
2

∑

&η, &η′,&x

(ηx + η′
x)

2t (&η)t ( &η′)〈Yσ ′,σ (&x + &η)c̃†
&x+&η+ &η′,σ ′ c̃&x,σ 〉.

(94)

The computation of the different parts proceeds as follows: we
show readily that (for the hole doped case) using translation
invariance and with n as the number of particles per site at
high T ,

〈τ xx〉 = 6%q2
e t〈c̃†

1 c̃0〉 ∼ 3%q2
e βt2n(1 − n). (95)

The structure of the term equation (94) is most instructive.
At high temperatures, for a square lattice we need to go to
second order in βt to get a contribution with ηx +η′

x (= 0 to the
expectation of the hopping 〈c̃†

&x+&η+ &η′,σ ′ c̃&x,σ 〉. For the triangular
lattice, on the other hand, we already have a contribution at
first order. For the triangular lattice, corresponding to each
nearest neighbor, there are precisely two neighbors where the
third hop is a nearest neighbor hop. A short calculation gives

! ∼ −3%t2
∑

σ,σ ′

〈Yσ ′,σ (&η)c̃†
&η+ &η′,σ ′ c̃&0,σ 〉. (96)

The spins must be the same to the leading order in βt where
we generate a hopping term c̃†

&0,σ
c̃&η+ &η′,σ from an expansion of

exp(−βK), and hence a simple estimation yields

! = − 3
2%t3βn(1 − n)(2 − n) + O(β3). (97)

This together with µ/kBT = log(n/2(1−n))+O(β2t2) gives
us the result for 0 ! n ! 1

S∗ = kB

qe

{
log[2(1 − n)/n] − βt

2 − n

2
+ O(β2t2)

}
, (98)

and

S∗ = −kB

qe

{
log[2(n − 1)/(2 − n)] + βt

n

2
+ O(β2t2)

}
(99)

for 1 ! n ! 2 using particle hole symmetry [37].
We observe that the first term in equation (93) from

µ(T ) arising from thermodynamics, termed the Heikes–Mott
contribution, dominates at very high T . The approach to
this value is governed by the second term of equation (93),
called the transport term. This transport term is O(βt)
for the triangular lattice, whereas it is only O(βt)2 for the
square lattice due to the existence of closed loops of length
three in the former. The high T expansion clearly identifies
the role of the lattice topology here. The other important
consequence is the dependence upon the sign of the hopping
in the transport term. To be specific, for electron doping the
thermopower in equation (99) shows that S approaches its high
T limit from below as long as t < 0, as we find for sodium
cobaltates [18, 19]. On the other hand, if we could flip the
sign of the hopping, as in a fiduciary hole doped cobalt oxide
layer, the high T value would be reached from above. Since
the S must vanish at low T , this observation implies that we
must find a maximum in S(T ) at some intermediate T . This
then motivates the calculation for a fiduciary system with the
flipped sign of hopping. As seen in figures 4, and 6, numerical
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I. INTRODUCTION

A complete understanding of thermoelectric effects is im-
portant in the physical sciences where wide ranging applica-
tions utilize materials with large thermoelectric power S
!Seebeck coefficient". Thermoelectrics of strongly correlated
materials are of fundamental interest since they present an
important and challenging problem. Recent experiments
have revealed that some materials, such as sodium co-
balt oxide NaxCoO2 !NCO", possess unusually large
thermopower,1 due in part to strong electron interactions.2

Frustrated systems,3 such as NCO, might produce further
surprises in enhanced thermopower in some situations.2,4 In
addition, emerging work5 from the fractional quantum-Hall
effect !FQHE" is revitalizing thermopower as a tool to inves-
tigative the topological non-Abelian quasiparticles6 thought
to exist at filling factor 5/2.7

Here we present the Kelvin formula for thermopower,
SKelvin. This is a formula inspired by Lord Kelvin’s thermo-
dynamic treatment of this variable in 1854.8 It is found by
reconsidering the sequence of taking the thermodynamic and
uniform limits, and is a valuable approximation to the exact,
but computationally intractable result, obtained via Onsager
and Kubo’s treatments.9,10

For strongly correlated systems, such as the t-J model,
SKelvin is found to possess an accuracy between the rather
coarse Mott-Heikes !MH" formulation, and a better argued
high-frequency limit formulation due to Shastry4 and studied
in Refs. 2 and 11. For intermediate couplings, such as the
Hubbard model, we argue that SKelvin provides one of the best
available approximations, it is better than the high-frequency
limit. In certain dissipationless situations, such as the FQHE,
SKelvin is exact, thereby providing an elegant and simple deri-
vation for the thermopower formula used in Ref. 5 !derived
originally in Ref. 12".

SKelvin is obtained by completing Shastry’s argument11 for
the “absolute thermopower,” i.e., S of an isolated system.
Kelvin originally studied8 this object using the then available
techniques, later he and others emphasized relative ther-

mopower between two materials. Let us revert to the abso-
lute thermopower as a starting point and imagine a long iso-
lated cylinder of material of length Ł subject to a time-
dependent electric field −"" and temperature gradient "T.
−"" couples to the dipole moment and "T couples to the
moment of the energy density !cf. Luttinger13". These fields
individually generate a dipole moment linear in the fields to
lowest order, and the condition for the cancellation of the
two contributions, i.e., the zero dipole moment !or zero cur-
rent" condition, leads to the thermopower S for a finite sys-
tem size Ł at finite frequencies # as S!Ł ,#"= ""

"T #Ł ,#$.
The thermodynamic limit, Ł→$, and the static limit, #

→0, must both be taken, as known from Onsager9 and
others.13,14 Kubo’s exact formulas obtain in the fast or trans-
port limit, where Ł→$ before #→0. Taking the static limit
#→0 before Ł→$ leads to the slow, where Kelvin’s ap-
proximate formula arises and is expressible solely in terms of
equilibrium thermodynamic variables.

We transcribe this discussion to a more convenient peri-
odic system, by trading the length scale Ł for a wave vector
qx=2% /Ł and the Ł→$ limit by the uniform limit qx→0.
The slow limit corresponds to lim#qx→0, #→0$ and the
fast limit corresponds to lim##→0, qx→0$. The ther-
mopower measures the induced thermoelectric voltage due to
a temperature gradient and, as such, a useful and general
formula for thermopower is given by the ratio between the
thermoelectrical and electrical conductivities,11

S!qx,#" =
&'!qx",K̂!−qx"!#"

T&'!qx",'!−qx"!#"
, !1"

where

&Â,B̂!#" = i%
0

$

dte!i#−0+"t&'Â!t",B̂!0"() !2"
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tions utilize materials with large thermoelectric power S
!Seebeck coefficient". Thermoelectrics of strongly correlated
materials are of fundamental interest since they present an
important and challenging problem. Recent experiments
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effect !FQHE" is revitalizing thermopower as a tool to inves-
tigative the topological non-Abelian quasiparticles6 thought
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Here we present the Kelvin formula for thermopower,
SKelvin. This is a formula inspired by Lord Kelvin’s thermo-
dynamic treatment of this variable in 1854.8 It is found by
reconsidering the sequence of taking the thermodynamic and
uniform limits, and is a valuable approximation to the exact,
but computationally intractable result, obtained via Onsager
and Kubo’s treatments.9,10

For strongly correlated systems, such as the t-J model,
SKelvin is found to possess an accuracy between the rather
coarse Mott-Heikes !MH" formulation, and a better argued
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Hubbard model, we argue that SKelvin provides one of the best
available approximations, it is better than the high-frequency
limit. In certain dissipationless situations, such as the FQHE,
SKelvin is exact, thereby providing an elegant and simple deri-
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originally in Ref. 12".

SKelvin is obtained by completing Shastry’s argument11 for
the “absolute thermopower,” i.e., S of an isolated system.
Kelvin originally studied8 this object using the then available
techniques, later he and others emphasized relative ther-

mopower between two materials. Let us revert to the abso-
lute thermopower as a starting point and imagine a long iso-
lated cylinder of material of length Ł subject to a time-
dependent electric field −"" and temperature gradient "T.
−"" couples to the dipole moment and "T couples to the
moment of the energy density !cf. Luttinger13". These fields
individually generate a dipole moment linear in the fields to
lowest order, and the condition for the cancellation of the
two contributions, i.e., the zero dipole moment !or zero cur-
rent" condition, leads to the thermopower S for a finite sys-
tem size Ł at finite frequencies # as S!Ł ,#"= ""

"T #Ł ,#$.
The thermodynamic limit, Ł→$, and the static limit, #

→0, must both be taken, as known from Onsager9 and
others.13,14 Kubo’s exact formulas obtain in the fast or trans-
port limit, where Ł→$ before #→0. Taking the static limit
#→0 before Ł→$ leads to the slow, where Kelvin’s ap-
proximate formula arises and is expressible solely in terms of
equilibrium thermodynamic variables.

We transcribe this discussion to a more convenient peri-
odic system, by trading the length scale Ł for a wave vector
qx=2% /Ł and the Ł→$ limit by the uniform limit qx→0.
The slow limit corresponds to lim#qx→0, #→0$ and the
fast limit corresponds to lim##→0, qx→0$. The ther-
mopower measures the induced thermoelectric voltage due to
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A complete understanding of thermoelectric effects is im-
portant in the physical sciences where wide ranging applica-
tions utilize materials with large thermoelectric power S
!Seebeck coefficient". Thermoelectrics of strongly correlated
materials are of fundamental interest since they present an
important and challenging problem. Recent experiments
have revealed that some materials, such as sodium co-
balt oxide NaxCoO2 !NCO", possess unusually large
thermopower,1 due in part to strong electron interactions.2

Frustrated systems,3 such as NCO, might produce further
surprises in enhanced thermopower in some situations.2,4 In
addition, emerging work5 from the fractional quantum-Hall
effect !FQHE" is revitalizing thermopower as a tool to inves-
tigative the topological non-Abelian quasiparticles6 thought
to exist at filling factor 5/2.7

Here we present the Kelvin formula for thermopower,
SKelvin. This is a formula inspired by Lord Kelvin’s thermo-
dynamic treatment of this variable in 1854.8 It is found by
reconsidering the sequence of taking the thermodynamic and
uniform limits, and is a valuable approximation to the exact,
but computationally intractable result, obtained via Onsager
and Kubo’s treatments.9,10

For strongly correlated systems, such as the t-J model,
SKelvin is found to possess an accuracy between the rather
coarse Mott-Heikes !MH" formulation, and a better argued
high-frequency limit formulation due to Shastry4 and studied
in Refs. 2 and 11. For intermediate couplings, such as the
Hubbard model, we argue that SKelvin provides one of the best
available approximations, it is better than the high-frequency
limit. In certain dissipationless situations, such as the FQHE,
SKelvin is exact, thereby providing an elegant and simple deri-
vation for the thermopower formula used in Ref. 5 !derived
originally in Ref. 12".

SKelvin is obtained by completing Shastry’s argument11 for
the “absolute thermopower,” i.e., S of an isolated system.
Kelvin originally studied8 this object using the then available
techniques, later he and others emphasized relative ther-

mopower between two materials. Let us revert to the abso-
lute thermopower as a starting point and imagine a long iso-
lated cylinder of material of length Ł subject to a time-
dependent electric field −"" and temperature gradient "T.
−"" couples to the dipole moment and "T couples to the
moment of the energy density !cf. Luttinger13". These fields
individually generate a dipole moment linear in the fields to
lowest order, and the condition for the cancellation of the
two contributions, i.e., the zero dipole moment !or zero cur-
rent" condition, leads to the thermopower S for a finite sys-
tem size Ł at finite frequencies # as S!Ł ,#"= ""

"T #Ł ,#$.
The thermodynamic limit, Ł→$, and the static limit, #

→0, must both be taken, as known from Onsager9 and
others.13,14 Kubo’s exact formulas obtain in the fast or trans-
port limit, where Ł→$ before #→0. Taking the static limit
#→0 before Ł→$ leads to the slow, where Kelvin’s ap-
proximate formula arises and is expressible solely in terms of
equilibrium thermodynamic variables.

We transcribe this discussion to a more convenient peri-
odic system, by trading the length scale Ł for a wave vector
qx=2% /Ł and the Ł→$ limit by the uniform limit qx→0.
The slow limit corresponds to lim#qx→0, #→0$ and the
fast limit corresponds to lim##→0, qx→0$. The ther-
mopower measures the induced thermoelectric voltage due to
a temperature gradient and, as such, a useful and general
formula for thermopower is given by the ratio between the
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=!
n,m

pn − pm

!m − !n + "
"n#Â#m$"m#B̂#n$ %3&

is the susceptibility of any two operators Â and B̂, where #,
K̂= Ĥ−$N̂, and Ĵx are the charge density, the %grand& Hamil-
tonian, and the charge current operator, respectively, at finite
wave vectors; Ĥ, $, and N̂ are the Hamiltonian, the chemical
potential, and the total number operator, respectively. The
susceptibility written in Eq. %3& is the Lehmann representa-
tion 'where pn=exp%−%!n& /Z is the probability of the quan-
tum state #n$ with energy !n and Z is the partition function
and %=1 /kBT with kB the Boltzmann constant( which we
find useful below. With Eq. %1&, we can take different limits
and obtain various interesting formulas.

II. THERMOPOWER FORMULAS

A. Kubo formula

Taking the fast limit and using the continuity equations to
pass from densities to current operators, Eq. %1& gives the
exact Kubo result10

SKubo =
1
T

)
0

&

dt)
0

%

d'"Ĵx
E%t − i'&Ĵx%0&$

)
0

&

dt)
0

%

d'"Ĵx%t − i'&Ĵx%0&$
−

$%T&
qeT

, %4&

where qe is the charge of the carriers and ĴE the energy
current.

B. Mott-Heikes formula

For narrow band systems, such as NCO, high-Tc super-
conductors, or heavy-fermion systems, the so-called MH ap-
proximation introduced by Heikes %popularized by Mott15& is
written SMH= '$0−$%T&( /qeT, where $0*$%T=0&. SMH is
obtained by rather drastically replacing the first part of Eq.
%4& by the zero-temperature chemical potential $0 to make
the theory sensibly behaved as T→0. From thermodynamics,
we know that − $%T&

T = % !S
!N &E,V, and, hence, SMH relates ther-

mopower to the partial derivative of entropy S with particle
number N, at a fixed energy E and volume V. We see below
that SKelvin is similar but with more natural “held” variables,
namely, T and V.

C. High-frequency formula

From Eq. %1&, we can make a high-frequency approxima-
tion, where "("c %"c representing all finite characteristic
energy scales&, leading to the object S!. The formal expres-
sion and evaluation for S! are discussed elsewhere11 and we
only quote the results. We have argued that S! is the best
possible approximation to the exact Kubo formula for
strongly correlated systems2 such as the t-J model since the
high-frequency limit respects the single occupancy constraint
and is closer to the dc limit than initially expected. It is not
specifically suited for Hubbard-type models, since the high-
frequency limit assumes "(U, and cannot capture the phys-

ics of correlations effectively.11 We will see that SKelvin steps
into this breach and provides a very useful alternative for
Hubbard-type models.16

D. Kelvin formula

To obtain an approximate thermodynamical expression,
we consider the slow limit of Eq. %1&. S is among the few
objects %along with Hall constant and Lorentz number&
where this process gives finite and approximate results, un-
like the electrical conductivity where the slow limit gives
meaningless results.11 This limit is identified with Kelvin
since he essentially took the equilibrium limit of an interact-
ing gas of particles. The slow limit %qx→0, "→0& is easi-
est to compute starting from Eq. %1&,

SKelvin = lim
qx→0

)#%qx&,K̂%−qx&%0&

T)#%qx&,#%−qx&%0&
. %5&

To simplify we first consider the numerator of Eq. %5& which
we rewrite by first using the Lehmann representation and
then taking the qx→0 limit. Note that #̂%qx& tends to a con-
served quantity qeN and cannot mix states of different energy
so !m→!n. Thus,

lim
qx→0

)#%qx&,K̂%−qx&%0& = lim
qx→0

!
n,m

pn − pm

!m − !n
"n##̂%qx&#m$"m#K̂%− qx&#n$

= lim
!m→!n

!
n,m

pn − pm

!m − !n
"n##̂%qx&#m$"m#K̂%− qx&

*#n$ = lim
!m→!n

!
n,m

pn
1 − e%%!n−!m&

!m − !n
"n##̂%qx&

*#m$"m#K̂%− qx&#n$

= qe!
n,m

%pn+!n,!m
"n#N̂#m$"m#K̂#n$

= qe%'"N̂K̂$ − "N̂$"K̂$(

= qe+ d

d$
"Ĥ$ − $

d

d$
"N̂$, . %6&

The derivative with respect to $ in Eq. %6& is within the
grand-canonical ensemble and performed with a fixed V and
T. The denominator of Eq. %5& is treated similarly yielding
qe

2%'"N̂2$− "N̂$2(=qe
2d"N̂$ /d$. Combining it with Eq. %6&,

yields

SKelvin =
1

qeT

d

d$
"Ĥ$ − $

d

d$
"N̂$

d

d$
"N̂$

. %7&

To further simplify Eq. %7& we note a relation found in
textbooks on thermodynamics in the grand-canonical en-
semble: "Ĥ$*E=,+TS+$N %, the grand potential& so that
% !E

!$ &T,V=$% !N
!$ &T,V+T% !S

!$ &T,V and hence
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I. INTRODUCTION

A complete understanding of thermoelectric effects is im-
portant in the physical sciences where wide ranging applica-
tions utilize materials with large thermoelectric power S
!Seebeck coefficient". Thermoelectrics of strongly correlated
materials are of fundamental interest since they present an
important and challenging problem. Recent experiments
have revealed that some materials, such as sodium co-
balt oxide NaxCoO2 !NCO", possess unusually large
thermopower,1 due in part to strong electron interactions.2

Frustrated systems,3 such as NCO, might produce further
surprises in enhanced thermopower in some situations.2,4 In
addition, emerging work5 from the fractional quantum-Hall
effect !FQHE" is revitalizing thermopower as a tool to inves-
tigative the topological non-Abelian quasiparticles6 thought
to exist at filling factor 5/2.7

Here we present the Kelvin formula for thermopower,
SKelvin. This is a formula inspired by Lord Kelvin’s thermo-
dynamic treatment of this variable in 1854.8 It is found by
reconsidering the sequence of taking the thermodynamic and
uniform limits, and is a valuable approximation to the exact,
but computationally intractable result, obtained via Onsager
and Kubo’s treatments.9,10

For strongly correlated systems, such as the t-J model,
SKelvin is found to possess an accuracy between the rather
coarse Mott-Heikes !MH" formulation, and a better argued
high-frequency limit formulation due to Shastry4 and studied
in Refs. 2 and 11. For intermediate couplings, such as the
Hubbard model, we argue that SKelvin provides one of the best
available approximations, it is better than the high-frequency
limit. In certain dissipationless situations, such as the FQHE,
SKelvin is exact, thereby providing an elegant and simple deri-
vation for the thermopower formula used in Ref. 5 !derived
originally in Ref. 12".

SKelvin is obtained by completing Shastry’s argument11 for
the “absolute thermopower,” i.e., S of an isolated system.
Kelvin originally studied8 this object using the then available
techniques, later he and others emphasized relative ther-

mopower between two materials. Let us revert to the abso-
lute thermopower as a starting point and imagine a long iso-
lated cylinder of material of length Ł subject to a time-
dependent electric field −"" and temperature gradient "T.
−"" couples to the dipole moment and "T couples to the
moment of the energy density !cf. Luttinger13". These fields
individually generate a dipole moment linear in the fields to
lowest order, and the condition for the cancellation of the
two contributions, i.e., the zero dipole moment !or zero cur-
rent" condition, leads to the thermopower S for a finite sys-
tem size Ł at finite frequencies # as S!Ł ,#"= ""

"T #Ł ,#$.
The thermodynamic limit, Ł→$, and the static limit, #

→0, must both be taken, as known from Onsager9 and
others.13,14 Kubo’s exact formulas obtain in the fast or trans-
port limit, where Ł→$ before #→0. Taking the static limit
#→0 before Ł→$ leads to the slow, where Kelvin’s ap-
proximate formula arises and is expressible solely in terms of
equilibrium thermodynamic variables.

We transcribe this discussion to a more convenient peri-
odic system, by trading the length scale Ł for a wave vector
qx=2% /Ł and the Ł→$ limit by the uniform limit qx→0.
The slow limit corresponds to lim#qx→0, #→0$ and the
fast limit corresponds to lim##→0, qx→0$. The ther-
mopower measures the induced thermoelectric voltage due to
a temperature gradient and, as such, a useful and general
formula for thermopower is given by the ratio between the
thermoelectrical and electrical conductivities,11

S!qx,#" =
&'!qx",K̂!−qx"!#"

T&'!qx",'!−qx"!#"
, !1"

where

&Â,B̂!#" = i%
0

$

dte!i#−0+"t&'Â!t",B̂!0"() !2"
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Exact

=!
n,m

pn − pm

!m − !n + "
"n#Â#m$"m#B̂#n$ %3&

is the susceptibility of any two operators Â and B̂, where #,
K̂= Ĥ−$N̂, and Ĵx are the charge density, the %grand& Hamil-
tonian, and the charge current operator, respectively, at finite
wave vectors; Ĥ, $, and N̂ are the Hamiltonian, the chemical
potential, and the total number operator, respectively. The
susceptibility written in Eq. %3& is the Lehmann representa-
tion 'where pn=exp%−%!n& /Z is the probability of the quan-
tum state #n$ with energy !n and Z is the partition function
and %=1 /kBT with kB the Boltzmann constant( which we
find useful below. With Eq. %1&, we can take different limits
and obtain various interesting formulas.

II. THERMOPOWER FORMULAS

A. Kubo formula

Taking the fast limit and using the continuity equations to
pass from densities to current operators, Eq. %1& gives the
exact Kubo result10

SKubo =
1
T

)
0

&

dt)
0

%

d'"Ĵx
E%t − i'&Ĵx%0&$

)
0

&

dt)
0

%

d'"Ĵx%t − i'&Ĵx%0&$
−

$%T&
qeT

, %4&

where qe is the charge of the carriers and ĴE the energy
current.

B. Mott-Heikes formula

For narrow band systems, such as NCO, high-Tc super-
conductors, or heavy-fermion systems, the so-called MH ap-
proximation introduced by Heikes %popularized by Mott15& is
written SMH= '$0−$%T&( /qeT, where $0*$%T=0&. SMH is
obtained by rather drastically replacing the first part of Eq.
%4& by the zero-temperature chemical potential $0 to make
the theory sensibly behaved as T→0. From thermodynamics,
we know that − $%T&

T = % !S
!N &E,V, and, hence, SMH relates ther-

mopower to the partial derivative of entropy S with particle
number N, at a fixed energy E and volume V. We see below
that SKelvin is similar but with more natural “held” variables,
namely, T and V.

C. High-frequency formula

From Eq. %1&, we can make a high-frequency approxima-
tion, where "("c %"c representing all finite characteristic
energy scales&, leading to the object S!. The formal expres-
sion and evaluation for S! are discussed elsewhere11 and we
only quote the results. We have argued that S! is the best
possible approximation to the exact Kubo formula for
strongly correlated systems2 such as the t-J model since the
high-frequency limit respects the single occupancy constraint
and is closer to the dc limit than initially expected. It is not
specifically suited for Hubbard-type models, since the high-
frequency limit assumes "(U, and cannot capture the phys-

ics of correlations effectively.11 We will see that SKelvin steps
into this breach and provides a very useful alternative for
Hubbard-type models.16

D. Kelvin formula

To obtain an approximate thermodynamical expression,
we consider the slow limit of Eq. %1&. S is among the few
objects %along with Hall constant and Lorentz number&
where this process gives finite and approximate results, un-
like the electrical conductivity where the slow limit gives
meaningless results.11 This limit is identified with Kelvin
since he essentially took the equilibrium limit of an interact-
ing gas of particles. The slow limit %qx→0, "→0& is easi-
est to compute starting from Eq. %1&,

SKelvin = lim
qx→0

)#%qx&,K̂%−qx&%0&

T)#%qx&,#%−qx&%0&
. %5&

To simplify we first consider the numerator of Eq. %5& which
we rewrite by first using the Lehmann representation and
then taking the qx→0 limit. Note that #̂%qx& tends to a con-
served quantity qeN and cannot mix states of different energy
so !m→!n. Thus,

lim
qx→0

)#%qx&,K̂%−qx&%0& = lim
qx→0

!
n,m

pn − pm

!m − !n
"n##̂%qx&#m$"m#K̂%− qx&#n$

= lim
!m→!n

!
n,m

pn − pm

!m − !n
"n##̂%qx&#m$"m#K̂%− qx&

*#n$ = lim
!m→!n

!
n,m

pn
1 − e%%!n−!m&

!m − !n
"n##̂%qx&

*#m$"m#K̂%− qx&#n$

= qe!
n,m

%pn+!n,!m
"n#N̂#m$"m#K̂#n$

= qe%'"N̂K̂$ − "N̂$"K̂$(

= qe+ d

d$
"Ĥ$ − $

d

d$
"N̂$, . %6&

The derivative with respect to $ in Eq. %6& is within the
grand-canonical ensemble and performed with a fixed V and
T. The denominator of Eq. %5& is treated similarly yielding
qe

2%'"N̂2$− "N̂$2(=qe
2d"N̂$ /d$. Combining it with Eq. %6&,

yields

SKelvin =
1

qeT

d

d$
"Ĥ$ − $

d

d$
"N̂$

d

d$
"N̂$

. %7&

To further simplify Eq. %7& we note a relation found in
textbooks on thermodynamics in the grand-canonical en-
semble: "Ĥ$*E=,+TS+$N %, the grand potential& so that
% !E

!$ &T,V=$% !N
!$ &T,V+T% !S

!$ &T,V and hence
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Slow limit i.e.  ω→0 first. Wrong but interesting
Captures thermodynamic contribution 

SKelvin =
1
qe

! !S
!!

"
T,V

! !N

!!
"

T,V

=
1
qe
! !S

!N
"

T,V
#8$

=
− 1
qe

! !!

!T
"

N,V
, #9$

where we used, to go from the second equality to the last
equality, a Maxwell relation obtained with dF=−SdT− pdV
+!dN, and equating !2F

!T!N = !2F
!N!T . We refer to the last two

equivalent equations %Eqs. #8$ and #9$& as the Kelvin formula
for the thermopower. This formula is unknown in the litera-
ture as far as we are aware.

Note that SMH is similar to SKelvin. The distinction is that
in SKelvin, the number derivative of the entropy is taken at
constant T rather than at constant E. Thus, in the low-T limit
of a metal, where !#T$"T2, they differ in the linear-T coef-
ficient by a significant factor of 2. We show below that for
noninteracting electrons, scattered by impurities, SKelvin is
closer to the exact result than SMH. Further, we see that the
approximation of exchanging the slow and fast limits has
some justification in dissipationless systems, such as in the
FQHE where SKelvin is identical to that found by several
workers #see below$.

III. APPLICATIONS OF THERMOPOWER FORMULAS

A. Free electrons

To gain insight into the strengths and weaknesses of the
various thermopower formulations discussed above we con-
sider noninteracting degenerate electrons treated within the
limit of elastic scattering at the Born level with an energy
momentum-dependent relaxation time ##p ,$$. This is a mod-
estly dissipative system but at such a simple level that the
Boltzmann-Bloch equation is an adequate description. The
solution for S is available in textbooks and a useful bench-
mark for various approximations. In the low-temperature
limit,11 to O#T3$,

SMott = T
%2kB

2

3qe

d

d!
ln%&0#!$'#vp

x$2##p,!$(!&)!→!0
, #10$

a formula often ascribed to Mott and &0#!$ is the single-
particle density of states per unit volume per spin. In this
noninteracting electron context, SKelvin gives %to O#T3$&,

SKelvin = T
%2kB

2

3qe

d

d!
ln%&0#!$&)!→!0

, #11$

which differs from the exact answer %Eq. #10$& in the neglect
of the relaxation time # and particle velocity vp

x in the loga-
rithm. SMH, to the same order, gives

SMH = T
%2kB

2

6qe

d

d!
ln%&0#!$&)!→!0

#12$

which is off by an important factor of 2 from SKelvin %Eq.
#11$&. The formulations #Mott-Heikes and Kelvin$ would be

identical if !"T, which occurs if the system possesses a
ground-state degeneracy, and in the classical regime. The
high-frequency approximation gives a better result than all
these and, again in the low-temperature limit, to O#T3$,

S! = T
%2kB

2

3qe

d

d!
ln%&0#!$'#vp

x$2(!&)!→!0
. #13$

Other than the neglect of the energy derivative of #, this is
the same as the exact result. Hence, ranking the thermopower
approximations for noninteracting electrons we have, from
worst to best, SMH, SKelvin, and S! with the exact result being
SMott.

B. Hubbard model

For intermediate coupling models, the relative rankings of
the various approximations can be different. In particular,
SKelvin can be superior to S!, since the effect of correlations is
diluted in the latter by making the assumption of $'U,
whereas SKelvin retains $(U. The sign of the true #i.e., trans-
port$ thermopower and the transport Hall constant are ex-
pected to flip as we approach half filling in the Hubbard or
t-J models due to the onset of correlations #carriers become
holes measured from half filling rather than from a com-
pletely filled band$. In the case of the t-J model, the high-
frequency Hall constant RH

! and S! do display this behavior.11

However, for the Hubbard model, RH
! and S! do not display a

sign change.16,17 SKelvin on the other hand, does appear to
show the expected change in sign.16,18 Further discussion
concerning the relative merits of SKelvin and S! will be re-
ported later.16

C. NCO and the t-J model

To show the usefulness of SKelvin, we apply it to NCO
since #i$ we have previously investigated2 this system while
benchmarking S!, #ii$ the system is intrinsically interesting,1

and #iii$ we can compare different thermopower formulations
on equal footing. As discussed,2 the action in NCO takes
place primarily in the cobalt oxide planes where d-shell spin-
1/2 electrons live on a triangular lattice and these strongly
interacting two-dimensional #2D$ electrons can be modeled
with the t-J model. Hence, we exactly diagonalize the t-J
model on a Ł=12 site two-dimensional triangular lattice with
periodic boundary conditions %cf. Fig. 1#e$&. Note that we
only show results for the t-J model with zero superexchange
interaction #J=0$, as the results only weakly depend on J. To
map the t-J model to NCO we follow Refs. 2 and 4 and give
results as a function of electron doping x= )1−n) away from
half filling #n is electron number density$.

S! adequately describes the physics of NCO for x)0.5
and, in particular, the so-called Curie-Weiss metallic phase2

near x*0.7. The subject of this work, however, is SKelvin. We
see in Figs. 1#a$, 1#c$, and 2#a$, similar to SMH, SKelvin does a
good job capturing the physics with minimal computational
effort. However, SKelvin does seem to overestimate the ther-
mopower for intermediate temperatures and high dopings as
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where we used, to go from the second equality to the last
equality, a Maxwell relation obtained with dF=−SdT− pdV
+!dN, and equating !2F

!T!N = !2F
!N!T . We refer to the last two

equivalent equations %Eqs. #8$ and #9$& as the Kelvin formula
for the thermopower. This formula is unknown in the litera-
ture as far as we are aware.

Note that SMH is similar to SKelvin. The distinction is that
in SKelvin, the number derivative of the entropy is taken at
constant T rather than at constant E. Thus, in the low-T limit
of a metal, where !#T$"T2, they differ in the linear-T coef-
ficient by a significant factor of 2. We show below that for
noninteracting electrons, scattered by impurities, SKelvin is
closer to the exact result than SMH. Further, we see that the
approximation of exchanging the slow and fast limits has
some justification in dissipationless systems, such as in the
FQHE where SKelvin is identical to that found by several
workers #see below$.

III. APPLICATIONS OF THERMOPOWER FORMULAS

A. Free electrons

To gain insight into the strengths and weaknesses of the
various thermopower formulations discussed above we con-
sider noninteracting degenerate electrons treated within the
limit of elastic scattering at the Born level with an energy
momentum-dependent relaxation time ##p ,$$. This is a mod-
estly dissipative system but at such a simple level that the
Boltzmann-Bloch equation is an adequate description. The
solution for S is available in textbooks and a useful bench-
mark for various approximations. In the low-temperature
limit,11 to O#T3$,

SMott = T
%2kB

2

3qe
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x$2##p,!$(!&)!→!0
, #10$

a formula often ascribed to Mott and &0#!$ is the single-
particle density of states per unit volume per spin. In this
noninteracting electron context, SKelvin gives %to O#T3$&,

SKelvin = T
%2kB

2
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, #11$

which differs from the exact answer %Eq. #10$& in the neglect
of the relaxation time # and particle velocity vp

x in the loga-
rithm. SMH, to the same order, gives

SMH = T
%2kB

2

6qe
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which is off by an important factor of 2 from SKelvin %Eq.
#11$&. The formulations #Mott-Heikes and Kelvin$ would be

identical if !"T, which occurs if the system possesses a
ground-state degeneracy, and in the classical regime. The
high-frequency approximation gives a better result than all
these and, again in the low-temperature limit, to O#T3$,
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Other than the neglect of the energy derivative of #, this is
the same as the exact result. Hence, ranking the thermopower
approximations for noninteracting electrons we have, from
worst to best, SMH, SKelvin, and S! with the exact result being
SMott.

B. Hubbard model

For intermediate coupling models, the relative rankings of
the various approximations can be different. In particular,
SKelvin can be superior to S!, since the effect of correlations is
diluted in the latter by making the assumption of $'U,
whereas SKelvin retains $(U. The sign of the true #i.e., trans-
port$ thermopower and the transport Hall constant are ex-
pected to flip as we approach half filling in the Hubbard or
t-J models due to the onset of correlations #carriers become
holes measured from half filling rather than from a com-
pletely filled band$. In the case of the t-J model, the high-
frequency Hall constant RH

! and S! do display this behavior.11

However, for the Hubbard model, RH
! and S! do not display a

sign change.16,17 SKelvin on the other hand, does appear to
show the expected change in sign.16,18 Further discussion
concerning the relative merits of SKelvin and S! will be re-
ported later.16

C. NCO and the t-J model

To show the usefulness of SKelvin, we apply it to NCO
since #i$ we have previously investigated2 this system while
benchmarking S!, #ii$ the system is intrinsically interesting,1

and #iii$ we can compare different thermopower formulations
on equal footing. As discussed,2 the action in NCO takes
place primarily in the cobalt oxide planes where d-shell spin-
1/2 electrons live on a triangular lattice and these strongly
interacting two-dimensional #2D$ electrons can be modeled
with the t-J model. Hence, we exactly diagonalize the t-J
model on a Ł=12 site two-dimensional triangular lattice with
periodic boundary conditions %cf. Fig. 1#e$&. Note that we
only show results for the t-J model with zero superexchange
interaction #J=0$, as the results only weakly depend on J. To
map the t-J model to NCO we follow Refs. 2 and 4 and give
results as a function of electron doping x= )1−n) away from
half filling #n is electron number density$.

S! adequately describes the physics of NCO for x)0.5
and, in particular, the so-called Curie-Weiss metallic phase2

near x*0.7. The subject of this work, however, is SKelvin. We
see in Figs. 1#a$, 1#c$, and 2#a$, similar to SMH, SKelvin does a
good job capturing the physics with minimal computational
effort. However, SKelvin does seem to overestimate the ther-
mopower for intermediate temperatures and high dopings as
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SKelvin = 



compared to SMH. Near x!0.7, SKelvin and SMH are similar
but as x is decreased the two formulas diverge and for low
dopings, SKelvin better captures the physics as it is closer to
the more accurate high-frequency limit S!.

An interesting property of the triangular lattice underlying
the physics of NCO is its geometrical frustration,3 cf. inset
Fig. 1"e#. It was predicted2,4 that if the sign of the hopping
amplitude were flipped to t!0 the thermopower would be
enhanced at low to intermediate T. We have considered this
situation in Figs. 1"b#, 1"d#, and 2"b#. Since the thermopower
enhancement for t!0 compared to t"0 is largely a conse-
quence of electron-electron interaction it is important to de-
termine whether this effect is captured by SKelvin. We see this
enhancement is captured to some extent by SKelvin and SKelvin
is better than SMH in the large doping region where the en-
hancement is the greatest but is missing some of the
electron-electron physics at very low T that is captured by S!

"as is SMH#.

D. FQHE at !=5 Õ2

We now discuss how SKelvin is applied to dissipationless
systems such as the FQHE where thermopower can be used
as a possible non-Abelian quasiparticle detector.5 For a
weakly disordered electron system $from Eqs. "10# and "11#%
SKelvin essentially gives the dissipationless thermopower
where particle velocities are further approximated. If the sys-
tem is dissipationless and the particle velocities are also en-
ergy independent, such as the FQHE, then we expect SKelvin
is exact. An expression for the thermopower in a 2D electron

system in the presence of a perpendicular magnetic field "the
FQHE system# has been derived,5,12 assuming zero impuri-
ties, as S

qeN
$Eq. "6# in Ref. 5%. Yang and Halperin show5 that

S&kBN log"d#, where d"1 is the quantum dimension of the
quasiparticles for the FQHE at #=5 /2 "provided they are
non-Abelian#. Thus, a nonzero entropy linear in N is ob-
tained. From Eq. "8#, we see that the thermopower is the
derivative of the entropy with respect to the number of par-
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number, as in non-Abelian FQHE states, !S /!N→S /N
and the formulas are identical. Our derivation provides a
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previously.5
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FIG. 2. "Color online# The thermopower "in units of $ V /K# vs
T and x for the t-J model "with J=0# for "a# t"0 and "b# t!0. Note
that x&0.7 corresponds to the Curie-Weiss metallic phase of NCO,
cf. Fig. 1. The line type and color coding is the same as in Fig. 1.
Note that for dopings below 0.5 it is not clear whether the t-J model
adequately describes the physics of NCO.
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FIG. 1. "Color online# Thermopower vs T for the t-J model
"with J=0# corresponding to NCO in the Curie-Weiss metallic
phase near x&0.7. "a# and "c# correspond to x=0.67 and x=0.75 for
the NCO system "t"0# while in "b# and "d# the sign of the hopping
has been switched to investigate the enhancement expected for frus-
trated systems. The black, red "light gray#, and blue "dark gray#
lines are S!, SKelvin, and SMH. Finite-size effects at low T are treated
in the spirit described previously "Ref. 2#. At each x, for T below an
appropriately chosen cutoff temperature T0=0.5't', the thermopower
is fit to S"T#→aT+bT2, where a and b are obtained from the com-
puted S"T0# and S!"T0# providing a sensible extrapolation to low T
and plotted as dashed lines. The inset figure "e# depicts the 12-site
unit cell.
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FIG. 2. T, , normalized to T, ,„, plotted as a func-
tion of hole concentration, p determined (i) from p =x/2
for Y, Ca,Ba2Cu306 (solid squares), (ii) from p =V for
YBa2Cu307 b with different 8' (open circles), (iii) from p=V
for Y, ,Ca„Ba2Cu307 z with 8=0.04 and different x (solid dia-
monds), and (iv) from p =V for Y, Ca„Ba2Cu307 b with
x=0.1 and different 8 (crosses, X). The solid curve is Eq. (1), the
"plus" symbols (+) are T, vs x data for La2 „Sr„Cu04 and solid
triangles for La2 Sr,CaCu206.

FIG. 3. Room-temperature thermoelectric power plotted as a
function of hole concentration for various HTSC's as reported in
Ref. 8 and for oxygen-deficient (8'=0.98) Y, ,Ca„Ba2Cu307
for which p =x/2. The underdoped side has a logarithmic scale and
the overdoped side a linear scale.

S29n=372 exp( —32.4p) for 0.00&p&0.05,
S29n=992 exp( —38.1p) for 0.05&p&0.155, (2)
529O= —139p+ 24.2 for p&0. 155.

oxygen atoms inserted into the chain layer appear to convert
the two adjacent Cu+ atoms to Cu with no overall doping
effect. This will be more apparent in the BVS estimate of p
which will be discussed below.
Figure 2 shows T, /T, ,„plotted against the absolute

hole concentration p=x/2 for all of the fully oxygen de-
pleted samples (solid squares). The threshold of supercon-
ductivity occurs at x=0.1 and only the 0.13, 0.16 and 0.2
samples superconduct. We have used the nominal x value for
each sample but for x=0.2 the data point would clearly fit
better if x,z„„,is taken to be 0.16 as shown by the neutron-
diffraction refinements. Also plotted are the data for
La2 „Sr Cu04 (plus symbols) and La2 „Sr CaCu206 (solid
triangles), and the solid curve is Eq. (1).These data confirm
that the threshold value for onset of superconductivity is the
same for 123, La2 Sr Cu04 and La2 Sr CaCu206,
namely p=0.05. Moreover, the initial development of the
phase curves for the three systems is the same in spite of the
very different T, ,„values.
We used these values of p=x/2 to check on the previ-

ously reported correlation with the room-temperature
thermoelectric power. Values of S(290) for the
Y, ,Ca,Ba2Cu306 samples (i.e., with 8= 1.0) are plotted in
Fig. 3 as a function of x/2 (solid squares) together with the
previously reported data, S(290) versus p, for a range of
other HTSC's. In particular, S(290) versus x/2 for
Y& Ca Ba2Cu306 matches precisely the data for
YBa2Cu307 ~ where p was previously estimated using
BVS. This gives further confirmation of the reliability of the
universal correlation between the TEP and the hole concen-
tration, and also confirms that the BVS estimates of p corre-
spond closely to the absolute values of p =x/2. The correla-
tion may be conveniently parametrized by the relation

There appears to be a discontinuity in S(290,p) in the neigh-
borhood of the superconductor/insulator transition at
p =0.05.

We turn finally to determining the relation p =p(8) using
the above results in combination with BVS estimates of p.
BVS's have been used extensively to estimate qualitative
changes in charge distribution in a variety of HTSC's. Most
notably Cava et al. have determined copper BVS's for a
series of oxygen-deficient 123 samples and shown that the
copper BVS's have two plateaus roughly corresponding to
the 90 and 60 K plateau in T, versus 8. The two plateaus
could therefore be interpreted in terms of local lags in the
charge transfer from chains to planes due, for example, to
oxygen vacancy ordering. The 90 K "plateau" is, however,
clearly the peak in the parabolic curve of T, versus p and
fully loaded, 123 (8=0) is overdoped. It has elsewhere
been argued that, as the hole carriers in HTSC's have both
copper and oxygen character, it is more appropriate to assess
the charge distribution in terms of a combination of oxygen
and copper BVS's, Vo and Vc„, respectively. ' The excess
charge on the Cu site is Vc„—2 while that on the oxygen site
is 2—Vo so the total charge on the Cu02 plane was then
estimated by p= V =—2+ Vcu(2&

—Vo(2) Vo(3&. The BVS's
are calculated as described previously and VC„, in par-
ticular, is calculated using the scheme proposed by Brown.
The parameter V is shown plotted as a function of 6 in Fig.
4 for Y& Ca Ba2Cu307 z for x=0 and x=0.1. The x=0
data were determined from bond lengths reported by Cava
et al. and the shape of the solid curve through the data was
fitted guided by additional data from Jorgensen et al. ' The
x=0.1 bond lengths are from the unpublished thesis of
Radaelli. ' Interestingly there is no plateau corresponding to
either the "60 K plateau" or the "90K plateau. "Rather the
charge transfer is quite linear over the superconducting do-
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FIG. 3. Room-temperature thermoelectric power plotted as a
function of hole concentration for various HTSC's as reported in
Ref. 8 and for oxygen-deficient (8'=0.98) Y, ,Ca„Ba2Cu307
for which p =x/2. The underdoped side has a logarithmic scale and
the overdoped side a linear scale.
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S29n=992 exp( —38.1p) for 0.05&p&0.155, (2)
529O= —139p+ 24.2 for p&0. 155.

oxygen atoms inserted into the chain layer appear to convert
the two adjacent Cu+ atoms to Cu with no overall doping
effect. This will be more apparent in the BVS estimate of p
which will be discussed below.
Figure 2 shows T, /T, ,„plotted against the absolute

hole concentration p=x/2 for all of the fully oxygen de-
pleted samples (solid squares). The threshold of supercon-
ductivity occurs at x=0.1 and only the 0.13, 0.16 and 0.2
samples superconduct. We have used the nominal x value for
each sample but for x=0.2 the data point would clearly fit
better if x,z„„,is taken to be 0.16 as shown by the neutron-
diffraction refinements. Also plotted are the data for
La2 „Sr Cu04 (plus symbols) and La2 „Sr CaCu206 (solid
triangles), and the solid curve is Eq. (1).These data confirm
that the threshold value for onset of superconductivity is the
same for 123, La2 Sr Cu04 and La2 Sr CaCu206,
namely p=0.05. Moreover, the initial development of the
phase curves for the three systems is the same in spite of the
very different T, ,„values.
We used these values of p=x/2 to check on the previ-

ously reported correlation with the room-temperature
thermoelectric power. Values of S(290) for the
Y, ,Ca,Ba2Cu306 samples (i.e., with 8= 1.0) are plotted in
Fig. 3 as a function of x/2 (solid squares) together with the
previously reported data, S(290) versus p, for a range of
other HTSC's. In particular, S(290) versus x/2 for
Y& Ca Ba2Cu306 matches precisely the data for
YBa2Cu307 ~ where p was previously estimated using
BVS. This gives further confirmation of the reliability of the
universal correlation between the TEP and the hole concen-
tration, and also confirms that the BVS estimates of p corre-
spond closely to the absolute values of p =x/2. The correla-
tion may be conveniently parametrized by the relation

There appears to be a discontinuity in S(290,p) in the neigh-
borhood of the superconductor/insulator transition at
p =0.05.

We turn finally to determining the relation p =p(8) using
the above results in combination with BVS estimates of p.
BVS's have been used extensively to estimate qualitative
changes in charge distribution in a variety of HTSC's. Most
notably Cava et al. have determined copper BVS's for a
series of oxygen-deficient 123 samples and shown that the
copper BVS's have two plateaus roughly corresponding to
the 90 and 60 K plateau in T, versus 8. The two plateaus
could therefore be interpreted in terms of local lags in the
charge transfer from chains to planes due, for example, to
oxygen vacancy ordering. The 90 K "plateau" is, however,
clearly the peak in the parabolic curve of T, versus p and
fully loaded, 123 (8=0) is overdoped. It has elsewhere
been argued that, as the hole carriers in HTSC's have both
copper and oxygen character, it is more appropriate to assess
the charge distribution in terms of a combination of oxygen
and copper BVS's, Vo and Vc„, respectively. ' The excess
charge on the Cu site is Vc„—2 while that on the oxygen site
is 2—Vo so the total charge on the Cu02 plane was then
estimated by p= V =—2+ Vcu(2&

—Vo(2) Vo(3&. The BVS's
are calculated as described previously and VC„, in par-
ticular, is calculated using the scheme proposed by Brown.
The parameter V is shown plotted as a function of 6 in Fig.
4 for Y& Ca Ba2Cu307 z for x=0 and x=0.1. The x=0
data were determined from bond lengths reported by Cava
et al. and the shape of the solid curve through the data was
fitted guided by additional data from Jorgensen et al. ' The
x=0.1 bond lengths are from the unpublished thesis of
Radaelli. ' Interestingly there is no plateau corresponding to
either the "60 K plateau" or the "90K plateau. "Rather the
charge transfer is quite linear over the superconducting do-
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oxygen atoms inserted into the chain layer appear to convert
the two adjacent Cu+ atoms to Cu with no overall doping
effect. This will be more apparent in the BVS estimate of p
which will be discussed below.
Figure 2 shows T, /T, ,„plotted against the absolute

hole concentration p=x/2 for all of the fully oxygen de-
pleted samples (solid squares). The threshold of supercon-
ductivity occurs at x=0.1 and only the 0.13, 0.16 and 0.2
samples superconduct. We have used the nominal x value for
each sample but for x=0.2 the data point would clearly fit
better if x,z„„,is taken to be 0.16 as shown by the neutron-
diffraction refinements. Also plotted are the data for
La2 „Sr Cu04 (plus symbols) and La2 „Sr CaCu206 (solid
triangles), and the solid curve is Eq. (1).These data confirm
that the threshold value for onset of superconductivity is the
same for 123, La2 Sr Cu04 and La2 Sr CaCu206,
namely p=0.05. Moreover, the initial development of the
phase curves for the three systems is the same in spite of the
very different T, ,„values.
We used these values of p=x/2 to check on the previ-

ously reported correlation with the room-temperature
thermoelectric power. Values of S(290) for the
Y, ,Ca,Ba2Cu306 samples (i.e., with 8= 1.0) are plotted in
Fig. 3 as a function of x/2 (solid squares) together with the
previously reported data, S(290) versus p, for a range of
other HTSC's. In particular, S(290) versus x/2 for
Y& Ca Ba2Cu306 matches precisely the data for
YBa2Cu307 ~ where p was previously estimated using
BVS. This gives further confirmation of the reliability of the
universal correlation between the TEP and the hole concen-
tration, and also confirms that the BVS estimates of p corre-
spond closely to the absolute values of p =x/2. The correla-
tion may be conveniently parametrized by the relation

There appears to be a discontinuity in S(290,p) in the neigh-
borhood of the superconductor/insulator transition at
p =0.05.

We turn finally to determining the relation p =p(8) using
the above results in combination with BVS estimates of p.
BVS's have been used extensively to estimate qualitative
changes in charge distribution in a variety of HTSC's. Most
notably Cava et al. have determined copper BVS's for a
series of oxygen-deficient 123 samples and shown that the
copper BVS's have two plateaus roughly corresponding to
the 90 and 60 K plateau in T, versus 8. The two plateaus
could therefore be interpreted in terms of local lags in the
charge transfer from chains to planes due, for example, to
oxygen vacancy ordering. The 90 K "plateau" is, however,
clearly the peak in the parabolic curve of T, versus p and
fully loaded, 123 (8=0) is overdoped. It has elsewhere
been argued that, as the hole carriers in HTSC's have both
copper and oxygen character, it is more appropriate to assess
the charge distribution in terms of a combination of oxygen
and copper BVS's, Vo and Vc„, respectively. ' The excess
charge on the Cu site is Vc„—2 while that on the oxygen site
is 2—Vo so the total charge on the Cu02 plane was then
estimated by p= V =—2+ Vcu(2&

—Vo(2) Vo(3&. The BVS's
are calculated as described previously and VC„, in par-
ticular, is calculated using the scheme proposed by Brown.
The parameter V is shown plotted as a function of 6 in Fig.
4 for Y& Ca Ba2Cu307 z for x=0 and x=0.1. The x=0
data were determined from bond lengths reported by Cava
et al. and the shape of the solid curve through the data was
fitted guided by additional data from Jorgensen et al. ' The
x=0.1 bond lengths are from the unpublished thesis of
Radaelli. ' Interestingly there is no plateau corresponding to
either the "60 K plateau" or the "90K plateau. "Rather the
charge transfer is quite linear over the superconducting do-
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Figure 1. A test of the reliability of the Kelvin formula, as explained in the text,

for Tl2Ba2CuO6+δ at T = 100 (left) and BSSCO at T = 120 (right). The red solid

curves are dγ /dx and the blue dotted curves are |qe|dQ/dT . These curves would

coincide in the T → 0 limit if the Kelvin formula were exact.

times
5
. While this idea of thermodynamic domination of thermopower cannot be an exact

statement, it leads to the Kelvin formula proposed by Shastry and co-workers [10, 14] in the

spirit of Lord Kelvin’s original treatment [13]. The Kelvin formula for thermopower QK is

obtained by computing the slow limit of an exact formula at finite q, ω, and is given by
6

QK = 1

qe

�
∂S
∂x

�

T,V

, (1)

where S is the entropy density, x is the density of carriers in the system and qe is the charge of

the carriers (−|qe| for electrons)
7
. In brief, this approximate formula for thermopower captures

the enhancements due to all fluctuations that influence the thermodynamics of a many body

system. While theoretical benchmarks of this approximation exist [10], it is also useful to check

its consequences directly for the high-Tc systems. Using standard thermodynamics, one gets

the following relation between the temperature dependence of the Kelvin thermopower and the

specific heat variation with particle density x :

qe
∂ QK

∂T
= 1

T

�
∂Cv

∂x

�

V,T

−→
T →0

�
∂γ

∂x

�

V,T

, (2)

where γ is the low-temperature coefficient of the specific heat. This equality comprises

a relationship between two independent experiments and can therefore be tested with

experimental data. Figure 1 plots the left and right sides of (2) based on thermopower [3]

5
This separation of the thermopower into the two components of thermodynamics and transport is well illustrated

by rewriting the Mott formula for the thermopower of a weakly diffusive metallic system given in textbooks [12]

as

QMott = T
π2k2

B

3qe

�
d

dµ
ln[ρ(µ)] +

d

dµ
ln[�(vx

p)
2τ (p, µ)]

�
,

where µ is the chemical potential. In this expression, the first term gives the density of states (and hence

thermodynamic) contribution, and the second term gives the transport contribution from the Fermi-surface average

of the squared velocity and the relaxation time.

6
Throughout this paper, the slow limit denotes taking ω → 0 followed by q → 0, whereas the fast limit denotes

q → 0 followed by ω → 0. See [21].

7
For applying this formula to holes, we regard x as the hole density and remember to use qe = −|qe|.
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We may interpret this experiment assuming Kelvin’s formula:
The  approximate validity of Kelvin’s formula here would imply

Summarizing:
Useful to have simple approximate formulas-
lead to simple and powerful insights that exact formulas cannot ever give us!! 

S = γ T


