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The Boltzmann theory approach to transport:

A very false approach for correlated matter, unfortunately very 

Strongly influential and pervasive.

Need for alternate view point.



wikipedia

Vulcan death grip –
Derived from a Star Trek
classic episode where a non- existan
"Vulcan death grip" was used to fool
Romulans that Spock had killed Kirk. 



First serious effort to understand  Hall constant in correlated matter:

S S, Boris Shraiman and Rajiv Singh, Phys Rev Letts ( 1993)
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•Easier to calculate than 
transport Hall constant

•Captures Mott Hubbard 
physics to large extent
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•Very useful formula since

•Captures Lower Hubbard Band physics. This is achieved by 
using the Gutzwiller projected fermi operators in defining J’s

•Exact in the limit of simple dynamics ( e.g few frequencies 
involved), as in the Boltzmann eqn approach.

•Can compute in various ways for all temperatures ( exact 
diagonalization, high T expansion etc…..)

•We have successfully removed the dissipational aspect of Hall 
constant from this object, and retained the correlations aspect.

•Very good description of t-J model, not too useful for Hubbard 
model.

•This asymptotic formula usually requires ω to be larger than J



Comparison with 
Hidei Takagi and 
Bertram Batlogg
data for LSCO 
showing change of 
sign of Hall constant 
at delta=.33 for squar
e lattice
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As a function of T, Hall 
constant is LINEAR for 
triangular lattice!!

We suggest that transport Hall = high frequency Hall constant!!

•Origin of T linear behaviour in triangular lattice has to do with 
frustration.  Loop representation of Hall constant gives a unique 
contribution for triangular lattice with sign of hopping playing a 
non trivial role.
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Hall constant as a function of T for x=.68 ( 
CW metal ). T linear over large range 2000

to 4360 ( predicted by theory of triangular 
lattice transport KS)

T Linear resistivity

STRONG 
CORRELATIONS 
& Narrow Bands
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Thermoelectric phenomena
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Here we commute the Heat current with the energy 
density to get the thermal operator
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The sum rule for the real part of the thermal conductivity (an even function
of ω) follows Z ∞

0

Re κ(ω)dω =
π

2~TLhΘ
xxi. (1)

Comment: New sum rule.

Not known before in literature.
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In normal  dissipative systems, the correction to 
Kubo’s formula is zero, but it is a useful way of 
rewriting zero, it helps us to find the frequency 
integral of second term, hitherto unknown!! 

So, what does Θ look like and what is its value? Answer is model dependent,
and in brief, Θ is the specific heat times a velocity
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Thermo-power follows similar logic:

< Ĵx >= σ(ω)Ex + γ(ω)(−∇T )
then the thermopower is
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High frequency limits that are feasible and sensible 
similar to  R*

L∗ =
hΘxxi
T 2hτxxi (1)

Z∗T =
hΦxxi2

hΘxxihτxxi . (2)

S∗ =
hΦxxi
T hτxxi. (3)

Hence for any model system, armed with these three 
operators, we can compute the Lorentz ratio, the 
thermopower and the thermoelectric figure of merit!



So we naturally ask 

•what do these operators look like 

•how can we compute them

• how good an approximation is this?

In the preprint: several models worked out in detail

•Lattice dynamics with non linear disordered lattice

•Hubbard model

•Inhomogenous electron gas

•Disordered electron systems

•Infinite U Hubbard bands

•Lots of detailed formulas: we will see a small sample for 
Hubbard model and see some tests…



Anharmonic Lattice example

H =
X
j

Hj

Hj =

"
~p2j
2mj

+ Uj

#
; Uj =

1

2

X
i6=j

Vj,i, (1)

JEx (
~k) =

1

4

X
i,j

(Xi −Xj)

mi
eikxXi

©
px,i, F

x
i,j

ª ~Fi,j = − ~∂
∂~ui
Vi,j

Θxx = (~ω20a20)

"
1

m

X
i

pipi+1 +
ks
4

X
i

(ui−1 − ui+1)2
#
.

hΘxxi = L(~2ω30a20)
Z π

0

dk

π

∙
(
1

2
+

1

eβωk − 1)
½
ωk
ω0
cos(k) +

ω0
ωk
sin2(k)

¾¸
,



Thermo power operator for Hubbard model
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Interesting by product of these formulas: at T=0, <Φ > must vanish 
being entropy current, and hence the chemical potential can be 
expressed as a ratio of two operators. This is pretty surprising, and 
can be verified in some cases: half filled Hubbard model in any 
dimension for bipartite lattices µ= U/2



Free Electron Limit and Comparison with the Boltzmann Theory

It is easy to evaluate the various operators in the limit of U→0, and this
exercise enables us to get a feel for the meaning of these various somewhat
formal objects. We note that
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At low temperatures, we use the Sommerfield formula after integrating by
parts, and thus obtain the leading low T behaviour:
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We may form the high frequency ratios
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It is therefore clear that the high frequency result gives the same Lorentz number
as well as the thermopower that the Boltzmann theory gives in its simplest form.

The thermal conductivity cannot be found from this approach, 
but basically the formula is the same as the Drude theory with 
i/ω ->  τ. 

Some new results for strong correlations and triangular lattice:

Thermopower formula to replace the Heikes-Mott-Zener formula



Leading High temperature term for the Triangular lattice and 
application to Sodium Cobalt Oxide
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This is a very useful alternate formula to the Heikes-Mott-Zener formula where
the second term in Eq above is thrown out. It interpolates very usefully be-
tween the standard formulas for low temperature as well as at high temperature.
The second term represents the “transport” contribution to the thermopower,
whereas the first term is the thermodynamic or entropic part, which dominates
at high temperaturefor S∗ we can actually make a systematic expansion in pow-
ers of βt, unlike the dc counterpart.



Leading high temp expansion:
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Results from this formalism:  

Comparision with 
data on absolute 
scale!

Prediction 
for t>0 
material



Magnetic field dep of S(B) vs data







Conclusions:

•New and rather useful starting point for understanding 
transport phenomena in correlated matter

•Kubo type formulas are non trivial at finite frequencies, and 
have much structure

•We have made several successful predictions for NCO already

•Can we design new materials using insights gained from this 
kind of work? 

Useful link for this 
kind of  work:

http://physics.ucsc.edu/~sriram/sriram.html


