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Abstract:
Thermoelectricity is a foundational topic in statistical
mechanics, dealing with reversible heat generation from a current flow.
Kelvin established reciprocity using thermodynamic arguments in the
nineteenth century.  This is mysterious since transport is not within the
domain of thermodynamics, and indeed  Onsager later gave the correct
framework  during his seminal work on reciprocity. With regard
to the Kelvin,  I  point out the origin of the mysterious "flaw in the
ointment". Strangely enough, Kelvin's argument produces a fairly
useful, if inexact estimator of thermopower in certain situations.

After this historical footnote, I turn to the transition metal oxide
Correlated materials, which are classical Mott Hubbard systems.
Here the time honoured Bloch-Boltzmann equation approach meets a 
dead end, and must be discarded. (I display a cartoon based on the 
science fiction series Star Trek. A detailed knowledge of this series   is 
helpful for understanding this part of the  talk!).

A new formalism, using dynamical heat response, enables a 
quantitative understanding of the sodium cobaltate materials. It also 
provides some new predictions for as yet unknown materials, with
extremely large  thermopower.



Thermoelectricity: Some background

Voltage drop

Hot Cold

Metal1
Current source if we maintain 
the two ends of the junction at a 
different T. (Space applications)

Metal2

Refrigerator if we pass 
current from external source 
(laptops, car seat coolers or 
heaters)

Enormous industry in 21st 
century.



19th century History: 

Seebeck, Peltier, Thomson(=Kelvin)..

1

Ω
hĴxi = L11Ex + L12(−∇xT/T )

1

Ω
hĴQx i = L21Ex + L22(−∇xT/T ),

where (−∇xT/T ) is regarded as the external driving thermal force, and ĴQx is
the heat current operator.

Seebeck coefficient, 
defined for vanishing 
current (also called 
Thermopower).

S = ∆V
∆T =

L12
TL11

L12 = L21

•Famous Reciprocity “proven” by Kelvin using only thermodynamics.
1850’s

•Re-proven by Lars Onsager 1930’s using dynamics
•According to Wannier’s book on Statistical Physics “Opinions are 
divided on whether Kelvin’s derivation is fundamentally correct or not”. 



Search continues for materials with better 
Thermopower as well as Figure of merit Z

•Seeking simultaneously :

•High S (thermopower or Seebeck)

•High electrical conductivity σ

•Low Thermal conductivity κ

Z T = S2σ
κT

Holy grail 

Z T ~ 1 

at low T.



OLD HAT



New:

A Few Recent  Headlines:

NASA:
"Thermoelectric Materials &

Technology for Future High Power Deep Space Science Missions."

The challenges and promises of oxides:
"A Challenge to Create Novel Oxide Thermoelectrics".

Thermoelectric Conversion System
thermoelectric technology as part of a concerted effort in Japan to

help prevent global warming.



The Cassini spacecraft, which is orbiting Saturn, is the most ambitious effort 
in planetary space exploration ever mounted. Cassini is a sophisticated 
robotic spacecraft which will orbit the ringed planet and study the Saturnian
system in detail over a four-year period. This mission would not be possible 
if it were not for thermoelectrics which convert radioisotope heat into 
electricity. 

http://www.thermoelectrics.caltech.edu/index.htm


What is new or interesting about all this 
from the Basic science point of view?

Fundamental interest in Condensed matter physics has 
moved in a direction away from simple non interacting 
systems towards strongly interacting systems.

Perturbation theory is inapplicable since there is 
nothing small.

From
Fermi liquid metals (Al, Cu,…the works!) and 
semiconductors (Bi2Te3 ….)

To
Oxide materials living on the edge.

Mott Insulating state and its doped descendents.

Zone of 
comfort: 

Bloch 
Boltzmann
theory

No “standard techniques available”: a great new frontier.



Correlated metals and standard models of 
condensed matter physics: 

From 

Hubbard model
To

The tJ model

Single atom: Coulomb 
repulsion U on a s-like orbital.

Energy= e

Energy= e Energy= e
Energy= 0

Energy= 2e +U

H = −Pi,j,σ tijc
†
iσcjσ + U

P
j nj↑nj↓

Energy= e Energy= 0

H = PGTPG + J
P

ij
~Si.~Sj

Gutzwiller projector eliminates 
all doubly occupied states. J is 
small ~ t^2/U.

Eliminating states from Hilbert space changes the rules of QM. No 
longer canonical fermions but correlated fermions with different
anticommutation relations.



Lose perturbation theory framework: Wick’s theorem no 
longer valid, no Dyson eqn, no proper self energies….no 
fermi liquid, no……..no…no….

Also no Bloch Boltzmann theory:

Boltzmann eqn uses the distribution function

f(~k,~r, t) = f0(~k) + δf(~k, ~r, t)

The first term is the equilibrium quasiparticle fermi fn, but it does 
not really exist in correlated systems if there is no fermi liquid!

Hugely unpopular statement.  But it is true: 
Most physicists find it hard to give up 
Boltzmann eqn approach.

A very false approach for correlated 
matter, unfortunately very 
Strongly influential and pervasive



wikipedia

Vulcan death grip –
Derived from a Star Trek
classic episode where a non- existan
"Vulcan death grip" was used to fool
Romulans that Spock had killed Kirk. 



We have so far explained:

•What is thermopower or Seebeck coefficient and why it is interesting.

•What is a correlated metal (tJ model versus Hubbard model)

•What is the Boltzmann equation approach.

New formalism for computing transport in correlated 
systems. (New sum rule for thermal conductivity similar to 
the f-sum rule, Kelvin Onsager debate etc…)

Successes in explaining new class of materials Sodium 
cobaltates

New predictions for a new class of materials with even 
higher thermopower.



•Kubo Onsager formulas “without tears”, i.e
alternate simple formulas! 

•Finite ω response functions: 
•Motivation and formalism 
•New sum rule,
•Two new fundamental operators: Thermal 
operator   ϑ and thermoelectric operator Φ. 



ANALOGY between Hall Constant and Seebeck Coefficients

New Formalism SS (2006) is based on a finite frequency calculation 
of thermoelectric  coefficients. Motivation comes from Hall constant 
computation (Shastry Shraiman Singh 1993- Kumar Shastry 2003)  

ρxy(ω) =
σxy(ω)
σxx(ω)2

→ BR∗H for ω →∞

R∗H = RH(0) in Drude theory

Perhaps ω dependence of 
R_H is weak compared to 
that of Hall conductivity.

* 22 v [ , ] /x yi
H xxhBR N J Jπ τ−= < > < >

•Very useful formula since

•Captures Lower Hubbard Band physics. This is achieved by using the Gutzwiller projected fermi
operators in defining J’s

•Exact in the limit of simple dynamics ( e.g few frequencies involved), as in the Boltzmann eqn approach.

•Can compute in various ways for all temperatures ( exact diagonalization, high T expansion etc…..)

•We have successfully removed the dissipational aspect of Hall constant from this object, and retained the 
correlations aspect.

•Very good description of t-J model.

•This asymptotic formula usually requires ω to be larger than J



Hall constant as a function of T for x=.68 ( 
CW metal ). T linear over large range 2000

to 4360 ( predicted by theory of triangular 
lattice transport KS)

T Linear resistivity

STRONG 
CORRELATIONS 
& Narrow Bands



Finite frequency thermal response functions:

Needed in many contexts, e.g. imagine a Si
chip at 20 GHZ and its power dissipation. 
Neglected area with rather surprising new 
results.  SS Phys Rev 2006

.
S∗ =

L12(ω)

L11(ω)T

L∗ =
L22(ω)

T 2L11(ω)

Z∗T =
(S∗)2

L∗

All objects to be 
computed at large 
frequencies.



1

Ω
hĴxi = L11Ex + L12(−∇xT/T )

1

Ω
hĴQx i = L21Ex + L22(−∇xT/T ),

where (−∇xT/T ) is regarded as the external driving thermal force, and ĴQx is
the heat current operator.

κzc =
1

TL11
(L22L11 − L12L21).

We want finite frequency versions of these…..Turn to 
Luttinger

Ktot = K +
X
x

K(~x)ψ(~x, t).

Here K =
P

xK(~x), and K(~x) = H(~x) − µn(~x) is the grand canonical Hamil-
tonian



We can define the local temperature through

δT (~x, t) =
δhK(~x, t)i
C(T )

.

Luttinger writes

1

Ω
hĴxi = L11Ex + L12(−∇xT/T ) + L̂12(−∇xψ(~x, t))

1

Ω
hĴQx i = L21Ex + L22(−∇xT/T ) + L̂22(−∇xψ(~x, t)),

Let ψ(~x, t) = ψq exp{−i(qxx + ωt + i0+t)}, ( adiabatic switching implied)
and the electric potential φ(~x, t) = φq exp{−i(qxx+ ωt+ i0+t)} thus write

δJ(q) = (iqx)L11(qx,ω)φq + (iqx)

∙
L12(qx,ω)

δTq
T
+ L̂12(qx,ω) ψq

¸
,



In equilibrium (i.e. static inhomogeneous limit) there is no net current there-
fore

0 = L12(q, 0)
δTq
T
+ L̂12(q, 0)ψq.

However,

lim
~q→0

ψ(~q, 0) = − lim
~q→0

δTq
T
.

Hence We conclude that:

lim
q→0

h
L12(q, 0)− L̂12(q, 0)

i
= 0 Luttinger’s identity

Lij(q,ω) = L̂ij(q,ω) Basic assumption of 
our work:

Generalized 
Luttinger’s identity

Can compute RHS mechanically. 
Extension satisfies Causality, Onsager
reciprocity and also Hydrodynamics at 
small q, w



ĴQx = Ĵ
E
x −

µ

qe
Ĵx,

where ĴEx is the energy current and Ĵx the charge current.

ĴQx = lim
qx→0

1

qx
[K,K(qx)] .

ĴQx (~q) =
X
x

ĴQx (~x) exp(i~q.~x), so that ĴQx = lim
q→0

ĴQx (~q).

δĴx = L11(qx,ω)(iqxφq) + L12(qx,ω)(iqxψq)

δĴQx = L21(qx,ω)(iqxφq) + L22(qx,ω)(iqxψq).

Ktot = K + [ρ(−qx)φq +K(−qx)ψq] exp (−iωt+ 0+t),



We can reduce the calculations of all Lij to essentially a single one, with
the help of some notation. Keeping qx small but non zero, we define currents,
densities and forces in a matrix notation as follows:

i=1 i=2

Charge Energy

Ii Ĵx(qx) ĴQx (qx)

Ui ρ(−qx) K(−qx)
Xi Exq = iqxφq iqxψq.

The perturbed Hamiltonian can then be written as

Ktot = K +
X
j

Qje
−iωct, where Qj =

1

iqx
UjXj .



hIii = −
X
j

χIi,Qj (ωc),

χA,B(ωc) = −i
Z ∞
0

dt eiωt−0
+th[A(t), B(0)]i

=
X
n,m

pm − pn
εn − εm + ωc

AnmBmn

= − 1
ωc

"
h[A,B]i+

X
n,m

pm − pn
εn − εm + ωc

Anm([B,K])mn

#
.

Lij(qx,ω) =
i

Ωωc

"
−h[Ii,Uj ]i

1

qx
−
X
n,m

pm − pn
εn − εm + ωc

(Ii)nm(I†j )mn
#
.



For arbitrary frequencies the Onsager functions read as

Lij(ω) =
i

Ωωc

"
hTiji−

X
n,m

pm − pn
εn − εm + ωc

(Ii)nm(Ij)mn
#
,

hTiji = − lim
qx→0

h[Ii,Uj ]i
1

qx
.

The operators Tij are not unique, since one can add to them a ‘gauge op-
erator” T gaugeij = [P,K] with arbitrary P . These fundamental operators play a
crucial role in the subsequent analysis, since they

These important operators are written in a more familiar as follows:

Stress tensor Thermal operator Thermoelectric operator
T11 T22 T12 = T21
τxx Θxx Φxx

− d
dqx

h
Ĵx(qx), ρ(−qx)

i
qx→0

− d
dqx

h
ĴQx (qx),K(−qx)

i
qx→0

− d
dqx

h
Ĵx(qx),K(−qx)

i
qx→0

The thermoelectric operator can also be written as

Φxx = T21 = −
d

dqx

h
ĴQx (qx), ρ(−qx)

i
qx→0

,



Lij(ω) =
i

ωc
Dij +

1

Ω

Z ∞
0

dt eiωct
Z β

0

dτ hIi(t− iτ)Ij(0)i

Dij =
1

Ω

"
hTiji−

X
nm

pn − pm
εm − εn

(Ii)nm(Ij)mn
#

Generalized Kubo formulas for non dissipative systems. Contain 
a stiffness term that is interesting and non trivial.

Comment [1]: D terms is nonzero for supersystems- including 
integrable models. (No additional hypothesis needed as in 
Luttinger’s paper on Superfluids.

Comment[2]: Sum rule for thermal conductivity is new.

``Sum rule for thermal conductivity and dynamical 
thermal transport coefficients in condensed matter '', B 
Sriram Shastry,  Phys. Rev. B 73, 085117 (2006)



Z ∞
−∞

dν

2
<eσ(ν) =

πhτxxi
2ΩZ ∞

−∞

dν

2
<eκ(ν) =

πhΘxxi
2TΩ

, .

F sum rule

Thermal 
sum rule

Z ∞
−∞

dν

π
<eκzc(ν) =

1

TΩ

∙
hΘxxi − hΦ

xxi2
hτxxi

¸
.

Zero current thermal conductivity 
where explicit value of µ is not 
needed.



Thermo power operator for Hubbard model

Φxx = −qe
2

X
~η,~η0,~r

(ηx + η0x)
2t(~η)t(~η0)c†

~r+~η+~η0,σ
c~r,σ − qeµ

X
~η

η2xt(~η)c
†
~r+~η,σc~r,σ +

qeU

4

X
~r,~η

t(~η)(ηx)
2(n~r,σ̄ + n~r+~η,σ̄)(c

†
~r+~η,σc~r,σ + c

†
~r,σc~r+~η,σ).

This object can be expressed completely in Fourier space as

Φxx = qe
X
~p

∂

∂px

©
vxp (ε~p − µ)

ª
c†~p,σc~p,σ

+
qeU

2L
X

~l,~p,~q,σ,σ0

∂2

∂l2x

n
ε~l + ε~l+~q

o
c†~l+~q,σc~l,σc

†
~p−~q,σ̄0c~p,σ̄0 .

τxx =
q2e
~
X

η2x t(~η) c
†
~r+~η,σc~r,σ or

=
q2e
~
X
~k

d2ε~k
dk2x

c†~k,σc~k,σ



Θxx =
X
p,σ

∂

∂px

©
vx~p (ε~p − µ)2

ª
c†~p,σc~p,σ +

U2

4

X
η,σ

t(~η)η2x(n~r,σ̄ + n~r+~η,σ̄)
2c†~r+~η,σc~r,σ

−µU
X
~η,σ

t(~η)η2x(n~r,σ̄ + n~r+~η,σ̄)c
†
~r+~η,σc~r,σ

−U
8

X
~η,~η0,σ

t(~η)t(~η0)(ηx + η0x)
2 {3n~r,σ̄ + n~r+~η,σ̄ + n~r+~η0,σ̄ + 3n~r+~η+~η0,σ̄} c†~r+~η+~η0,σc~r,σ

+
U

4

X
~η,~η0,σ

t(~η)t(~η0)(ηx + η0x)η
0
xc
†
~r+~η,σc~r,σ

n
c†~r+~η,σ̄c~r+~η+~η0,σ̄ + c

†
~r−~η0,σ̄c~r,σ̄ − h.c.

o
. (1)



Hydrodynamics of energy and charge transport in a band model:

This involves the fundamental operators in a crucial way:

½
∂
∂t
+
1
τc

¾
δJ(r) =

1
Ω
hτxxi
∙
1
q2e

∂µ
∂n
(−∇ρ)−∇φ(r)

¸
+
1
Ω
hΦxxi

∙
1

C(T)
(−∇K(r))−∇Ψ

¸

½
∂

∂t
+
1

τE

¾
δJQ(r) =

1

Ω
hΦxxi

∙
1

q2e

∂µ

∂n
(−∇ρ)−∇φ(r)

¸
+
1

Ω
hΘxxi

∙
1

C(T )
(−∇K(r))−∇Ψ

¸

Einstein diffusion 
term of charge

Energy 
diffusion term

Continuity

∂ρ

∂t
+∇J(r) = 0

∂K(r)

∂t
+∇JQ(r) = pext(r)

Input power 
density

These eqns contain energy and 
charge diffusion, as well as 
thermoelectric effects. Potentially 
correct starting point for many 
new nano heating expts with 
lasers.



In General Kubo formulas are incorrect for non 
dissipative systems. The correct forms are:

κ(ω) =
i

T (ω + i0+)
DQ +

1

TL

Z ∞
0

dteiωt
Z β

0

dτhĴQx (t− iτ)ĴQx (0)i.

σ(ω) =
i

T (ω + i0+)
DM +

1

TL

Z ∞
0

dteiωt
Z β

0

dτhĴx(t− iτ)Ĵx(0)i.



Z ∞
0

Re κzc(ω)dω =
π

2~TL

½
hΘxxi− hΦ

xxi2
hτxxi

¾
, sum rule

S∗ =
hΦxxi
T hτxxi

L∗ =
hΘxxi
T 2hτxxi − (S

∗)2

Z∗T =
hΦxxi2

hΘxxihτxxi− hΦxxi2

The two newly introduced operators Thermal operator Θxx , and thermo-
electric operator Φxx together with the stress tensor or Kinetic energy operator
τxx can be computed for any given model, and their expectation as above gives
all the interesting objects. One small example

Thermo power operator for Hubbard model

Φxx = −qe
2

X
~η,~η0,~r

(ηx + η0x)
2t(~η)t(~η0)c†

~r+~η+~η0,σ
c~r,σ − qeµ

X
~η

η2xt(~η)c
†
~r+~η,σc~r,σ +

qeU

4

X
~r,~η

t(~η)(ηx)
2(n~r,σ̄ +n~r+~η,σ̄)(c

†
~r+~η,σc~r,σ + c

†
~r,σc~r+~η,σ). (1)



What about KelvinWhat about Kelvin--OnsagerOnsager??

S = lim
ω→0,qx→0

1

qeT

χ[nq,H−q−µn−q ](ω)

χ[nq,H−q−µn−q ](ω)
Onsager-Kubo

Large box then static limit

SKelvin = lim
qx→0,ω→0

1

qeT

χ[nq,H−q−µn−q ](ω)

χ[nq,H−q−µn−q ](ω)
Kelvin Thermodynamics

Static limit  then large box

S∗ = lim
ωÀωc,qx→0

1

qeT

χ[nq,H−q−µn−q](ω)

χ[nq,H−q−µn−q](ω)
High Frequency

Large box then frequency larger than 
characteristic w’s



For a weakly interacting diffusive metal, we can 
compute all three S’s. Here is the result:

S = T
π2k2B
3qe

d

dε
ln[ρ(ε))]ε→µ Kelvin inspired formula

S∗ = T
π2k2B
3qe

d

dε
ln[ρ(ε)h(vx)2iε]ε→µ High frequency formula

Density Of 
States

S = T
π2k2B

Velocity 
averaged over 
FS

Energy 
dependent 
relaxation 
time.

3qe

d

d ε
ln[ρ(ε)h(vx)2iετ(ε)]ε→µ Onsager- Kubo-Mott formula

Easy to compute 
for correlated 
systems, since 
transport is 
simplified!



Clusters of tClusters of t--J Model + Exact diagonalization: all J Model + Exact diagonalization: all 
states all matrix elements.states all matrix elements.

Data from  preprint with Mike Peterson 
and Jan Haerter (in preparation)

Na{.68} Co O2

Modeled by t-J model with only 
two parameters “t=100K” and 
“J=36K”. Interested in Curie 
Weiss phase. Photoemission 
gives scale of “t” as does Hall 
constant slope of R_h and a 
host of other objects.

One favourite cluster is the platonic solid 
Icosahedron with 12 sites made up of 
triangles. Also pbc’s with torii.



How good is the S* formula compared to exact Kubo formula? 

A numerical benchmark: Max deviation 3%  anywhere !! 

As good as exact!



Notice that these variables change sign thrice as a 

band fills from 0->2. Sign of Mott Hubbard correlations.



Results from this formalism:  

T linear Hall constant for 
triangular lattice predicted in 
1993 by Shastry Shraiman 
Singh! Quantitative agreement 
hard to get with scale of “t”

Comparision with 
data on absolute 
scale!

Prediction 
for t>0 
material



Typical results for S* for NCO type case. Low T problems due to finite 
sized clusters. The blue line is for uncorrelated band, and red line is 

for t-J model at  High T analytically known. 



S* and the Heikes Mott formula (red) for Na_xCo O2. 

Close to each other for t>o i.e. electron doped cases



Kelvin Inspired formula is somewhat off 
from S* ( and hence S) but right trends. In 

this case the Heikes Mott formula dominates 
so the final discrepancy is small.



Predicted result for t<0 i.e. fiducary hole doped  CoO_2 planes. Notice 
much larger scale of S* arising from transport part (not Mott Heikes

part!!). 

Enhancement due to triangular 
lattice structure of closed 
loops!! Similar to Hall constant 
linear T origin.



Predicted result for t<0 i.e. fiducary hole doped  CoO_2 planes.

Different J higher S.



Predictions of S* and the Heikes Mott formula (red) for fiducary hole 
doped CoO2. 

Notice that S* predicts an important enhancement unlike Heikes Mott 
formula  

Heikes Mott misses 
the lattice topology 
effects.



Z*T computed from S* and Lorentz number. Electronic 
contribution only, no phonons. Clearly large x is better!!

Quite encouraging. 



ConclusionsConclusions

Basic science + applications are possible Basic science + applications are possible 
in condensed matter physicsin condensed matter physics
Theory can be useful even today, in Theory can be useful even today, in 
surprising ways: e.g. prediction of material surprising ways: e.g. prediction of material 
properties.properties.
Solid state chemistry is closer to modern Solid state chemistry is closer to modern 
correlated matter than much of traditional correlated matter than much of traditional 
correlated matter physics.correlated matter physics.
Oxides will always have a Oxides will always have a future!!future!!
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