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•Numerical work on evaluating Kubo formulas for 
conductivities on triangular lattice clusters.

•Exact evaluation by brute force summation over all 
energy states of small clusters, upto 12 or 14 sites in 2-d.

•Use of all symmetries in order to achieve 
diagonalization.

•Clever clusters help a lot: want to preserve translation 
invariance, local triangular geometry, and also achieve 
small enough flux so one is the linear B regime:

•Artificial “Molecules” such as the Platonic solid, the  
Icosahedron- a 12 site perfect triangular lattice with 5 
fold coordination, or more convoluted objects.

•Gives first quantitative  results for interesting but 
notoriously hard  objects such as thermopower and Hall 
constant. 



Motivation:

Experiments:

Na x Co O2  :Happy symbiosis of basic theory and technology.

• Large Thermo power

•Huge B dependence of Thermopower

•Strange Hall constant

Skutterudites: 

•Cages and Rattlers; or how to manipulate lattice thermal 
conductivity

Heavy Fermi Systems

Theory:

•Updating Boltzmann theory: long lived almost free quasi particles are 
not a good starting point for most of these materials.

•Effect of strong correlations on transport.

•Understanding Mott Hubbard physics: what are holes?



Hall Effect in Strongly Correlated Matter

Question: What is “n” for a Mott 
Hubbard system? Electron 
number of hole number ( 
measured from half filling)?

Real space versus  k space!!

Standard expression says that 
Hall constant is a measure of 
carrier concentration:

RH =
1

−n|e|c RH =
a

−x|e|c

Effect of correlations is profound.

It leads to a carrier freeze-out near 
half filling, and hence Hall constant 
diverges near half filling. 

Need suitable transport theory for 
correlated matter, since Boltzmann 
approach fails.



Jumping ahead: here is a Mott Hubbard system on a triangular 
lattice: Both Hall constant and Thermopower have three 
crossings as n varies from 0 to 2. 

In a word: these variables are sensitive to the Mott Hubbard insulating 
state

Hall

Thermo 
power



Useful idea: Observe absence of relaxation time in Drude theory of 
several transport quantities, e.g Hall constant, thermopower, and 
Lorentz number. Hence w independent as well!! Can we exploit this 
insight?

Introduce object
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•Easier to calculate than 
transport Hall constant

•Captures Mott Hubbard 
physics to large extent
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Why not compute at high frequencies from Kubo’s formulas 
directly:

21( ) [ | | | | ]
v

n m

m n

xe e
xx xx Z

i n J m
N

βε βε

ε ε ωσ ω τ
ω

− −−
− −= < > − < >∑

3
v (1/ )xxi

N oτ
ω ω< >= + Ηere τ is the stress 

tensor ( k.e.) and v 
the cell volume

( ) | | | |
v

n m

m n

x ye e
xy

i n J m m J n
N Z

βε βε

ε ε ωσ ω
ω

− −−
− −

−
= < >< >∑

2
3[ , ] (1/ )x yi

Nv
J J o

ω
ω= < > +



* 22 v [ , ] /x yi
H xxhBR N J Jπ τ−= < > < >

ω >> J
•Very useful formula since

•Captures Lower Hubbard Band physics. This is achieved by 
using the Gutzwiller projected fermi operators in defining J’s

•Exact in the limit of simple dynamics ( e.g few frequencies 
involved), as in the Boltzmann eqn approach.

•Can compute in various ways for all temperatures ( exact 
diagonalization, high T expansion etc…..)

•We have successfully removed the dissipational aspect of Hall 
constant from this object, and retained the correlations aspect.

•Very good description of t-J model.

•This asymptotic formula usually requires ω to be larger than J

•PREDICTIVE POWER: e.g. Triangular lattice (Kumar Shastry
2003)



Hall constant as a function of T for x=.68 ( 
CW metal ). T linear over large range 2000

to 4360 .

Predicted by theory of triangular lattice 
transport KS based upon calculation of R*.

STRONG 
CORRELATIONS 
& Narrow Bands

HOW GOOD IS THE LARGE w 
LIMIT?

WHAT ABOUT LOW w 
OBJECT?

Answer: Clusters: Exact eval of 
Kubo formulas. See later. 



Our favourite clusters with 
12 sites. Platonic solid with 
triangular faces.

Kubo formulas by introducing 
level broadening equal to 
mean level spacing as usual.



Frequency and temperature dependence of Hall constant for 
various fillings in the torus geometry. ( similar results for ladder 
and also for icosahedron). T linear Hall constant common at all 
frequencies, and sets in at apxly same T and with similar slope 
(max differnece ~15%)



Mild J 
dependence of 
slopes

How do we compare with experiments? 
Ong Cava Wang..



We shift the R_H 
by a constant!

Surprisingly we find that the Landau 
diamagnetic susceptibility has an interesting 
correlation to R_H

Td2/dT 2χL(T ) = c d
2/dT 2RH(T )



Thermopower S: in correlated matter

•Boltzmann theory + Band theory: inadequate to explain 
experiments in  NCO. ( T dependence, x dependence etc..)

•Correlated systems: Heikes Mott Formula or Chaikin Beni
approach:

•Need a theory that goes smoothly from low T FL type to 
Heikes Mott behavior

Transport part

Entropic part

S =
<< Je; Jp >>

T << Jp; Jp >>
− µ

qeT
(1)

S = STr + SHeikes (2)

SHeikes =
µ(0)− µ(T )

qeT

Scale of Heikes Mott entropic part ~80-90 
microvolt/degree. Transport part is essentially unexplored, 
except in Fermi liquids. At low T there is cancellation 
between these terms.

S ∼ Tρ‘(µ)



A Sum  Rule for Thermal Conductivity   and 
Dynamical Thermal Transport Coefficients in  Condensed  Matter -I

S S, Phys Rev B73, 085117 
(2006)

Cond-mat/0508711

New  formalism with new results:->

•Thermal conductivity sum rule, analogous to plasma sum rule

•Thermo-power formula that is better than the Heikes- Mott -
Zener formula. Transport contribution is evaluated and is 
correct at ALL temperatures for the free electron case, and 
presumably close to DC answer at all  frequencies

•Thermoelectric figure of merit

•Lorentz ratio 

Explicit results for NCO- a useful prediction regarding  
design of higher Thermopower materials.



Need frequency dependence of various objects

κ(ω) ρ(ω) S(ω) L(ω) Z(ω)

Need to make sense of T (ř, t) or T (~q,ω)

This is a tricky problem in non equilibrium stat mech- much thought 
and even more more confusion in 60’s and 70’s. Dormant field- but 
watch out since pulsed lasers are here. Ballistic regimes are much 
more accessible. This regime was first studied at Bell Labs earlier by 
Venki Narayanmurthy Chandra Varma (1970) who found solitonic
transport of energy.

Luttinger makes the clever distinction between a mechanical response 
function and a thermodynamic response. Luttinger’s idea of transport 
can be generalized to finite frequencies. His T(r,t) is best thought of as 
an applied temp and not the thermodynamical temp.



K = K0 +K1e
−iωct,

with adiabatic switching from the infinitely remote past t = −∞ as usual, and
K0 =

P
rK(r) =

P
r(H(r) − µ n(r)). Here H(r) is the energy density, and

since we are mainly dealing with lattice models, we sum over r. The operator

K1 =
X
r

ψ(r)K(r),

where ψ(r) is a small (pseudo) gravitational field with some spatial variation
such that its average is zero.

ωc= ω + i 0+

For long wavelengths and slow excitation Luttinger shows that

∇ψ(r) = ∇T (r)
T

However, for arbitrary time and space variations, we can still 
compute these response functions, they correspond to either 
equilibrium or non equilibrium response to an APPLIED (rather than 
a self-consistent thermodynamical)  temperature gradient. 



Re κ(ω) =
π

~T
δ(ω)D̄Q +Re κreg(ω) with

κ(ωc) =
i

T~ωc
DQ +

1

TL

Z ∞
0

dteiωct
Z β

0

dτhĴQx (−t− iτ)ĴQx (0)i.

The sum rule for the real part of the thermal conductivity (an even function
of ω) follows Z ∞

0

Re κ(ω)dω =
π

2~TLhΘ
xxi.

Where

DQ =
1

L

"
hΘxxi− ~

X
n,m

pn − pm
²m − ²n

|hn|ĴQx |mi|2
#
.

Θxx = − lim
kx→0

d

dkx
[ĴQx (kx), K̂(−kx)]

Meet the thermal operator Θxx: A new extensive operator that can be com-
puted for any model. This new operator is different from energy momentum
tensor.



Comment: New sum rule.

Exact parallel to the f-sum rule for optical 
conductivity.

D term related to second sound and missed 
by Kubo as well as Luttinger!!

So, what does Θ look like and what is its value? Answer is model dependent,
and in brief, Θ is the specific heat times a velocity

Θxx

~T
=
1

d
Cµv

2
eff



Thermo-power follows similar logic:

< Ĵx >= σ(ω)Ex + γ(ω)(−∇T )
then the thermopower is

S(ω) =
γ(ω)

σ(ω)
.

γ(ωc) =
i

~ωcTL

"
< Φxx > −~

X
n,m

pn − pm
²n − ²m + ~ωc

hn|Ĵx|mihn|ĴQx |mi
#
.

Φxx = − lim
k→0

d

dkx
[Ĵx(kx), K(−kx)].

This is the thermo electric operator, a new extensive operator that can be
worked out for any model using above formula. It is important since in the
limit of ω >> J , the thermopower S(ω) is determined by the expectation of
Φxx.



High frequency limits that are feasible and sensible 
similar to  R*

L∗ =
hΘxxi
T 2hτxxi (1)

Z∗T =
hΦxxi2

hΘxxihτxxi . (2)

S∗ =
hΦxxi
T hτxxi . (3)

Hence for any model system, armed with these three 
operators, we can compute the Lorentz ratio, the 
thermopower and the thermoelectric figure of merit!

Here τxx is the Kinetic energy along x axis, i.e. t c†(r + ηx)c(r)



So we naturally ask 

•what do these operators look like 

•how can we compute them

• how good an approximation is this?

In the preprint: several models worked out in detail

•Lattice dynamics with non linear disordered lattice

•Hubbard model

•Inhomogenous electron gas

•Disordered electron systems

•Infinite U Hubbard bands

•Lots of detailed formulas: we will see a small sample for 
Hubbard model and see some tests…



Free Electron Limit and Comparison with the Boltzmann Theory

It is easy to evaluate the various operators in the limit of U→0, and this
exercise enables us to get a feel for the meaning of these various somewhat
formal objects. We note that

hτxxi = 2q2e
L
X
p

n~p
d
dpx

£
vx~p
¤

hΘxxi = 2
L
X
p

n~p
d
dpx

£
vx~p(ε~p−µ)2

¤
hΦxxi = 2qe

L
X
p

n~p
d
dpx

£
vx~p(ε~p−µ)

¤
. (1)

At low temperatures, we use the Sommerfield formula after integrating by
parts, and thus obtain the leading low T behaviour:

hτxxi = 2q2eρ0(µ)h(vx~p )2iµ

hΘxxi = T 2
2π2k2B
3

ρ0(µ)h(vx~p )2iµ (1)

hΦxxi = T 2
2qeπ

2k2B
3

∙
ρ00(µ)h(vx~p )2iµ + ρ0(µ)

d

dµ
h(vx~p )2iµ

¸
, (2)



We may form the high frequency ratios

S∗ = T
π2k2B
3qe

d

dµ
log
£
ρ0(µ)h(vx~p )2iµ

¤
L∗ =

π2k2B
3q2e

. (1)

It is therefore clear that the high frequency result gives the same Lorentz number
as well as the thermopower that the Boltzmann theory gives in its simplest form.

Some new results for strong correlations and triangular lattice:

Thermopower formula to replace the Heikes-Mott-Zener formula



Leading High temperature term for the Triangular lattice and 
application to Sodium Cobalt Oxide

S∗ = − µ

qeT
+

qe∆

T hτxxi
Where ∆ = ∆t +∆J and

∆t = −
1

2

X
~η,~η0,~r

(ηx + η0x)
2 t(~η) t(~η0) Yσ0,σ(~r + ~η) hc†~r+~η+~η0,σ0c~r,σi

∆J = −1
2

X
r,~η,~η0

t(~η)J(~η0)ηx[
ηx
2

n
~µ(~r + ~η, ~r).(~S(~r+ ~η0) + ~S(~r + ~η + ~η0)) +

(~S(~r+ ~η0) + ~S(~r + ~η + ~η0)).~µ(~r + ~η, ~r) + η0x(~S(~r + ~η0 + ~η0)− ~S(~r + ~η0)).~µ(~r + ~η, ~r)]

(2)

µz(~r1, ~r2) =
1

2

h
c†~r1,↑c~r2 ,↑ − c

†
~r1,↓c~r2,↓

i
(3)

This is a useful alternative to Mott Heikes formula, and 
works at low T as well as high T.



Leading high temp expansion:

Note that ( Chaikin- Beni)

µ/kBT = log(n/2(1− n)) +O(β2t2)

Thus for 0 ≤ n ≤ 1

S∗ =
kB
qe

½
log[2(1− n)/n]− βt2− n

4
+O(β2t2)

¾
,

S∗ = −kB
qe

n
log[2(n− 1)/(2− n)] + βt

n

4
+O(β2t2)

o
for 1 ≤ n ≤ 2 using particle hole symmetry.



From the temperature dependence of the data of Terasaki et aland Yayu
Wang, Ong and Cava assuming S ∼ S∗one finds that t = −1100K, and with
this, S∗ ∼ 120µV/K, fairly close to the observed value.

Note that in these high Temp expansions:

1. Correction is O(β) for triangular lattice but O(β^2) for 
square lattice. Hence larger transport correction for 
triangular lattice.

2. Prediction. If sign of t is +ve then ( unfrustrated case) S 
will reach its asymptotic Heikes-Mott-Zener value FROM 
ABOVE, hence a peak in S must exist. Such a case must be 
the largest S for any metallic system.



Prediction for hypothetical 
material with t<0

S* for both signs of 
hopping. X=.75



X=0.67

S* for both signs of hopping. 

X=0.58



Predicted hugely enhanced S 
for t<0 at different fillings. 
Note that x ->1 gets better!!

S at different fillings for 
usual case t>0



Minhyea Lee et al.  Nature Materials, in press

Spectacular new data 
from Phuan Ong and 
Bob Cava and students.

t<0 prediction!



B dependence of thermopower is very strong and hence strange 
for a good metal: Wang, Rogado, Ong and Cava (2003) Nature:



Experiment

Theory: 
absolute 
scale 
computation



Conclusions:

A useful way to compute transport constants in correlated 
matter is to combine numerics and  S* and R*.

R* is perhaps no more than 15% off transport values.

Role of transport corrections in the Heikes Mott Beni Chaikin
formulas. We get a large correction in the proximity of almost 
filled bands,  with opposite sign of hopping (unfrustrated
case).

Sodium cobaltates are still pretty mysterious, they may not be 
described by single band t-J model for all fillings. Materials 
issues are pretty complex.

Lorentz number and possibly Nernst coefficient beckon….



Preliminary results on w dependence of 
S(w). X=.8 different values of T in different 
plots and also broadening. Green line is S*


