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The Scott Russell Aqueduct on the Union Canal Edinborough, ScotlandChris Eilbeck, Alwyn Scott and Martin Kruskal looking for 
a soliton

``I was observing the motion of a boat which was rapidly drawn along a narrow 
channel by a pair of horses, when the boat suddenly stopped - not so the mass 
of water in the channel which it had put in motion; it accumulated round the 
prow of the vessel in a state of violent agitation, then suddenly leaving it behind, 
rolled forward with great velocity, assuming the form of a large solitary 
elevation, a rounded, smooth and well-defined heap of water, which continued 
its course along the channel apparently without change of form or diminution of 
speed. I followed it on horseback, and overtook it still rolling on at a rate of 
some eight or nine miles an hour, preserving its original figure some thirty feet 
long and a foot to a foot and a half in height. Its height gradually diminished, 
and after a chase of one or two miles I lost it in the windings of the channel. 
Such, in the month of August 1834, was my first chance interview with that 
singular and beautiful phenomenon which I have called the Wave of Translation'' 

John Scott Russell (1845)



Classical Integrable systems: ( soliton bearing systems)
Number of degrees of freedom = No of invariants in involution Toda lattice

and hence to Korteweg de Vries( KdV) theory
Toda Lattice

H =
X
j

p2j
2m

+ g
X
i

exp(xj − xj+1)

KdV: Shallow water waves u ≡ u(x, t) is the height of the water surface

ut = −6uux + uxxx

Special solitonic solutions: ( v=v(a)) Single soliton:

u(x, t) =
a

cosh2(x− vt)
Similarly multisoliton solutions exist: Scatter like particles



Secret of solvability:
Higher conservation laws: Lax formulation ( Historically GGKM had a more

tortured path) A = −4∂3x + 3(u∂x + ∂xu)

L = −∂2x + u(x, t)
P Laxs eqn ( 1968) for Lax pair

∂tL = ut = [L,A]

Hence eigenvalues of L are constants of motion.

I0 =
R
dxu, I1 =

R
dx[u

2

2 + u
3],

Similarly Non Linear Schroedinger Equation:

i~∂tψ(x, t) = −∂2xψ(x, t) + g|ψ(x, t)|2ψ(x, t)
Bose gas, Hartree Fock theory, Fiber optics: Hasegawa, it even makes $s

with AT&T (maybe)!!



“Bell Labs researchers set new soliton transmission record

“AT&T Bell Laboratories scientists have demonstrated error-free 
transmission of solitons (light pulses that maintain their shape over 
long distances) at 5 gigabits (billion bits) per second over 15,000 
kilometers and at 10 gigabits over 11,000 kilometers. A research team 
led by physicist Linn Mollenauer, of the Bell Labs Photonic Circuits 
Research department used time-division multiplexing (interleaving bits 
of information from one stream of data into the spaces of another) to 
upgrade a 2.5-gigabit signal to 5 gigabits and then used wavelength-
division multiplexing (transmitting data on two wavelengths, or colors, 
of light) to reach 10 gigabits. 

Kepler problem/Hydrogen atom

Runge Lenz Vector is conserved:

~R = ~p ∧ ~L− me
2~r

|~r|
Example of dynamical symmetry: leads to permanent degeneracy in spec-

trum of Hydrogen, SO(4) symmetry in momentum space.



Quantum Integrable Systems:

Quantum sine Gordon theory: equivalence to massive Thirring
model – (S Coleman 1975) Dashen Hasslacher Neveau semiclassical
quantization of Sine Gordon- created considerable excitement and 
interest:

Alan Luther: Anistropic Heisenberg model is equivalent to Sine 
Gordon. Anisotropic Heisenberg model is a DISCRETE space 
problem of “spins” but due to a simple Jordan Wigner
Transformation + continuum limit becomes Massive Thirring model-
which is solvable by Bethe’s Ansatz!! ( integrability) 

Now use Jordan Wigner
c(i) =

Qi−1
j=1 σ

z(j)σ−(i)
n(i) = 1/2(σz(i)− 1)

H =
X
i

(Jxσ
x(i)σx(i+ 1) + Jyσ

y(i)σy(i+ 1) + Jzσ
z(i)σz(i+ 1))

=
X
i

J+(σ+(i)σ−(i+ 1) + σ−(i)σ+(i+ 1)) +X
i

J−(σ+(i)σ+(i+ 1)− σ−(i)σ−(i+ 1) +
X
i

Jzσ
z(i)σz(i+ 1)



Hxyz =
P
(c†(i)c(i+1)+c†(i+1)c(i))+m0

P
(c†(i)c†(i+1)+c(i+1)c(i)))+

∆
P

i n(i)n(i+ 1)
m0 = (Jx − Jy) and ∆ = (Jx + Jy).
This is an interacting fermionic field theory ( on a lattice) with a mass term,

and reduces to Massive Thirring model in continuum limit.

H =
R
dx{−i[ψ†1∂xψ1 − ψ†2∂xψ2] +m0(ψ

†
1ψ2 + ψ†2ψ1) + 2g0ψ

†
1ψ

†
2ψ2ψ1}

It is easier and more 
general to work on lattice 
since we can take 
continuum limits easily!

Mark Kac’s dictum:  

Be wise ,  

Discretize!

-3 -2 -1 1 2 3

-1.5

-1

-0.5

0.5

1

1.5



•Delta function bose/fermi gases ( non relativistic)

•Heisenberg connection

•Bethe’s Ansatz

•Calogero Sutherland system

H =

Z
dx{[−ψ†(x)∂2xψ(x) + 2g0(ψ†(x)ψ(x))2}

Bose gas with delta function ( Lieb ) or fermions with multicomponent (
Yang Sutherland)

Can be viewed as a delta function interaction problem

H = −
X
i

∂2x(j) + 2g
X
i,j

δ(x(i)− x(j))

No need to show integrability ( at least for bose case) since it can be 
btained by ANOTHER continuum limit of Heisenberg model. For fermions  
do need: Yang’s consistency equations for 2  body scattering matrices:

SSS= SSS ( will see in a minute with Baxter)



Wave function parametrized by just N complex numbers k1,..kN and with a suitable 
amplitude  AP for each permutation.
Consistency check needed since hugely overdetermined equation set for these N 
parameters
Hints of  integrability: We have N conserved numbers k’s

Bethe’s Ansatz:
1933 !! For Heisenberg model ( early bird special)

ψ(x1, x2, .., xN ) =
P

P AP exp i(kP1x1 + kP2x2 + + kPNxN )

Check for consistency by plugging in to Schroedinger equation: 
combinatorial problem.

S matrix for 2 body collisions is some ratio of A’s

Matrix problem in case of Fermions since we need to impose statistics, 
where A_P needs to be generalized to different orderings of particles. 
“One of the triumphs of Theoretical physics”  ( Yang)



Calogero Sutherland model and the Haldane Shastry- inverse square  
exchange model. ( 1970- 1989)

HCS = −
X

∂2x(j) + 2
X
i<j

λ(λ− 1)
sin2(x(i)− x(j))

HHS =
X
i<j

~σ(i).~σ(j)

sin2(x(i)− x(j))

Here a VERY detailed solution is available for 2 point functions unlike the 
Bethe case. Connections galore: Random matrix theory, Yangian symmetries, 
fractional statistics…….Once again, the discrete model solution gives the 
continuum model in the case λ=2 ( but not in general). HCS has as its ground 
state the various circular ensemble probability amplitudes!! So the CSE ( 
symplectic ) case has an extra SU(2) invariance that is mysterious.



So how about integrability?

Unlike classical mechanics, Lax eqn does not buy us much.

E.g. Calogero Sutherland case: Classical case J 
Moser

Li,j = δi,jpi + λ(1− δi,j)(cot(x(i)− cot(x(j))
Ai,j = δi,j

P
k(cot(x(i)− cot(x(k)))2 − (1− δi,j)(cot(x(i)− cot(x(j)))2

[Li,j , H] = [L,A]i,j
But this does not buy integrability as such.

Extra ingredient needed:(Shastry-Sutherland 1992, Hikami 92)
Λi,j = 1 for all i, j. Clearly AΛ = ΛA = 0 if A has stochastic matrix

structure as shown above. If so then In ≡ Tr(LnΛ) is conserved
Proof:using Quantum Lax + cyclicity of trace + stochastic property: [In, H] =

Tr{L..[L,H]..LΛ} = Tr{LnAΛ− TrALn}Λ = 0
Or supersymmetric formulation of same result.



For discrete models: R J Baxter: Connection with statistical 
mechanics- Onsager’s 2d Ising model generalization. 

Object of interest is 1-d quantum operator “ transfer matrix”

T (u) = Trg[LN,g(u)LN−1,g(u).L1,g(u)]

Where Ln,g(u) are 2 body scattering matrices dependent on a spectral pa-
rameter u, and g is an auxiliary space variable ( e.g. 2 dimensions) so this is
an ordered product, much like a time evolution operator in QM. As u→ 0 one
finds from general grounds T (u) = T (0){1+ uH + u2H2+ ..} or exponentiating

T (u) = T (0) exp({1 + uH + u2J2 + u
2J3..)

. Baxter argued brilliantly that commuting transfer matrices suffice to give
integrability and also explicit solutions ( inspired by Onsager)

[T (u), T (v)] = 0

Follows from local relation (Yang Baxter Eqn)

Ln,g1(u)Ln,g2(v)Rg1,g2(u− v) = Rg1,g2(u− v)Ln,g1(v)Ln,g2(u)



This is the most important equation in integrable systems theory!
For u∼ v, one can expand and get Lax equation etc..

This clearly shows that one has ``infinite’’ conservation laws!

One can find various representations of this and related algebra: Drinfeld ( 
Fields medal). Clearly higher conservation laws are just J2 J3 etc ( log 
derivatives of the transfer matrix).

Usually R is a  function of the difference of the spectral parameters, or 
uniformization is possible. However, this fails for the Hubbard model.

Hubbard model:  Bethe’s ansatz Lieb Wu ( 1970)

NON PERTURBATIVE MOTT INSULATING SPIN LIQUID GROUND STATE

Integrability, conservation laws  and  R matrix Shastry (1986). Long 
delay due to a ``red herring’’, no uniformization possible for Hubbard 
model.

H = −t
NX
j=1

X
s=↑↓

(c†jscj+1 s + c
†
j+1 scjs) + U

NX
j=1

µ
nj↑ − 1

2

¶µ
nj↓ − 1

2

¶
(1)



Finite in all respects:

Energy level variation with parameter

H=H(U) so all levels ( discrete) vary with U. 

Wigner von Neumann non crossing rule:

For a real symmetric ( hermitean) matrix, we need to tune 
two ( three) parameters to get a level crossing. Hence expect 
non crossing or level repulsion when two levels approach 
each other:

∆ =
q
(E1 − E2)2 + |V1,2|2

Two ( three) parameters to be fine tuned are E1 −E2, and V1,2 ( and V ∗1,2)
Quantum Chaos Dogma: 1980’s     P(s) is distribution of 
level spacings

Level separations cluster at zero for “regular” i.e. integrable
spectra, but repel for “irregular “ i.e. on integrable spectra.

Percival, Michael Berry, Oriol Bohigas,… 

Poisson distribution of P(s)  for integrable models

versus level repulsion P(s)= s exp(-s^2) (  Wigner surmise)



Numerical study of Hubbard model Heilmann Lieb/ Yuzbashyan
Altshuler Shastry

U--independent symmetries fall into 
three major categories -- the symmetry 
of the polygon, the spin symmetry, and
the particle-hole symmetry. In each 
figure we extract ALL known symmetries
So we expect NO level crossings. And 
what we find instead is:



Questions in finite dimensions:

•Is it meaningful to talk about  integrability in 
finite dimensional spaces? Projection operators

•Given a finite dimensional matrix, can we 
recognize it as being integrable? Example below:

•Can we talk about integrability even when the 
notion of “degree of freedom” is ambiguous?

Given arbitrary H, compute eigenbasis H |j >= Ej |j > and Pj = |j >< j|
so that [H,Pj ] = 0 = [Pi, Pj ].
So the skeptic argued, what is the big deal about integrabiity, everybody is

integrable!!
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Conceptual Answer: parameter dependence and Wigner von Neumann violation is key 
definition of integrability. Poisson statistics also implies a forgiveness of level 
crossings,  (but requires ensembles to define).  

Recent preprint: SS cond-mat/0501502 “A class of 
parameter dependent commuting matrices”

α(x) = a+ xA, β(x) = b+ xBThink dynamical symmetries:

Idea: α is a ``Hamiltonian’’ that possesses a dynamical symmetry β

Here a is a diagonal matrix with diagonal entries {a1, a2, ...., ad} and A is a
real symmetric matrix. In the matrix α we have d(d−1)/2 off diagonal variables
Ai,j , d variables aj and a further d variables Aj ≡ Aj,j , in addition to the real
variable x . Likewise with b and B. we have {b1, b2, ...., bd} and {B1, .....Bd} as
well as Bi,j with i < j.

Commutation for all x gives us two equations

⇒ Si,j =
Ai,j
ai−aj =

Bi,j
bi−bj 2 x d(d-1)2 eqns[a,B] = [b, A]

[A,B] = 0.

Yi,j [α] ≡ Ai−Aj
ai−aj − 1

Si,j(ai−aj)
P

l 6=i,j Si,lSl,j(al − aj)
⇒ Yi,j [α] = Yi,j [β]



Symmetric in α and β matrices. Now 
solve for β in terms of α

→ Yi,j [α] = Yi,j [β]

ξi,j ≡ Bi − Bj = pi,j(bi − bj) + 1
ai−aj

P
l 6=i,j

Si,lSl,j
Si,j

(b ∧ a)i,j,l

(b ∧ a)i,j,l ≡ [(biaj − bjai) + (bjal − blaj) + (blai − bial)]

IF α is assumed known then above d(d-1)/2 linear eqns are for 2 d variables
{b1, b2.., bd}, {B1, B2, .., Bd}. OVERDETERMINED.
Consistency requires triangle law

ξi,j + ξj,k + ξk,i = 0

LHS = µ(i; j, k)bi + µ(j; k, i)bj + µ(k; i, j)bk+
P

l 6=i,j,k ν(l; i, j, k)bl

Type I solutions: (Think Bethe’s Ansatz). Coefficient of each 
br identicall zero.

Type II rest: ( mostly trivial such as α=β )



The task

To prove that Type I solutions exist!

Highly non trivial since

• For each distinct set of indices {i,j,k}  each µ(i,j,k) must 
vanish ( ~d^3/6 eqns)

• For each distinct {i,j,k,l}, each ν(i,j,k,l) must vanish ( 
~d^4/24 eqns)

• Number of variables: S_{i,j}  ( d(d-1)/2 ) in number and 
{a_j’s} {A_j’s} 2d in number.

And yet very tempting since α’s are being determined without any 
knowledge of β’s, other than the fact that they exist! This is 
reminiscent of definition of integrability. Principle of AUTONOMY

Si,lSl,jSj,kSk,i + Sj,lSl,kSk,iSi,j + Sk,lSl,iSi,jSj,k = 0

Autonomous eqn for S’s for fixed indices. These correspond to three Hamilton  
walks on the tetrahedron ( oriented). Become simpler for Symmetric Has 
compared to Hermitean!



Formidable task, and yet for  case of real symmetric matrices it all works out:

What do the solutions look like, what are their properties  and what do they 
mean?

I believe that these essentially give a clue to discovering  all integrable
models in finite dimensions.  Fine tuning is still needed but this is a sizable 
step. 

Final result: ( 2 d -3) free parameters for determining S’s and (d+2) free 
parameters for determining a , A. Rest are to be found from given algebraic 
equations. Given α, we have the choice of fixing (d+1) parameters to fix β(x) 
matrices which commute with α(x). 

Properties: 

If we take  any  Type I matrix α(x), and  constructed commuting β(x), then 
these invariably violate Wigner von Neumann non crossing rules.

These define classes of matrices for a fixed S matrix, and partners are 
automatically of Type I i.e.  What is α and what is β are freely 
interchangable, as in integrable models.  



Numerical results from notebook available at 
physics.ucsc.edu/~sriram/demo_shastry.nb
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Summary and open questions:

•We can display matrices in any dimension that depend on a 
parameter and commute within a well defined class

•This seems to produce violations of repulsion of levels due to 
Wigner and von Neumann

•Algebraic proof of the connection between commutation and 
level crossings is possible in d=3 ( exactly) but not yet 
available in higher dimensions.

•Does this class contain all integrable systems? Work needs to 
be done on this.


	Quantum Integrable systems

