Quantum Integrable
systems

“Where do they all come from?”*

Sriram Shastry

eAcknowedgements for discussions, questions and help:

«Elliott Lieb

Bill Sutherland
eDeepak Dhar
*\Vivek Shenoy
eLucas Winstrom

*Eleanor Righy
Anon skeptical questioner in the audience



PLAN

e|ntroduction

«Classical Integrable systems: (Role of higher conservation laws or
dynamical symmetries)

Runge Lenz vector as example of dynamical symmetry.
e KdV Equation, Non Linear Schroedinger Eqn,
eQuantum Integrable systems:

«Sine Gordon theory, Massive Thirring model, 6 function Bose/Fermi
gas, Calogero Sutherland systems. Lax Equations

eLattice models: XXZ, XYZ spin chains, Baxter’s eqns, Commuting
transfer matrices

*Recent work on energy level statistics/ level crossings:
eHeilmann-Lieb, Yuzbashyan-Altshuler-Shastry
A recent preprint ( SS Jan ‘05)

Open Questions



Chris Eilbeck, Alwyn Scott and Martin Kruskal looking for

) The Scott Russell Aqueduct on the Union Canal Edinborough, Scotland
a soliton

~ "1 was observing the motion of a boat which was rapidly drawn along a narrow
channel by a pair of horses, when the boat suddenly stopped - not so the mass
of water in the channel which it had put in motion; it accumulated round the
prow of the vessel in a state of violent agitation, then suddenly leaving it behind,
rolled forward with great velocity, assuming the form of a large solitary
elevation, a rounded, smooth and well-defined heap of water, which continued
its course along the channel apparently without change of form or diminution of
speed. | followed it on horseback, and overtook it still rolling on at a rate of
some eight or nine miles an hour, preserving its original figure some thirty feet
long and a foot to a foot and a half in height. Its height gradually diminished,
and after a chase of one or two miles I lost it in the windings of the channel.
Such, in the month of August 1834, was my first chance interview with that
singular and beautiful phenomenon which | have called the Wave of Translation"

John Scott Russell (1845)




_
Classical Integrable systems: ( soliton bearing systems)
Number of degrees of freedom = No of invariants in involution Toda lattice
and hence to Korteweg de Vries( KdV) theory
Toda Lattice

2
p.
H = E ﬁ +9g E exp(Z; — Tj+1)
] (]

KdV: Shallow water waves u = u(x,t) is the height of the water surface

Special solitonic solutions: ( v=v(a)) Single soliton:

a

u(x,t) =
(%) cosh?(z — vt)

Similarly multisoliton solutions exist: Scatter like particles



Secret of solvability:
Higher conservation laws: Lax formulation ( Historically GGKM had a more
tortured path) A = —49?2 + 3(ud, + O u)

L=-02+u(x,t)
P Laxs eqn ( 1968) for Lax pair

(9tL = Ut = [L, A]

Hence eigenvalues of L are constants of motion.
2
Iy = [dau, I = [ dz[% + u?],

Similarly Non Linear Schroedinger Equation:

ihOpp(z,t) = =021 (x, t) + gl (x, t)|*p(x, t)

Bose gas, Hartree Fock theory, Fiber optics: Hasegawa, it even makes $s
with AT&T (maybe)!!



“Bell Labs researchers set new soliton transmission record

“AT&T Bell Laboratories scientists have demonstrated error-free
transmission of solitons (light pulses that maintain their shape over
ong distances) at 5 gigabits (billion bits) per second over 15,000
Kilometers and at 10 gigabits over 11,000 kilometers. A research team
ed by physicist Linn Mollenauer, of the Bell Labs Photonic Circuits
Research department used time-division multiplexing (interleaving bits
of information from one stream of data into the spaces of another) to
upgrade a 2.5-gigabit signal to 5 gigabits and then used wavelength-
division multiplexing (transmitting data on two wavelengths, or colors,
of light) to reach 10 gigabits.

Kepler problem/Hydrogen atom

Runge Lenz Vector is conserved:

o

7]

Example of dynamical symmetry: leads to permanent degeneracy in spec-
trum of Hydrogen, SO(4) symmetry in momentum space.

R=pANL-—




Quantum Integrable Systems:

Quantum sine Gordon theory: equivalence to massive Thirring
model — (S Coleman 1975) Dashen Hasslacher Neveau semiclassical
guEntization of Sine Gordon- created considerable excitement and
interest:

Alan Luther: Anistropic Heisenberg model is equivalent to Sine
Gordon. Anisotropic Heisenberg model is a DISCRETE space
problem of “spins” but due to a simple Jordan Wigner
Transformation + continuum limit becomes Massive Thirring model-
which is solvable by Bethe’s Ansatz!! ( integrability)

= D@07+ 1)+ (Vi + 1) + S (o 1)
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Now use Jordan ngner
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Hyyo = > (c"()c(i+1)+ct(i+1)e(i) +mo D (cT (@) (i+1) +c(i+1)c(i))) +
Ad . .n(i)n(i+1)

mo = (Jz — Jy) and A = (J, + J,).

This is an interacting fermionic field theory ( on a lattice) with a mass term,
and redyices to Massive Thirring model in continuum limit.

H = [ da{—i[]0u1b1 — $30:402) + mo(¥lba + dup1) + 2909 9l ebathn }

It is easier and more
general to work on lattice
since we can take
continuum limits easily!

Mark Kac’s dictum:
Be wise ,

Discretize!




eDelta function bose/fermi gases ( non relativistic)

eHeisenberg connection
eBethe’s Ansatz
eCalogero Sutherland system
H = [ dofl-v! @020() + 290(u! (@) (2)*}

Bose gas with delta function ( Lieb ) or fermions with multicomponent (
Yang Sutherland)

Can be viewed as a delta function interaction problem
H=-> 02, +29) (i) —z(5))
i i

No need to show integrability ( at least for bose case) since it can be
btained by ANOTHER continuum limit of Heisenberg model. For fermions
do need: Yang's consistency equations for 2 body scattering matrices:

SSS= SSS (will see in a minute with Baxter)



Bethe’s Ansatz:
1933 !! For Heisenberg model ( early bird special)

Y(x1,22,..,2n) =Y p Apexpi(kpix1 + kpax2 + + kpyznN)

Wave function parametrized by just N complex numbers k,,..k,, and with a suitable
amplitude A, for each permutation.

Consistency check needed since hugely overdetermined equation set for these N
parameters

Hints of integrability: We have N conserved numbers k's

Check for consistency by plugging in to Schroedinger equation:
combinatorial problem.

S matrix for 2 body collisions is some ratio of A’s

Matrix problem in case of Fermions since we need to impose statistics,
where A P needs to be generalized to different orderings of particles.
“One of the triumphs of Theoretical physics” ( Yang)



Calogero Sutherland model and the Haldane Shastry- inverse square
exchange model. ( 1970- 1989)

A(A —
Hgs = Z z(7) T 22 51n2(£B((Z )(]))

Here a VERY detailed solution is available for 2 point functions unlike the
Bethe case. Connections galore: Random matrix theory, Yangian symmetries,
fractional statistics....... Once again, the discrete model solution gives the
continuum model in the case A=2 ( but not in general). H.4 has as its ground
state the various circular ensemble probability amplitudes!! So the CSE (
symplectic ) case has an extra SU(2) invariance that is mysterious.



So how about integrability?

Unlike classical mechanics, Lax egn does not buy us much.

E|g. Calogero Sutherland case: Classical case J
Moser

L;; =06;pi + A(1 —9; ;)(cot(z(i) — cot(z(j))

Aij = 0535 (cot(z(d) — cot(z(k)))? — (1 — d,5)(cot(z(i) — cot(z(4)))?
| Li,j, H] = |L, Ali

But this does not buy integrability as such.

Extra ingredient needed:(Shastry-Sutherland 1992, Hikami 92)

A;; = 1 for all ¢,5. Clearly AN = AA = 0 if A has stochastic matrix
structure as shown above. If so then I,, = T'r(L™A) is conserved

Proof:using Quantum Lax + cyclicity of trace + stochastic property: [I,,, H| =
Tr{L.[L, H]..LA} = Tr{L"AA — TrAL"}A = 0

Or supersymmetric formulation of same result.



For discrete models: R J Baxter: Connection with statistical
mechanics- Onsager’s 2d Ising model generalization.

Opject of interest is 1-d quantum operator “ transfer matrix”

T(u) =Trg|Ln,g(w)Ln—-1,9(u).L1,q(u)]

Where L, ;(u) are 2 body scattering matrices dependent on a spectral pa-
rameter u, and g is an auxiliary space variable ( e.g. 2 dimensions) so this is
an ordered product, much like a time evolution operator in QM. As u — 0 one
finds from general grounds T'(u) = T'(0){1 + uH + u*Hs + ..} or exponentiating

T(u) = T(0)exp({1 + uH + u*Jy + u*J3..)
~ Baxter argued brilliantly that commuting transfer matrices suffice to give
integrability and also explicit solutions ( inspired by Onsager)

[T'(u), T(v)] =0
Follows from local relation (Yang Baxter Eqn)

Ln,gl(“)Ln,g2(U)Rgl,g2 (u—v) = Rgl,g?(u — U)Ln,gl(U)Ln,ﬂ(u)



This is the most important equation in integrable systems theory!
For u~ v, one can expand and get Lax equation etc..

This clearly shows that one has = "infinite’” conservation laws!

—One can find various representations of this and related algebra: Drinfeld (
Fields medal). Clearly higher conservation laws are just J2 J3 etc ( log
derivatives of the transfer matrix).

Usually R is a function of the difference of the spectral parameters, or
uniformization is possible. However, this fails for the Hubbard model.

Hubbard model: Bethe’s ansatz Lieb Wu ( 1970)

Integrability, conservation laws and R matrix Shastry (1986). Long
delay due to a " "red herring”’, no uniformization possible for Hubbard
model.

1
H = _tz Z stcj+18 + Cg—|—1 sCJS + UZ (nJT ) (nji _ 5) (1)

J=1s=Tl



Finite In all respects:
Energy level variation with parameter
H=H(U) so all levels ( discrete) vary with U.

Wigner von Neumann non crossing rule:

For a real symmetric ( hermitean) matrix, we need to tune
two ( three) parameters to get a level crossing. Hence expect
non crossing or level repulsion when two levels approach

each other:
A = \/(El — E5)2 + Vi

Two ( three) parameters to be fine tuned are 1 — Es, and Vi o ( and VfZQ)

2

Quantum Chaos Dogma: 1980’s  P(s) is distribution of
level spacings

Level separations cluster at zero for “regular” i.e. integrable
spectra, but repel for “irregular “ i.e. on integrable spectra.

Percival, Michael Berry, Oriol Bohigas,...
Poisson distribution of P(s) for integrable models

versus level repulsion P(s)= s exp(-s™2) ( Wigner surmise)



Numerical study of Hubbard model Heilmann Lieb/ Yuzbashyan
Altshuler Shastry

U--1ndependent symmetries fall iInto
three major categories -- the symmetry
of the polygon, the spin symmetry, and
the particle-hole symmetry. In each
figure we extract ALL known symmetries
So we expect NO level crossings. And
what we find instead 1is:




Questions in finite dimensions:

eIs it meaningful to talk about integrability in
finite dimensional spaces? Projection operators

Given a finite dimensional matrix, can we
recognize it as being integrable?

«Can we talk about integrability even when the
notion of “degree of freedom” is ambiguous?

Given arbitrary H, compute eigenbasis H|j >= E,|j > and P; = |j >< j|
so that [H, P]] =0 = [PZ,PJ]

So the skeptic argued, what is the big deal about integrabiity, everybody is
integrable!!




. Poisson statistics also implies a forgiveness of level
crossings, (but requires ensembles to define).

Recent preprint: SS cond-mat/0501502 “A class of
parameter dependent commuting matrices”

a(z) =a+xA, B(x) =b+xB

Here a is a diagonal matrix with diagonal entries {a1, as,....,a4} and A is a
real symmetric matrix. In the matrix a we have d(d—1)/2 off diagonal variables
A; ;, d variables a; and a further d variables A; = A; ;, in addition to the real
variable x . Likewise with b and B. we have {by,bs, ....,b4} and {B,.....Bg} as

well as B; ; with 7 < j.

Commutation for all x gives us two equations

Aij _ B
la,B] = [b,A] = 85 = G5 = hih; 2 x d(d-1)2 egns
ABl = 0 Ly el =Yl

. A 1
Yi’j [Oé] — a; —a; _ Si,j(ai—aj) Zl#'b,j SZ,ZSZ)] (a'l R a])



— Y ila] =Y ;0] Symmetric in o and B matrices. Now
solve for (3 in terms of o

Si 1515
§i.j = Bi — Bj = pij(bi — bj) + o2 31 T2t (b A a)i

(b A\ a,)z-,j,l — [(bia,j — bjCLZ') + (bjal — blCLj) + (blai — bial)]

IF « is assumed known then above d(d-1)/2 linear eqns are for 2 d variables
{by,ba..,ba}, {B1, Ba, .., By}. OVERDETERMINED.
Consistency requires triangle law

&ij + &k + 8k =0
LHS = p(i; j,k)b; + p(j; k,4)bj + (ks 5 5)bi+ D2y 55 V(67 5, k)b

Type | solutions: (Think Bethe’s Ansatz). Coefficient of each
b, identicall zero.

Type 1l rest: ( mostly trivial such as a=p )



The task

Highly non trivial since

e For each distinct set of indices {i,},k} each n(i,j,k) must
vanish ( ~d”3/6 eqns)

e For each distinct {i,j,k,I}, each v(i,j,k,I) must vanish (
~d™N4/24 eqgns)

e Number of variables: S_{i,j} (d(d-1)/2) in number and
{a_j's} {A j's} 2d in number.

And yet very tempting since a's are being determined without any
knowledge of B’s, other than the fact that they exist! This is
reminiscent of definition of integrability.

Si,191.i95.65k,; + 55.151,65%,i5: 7 + Sk,151,:5:,;55, 6k = 0

Autonomous eqgn for S’s for fixed indices. These correspond to three Hamilton
walks on the tetrahedron ( oriented). Become simpler for Symmetric Has
compared to Hermitean!



Formidable task, and yet for case of real symmetric matrices it =/ works out:

What do the solutions look like, what are their properties and what do they
mean?

| Qelieve that these essentially give a clue to discovering all integrable
madels in finite dimensions. Fine tuning is still needed but this is a sizable
step.

Final result: ( 2 d -3) free parameters for determining S’s and (d+2) free
parameters for determining a , A. Rest are to be found from given algebraic
equations. Given a, we have the choice of fixing (d+1) parameters to fix B(x)
matrices which commute with o(Xx).

Properties:

If we take any Type | matrix a(x), and constructed commuting B(x), then
these invariably violate Wigner von Neumann non crossing rules.

These define classes of matrices for a fixed S matrix, and partners are
automatically of Type | i.,e. What is o and what is 3 are freely
interchangable, as in integrable models.



Numerical results from notebook available at
physics.ucsc.edu/~sriram/demo_shastry.nb
Inf42:= mlp@evgrid@a, -1, 1, 1000DD

40 mlp@evgrid@a, —.1, .1, 1000DD

5@a@1D, 1D

h Graphics h



Summary and open guestions:

e\We can display matrices in any dimension that depend on a
parameter and commute within a well defined class

*This seems to produce violations of repulsion of levels due to
Wigner and von Neumann

eAlgebraic proof of the connection between commutation and
level crossings is possible in d=3 ( exactly) but not yet
available in higher dimensions.

eDoes this class contain all integrable systems? Work needs to
be done on this.
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