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Plan of the talk

•Brief motivation: Heavy fermi systems and Mott Hubbard systems 

•The curious case of the Curie Weiss Metal

•New theoretical formalism based on ``high frequency approach’’

•Insight from Hall constant (SSS 1994)

•Sum rule for thermal conductivity and thermopower. 2006 

•Kelvin’s formulas versus Onsager Kubo and high frequency

•Hall constant in high Tc and on triangular lattice.

•Thermopower in 2-d models for describing sodium cobaltate.

•New insights and predictions for frustrated lattices with correlations.



Heavy Fermi systems CeCoIn5  

Mott Hubbard system NaxCoO2 (sodium cobaltate)

Terasaki: 

Highest value of thermopower for a good metal for x~.68 and also Figure of 
Merit promising

Ong-Cava: Curie Weiss metal phase of NCO at x~.68

Where local moment type magnetic susceptibility coexists with good 
metallicity, B sensitive Thermopower….very anamolous.

Superconductivity on hydration is a bonus, but value of doping is a vexed 
issue.

Important NMR work of H Alloul shows that a mixed valence exists for large 
x, hence one should be cautious about sweeping claims.

We aim at concrete calculations of thermopower, Hall constant and figure of 
merit for correlated single band metal. (Mott Hubbard). This is a very 
difficult problem and has never been tackled for all ranges of  parameters. 
Qualitative insights are also unavailable..



First serious effort to understand  Hall constant in correlated matter:

S S, Boris Shraiman and Rajeev Singh, Phys Rev Letts ( 1993)

Introduced 
object
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•Easier to calculate than 
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•Captures Mott Hubbard 
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•Very useful formula since

•Captures Lower Hubbard Band physics. This is achieved by 
using the Gutzwiller projected fermi operators in defining J’s

•Exact in the limit of simple dynamics ( e.g few frequencies 
involved), as in the Boltzmann eqn approach.

•Can compute in various ways for all temperatures ( exact 
diagonalization, high T expansion etc…..)

•We have successfully removed the dissipational aspect of Hall 
constant from this object, and retained the correlations aspect.

•Very good description of t-J model, not too useful for Hubbard 
model.

•This asymptotic formula usually requires ω to be larger than J

•BENCHMARKING needed….



Exact numerical 
computation for clusters 
shows frequency dep is 
small, of O 15%  in all cases 
except well understood 
exceptions



Use same guiding principle for thermoelectric phenomena:

Seek combinations of  peltier coefficient, electrical and 
thermal conductivity such that relaxation time t cancels 
out. For these cases, the Kubo formulas can be pushed to 
high frequencies to give meaningful information..

Turns out that there are three different objects that are 
analogous to the Hall constant. 

•Seebeck coefficient (Peltier/conductivity)

•Lorentz number (thermal cond/electrical cond)

•Figure of merit (S^2/Lorentz)

Therefore we need exact Kubo type formulas giving frequency 
dependent Peltier constant, electrical and thermal conductivity.

Surprisingly: Only electrical conductivity is known in literature, not 
other two!!!  



One finds that:
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Here we commute the Heat current with the energy 
density to get the thermal operator

Θxx = − lim
kx→0

d

dkx
[ĴQx (kx), K̂(−kx)]

The sum rule for the real part of the thermal conductivity (an even function
of ω) follows Z ∞

0
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π

2~TLhΘ
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Comment: New sum rule.

Not known before in literature.



Electrical conductivity is well known:
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Hence at high frequency we see that:

κ ∼ ichΘxxi/ω
σ ∼ ichτxxi/ω

Ratio ∼ hΘxxi
hτxxi



Thermo-power follows similar logic:

< Ĵx >= σ(ω)Ex + γ(ω)(−∇T )
then the thermopower is
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[Ĵx(kx),K(−kx)].

This is the thermo electric operator

γ(ω) =
i

~ωcTL

"
< Φxx > −~

X
n,m

pn − pm
²n − ²m + ~ωc
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High frequency limits that are feasible and sensible 
similar to  R*

L∗ =
hΘxxi
T 2hτxxi (1)

Z∗T =
hΦxxi2

hΘxxihτxxi . (2)

S∗ =
hΦxxi
T hτxxi. (3)

Hence for any model system, armed with these three 
operators, we can compute the Lorentz ratio, the 
thermopower and the thermoelectric figure of merit!



So we naturally ask 

•what do these operators look like 

•how can we compute them

• how good an approximation is this?

In the paper: several models worked out in detail

•Lattice dynamics with non linear disordered lattice

•Hubbard model

•Inhomogenous electron gas

•Disordered electron systems

•Infinite U Hubbard bands

•Lots of detailed formulas: we will see a small sample for 
Hubbard model and see some tests…



Thermo power operator for Hubbard model

Φxx = −qe
2

X
~η,~η0,~r

(ηx + η0x)
2t(~η)t(~η0)c†

~r+~η+~η0,σ
c~r,σ − qeµ

X
~η

η2xt(~η)c
†
~r+~η,σc~r,σ +

qeU

4

X
~r,~η

t(~η)(ηx)
2(n~r,σ̄ + n~r+~η,σ̄)(c

†
~r+~η,σc~r,σ + c

†
~r,σc~r+~η,σ). (1)

This object can be expressed completely in Fourier space as

Φxx = qe
X
~p

∂

∂px

©
vxp (ε~p − µ)

ª
c†~p,σc~p,σ (2)

+
qeU

2L
X

~l,~p,~q,σ,σ0

∂2

∂l2x

n
ε~l + ε~l+~q

o
c†~l+~q,σc~l,σc

†
~p−~q,σ̄0c~p,σ̄0 . (3)

τxx =
q2e
~
X

η2x t(~η) c
†
~r+~η,σc~r,σ or (1)

=
q2e
~
X
~k

d2ε~k
dk2x

c†~k,σc~k,σ (2)



Free Electron Limit and Comparison with the Boltzmann Theory

It is easy to evaluate the various operators in the limit of U→0, and this
exercise enables us to get a feel for the meaning of these various somewhat
formal objects. We note that
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At low temperatures, we use the Sommerfield formula after integrating by
parts, and thus obtain the leading low T behaviour:
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We may form the high frequency ratios
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¤
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π2k2B
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It is therefore clear that the high frequency result gives the same Lorentz number
as well as the thermopower that the Boltzmann theory gives in its simplest form.



New Formalism:*

•Settles the Kelvin- Onsager  debate. 

•Kelvin derived reciprocity between Peltier and 
Seebeck Coefficient using only thermodynamics, 

•Onsager insisted that Dynamics is needed to 
establish reciprocity. 

•According to Wannier’s book on Statistical Physics 
“Opinions are divided on whether Kelvin’s derivation is 
fundamentally correct or not”. 

*[1] Shastry, Phys. Rev. B 73, 085117 (2006)

*[2] Shastry, 43rd Karpacz (Poland) Winter School proceedings 
(2007) 



For a weakly interacting diffusive metal, we can 
compute all three S’s. Here is the result:

S = T
π2k2B
3qe

d

dε
ln[ρ(ε))]ε→µ Kelvin inspired formula

S∗ = T
π2k2B
3qe

d

dε
ln[ρ(ε)h(vx)2iε]ε→µ High frequency formula

Density Of 
States

S = T
π2k2B

Velocity 
averaged over 
FS

Energy 
dependent 
relaxation 
time.

3qe

d

d ε
ln[ρ(ε)h(vx)2iετ(ε)]ε→µ Onsager- Kubo-Mott formula

Easy to compute 
for correlated 
systems, since 
transport is 
simplified!



Clusters of t-J Model + Exact diagonalization: all 
states all matrix elements.

Data from  preprint with Mike Peterson 
and Jan Haerter (in preparation)

Na{.68} Co O2

Modeled by t-J model with only 
two parameters “t=100K” and 
“J=36K”. Interested in Curie 
Weiss phase. Photoemission 
gives scale of “t” as does Hall 
constant slope of R_h and a 
host of other objects.

One favourite cluster is the platonic solid 
Icosahedron with 12 sites made up of 
triangles. Also pbc’s with torii.



Square lattice 15 sites + 
pbcs with t-t’-J model



T-t’-J model, typical frequency 
dependence is very small . This is very 
encouraging for the program of x_eff



Notice that these variables change sign thrice as a 

band fills from 0->2. Sign of Mott Hubbard correlations.



Results from this formalism:  

Comparision with 
data on absolute 
scale!

Prediction 
for t>0 
material



Preliminary 
computations:

Square lattice Hall 
constant- sensitively 
dependent on t’/t sign 
and magnitude!!

Aim is to compare with 
Balakirev-Boebinger and 
earlier Takagi type hall 
number extraction.



How good is the S* formula compared to exact Kubo formula? 

A numerical benchmark: Max deviation 3%  anywhere !! 

As good as exact!



Leading High temperature term for the Triangular lattice and 
application to Sodium Cobalt Oxide

S∗ = − µ
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This is a very useful alternate formula to the Heikes-Mott-Zener formula where
the second term in Eq above is thrown out. It interpolates very usefully be-
tween the standard formulas for low temperature as well as at high temperature.
The second term represents the “transport” contribution to the thermopower,
whereas the first term is the thermodynamic or entropic part, which dominates
at high temperaturefor S∗ we can actually make a systematic expansion in pow-
ers of βt, unlike the dc counterpart.



Leading high temp expansion:
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B dependence of 
thermopower is 
quantitatively 
explainable by our 
model!



Typical results for S* for NCO type case. Low T problems due to finite 
sized clusters. The blue line is for uncorrelated band, and red line is 

for t-J model at  High T analytically known. 



Predicted result for t<0 i.e. fiducary hole doped  CoO_2 planes. Notice 
much larger scale of S* arising from transport part (not Mott Heikes

part!!). 

Enhancement due to triangular 
lattice structure of closed 
loops!! Similar to Hall constant 
linear T origin.



Predicted result for t<0 i.e. fiducary hole doped  CoO_2 planes.

Different J higher S.



S* and the Heikes Mott formula (red) for Na_xCo O2. 

Close to each other for t>o i.e. electron doped cases



Predictions of S* and the Heikes Mott formula (red) for fiducary hole 
doped CoO2. 

Notice that S* predicts an important enhancement unlike Heikes Mott 
formula  

Heikes Mott misses 
the lattice topology 
effects.



Z*T computed from S* and Lorentz number. Electronic 
contribution only, no phonons. Clearly large x is better!!

Quite encouraging. 



Conclusions:

•New and rather useful starting point for understanding 
transport phenomena in correlated matter

•Can we design new materials using insights gained from this 
kind of work? 

1. Narrow bands are good for large thermoelectric power

2. X~0, i.e. proximity to Mott insulating state is tempting since S is 
large, but in reality, x~1 much better for both S and FOM!!

3. New insight: Frustration of hopping (Not J) gives a boost 
to the S and FOM

4. Look in FCC, HCP, hexagonal narrow band metals!!

http://physics.ucsc.edu/~sriram/sriram.html

Useful link for this 
kind of  work:


	Clusters of t-J Model + Exact diagonalization: all states all matrix elements.

