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•Introduction and Motivation

• Formalism and formulas and a bit 
of history

•Results for Na.68 CoO2 and 
predictions for a hole doped 
counterpart.

•Formulation for   dynamical heat 
transport experiments and some 
suggested experiments. 



Introduction and Motivation

Z T = S2Tσ
κ

Requirements for applications:

Large Seebeck coefficient  S

Large figure of merit  Z T at 
300K

•Seeking simultaneously :

•High S (thermopower or Seebeck)

•High electrical conductivity σ

•Low Thermal conductivity κ

Semiconductor World

•Bi2Te3

•Superlattices

Correlated Materials

•Heavy fermions: good 
metals and large d.o.s.

•Mott Hubbard systems:

•Na.68 Co O2: Terasaki, Ong 
Cava ….

1999-2003



What is new or interesting about all this 
from the Basic science point of view?

Fundamental interest in Condensed matter physics has 
moved in a direction away from simple non interacting 
systems towards strongly interacting systems.

Perturbation theory is inapplicable since there is 
nothing small.

From
Fermi liquid metals (Al, Cu,…the works!) and 
semiconductors (Bi2Te3 ….)

To
Oxide materials living on the edge.

Mott Insulating state and its doped descendents.

Zone of 
comfort: 

Bloch 
Boltzmann 
theory

No “standard techniques available”: a great new frontier.



Correlated systems and Thermoelectric 
effects in them are hugely challenging

In general Mott Hubbard systems have interesting transport 
near the insulating state: 

But:….

Perturbative calculations are hard to do, since there is no small 
parameter

Bloch Boltzmann Drude theory is suspect since quasiparticles are 
poorly defined and short lived.

Kubo formulas are exact, but hardly helpful ! 

E.g. they require a knowledge of the  d.c. conductivity σ to compute 
the thermopower. This is next to impossible today since σ contains 
the essence of T linear resistivity: the core of High Tc. 

This is akin to the directions from your expensive  GPS: 

“The road to  Lhasa from Kathmandu”  

Make at left at the Everest and go down the 
Zanang valley !!.

BADLY NEEDED 

A NEW ROAD!!



HINT for a new route  comes from the Hall constant.

Shastry Shraiman Singh 1993- Kumar Shastry 2003)  

Perhaps ω dependence of 
R_H is weak compared to 
that of Hall conductivity.

ρxy(ω) =
σxy(ω)
σxx(ω)2

→ BR∗H for ω →∞

R∗H = RH(0) in Drude theory

* 22 v [ , ] /x yi
H xxhBR N J Jπ τ−= < > < >

ANALOGY between Hall Constant and Seebeck Coefficients

•Very useful formula since

•Captures Lower Hubbard Band physics. This is achieved by using the Gutzwiller projected fermi
operators in defining J’s

•Exact in the limit of simple dynamics ( e.g few frequencies involved), as in the Boltzmann eqn approach.

•Can compute in various ways for all temperatures ( exact diagonalization, high T expansion etc…..)

•We have successfully removed the dissipational aspect of Hall constant from this object, and retained the 
correlations aspect.

•Very good description of t-J model.

•This asymptotic formula usually requires ω to be larger than J



Computation of frequency dependence of Hall 
constant: NCO (Haerter Shastry)

Usual dependenceWorst case dependence

How about experiments? See next:



Hall constant as a function of T for x=.68 ( 
CW metal ). T linear over large range 2000

to 4360 ( predicted by theory of triangular 
lattice transport KS)

T Linear resistivity

STRONG 
CORRELATIONS 
& Narrow Bands



•Kubo Onsager formulas “without tears”, i.e
alternate simple formulas! 

•Finite ω response functions: 
•New sum rule,
•Two new fundamental operators: Thermal 
operator   ϑ and thermoelectric operator Φ. 



New Formalism SS (2006) is based on a finite frequency calculation 
of thermoelectric  coefficients. 

Needed in many contexts, e.g. imagine a Si chip at 20 GHZ and its 
power dissipation. Neglected area with rather surprising new results. 

Shastry Phys Rev B 2006

.

All objects to be computed at 
large frequencies. The answers 
are finite and analogous to R*

In DC limit these are the 
transport objects anyway.

Error estimation…? We will see 
it is very small, much better than 
Hall constant situation

Here Lij’s are the Onsager 
coefficients at finite frequency.

S =
L12(ω)

L11(ω)T

L =
L22(ω)

T 2L11(ω)

ZT =
(S)2

L

Q∗ ≡ limω→∞Q(ω)

Inspired by the Hall story we 
suggest taking the limit:



To address correlations effectively our task is to 
calculate the following objects. Start with Onsager:

1

Ω
hĴxi = L11Ex + L12(−∇xT/T )

1

Ω
hĴQx i = L21Ex + L22(−∇xT/T ),

where (−∇xT/T ) is regarded as the external driving thermal force, and ĴQx is
the heat current operator.

κzc =
1

TL11
(L22L11 − L12L21).

We want finite frequency versions of these…..Turn to 
Luttinger

Ktot = K +
X
x

K(~x)ψ(~x, t).

Here K =
P

xK(~x), and K(~x) = H(~x) − µn(~x) is the grand canonical Hamil-
tonian



We can define the local temperature through

δT (~x, t) =
δhK(~x, t)i
C(T )

.

Luttinger writes

1

Ω
hĴxi = L11Ex + L12(−∇xT/T ) + L̂12(−∇xψ(~x, t))

1

Ω
hĴQx i = L21Ex + L22(−∇xT/T ) + L̂22(−∇xψ(~x, t)),

Let ψ(~x, t) = ψq exp{−i(qxx + ωt + i0+t)}, ( adiabatic switching implied)
and the electric potential φ(~x, t) = φq exp{−i(qxx+ ωt+ i0+t)} thus write

δJ(q) = (iqx)L11(qx,ω)φq + (iqx)

∙
L12(qx,ω)

δTq
T
+ L̂12(qx,ω) ψq

¸
,



In equilibrium (i.e. static inhomogeneous limit) there is no net current there-
fore

0 = L12(q, 0)
δTq
T
+ L̂12(q, 0)ψq.

However,

lim
~q→0

ψ(~q, 0) = − lim
~q→0

δTq
T
.

Hence We conclude that:

lim
q→0

h
L12(q, 0)− L̂12(q, 0)

i
= 0 Luttinger’s identity

Lij(q,ω) = L̂ij(q,ω) Basic assumption of 
our work:

Generalized 
Luttinger’s identity

Can compute RHS mechanically. 
Extension satisfies Causality, Onsager 
reciprocity and also Hydrodynamics at 
small q, w



ĴQx = Ĵ
E
x −

µ

qe
Ĵx,

where ĴEx is the energy current and Ĵx the charge current.

ĴQx = lim
qx→0

1

qx
[K,K(qx)] .

ĴQx (~q) =
X
x

ĴQx (~x) exp(i~q.~x), so that ĴQx = lim
q→0

ĴQx (~q).

δĴx = L11(qx,ω)(iqxφq) + L12(qx,ω)(iqxψq)

δĴQx = L21(qx,ω)(iqxφq) + L22(qx,ω)(iqxψq).

Ktot = K + [ρ(−qx)φq +K(−qx)ψq] exp (−iωt+ 0+t),



We can reduce the calculations of all Lij to essentially a single one, with
the help of some notation. Keeping qx small but non zero, we define currents,
densities and forces in a matrix notation as follows:

i=1 i=2

Charge Energy

Ii Ĵx(qx) ĴQx (qx)

Ui ρ(−qx) K(−qx)
Xi Exq = iqxφq iqxψq.

The perturbed Hamiltonian can then be written as

Ktot = K +
X
j

Qje
−iωct, where Qj =

1

iqx
UjXj .



hIii = −
X
j

χIi,Qj (ωc),

χA,B(ωc) = i

Z ∞
0

dt eiωt−0
+th[A(t), B(0)]i

=
X
n,m

pm − pn
εn − εm + ωc

AnmBmn

= − 1
ωc

"
h[A,B]i+

X
n,m

pm − pn
εn − εm + ωc

Anm([B,K])mn

#
.

Lij(qx,ω) =
i

Ωωc

"
−h[Ii,Uj ]i

1

qx
−
X
n,m

pm − pn
εn − εm + ωc

(Ii)nm(I†j )mn
#
.



For arbitrary frequencies the Onsager functions read as

Lij(ω) =
i

Ωωc

"
hTiji−

X
n,m

pm − pn
εn − εm + ωc

(Ii)nm(Ij)mn
#
,

hTiji = − lim
qx→0

h[Ii,Uj ]i
1

qx
.

The operators Tij are not unique, since one can add to them a ‘gauge op-
erator” T gaugeij = [P,K] with arbitrary P . These fundamental operators play a
crucial role in the subsequent analysis, since they

Note apparent divergence of 
this term: it disappears on 
closer view. (Shastry 2006)

High ω limit

These important operators are written in a more familiar as follows:

Stress tensor Thermal operator Thermoelectric operator
T11 T22 T12 = T21
τxx Θxx Φxx

− d
dqx

h
Ĵx(qx), ρ(−qx)

i
qx→0

− d
dqx

h
ĴQx (qx),K(−qx)

i
qx→0

− d
dqx

h
Ĵx(qx),K(−qx)

i
qx→0

The thermoelectric operator can also be written as

Φxx = T21 = −
d

dqx

h
ĴQx (qx), ρ(−qx)

i
qx→0

,



Limiting behaviour:

Lij(ω) →
i

ω
hTiji (1)

Given these coefficients 
we can compute S* etc 
since the frequency 
dependence goes away.

Using causality and Kramers Kronig relations,  we see that the 
high ω behavior of  L implies a sum rule for the real (dissipative 
part). Hence we get a  novel sum rule for the thermal 
conductivity!

``Sum rule for thermal conductivity and dynamical 
thermal transport coefficients in condensed matter '', B 
Sriram Shastry,  Phys. Rev. B 73, 085117 (2006)



F sum rule

Plasma sum 
ruleZ ∞

−∞

dν

2
<eσ(ν) =

πhτxxi
2ΩZ ∞

−∞

dν

2
<eκ(ν) =

πhΘxxi
2TΩ

, . Thermal 
sum rule

Z ∞
−∞

dν

π
<eκzc(ν) =

1

TΩ

∙
hΘxxi − hΦ

xxi2
hτxxi

¸
.

Zero current thermal conductivity 
where explicit value of µ is not 
needed.



Z ∞
0

Re κzc(ω)dω =
π

2~TL

½
hΘxxi− hΦ

xxi2
hτxxi

¾
, sum rule

S∗ =
hΦxxi
T hτxxi

L∗ =
hΘxxi
T 2hτxxi − (S

∗)2

Z∗T =
hΦxxi2

hΘxxihτxxi− hΦxxi2

Summary of 
new formulas

The two newly introduced operators Thermal operator Θxx , and thermo-
electric operator Φxx together with the stress tensor or Kinetic energy operator
τxx can be computed for any given model, and their expectation as above gives
all the interesting objects. One small example

Thermo power operator for Hubbard model

Φxx = −qe
2

X
~η,~η0,~r

(ηx + η0x)
2t(~η)t(~η0)c†

~r+~η+~η0,σ
c~r,σ − qeµ

X
~η

η2xt(~η)c
†
~r+~η,σc~r,σ +

qeU

4

X
~r,~η

t(~η)(ηx)
2(n~r,σ̄ +n~r+~η,σ̄)(c

†
~r+~η,σc~r,σ + c

†
~r,σc~r+~η,σ). (1)



Θxx =
X
p,σ

∂

∂px

©
vx~p (ε~p − µ)2

ª
c†~p,σc~p,σ +

U2

4

X
η,σ

t(~η)η2x(n~r,σ̄ + n~r+~η,σ̄)
2c†~r+~η,σc~r,σ

−µU
X
~η,σ

t(~η)η2x(n~r,σ̄ + n~r+~η,σ̄)c
†
~r+~η,σc~r,σ

−U
8

X
~η,~η0,σ

t(~η)t(~η0)(ηx + η0x)
2 {3n~r,σ̄ + n~r+~η,σ̄ + n~r+~η0,σ̄ + 3n~r+~η+~η0,σ̄} c†~r+~η+~η0,σc~r,σ

+
U

4

X
~η,~η0,σ

t(~η)t(~η0)(ηx + η0x)η
0
xc
†
~r+~η,σc~r,σ

n
c†~r+~η,σ̄c~r+~η+~η0,σ̄ + c

†
~r−~η0,σ̄c~r,σ̄ − h.c.

o
. (1)

Tough expressions but can be managed !!

These new operators represent exactly the inertial  coupling between 
the external fields and the acceleration of the currents. See later



19th century historical footnote

Seebeck, Peltier, Thomson(=Kelvin)..

L12 = L21

•Famous Reciprocity “proven” by Kelvin using only thermodynamics.
1850’s

•Re-proven by Lars Onsager 1930’s using dynamics:

•According to Wannier’s book on Statistical Physics “Opinions 
are divided on whether Kelvin’s derivation is fundamentally correct or 
not”. 



What about KelvinWhat about Kelvin--Onsager?Onsager?

S = lim
ω→0,qx→0

1

qeT

χ[nq,H−q−µn−q ](ω)

χ[nq,H−q−µn−q ](ω)
Onsager-Kubo

Large box then static limit

SKelvin = lim
qx→0,ω→0

1

qeT

χ[nq,H−q−µn−q ](ω)

χ[nq,H−q−µn−q ](ω)
Kelvin Thermodynamics

Static limit  then large box

S∗ = lim
ωÀωc,qx→0

1

qeT

χ[nq,H−q−µn−q](ω)

χ[nq,H−q−µn−q](ω)
High Frequency

Large box then frequency larger than 
characteristic w’s



For a weakly interacting diffusive metal, we can 
compute all three S’s. Low T limit :

Here is the result:

S = T
π2k2B
3qe

d

dε
ln[ρ(ε))]ε→µ Kelvin inspired formula

S∗ = T
π2k2B
3qe

d

dε
ln[ρ(ε)h(vx)2iε]ε→µ High frequency formula

Density Of 
States

S = T
π2k2B

Velocity 
averaged over 
FS

Energy 
dependent 
relaxation 
time.

3qe

d

d ε
ln[ρ(ε)h(vx)2iετ(ε)]ε→µ Onsager- Kubo-Mott formula

“Exact”

Easy to compute 
for correlated 
systems, since 
transport is 
simplified!

But S* is better in this limit



Clusters of tClusters of t--J Model + Exact diagonalization: all J Model + Exact diagonalization: all 
states all matrix elements.states all matrix elements.

Data from paper with Mike Peterson and 
Jan Haerter Phs Rev 2007

Na{.68} Co O2

Modeled by t-J model with only 
two parameters “t=100K” and 
“J=36K”. Interested in Curie 
Weiss phase. Photoemission 
gives scale of “t” as does Hall 
constant slope of RH and a 
host of other objects.

REMARK: Low value of t is taken from Photoemission of Zahid Hasan et 
al (Princeton). This is crucially and surprisingly  smaller than LDA by 
factor of 10!!

One favourite cluster is the platonic solid Icosahedron
with 12 sites made up of triangles. Also pbc’s with torii. 
Sizes upto 15 sites.



How good is the S* formula compared to exact Kubo formula? 

A numerical benchmark: Max deviation 3%  anywhere !! 

As good as exact!



Notice that these variables change sign thrice as a 

band fills from 0->2. Sign of Mott Hubbard correlations.



Results from this formalism:  

T linear Hall constant for 
triangular lattice predicted in 
1993 by Shastry Shraiman 
Singh! Quantitative agreement 
hard to get with scale of “t”

Comparision with 
data on absolute 
scale!

Prediction 
for t>0 
material



The various formulasThe various formulas
Throws out “ transport part” 

and keeps only a 
thermodynamic contribution.

SHeikes−Mott =
µ(0)−µ(T )

qeT

S∗ = hΦxxi
T hτxxi −

µ(T )
qeT

“Transport part”

SKubo =
hhJE(t)J(0)ii
hhJ(t)J(0)ii −

µ(T )
qeT



Typical results for S* for NCO type case. Low T problems due to finite 
sized clusters. The blue line is for uncorrelated band, and red line is 

for t-J model at  High T analytically known. 



S* and the Heikes Mott formula (red) for Na_xCo O2. 

Close to each other for t>o i.e. electron doped cases



Kelvin Inspired formula is somewhat off 
from S* ( and hence S) but right trends. In 

this case the Heikes Mott formula dominates 
so the final discrepancy is small.



Predicted result for t<0 i.e. fiducary hole doped  CoO_2 planes. Notice 
much larger scale of S* arising from transport part (not Mott Heikes

part!!). 

Enhancement due to triangular 
lattice structure of closed 
loops!! Similar to Hall constant 
linear T origin.



Predicted result for t<0 i.e. fiducary hole doped  CoO_2 planes.

Different J higher S.



Predictions of S* and the Heikes Mott formula (red) for fiducary hole 
doped CoO2. 

Notice that S* predicts an important enhancement unlike Heikes Mott 
formula  

Heikes Mott misses 
the lattice topology 
effects.



Z*T computed from S* and Lorentz number. Electronic 
contribution only, no phonons. Clearly large x is better!!

Quite encouraging. 



Phenomenological Phenomenological eqnseqns for for 
coupled charge heat transportcoupled charge heat transport

Meaning of the new operators becomes clear.Meaning of the new operators becomes clear.

Some interesting experiments using laser heating are suggestedSome interesting experiments using laser heating are suggested..

∙
1

τ
+
d

dt

¸
hĴQx (~r, t)i = −DQ

τ
∇hK(~rt)i− c1

τ
∇hρ(~rt)i

−
½ hΘxxi0

Ω
∇ψ(~rt) + hΦ

xxi0
Ω
∇φ(~rt)

¾
(1)

and ∙
1

τ
+
d

dt

¸
hĴx(~r, t)i = −c2

τ
∇hK(~rt)i− Dc

τ
∇hρ(~rt)i

−
½ hτxxi0

Ω
∇φ(~rt) + hΦ

xxi0
Ω
∇ψ(~rt)

¾
(2)



Hydrodynamics of energy and charge transport in a band model:

This involves the fundamental operators in a crucial way:

Pump probe 
laserContinuity

∂ρ

∂t
+∇J(r) = 0

∂K(r)

∂t
+∇JQ(r) = p0δ(x)

Y axis

X axis

Input power 
density

These eqns contain energy and charge diffusion, as well as thermoelectric 
effects. Potentially correct starting point for many new nano heating expts
with lasers. Work in progress. Preprint soon



The inertial terms contribute for initial rise of the energy 
and heat current.n

∂
∂t +

1
τE

o
δJQ(r) = − 1

ΩhΘxxi [∇Ψ] + rest

Exact coupling 
term term

Hence a δ(t) heat pulse gives an  initial  jump in current that is  a 
measure of the sum rule. 

Also energy density responds inertially initially. Initial response to 
pulses of heat and charge are a good measure of these 

coefficients.



ConclusionsConclusions

Hole doping  prediction of  large SHole doping  prediction of  large S
Low bandwidth in NCO is the big factor Low bandwidth in NCO is the big factor 
leading to enhanced S (not orbital leading to enhanced S (not orbital 
degeneracy).degeneracy).
Dynamical heating experiments can Dynamical heating experiments can 
address interesting and fundamental address interesting and fundamental 
questions “what is energy and what is questions “what is energy and what is 
temperature”. temperature”. 
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