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Abstract:

Thermal and Electrical transport in nearly integrable systems can be
studied through the finite frequency conductivities of charge and heat
currents in 1 dimension. I will summarize  recent  analytical
results including a novel sum rule for the thermal conductivity.
Also   presented is our recent work on the t-t'-V model in 1-d.
The role of boundary  conditions in defining various stiffnesses is
commented upon.



•Finite ω response functions: Motivation and 
formalism New sum rule, and two new 
fundamental operators: Thermal operator   ϑ 
and thermoelectric operator Φ. 
•Problems with Kubo- identity for dissipative 
systems

•Hydrodynamics of thermal transport in a 
lattice model: Second sound velocity and 
thermal stiffness

•1-dimensional examples

•t-t’-V model with PBCs
• Open BC’s
•Toda lattice energy current persistence



Finite frequency thermal response functions:

Needed in many contexts, e.g. imagine a Si
chip at 20 GHZ and its power dissipation. 
Neglected area with rather surprising new 
results.  SS Phys Rev 2006

Need to use Luttinger’s formalism.



1

Ω
hĴxi = L11Ex + L12(−∇xT/T )

1

Ω
hĴQx i = L21Ex + L22(−∇xT/T ),

where (−∇xT/T ) is regarded as the external driving thermal force, and ĴQx is
the heat current operator.

κzc =
1

TL11
(L22L11 − L12L21).

We want finite frequency versions of these…..Turn to 
Luttinger

Ktot = K +
X
x

K(~x)ψ(~x, t).

Here K =
P

xK(~x), and K(~x) = H(~x) − µn(~x) is the grand canonical Hamil-
tonian



We can define the local temperature through

δT (~x, t) =
δhK(~x, t)i
C(T )

.

Luttinger writes

1

Ω
hĴxi = L11Ex + L12(−∇xT/T ) + L̂12(−∇xψ(~x, t))

1

Ω
hĴQx i = L21Ex + L22(−∇xT/T ) + L̂22(−∇xψ(~x, t)),

Let ψ(~x, t) = ψq exp{−i(qxx + ωt + i0+t)}, ( adiabatic switching implied)
and the electric potential φ(~x, t) = φq exp{−i(qxx+ ωt+ i0+t)} thus write

δJ(q) = (iqx)L11(qx,ω)φq + (iqx)

∙
L12(qx,ω)

δTq
T
+ L̂12(qx,ω) ψq

¸
,



In equilibrium (i.e. static inhomogeneous limit) there is no net current there-
fore

0 = L12(q, 0)
δTq
T
+ L̂12(q, 0)ψq.

However,

lim
~q→0

ψ(~q, 0) = − lim
~q→0

δTq
T
.

Hence We conclude that:

lim
q→0

h
L12(q, 0)− L̂12(q, 0)

i
= 0 Luttinger’s identity

Lij(q,ω) = L̂ij(q,ω) Basic assumption of 
our work:

Generalized 
Luttinger’s identity

Can compute RHS mechanically. 
Extension satisfies Causality, Onsager
reciprocity and also Hydrodynamics at 
small q, w



ĴQx = Ĵ
E
x −

µ

qe
Ĵx,

where ĴEx is the energy current and Ĵx the charge current.

ĴQx = lim
qx→0

1

qx
[K,K(qx)] .

ĴQx (~q) =
X
x

ĴQx (~x) exp(i~q.~x), so that ĴQx = lim
q→0

ĴQx (~q).

δĴx = L11(qx,ω)(iqxφq) + L12(qx,ω)(iqxψq)

δĴQx = L21(qx,ω)(iqxφq) + L22(qx,ω)(iqxψq).

Ktot = K + [ρ(−qx)φq +K(−qx)ψq] exp (−iωt+ 0+t),



We can reduce the calculations of all Lij to essentially a single one, with
the help of some notation. Keeping qx small but non zero, we define currents,
densities and forces in a matrix notation as follows:

i=1 i=2

Charge Energy

Ii Ĵx(qx) ĴQx (qx)

Ui ρ(−qx) K(−qx)
Xi Exq = iqxφq iqxψq.

The perturbed Hamiltonian can then be written as

Ktot = K +
X
j

Qje
−iωct, where Qj =

1

iqx
UjXj .



hIii = −
X
j

χIi,Qj (ωc),

χA,B(ωc) = −i
Z ∞
0

dt eiωt−0
+th[A(t), B(0)]i

=
X
n,m

pm − pn
εn − εm + ωc

AnmBmn

= − 1
ωc

"
h[A,B]i+

X
n,m

pm − pn
εn − εm + ωc

Anm([B,K])mn

#
.

Lij(qx,ω) =
i

Ωωc

"
−h[Ii,Uj ]i

1

qx
−
X
n,m

pm − pn
εn − εm + ωc

(Ii)nm(I†j )mn
#
.



For arbitrary frequencies the Onsager functions read as

Lij(ω) =
i

Ωωc

"
hTiji−

X
n,m

pm − pn
εn − εm + ωc

(Ii)nm(Ij)mn
#
,

hTiji = − lim
qx→0

h[Ii,Uj ]i
1

qx
.

The operators Tij are not unique, since one can add to them a ‘gauge op-
erator” T gaugeij = [P,K] with arbitrary P . These fundamental operators play a
crucial role in the subsequent analysis, since they

These important operators are written in a more familiar as follows:

Stress tensor Thermal operator Thermoelectric operator
T11 T22 T12 = T21
τxx Θxx Φxx

− d
dqx

h
Ĵx(qx), ρ(−qx)

i
qx→0

− d
dqx

h
ĴQx (qx),K(−qx)

i
qx→0

− d
dqx

h
Ĵx(qx),K(−qx)

i
qx→0

The thermoelectric operator can also be written as

Φxx = T21 = −
d

dqx

h
ĴQx (qx), ρ(−qx)

i
qx→0

,



Lij(ω) =
i

ωc
Dij +

1

Ω

Z ∞
0

dt eiωct
Z β

0

dτ hIi(t− iτ)Ij(0)i

Dij =
1

Ω

"
hTiji−

X
nm

pn − pm
εm − εn

(Ii)nm(Ij)mn
#

Generalized Kubo formulas for non dissipative systems. Contain 
a stiffness term that is interesting and non trivial.

Comment [1]: D terms is nonzero for supersystems- including 
integrable models. (No additional hypothesis needed as in 
Luttinger’s paper on Superfluids.

Comment[2]: Sum rule for thermal conductivity is new.

``Sum rule for thermal conductivity and dynamical 
thermal transport coefficients in condensed matter '', B 
Sriram Shastry,  Phys. Rev. B 73, 085117 (2006)



Z ∞
−∞

dν

2
<eσ(ν) =

πhτxxi
2ΩZ ∞

−∞

dν

2
<eκ(ν) =

πhΘxxi
2TΩ

, .

F sum rule

Thermal 
sum rule

Z ∞
−∞

dν

π
<eκzc(ν) =

1

TΩ

∙
hΘxxi − hΦ

xxi2
hτxxi

¸
.

Zero current thermal conductivity 
where explicit value of µ is not 
needed.



Onsager reciprocity 
requires the “heavy 
usage” of Jacobi’s
identity to my 
surprise!!

Lij(ω) = Lji(ω).

hT12i = −
µ
d

dq

1

q
[h[K, ρ(q)],K(−q)]i]

¶
q→0

=

µ
d

dq

1

q
h[[ρ(q),K(−q)],K] + [K(−q),K], ρ(q)]]i

¶
q→0

=

µ
d

dq
h
h
[ĴQx (−q), ρ(q)]

i
i
¶
q→0

= hT21i.



Thermo power operator for Hubbard model

Φxx = −qe
2

X
~η,~η0,~r

(ηx + η0x)
2t(~η)t(~η0)c†

~r+~η+~η0,σ
c~r,σ − qeµ

X
~η

η2xt(~η)c
†
~r+~η,σc~r,σ +

qeU

4

X
~r,~η

t(~η)(ηx)
2(n~r,σ̄ + n~r+~η,σ̄)(c

†
~r+~η,σc~r,σ + c

†
~r,σc~r+~η,σ).

This object can be expressed completely in Fourier space as

Φxx = qe
X
~p

∂

∂px

©
vxp (ε~p − µ)

ª
c†~p,σc~p,σ

+
qeU

2L
X

~l,~p,~q,σ,σ0

∂2

∂l2x

n
ε~l + ε~l+~q

o
c†~l+~q,σc~l,σc

†
~p−~q,σ̄0c~p,σ̄0 .

τxx =
q2e
~
X

η2x t(~η) c
†
~r+~η,σc~r,σ or

=
q2e
~
X
~k

d2ε~k
dk2x

c†~k,σc~k,σ



Θxx =
X
p,σ

∂

∂px

©
vx~p (ε~p − µ)2

ª
c†~p,σc~p,σ +

U2

4

X
η,σ

t(~η)η2x(n~r,σ̄ + n~r+~η,σ̄)
2c†~r+~η,σc~r,σ

−µU
X
~η,σ

t(~η)η2x(n~r,σ̄ + n~r+~η,σ̄)c
†
~r+~η,σc~r,σ

−U
8

X
~η,~η0,σ

t(~η)t(~η0)(ηx + η0x)
2 {3n~r,σ̄ + n~r+~η,σ̄ + n~r+~η0,σ̄ + 3n~r+~η+~η0,σ̄} c†~r+~η+~η0,σc~r,σ

+
U

4

X
~η,~η0,σ

t(~η)t(~η0)(ηx + η0x)η
0
xc
†
~r+~η,σc~r,σ

n
c†~r+~η,σ̄c~r+~η+~η0,σ̄ + c

†
~r−~η0,σ̄c~r,σ̄ − h.c.

o
. (1)



Where does the Kubo identity make a mistake?

Theorem: (SS-2006). 

Kubo identity is only true for a class of operators of the type A-> [H,B] 
which have vanishing diagonal matrix elements in the energy 
eigenbasis!! It is infact false if diagonal elements in this basis are non 
zero!

Anm(pn − pm) = pn
Z β

0

dτAnm(εm − εn) exp−τ((εm − εn))

K([B,H]) = 0

K(A) ≡ [ρ0, A]−
Z β

0

ρ0[A(−iτ),H ]dτ,

where
ρ0 = 1/Z exp(−βH)

It is (incorrectly) claimed that

K(A) = 0

for any operator A. (Books refer to this as the Kubo identity). Let pn =
1/Z exp−βεn. Inserting complete states we see that



Hydrodynamics of energy and charge transport in a band model:

This involves the fundamental operators in a crucial way:

½
∂
∂t
+
1
τc

¾
δJ(r) =

1
Ω
hτxxi
∙
1
q2e

∂µ
∂n
(−∇ρ)−∇φ(r)

¸
+
1
Ω
hΦxxi

∙
1

C(T)
(−∇K(r))−∇Ψ

¸

½
∂

∂t
+
1

τE

¾
δJQ(r) =

1

Ω
hΦxxi

∙
1

q2e

∂µ

∂n
(−∇ρ)−∇φ(r)

¸
+
1

Ω
hΘxxi

∙
1

C(T )
(−∇K(r))−∇Ψ

¸

Einstein diffusion 
term of charge

Energy 
diffusion term

Continuity

∂ρ

∂t
+∇J(r) = 0

∂K(r)

∂t
+∇JQ(r) = pext(r)

Input power 
density

These eqns contain energy and 
charge diffusion, as well as 
thermoelectric effects. Potentially 
correct starting point for many 
new nano heating expts with 
lasers.



Integrable systems are ``weak superconductors’’ 

They possess temporal persistence in current, without 
the Meissner effect!   Giamarchi, Giamarchi+SS (1992)

Isothermal stiffnesses
vanish

DQ = 0 = DM

κ(ω) =
i

T (ω + i0+)
DQ +

1

TL

Z ∞
0

dteiωt
Z β

0

dτhĴQx (t− iτ)ĴQx (0)i.

σ(ω) =
i

T (ω + i0+)
DM +

1

TL

Z ∞
0

dteiωt
Z β

0

dτhĴx(t− iτ)Ĵx(0)i.

As $t \rightarrow \infty$  the current correlators do not 
decay to zero but are finite: temporal persistence. 
Therefore:

σ(ω)→ Dc δ(ω) + σreg(ω)

Adiabatic stiffness from 
persistence

Prelovsek,Zotos…..



T-t’-V model: i.e. perturbed Heisenberg model at 
Isotropic point (Fermi representation)

,
arXiv:0705.3791 : Signatures of integrability in charge 
and thermal transport in 1D quantum systems 

Subroto Mukerjee, and SS

http://arxiv.org/abs/0705.3791
http://arxiv.org/find/cond-mat/1/au:+Mukerjee_S/0/1/0/all/0/1




Severely limited by size constraints.

Hence change system

Study perturbed Toda lattice using cfs.

Peter Young and SS (to be published)





Remarkable collapse of data on 
suitable scaling. The scaling 
exponent is φ ~1.15

Perturbed Toda lattice energy 
current correlations for different 
values of parameter α.

We may think of α as the 
integrability destruction 
parameters



Visualizing the loss of 
integability through the 
conductivity function.



Conclusions:

•Kubo type formulas are non trivial at finite frequencies, and 
have much structure

•Destruction of integrability: KAM in classical mechanics. In 
QMBT we feel CF’s are the way to go.

•Universality classes, exponents are similar to Critical 
phenomena, with Integrable systems as generalized “critical 
points” . 

Useful link for this 
kind of  work:

http://physics.ucsc.edu/~sriram/sriram.html


