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Usual Question
Given a model suggested by either 
experiments or experts, is it provable 
to be superconducting?
In the context of High Tc :
t-J model
t-t’-J model
Hubbard model   
Three band models.......



• Too difficult to answer rigorously:

• Other phases intervene

• MFT unreliable (J_in -> J_out)

• Analytical tools not reliable enough: Leggett has 
highlighted the problem with Bose condensation 
with hard core interactions: Proof of LRO very 
subtle (Kennedy-Lieb-Shastry 1988)

• Numerical methods donot scale too well. 



• We will ask a slightly different Question:

• We believe that strong correlations are involved, but 
do we know their fingerprints well enough? 

• We know a common garden fermi liquid well but do 
we really know the characteristics of a strongly 
correlated metal well enough?

• Could it be that 

•
H = Hstrong+?



H=HtJ +Hd +Hrandom

HtJ = −t
∑

〈i,j〉σ

[
c̃†iσ c̃jσ + H.c.

]
+ J

∑

〈i,j〉

[
Si · Sj −

1
4
ninj

]
, (2)

Hd = −λd

L

L∑

i,j=1

D†
i Dj

Di = (∆i,i+x̂ −∆i,i+ŷ)

∆ij = c̃i↑c̃j↓ + c̃j↑c̃i↓ Hrandom =
∑

i

εini



• Certified superconductor for any value of λ 

• By varying λ, we can study the adiabatic 
continuity of the superconducting state 
down to  λ=0 and thus ask if SC persists in 
or favourite model

• Can study robustness against disorder

• Need to characterize LRO in a simple way



Tools: Study ODLRO 
density matrix

Λ(i, j) = 〈D†
i Dj〉

 Λ is  a Hermitean Matrix with real 
eigenvalues

λ1 ≥ λ2 ≥ ...λm

Penrose Onsager and C N Yang  showed that true LRO means a certain structure of 
the evs

Conventionally λ1 is O(N) and 
λ2 is O(1)

Also unconvetional possiblities exist: 
e.g. both EV’s diverge for large 

systems (algebraic order)



• Need one extra insight:

• Due to Mott Hubbard Gutzwiller freezing 
near half filling x~0,  the entire matrix 
scales down near half filling Λ ~ x^2

• Hence to get a true idea of LRO need to 
correct somehow

R =
λ1

λ2

R ∼ Nm2 + c

Expect m~ O(1)
c~O(1)
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Conclusions: 
1) m is very small near half filling after the Gutzwiller correction:
Thus very strong quantum fluctuations of the amplitude of the OP
2)Interesting adiabatic continuity between finite \lambda and tJ 
model. Is the latter at the verge of d-wave SC?
3) With disorder R drops due to the rise of the second largest 
EV...algebraic order type scenario.
4) Get the high energyscales for tunneling and their J dependence, as 
well as asymmetry between adding and removing a particle near half 
filling.


