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General Motivation
Search for  Non Fermi liquids
 Strong interactions in doped Mott insulators

Hubbard model (t,U)

Multi band models 

t J Model

H = −
�

i,j

ti,j PG c
†
i,σcj,σ PG + J

�

�i,j�

�Si · �Sj
t,J 

independent

J= 4 t2/U

Passage  from Strong Correlations  to Extreme Correlations  
U =∞

PG=Gutzwiller Projector 

H = −
�

i,j

tijc
†
iσcjσ + U

�

i

ni↑ni↓

Use “Schwinger’s way” + asymptotic freedom of vertex

U � zt
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Understanding Non Fermi liquids

Leo Tolstoy: (Anna Karenina)

All Fermi liquids are all alike; 
Each Non Fermi liquid is  Non Fermi  in its own way.
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PG =
�

j

(1− nj↑nj↓) Gutzwiller projector

Xσ0
j = PG c†jσ PG X0σ

j = PG cjσ PG Non canonical Fermi operators

Three allowed configurations after Gutzwiller projector 

Hilbert space has fewer states 
after projection: 3Ns 4Nsrather than

1 ≤ j ≤ Ns Ns = number of sites

•A classic example of singular perturbation: Discussed in QM by John Klauder as “Footprints of 
the dinosaurs” 
•Changes the rules of quantum mechanics: Non canonical objects (X’s) and smaller dimension 
of Hilbert space.  
•Lattice is crucial- in the continuum, a strong coupling is usually more benign- “Bruckner-izable”
•When Ne = Ns ,  get an insulating state where electrons are stuck at their  home base- Mott 
Insulator with no analog in the continuum. 

U →∞
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Self energy in terms of G0  

using Wicks theorem and 
Feynman diagrams

Skeleton Graph expansion, i.e. omit s.e. 
insertions in intermediate diagrams and 

replace G0 by G 
Generates Self energy in terms of G

Schwinger directly generates 
self energy in terms of full G
Does not need or use Wick’s 

theorem!!

Unlike BBGKY hierarchy, Schwinger Dyson 
works with inverse of Greens function, 

hence much more powerful

The “Feynman way” The “Schwinger way”

Dyson Schwinger expansion is analogous to Stieltjes 
expansion of power series in continued fractions

And then “discover”

G

G0

b0

z
+

b1

z2
+

b2

z3
+ . . . =

a0

z +
a1

z +
a2

z + ..
∼ Σ(z)
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...“In the dark recesses of the sub-basement of Lyman Laboratory, where 
theoreticians retired to decipher their tablets, and where the ritual taboo 

on pagan pictures could be safely ignored, students scribbled drawings 
that disclosed profound identities between diagrams and sums of 

diagrams.”

“As to the conversations we held with him as graduate students, he 
might frown when one of us drew a Feynman diagram, but we knew all 

about those diagrams, including how to generate them quickly and 
concisely from functional equations that bypassed Wick 

theorems* and the like.”  

(*emphasis added)

Paul Martin quote: 
(Climbing the Mountain: Biography of Schwinger)
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★ Non Canonical Field Theory: Challenging Frontier

★ How to handle Gutzwiller projection within field theory 

rigorously.

★ A central problem in Condensed Matter Physics: From 

Strong correlations to Extreme Correlations.

The Problem:

The proposed Solution: 

•Step1: Use Schwinger’s source  idea to generate exact Equation of 
Motion for Greens function.
•Step 2: Require Asymptotic Freedom of  Vertex Functions 
at high energy- achieved through a factorization 
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Rather long paper: 30 pages 
Details of calculations 8 appendices:

A new formalism that parallels the Fermi Liquid treatment using vertex 
functions a la Martin + Schwinger+Kadanoff+Baym+ Rajagopal

•Highlights of paper: 
•Non Perturbative treatment of tJ model: Exact formulation
•Key results including exact expression for self energy in the tJ 
model in terms of vertex
• Schwinger Dyson Hierarchy of equations for vertices 
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Start with deriving the exact Equation of Motion for tJ 
model:

Xσ1σ2
i = |σ1��σ2|, X0σ1

i = |0��σ1|, Xσ10
i = |σ1��0|,

{X0σ1
i , Xσ20

j } = δij [δσ1σ2 − σ1σ2X
σ̄1σ̄2
i ].

Xab
i Xcd

i = δbcX
ad
i

Gσ1σ2 [1, 2] = −
Tr

�
e−βHT (e−A X0σ1

1 (τ1)Xσ20
2 (τ2))

�

Tr [e−βHT (e−A)]

A =
�

j,σ1,σ2

� β

0
dτ Vσ1σ2

j (τ)Xσ1σ2
j (τ)

Source term of Schwinger used for 
generating EOM

Hubbard X operators are non 
canonical: 
Their (graded) Lie  algebra is
a variation of the Fermionic one.
Projecting  out  double  
occupancy changes the algebra.

∼ c†

∼ c

Gσiσf [i, f ] = −��X0σi
i X

σf 0
f ��

i,f  gives   space-time points
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∆[i] = δσ1,σ2 − σ1σ2Gσ̄2σ̄1 [i
−, i]

→ (1− n

2
)

Dσ1,σ2 [r] = σ1σ2
δ

δV σ̄1σ̄2
r

(∂τi − µ)G[i, f ] = −δ[i, f ]∆[i]− Vi · G[i, f ]−X[i, j] · G[j, f ]− Y [i, j] · G[j, f ]

X[i, j] = −t[i, j] D[i] +
1
2
J [i, k] D[k]δ[i, j]

Y [i, j] = −t[i, j] ∆[i] +
1
2
J [i, k] ∆[k]δ[i, j]

The Greens fn is a 2x2 matrix in spin space

This (matrix) object Δ[i] plays an important role:  
It multiplies the most singular term in the exact EOM

Non canonical ⇒ the coefficient of δ[i,f] is

time dependent: it creates all complications

Step 1: Exact EOM
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G[i, f ] = ∆[i] · Ĝ[i, f ]

(∆[i])−1 · ∂τG[i, f ] = (∆[i])−1 · ∂τ∆[i] · Ĝ[i, f ] + ∂τ Ĝ[i, f ]

Step 2: Asymptotic Freedom 
through Exact Factorization

Exact Transformation  into Canonical EOM’s

(∂τi − µ + Vi + Φi)Ĝ[i, f ] = −δ[i, f ]−∆−1[i] · X[i, j] · ∆[j] + ∆−1[i] · Y [i, j] · ∆[j] · Ĝ[j, f ]

Vi = ∆−1[i] · Vi · ∆[i]
Φi = ∆−1[i] · (∂τi∆[i])

Can solve for Δ in terms of 
local G exactly:

Now we have a canonical but non 
polynomial theory! 

∆[j] =
1

1− det[Ĝ[j−, j]]

�
1− Ĝk[j−, j]

�

)(
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↖

↖
↖

r1

r2

r3p1

p2

Γ

Γ(r1, r2; r3) = −δG−1(r1, r2)
δV (r3)Hubbard model 

Schematic

Asymptotic Freedom of vertex implies lim
ωn→∞

Γ(�k1, ω1,�k2, ω2)→ 1

p1 = (�k1, ω1)

Γ(p1, p2) = 1 +
�

p3

I({p})G(q)Γ(q, q + p2 − p1)G(q + P2 − p1)

Bethe Salpeter Equation

Similarly: we can set up a set of eqns for tJ model using the exact EOM.  We first need to 
invert the canonical equation and then take  derivatives w.r.t. sources.

δ

δV
G−1 δ

δV
Ĝ−1

Sick vertex : grows with frequency Healthy vertex satisfies Asymptotic Freedom

Sick vertex : grows with frequency Healthy vertex satisfies Asymptotic Freedom

A vertex 
function a la 

Feynman Dyson

Schwinger Dyson vertex
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Exact expression for Greens Function in the ECQL. 
A strong coupling  quantum liquid with no broken symmetries

 (non perturbative)
G(i, j) = Bare particle Greens fn Ĝ(i, j) = Quasi particle Greens fn

G(i, j) = (1− n/2) Ĝ(i, j)

Ĝ−1[k] = iωk + µ− ξ0 εk −
1
2

�

q

�
εq +

1
2
Jk−q

�
Ĝ[q] { Γs[q, k]− 3 Γt[q, k]}.

ξ0 ≡
1

1− n
2

{(1− n

2
)2 + ��S�0 · �S�η�+

1
4
(�n�0 n�η� − n2)}

Notice that dispersion involves exact spin charge correlations at nearest neighbour lengths 
scale. Due to AFM correlations get band reduction

mk = kBT
�

iωk

eiωk0+
Ĝ[k, iωk]

1
Ns

�

�k

mk =
n

2− n Modified Pauli Principle for Quasiparticles
Leads to fractional charge  interpretation
for the quasiparticles; and also to the violation of 
Luttinger & Ward’s sum rule for Fermi surface volume

Singlet and Triplet p-h vertices
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Vertex equations 

Γs[i, j;m]1 =
1
4
(n− 2)2t[i, j]χs[j, j, m]

Γs[i, j;m]2 =
3
8
(n− 2) λ t[i, j]

�
(n− 2)χt[i, i, j]χs[j, j, m]− 2Γt[a, b, j]

�
Ĝ[i, a]χs[b, i,m] + Ĝ[b, i]χs[i, a,m]

��

Γt[i, j;m]1 = − 1
4 (n− 2)2 λ t[i, j]χt[j, j, m] λ =

1
1− n+....

Gutzwiller factors end up giving this inverse hole density factor.
Useful as a stopping criterion for hierarchy

To lowest order, we can set vertex to unity in the RHS. 
Get large number of terms contributing to self energy. 

GGG theory: numerical results later.
Use Ward identities for gauge invariance  and Nozieres relations for 

enforcing rotation invariance

+ Stopping rule?

What are we perturbing in?  Answer: emergent small parameter is Mott Hubbard hole density

Lesson from Bruekner’s Nuclear matter: Small parameter is not the interaction constant but rather the particle 
density scaled by the scattering length cubed. This is a classic example of emergent small parameters in field theory.
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First Result
Luttinger Ward theorem is invalid in the ECQL phase, get a systematically larger FS

1
Ns

�

�k

θ(Ĝ(�k, 0)) =
n

2− n

On shell Greens function is real and
 LHS gives the volume where it is positive

New Sum rule for FS with a renormalized RHS. 

Σ(�k, iωn)→ − n

2− n
iωn

Appendix D discusses the  origin of the failure of LW
Self energy in the extreme limit (U= infinity) has a 
pathological growth with frequency. Hence one can redo the 
LW argument and arrive at the same final answer as here- an 
independent check on the result.....

Upper Hubbard Band

U

Schematic: Analytically continued G

�eΣ(k, ν)

�mΣ(k, ν)

c0ν
1
ν

ν

iωn → ν + i0+
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Luttinger Ward (& AGD) meet extreme correlations

Test case of Atomic limit where t=0 in Hubbard model

Gatomic(iωn) =
1− n

2

iωn + µ
+

n
2

iωn + µ− U
, =

1
iωn + µ− Σ(iωn)

, with

Σ(iωn) = U
n

2
+ U2

n
2 (1− n

2 )
iωn + µ− U(1− n

2 )

Weak Coupling HF limit ωn →∞ U ∼ O(1)
U

ωn
→ 0

Extreme Coupling HF limit ωn →∞ U →∞ U

ωn
→∞

Where ΣRegular goes as 1/z

ΣEC(iωn) = c0(iωn + µ)

c0 = − n

2− n

Σ(�k, z)/limU→∞ = c0(z + µ) + ΣRegular(�k, z)

For non zero k  we expect, here c0 fixes 
the asympt behaviour in EC limit
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Boundary terms cannot be thrown out in extreme correlation limit

n = 2
�

k

G(�k, iωn)eiωnη =
2

Ns

�

�k

� 0

−∞

dx

2πi

�
G(�k, x− iη)−G(�k, x + iη)

�
.

G(�k, z) = 1/(z + µ− εk − Σ(�k, z))

G(�k, z) = − d

dz
log G(�k, z) + G(�k, z)

d

dz
Σ(�k, z)n = n1 + n2

n1 =
2

Ns

�

�k

Θ(G(�k, 0))

n2 =
2

Ns

�

�k

� 0

−∞

dx

2πi

�
G(�k, x− iη)

d

dx
Σ(�k, x− iη)−G(�k, x + iη)

d

dx
Σ(�k, x + iη)

�

n2 = c0 n + n3

n3 = 0 n

1− n
2

=
2

Ns

�

�k

Θ(G(�k, 0))

�
G

d

dx
Σ �= −

�
Σ

d

dx
G

L-W argue that n2=0.
By  using integration by parts + LW Functional.

However, since Σ grows linearly with  ω
( and G decays as 1/ω)

Using correct large ω behaviour of Σ , we find instead

Therefore we get a different
 Fermi Surface Sum Rule
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1.High T results of  Rajiv Singh, Bill  Putikka 
PRL (2006) show violations of  LW Sum rule

2.Exact Diagonalization Prelovsek Kokalj
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n=.85

Predicted FS

LW FS (False FS)

Next we compare spectra for tJ model within GGG scheme and Hubbard
 (n=.9, U= 3 t)

 GGG = skeleton graphs self consisted

Σ(k) ∼ U2
�

p1,p2

G(p1)G(p2)G(k − p1 + p2) ↑ 

k

p1 p2 k − p1 + p2

↓

↓
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Daniel Hansen+ SS
unpublished
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LDOS t!J GGG
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0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.2

0.4

0.6
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Mk Hubbard GGG

Notice absence of jump
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!0,0"
!Π,Π"

Hubbard in blue

"10 "5 0 5 100.0

0.1

0.2

0.3

0.4

0.5

Ω !t"

Ρ% vs Ω for k along !11" t"J GGG
Decay rate for various momenta

We learn that there is
strong k dependence in tJ unlike 

Hubbard
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Γ(k, T ) =
�

Γ(k, 0)2 + c2(kBT )2

E(k) = ξ0 ε(k) + �e Σ(k, E(k)) Quasiparticle energy E(k) 
definition, its width Γ(k,T) 
and its quality factor Q(k,T)

A(k, ν) =
�m Σ(k, ν)

[ν − ξ0 ε(k)�e Σ(k, ν) ]2 + [�m Σ(k, ν) ]2

2Γ(k, T )

E(k, T ) ν

A(k, ν)

Define  Q(k,T), the “quality” factor of peak 

Expect large  Q(k_f,0) in Fermi liquids.

A is spectral function

Q(k, T ) =
E(k)

Γ(k, T )
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• tJ show very poor Q 
compared to Hubbard
•Inverted peak 
structure near kF, with 
low T Q factors being 
larger than high T 
ones, 
•Unlike Hubbard 
model Considerable T 
dependence away from 
kF

t J GGGHubbard GGG
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VFermi Surface

VLuttinger Ward

U

8|t| + U

1
Fermi Liquid

ECQL

Uc

(I)

(I) (II)

(II)

(III)

1
1− n

2
Crossover scenario (III)

First order transition scenario (II)

Generic single critical point scenario (I)

U =∞U = 0

Hubbard-I
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•

Summary and open Questions
✤  Non canonical Field theories using Schwinger’s ideas + crucial 

insight re asymptotic freedom of vertices. Factoring in time space 

✤We find by a self consistent theory, ECQL, i.e.  a strong coupling 
quantum liquid phase of the tJ model found with large FS.   

✤Question: Is this the unique liquid phase for the tJ model 
or can we have other liquids states (satisfying LWT)?

✤Preliminary result : Superconducting instability has a similar form 
to RVB d-wave, but very small Tc. 

✤Connection with experimental systems?

✤Does the tJ model really describe High Tc systems? Or is 
Hubbard more appropriate?   

✤Interesting and probing questions are emerging re ARPES 
line width: 

✤Is           a minimum at “FS” - preliminary answers confusing

•

Γ(k)
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